1
|
Bello AM, Roshorm YM. Recent progress and advances towards developing enterovirus 71 vaccines for effective protection against human hand, foot and mouth disease (HFMD). Biologicals 2022; 79:1-9. [PMID: 36089444 DOI: 10.1016/j.biologicals.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/24/2022] [Accepted: 08/28/2022] [Indexed: 11/02/2022] Open
Abstract
The main pathogen causing severe and neurotrophic hand, foot and mouth disease (HFMD) is enterovirus A71 (EV71). EV71 infection is among the major cause of serious public health burden and economic loss especially in the Asia-pacific region. Yet, no specific anti-viral treatment against this life-threatening infection is currently available. Thus, the best way to control EV71 infection is by vaccination with an effective and safe vaccine. Several strategies are being employed to develop vaccines against EV71. These include conventional and modern recombinant vaccine strategies. Conventional vaccines such as inactivated EV71 vaccines are the most studied and advanced vaccines against HFMD. Recombinant HFMD vaccines developed based on the recombinant DNA technology have been employed but are mostly at early or late preclinical development stage. In this article, we discuss the recent progress and advances in modern recombinant strategies of EV71 vaccine development including subunit, VLP, epitope-based, DNA, and vector-based vaccines, as well as conventional approaches, focusing on their various prospects, advantages and disadvantages.
Collapse
Affiliation(s)
- Aliyu Maje Bello
- Division of Biotechnology, School of Bioresource and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand; Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University Kano, 700241, Nigeria
| | - Yaowaluck Maprang Roshorm
- Division of Biotechnology, School of Bioresource and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand.
| |
Collapse
|
2
|
Tamura K, Kohnoe M, Takashino A, Kobayashi K, Koike S, Karwal L, Fukuda S, Vang F, Das SC, Dean HJ. TAK − 021, an inactivated Enterovirus 71 vaccine candidate, provides cross-protection against heterologous sub-genogroups in human scavenger receptor B2 transgenic mice. Vaccine 2022; 40:3330-3337. [DOI: 10.1016/j.vaccine.2022.04.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
3
|
Swain SK, Gadnayak A, Mohanty JN, Sarangi R, Das J. Does enterovirus 71 urge for effective vaccine control strategies? Challenges and current opinion. Rev Med Virol 2022; 32:e2322. [PMID: 34997684 DOI: 10.1002/rmv.2322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022]
Abstract
Enterovirus 71 (EV71) is an infectious virus affecting all age groups of people around the world. It is one of the major aetiologic agents for HFMD (hand, foot and mouth disease) identified globally. It has led to many outbreaks and epidemics in Asian countries. Infection caused by this virus that can lead to serious psychological problems, heart diseases and respiratory issues in children younger than 10 years of age. Many studies are being carried out on the pathogenesis of the virus, but little is known. The host immune response and other molecular responses against the virus are also not clearly determined. This review deals with the interaction between the host and the EV71 virus. We discuss how the virus makes use of its proteins to affect the host's immunity and how the viral proteins help their replication. Additionally, we describe other useful resources that enable the virus to evade the host's immune responses. The knowledge of the viral structure and its interactions with host cells has led to the discovery of various drug targets for the treatment of the virus. Additionally, this review focusses on the antiviral drugs and vaccines developed by targeting various viral surface molecules during their infectious period. Furthermore, it is asserted that the improvement of prevailing vaccines will be the simplest method to manage EV71 infection swiftly. Therefore, we summarise numerous vaccines candidate for the EV71, such as the use of an inactivated complete virus, recombinant VP1 protein, artificial peptides, VLPs (viral-like particles) and live attenuated vaccines for combating the viral outbreaks promptly.
Collapse
Affiliation(s)
- Subrat Kumar Swain
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Ayushman Gadnayak
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Jatindra Nath Mohanty
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Rachita Sarangi
- Department of Pediatrics, IMS and SUM Hospital, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, India
| | - Jayashankar Das
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
4
|
Liu Z, Yang Y, Meng C, Fan M, Guo J, Li J, Jing Z, Wang PP, Li R, Feng Z, Ren F, Wang M, Zhao T. A novel polypeptide vaccine and Adjuvant Formulation of EV71. Pathog Dis 2021; 79:6470639. [PMID: 34928326 DOI: 10.1093/femspd/ftab057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Hand foot and mouth disease (HFMD) is an infectious disease mainly caused by enterovirus 71 (EV 71). However, the effective treatment is limited currently. The aim of this study was to investigate the activity of the vaccine including the EV71 polypeptides mixed with a novel adjuvant containing CpG oligodeoxynucleotides (CpG ODNs). After collecting mouse sera, we determined the antibody concentration in serum by enzyme-linked immunosorbent assays (ELISA). Then CD19+ CD27+ B cells in the spleen were analyzed by flow cytometry. The assay revealed that a substantial increase in antibody titers was achieved. This indicates a high level of immunogenicity for peptide vaccine and the good stability of adjuvant, also suggests that the combination of vaccine and adjuvant can stimulate the production of high-level antibodies and CD19+ CD27+ B lymphocytes in mice. Furthermore, the antibody could effectively identify EV71 inactivated virus. The results demonstrated that the autonomous construction of EV71 polypeptide vaccine had a good immunogenicity. Moreover, the peptide vaccine injection with a novel adjuvant, which is easy to prepare, could cause a high antibody level of EV71, and shown a good application prospect.
Collapse
Affiliation(s)
- Zhiang Liu
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Yunfan Yang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - ChenChen Meng
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Meihua Fan
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Jing Guo
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Jie Li
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Zepeng Jing
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Ping Ping Wang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Ruipeng Li
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Zhiwei Feng
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Feng Ren
- Henan International Joint Laboratory of Immunity and Targeted Therapy for liver-intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Mingyong Wang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Tiesuo Zhao
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Henan International Joint Laboratory of Immunity and Targeted Therapy for liver-intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| |
Collapse
|
5
|
Safety and Immunogenicity of a Stable, Cold-Adapted, Temperature-Sensitive/Conditional Lethal Enterovirus A71 in Monkey Study. Viruses 2021; 13:v13030438. [PMID: 33803356 PMCID: PMC8001754 DOI: 10.3390/v13030438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/27/2022] Open
Abstract
Enterovirus A71 (EV-A71) and coxsackievirus A16 (CA16) are major etiological agents of hand foot and mouth disease (HFMD) in children, which may result in fatal neurological complications. The development of safe, cost effective vaccines against HFMD, especially for use in developing countries, is still a top public health priority. We have successfully generated a stable, cold-adapted, temperature sensitive/conditional lethal EV-A71 through adaptive culturing in Vero cells at incrementally lower cultivation temperatures. An additional 40 passages at an incubation temperature of 28 °C, and a temperature reversion study at an incubation temperature of 37 °C and 39.5 °C, reveals the virus’s phenotypic and genetic stability at the predefined culture conditions. Six unique mutations (two in noncoding regions and four in nonstructural protein-coding genes) in combination may have contributed to its stable phenotype and inability to fully revert to its original wild phenotype. The safety and immunogenicity of this stable, cold-adapted, temperature sensitive/conditional lethal EV-A71 was performed in six monkeys. None of the inoculated monkeys developed any obvious clinical illness except one which developed a transient spike of fever. No gross postmortem lesion or abnormal histological finding was noted for all monkeys at autopsy. No virus was reisolated although EV-A71 specific RNA was detected in serum samples collected on both day 4 and day 8 postinoculation. Only EV-A71 RNA and viral antigen were detected in the spleen homogenate and peripheral blood mononuclear cells, respectively, collected on day 4. The two remaining monkeys developed good humoral immune response on day 14 and day 30 post-inoculation.
Collapse
|
6
|
Recombinant Enterovirus 71 Viral Protein 1 Fused to a Truncated Newcastle Disease Virus NP (NPt) Carrier Protein. Vaccines (Basel) 2020; 8:vaccines8040742. [PMID: 33297428 PMCID: PMC7762238 DOI: 10.3390/vaccines8040742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 01/14/2023] Open
Abstract
Enterovirus 71 (EV71) is the major causative agent in hand, foot, and mouth disease (HFMD), and it mainly infects children worldwide. Despite the risk, there is no effective vaccine available for this disease. Hence, a recombinant protein construct of truncated nucleocapsid protein viral protein 1 (NPt-VP1198–297), which is capable of inducing neutralizing antibody against EV71, was evaluated in a mouse model. Truncated nucleocapsid protein Newcastle disease virus that was used as immunological carrier fused to VP1 of EV71 as antigen. The recombinant plasmid carrying corresponding genes was constructed by recombinant DNA technology and the corresponding protein was produced in Escherichia coli expression system. The recombinant NPt-VP1198–297 protein had elicited neutralizing antibodies against EV71 with the titer of 1:16, and this result is higher than the titer that is elicited by VP1 protein alone (1:8). It was shown that NPt containing immunogenic epitope(s) of VP1 was capable of inducing a greater functional immune response when compared to full-length VP1 protein alone. It was capable to carry larger polypeptide compared to full-length NP protein. The current study also proved that NPt-VP1198–297 protein can be abundantly produced in recombinant protein form by E. coli expression system. The findings from this study support the importance of neutralizing antibodies in EV71 infection and highlight the potential of the recombinant NPt-VP1198–297 protein as EV71 vaccine.
Collapse
|
7
|
Imura A, Sudaka Y, Takashino A, Tamura K, Kobayashi K, Nagata N, Nishimura H, Mizuta K, Koike S. Development of an Enterovirus 71 Vaccine Efficacy Test Using Human Scavenger Receptor B2 Transgenic Mice. J Virol 2020; 94:e01921-19. [PMID: 31896594 PMCID: PMC7158731 DOI: 10.1128/jvi.01921-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Enterovirus 71 (EV71) is a causative agent of hand-foot-mouth disease, and it sometimes causes severe neurological disease. Development of effective vaccines and animal models to evaluate vaccine candidates are needed. However, the animal models currently used for vaccine efficacy testing, monkeys and neonatal mice, have economic, ethical, and practical drawbacks. In addition, EV71 strains prepared for lethal challenge often develop decreased virulence during propagation in cell culture. To overcome these problems, we used a mouse model expressing human scavenger receptor B2 (hSCARB2) that showed lifelong susceptibility to EV71. We selected virulent EV71 strains belonging to the subgenogroups B4, B5, C1, C2, and C4 and propagated them using a culture method for EV71 without an apparent reduction in virulence. Here, we describe a novel EV71 vaccine efficacy test based on these hSCARB2 transgenic (Tg) mice and these virulent viruses. Adult Tg mice were immunized subcutaneously with formalin-inactivated EV71. The vaccine elicited sufficient levels of neutralizing antibodies in the immunized mice. The mice were subjected to lethal challenge with virulent viruses via intravenous injection. Survival, clinical signs, and body weight changes were observed for 2 weeks. Most immunized mice survived without clinical signs or histopathological lesions. The viral replication in immunized mice was much lower than that in nonimmunized mice. Mice immunized with the EV71 vaccine were only partially protected against lethal challenge with coxsackievirus A16. These results indicate that this new model is useful for in vivo EV71 vaccine efficacy testing.IMPORTANCE The development of new vaccines for EV71 relies on the availability of small animal models suitable for in vivo efficacy testing. Monkeys and neonatal mice have been used, but the use of these animals has several drawbacks, including high costs, limited susceptibility, and poor experimental reproducibility. In addition, the related ethical issues are considerable. The new efficacy test based on hSCARB2 Tg mice and virulent EV71 strains propagated in genetically modified cell lines presented here can overcome these disadvantages and is expected to accelerate the development of new EV71 vaccines.
Collapse
MESH Headings
- Animals
- Cell Line
- Disease Models, Animal
- Drug Evaluation
- Enterovirus A, Human/genetics
- Enterovirus A, Human/immunology
- Enterovirus A, Human/pathogenicity
- Hand, Foot and Mouth Disease/genetics
- Hand, Foot and Mouth Disease/immunology
- Hand, Foot and Mouth Disease/pathology
- Hand, Foot and Mouth Disease/prevention & control
- Humans
- Lysosomal Membrane Proteins/genetics
- Lysosomal Membrane Proteins/immunology
- Mice
- Mice, Transgenic
- Receptors, Scavenger/genetics
- Receptors, Scavenger/immunology
- Vaccines, Inactivated/genetics
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/pharmacology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Viral Vaccines/pharmacology
Collapse
Affiliation(s)
- Ayumi Imura
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yui Sudaka
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ayako Takashino
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kanami Tamura
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyousuke Kobayashi
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Japan
| | - Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Japan
| | - Satoshi Koike
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
8
|
Rattanapisit K, Chao Z, Siriwattananon K, Huang Z, Phoolcharoen W. Plant-Produced Anti-Enterovirus 71 (EV71) Monoclonal Antibody Efficiently Protects Mice Against EV71 Infection. PLANTS 2019; 8:plants8120560. [PMID: 31805650 PMCID: PMC6963219 DOI: 10.3390/plants8120560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 01/28/2023]
Abstract
Enterovirus 71 (EV71) is the main causative agent of severe hand-foot-mouth disease. EV71 affects countries mainly in the Asia-Pacific region, which makes it unattractive for pharmaceutical companies to develop drugs or vaccine to combat EV71 infection. However, development of these drugs and vaccines is vital to protect younger generations. This study aims to develop a specific monoclonal antibody (mAb) to EV71 using a plant platform, which is a cost-effective and scalable production technology. A previous report showed that D5, a murine anti-EV71 mAb, binds to VP1 protein of EV71, potently neutralizes EV71 in vitro, and effectively protects mice against EV71 infection. Herein, plant-produced chimeric D5 (cD5) mAb, variable regions of murine D5 antibody linked with constant regions of human IgG1, was transiently expressed in Nicotiana benthamiana using geminiviral vectors. The antibody was expressed at high levels within six days of infiltration. Plant-produced cD5 retained its in vitro high-affinity binding and neutralizing activity against EV71. Furthermore, a single dose (10 µg/g body weight) of plant-produced cD5 mAb offered 100% protection against infection in mice after a lethal EV71 challenge. Therefore, our results showed that plant-produced anti-EV71 mAb is an effective, safe, and affordable therapeutic option against EV71 infection.
Collapse
Affiliation(s)
- Kaewta Rattanapisit
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| | - Zhang Chao
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Konlavat Siriwattananon
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| | - Zhong Huang
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China;
- Correspondence: (Z.H.); (W.P.); Tel.: +21-5492-3067 (Z.H.); +66-2218-8359 (W.P.)
| | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals and Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (Z.H.); (W.P.); Tel.: +21-5492-3067 (Z.H.); +66-2218-8359 (W.P.)
| |
Collapse
|
9
|
Lin JY, Kung YA, Shih SR. Antivirals and vaccines for Enterovirus A71. J Biomed Sci 2019; 26:65. [PMID: 31481071 PMCID: PMC6720414 DOI: 10.1186/s12929-019-0560-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/23/2019] [Indexed: 01/23/2023] Open
Abstract
Enterovirus A71 (EV-A71) is an important emerging virus posing a threat to children under five years old. EV-A71 infection in infants or young children can cause hand-foot-and-mouth disease, herpangina, or severe neurological complications. However, there are still no effective antivirals for treatment of these infections. In this review, we summarize the antiviral compounds developed to date based on various targets of the EV-A71 life cycle. Moreover, development of a vaccine would be the most effective approach to prevent EV-A71 infection. Therefore, we also summarize the development and clinical progress of various candidate EV-A71 vaccines, including inactivated whole virus, recombinant VP1 protein, synthetic peptides, viral-like particles, and live attenuated vaccines.
Collapse
Affiliation(s)
- Jing-Yi Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Yu-An Kung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
10
|
Immunogenicity and Efficacy Evaluation of Subunit Astrovirus Vaccines. Vaccines (Basel) 2019; 7:vaccines7030079. [PMID: 31382451 PMCID: PMC6789684 DOI: 10.3390/vaccines7030079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
A full understanding of the immune response to astrovirus (AstV) infection is required to treat and control AstV-induced gastroenteritis. Relative contributions of each arm of the immune system in restricting AstV infection remain unknown. In this study, two novel subunit AstV vaccines derived from capsid protein (CP) of mink AstV (MAstV) such as CPΔN (spanning amino acids 161–775) and CPΔC (spanning amino acids 1–621) were evaluated. Their immunogenicity and cytokine production in mice, as well as protective efficacy in mink litters via maternal immunization, were studied. Truncated CPs induced higher levels of serum anti-CP antibodies than CP, with the highest level for CPΔN. No seronegativity was detected after booster immunization with either AstV CP truncates in both mice and mink. All mink moms stayed seropositive during the entire 104-day study. Furthermore, lymphoproliferation responses and Th1/Th2 cytokine induction of mice splenocytes ex vivo re-stimulated by truncated CPs were significantly higher than those by CP, with the highest level for CPΔN. Immunization of mink moms with truncated CPs could suppress virus shedding and clinical signs in their litters during a 51-day study after challenge with a heterogeneous MAstV strain. Collectively, AstV truncated CPs exhibit better parameters for protection than full-length CP.
Collapse
|
11
|
Aw‐Yong KL, NikNadia NMN, Tan CW, Sam I, Chan YF. Immune responses against enterovirus A71 infection: Implications for vaccine success. Rev Med Virol 2019; 29:e2073. [DOI: 10.1002/rmv.2073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Kam Leng Aw‐Yong
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Nik Mohd Nasir NikNadia
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Chee Wah Tan
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - I‐Ching Sam
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| |
Collapse
|
12
|
Chang YK, Chen KH, Chen KT. Hand, foot and mouth disease and herpangina caused by enterovirus A71 infections: a review of enterovirus A71 molecular epidemiology, pathogenesis, and current vaccine development. Rev Inst Med Trop Sao Paulo 2018; 60:e70. [PMID: 30427405 PMCID: PMC6223252 DOI: 10.1590/s1678-9946201860070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/09/2018] [Indexed: 01/28/2023] Open
Abstract
Enterovirus A71 (EV-A71) infections are one of the main etiological agents of hand, foot and mouth disease (HFMD) and herpangina worldwide. EV-A71 infection is a life-threatening communicable disease and there is an urgent global need for the development of vaccines for its prevention and control. The morbidity rate of EV-A71 infection differs between countries. The pathogen’s genetic lineages are undergoing rapid evolutionary changes. An association between the occurrence of EV-A71 infection and the circulation of different genetic strains of EV-A71 virus has been identified around the world. In this review, we present and discuss the molecular epidemiology and pathogenesis of the human disease caused by EV-A71 infection, as well as current prospects for the development of an EV-A71 vaccine.
Collapse
Affiliation(s)
- Yu-Kang Chang
- Chi-Mei Medical Center, Liouying Campus, Department of Radiology, Tainan, Taiwan
| | - Kou-Huang Chen
- Sanming University, School of Mechanical & Electronic Engineering, Sanming, Fujian Province, China
| | - Kow-Tong Chen
- Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Department of Occupational Medicine, Tainan, Taiwan.,National Cheng Kung University, College of Medicine, Department of Public Health, Tainan, Taiwan
| |
Collapse
|
13
|
Zhang C, Wang Y, Ma S, Li L, Chen L, Yan H, Peng T. Human Enterovirus 71 Protein Displayed on the Surface of Saccharomyces cerevisiae as an Oral Vaccine. Viral Immunol 2017; 29:288-95. [PMID: 27259043 DOI: 10.1089/vim.2015.0110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human enterovirus 71 (EV-A71), a major agent of hand, foot, and mouth disease, has become an important public health issue in recent years. No effective antiviral or vaccines against EV-A71 infection are currently available. EV-A71 infection intrudes bodies through the gastric mucosal surface and it is necessary to enhance mucosal immune response to protect children from these pathogens. Recently, the majority of EV-A71 vaccine candidates have been developed for parenteral immunization. However, parenteral vaccine candidates often induce poor mucosal responses. On the other hand, oral vaccines could induce effective mucosal and systemic immunity, and could be easily and safely administered. Thus, proper oral vaccines have attached more interest compared with parenteral vaccine. In this study, the major immunogenic capsid protein of EV-A71 was displayed on the surface of Saccharomyces cerevisiae. Oral immunization of mice with surface-displayed VP1 S. cerevisiae induced systemic humoral and mucosal immune responses, including virus-neutralizing titers, VP1-specific antibody, and the induction of Th1 immune responses in the spleen. Furthermore, oral immunization of mother mice with surface-displayed VP1 S. cerevisiae conferred protection to neonatal mice against the lethal EV-A71 infection. Furthermore, we observed that multiple boost immunization as well as higher immunization dosage could induce higher EV-A71-specific immune response. Our results demonstrated that surface-displayed VP1 S. cerevisiae could be used as potential oral vaccine against EV-A71 infection.
Collapse
Affiliation(s)
- Congdang Zhang
- 1 School of Life Sciences, Anhui University , Hefei, China .,2 Southern China United Vaccine Institute , Guangzhou, China
| | - Yi Wang
- 2 Southern China United Vaccine Institute , Guangzhou, China
| | - Shuzhi Ma
- 2 Southern China United Vaccine Institute , Guangzhou, China
| | - Leike Li
- 3 State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, Guangzhou Medical University , Guangzhou, China
| | - Liyun Chen
- 2 Southern China United Vaccine Institute , Guangzhou, China
| | - Huimin Yan
- 4 The State Key Laboratory of Virology, Wuhan Institute of Virology , Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Tao Peng
- 2 Southern China United Vaccine Institute , Guangzhou, China .,3 State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, Guangzhou Medical University , Guangzhou, China
| |
Collapse
|
14
|
Chiang YW, Yeh CF, Yen MH, Lu CY, Chiang LC, Shieh DE, Chang JS. Flos Farfarae Inhibits Enterovirus 71-Induced Cell Injury by Preventing Viral Replication and Structural Protein Expression. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:299-317. [DOI: 10.1142/s0192415x17500197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enterovirus 71 (EV71) infection can cause airway symptoms, brainstem encephalitis, neurogenic shock, and neurogenic pulmonary edema with high morbidity and mortality. There is no proven therapeutic modality. Flos Farfarae is the dried flower bud of Tussilago farfara L. that has been used to manage airway illnesses for thousands of years. It has neuro-protective activity and has been used to manage neuro-inflammatory diseases. However, it is unknown whether Flos Farfarae has activity against EV71-induced neuropathy. The current study used both human foreskin fibroblast (CCFS-1/KMC) and human rhabdomyosarcoma (RD) cell lines to test the hypothesis that a hot water extract of Flos Farfarae could effectively inhibit EV71 infection. The authenticity of Flos Farfarae was confirmed by HPLC-UV fingerprint. Through plaque reduction assays and flow cytometry, Flos Farfarae was found to inhibit EV71 infection ([Formula: see text]). Inhibition of viral replication and protein expression were further confirmed by reverse transcription polymerase chain reaction (RT-PCR) and quantitative RT-PCR (qRT-PCR), and western blot, respectively. The estimated IC[Formula: see text]s were 106.3[Formula: see text][Formula: see text]g/mL in CCFS-1/KMC, and 15.0[Formula: see text][Formula: see text]g/mL in RD cells. Therefore, Flos Farfarae could be beneficial to inhibit EV71 infection by preventing viral replication and structural protein expression.
Collapse
Affiliation(s)
- Ya Wen Chiang
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia Feng Yeh
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming Hong Yen
- School of Pharmacy and Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chi Yu Lu
- Department of Biochemistry, College of Medicine and Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Lien Chai Chiang
- Department of Microbiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Den En Shieh
- Department of Food Science and Technology, Tajen University of Technology, Ping-Tung, Taiwan
| | - Jung San Chang
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| |
Collapse
|
15
|
Yi EJ, Shin YJ, Kim JH, Kim TG, Chang SY. Enterovirus 71 infection and vaccines. Clin Exp Vaccine Res 2017; 6:4-14. [PMID: 28168168 PMCID: PMC5292356 DOI: 10.7774/cevr.2017.6.1.4] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/02/2016] [Accepted: 10/30/2016] [Indexed: 01/15/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) is a highly contagious viral infection affecting young children during the spring to fall seasons. Recently, serious outbreaks of HFMD were reported frequently in the Asia-Pacific region, including China and Korea. The symptoms of HFMD are usually mild, comprising fever, loss of appetite, and a rash with blisters, which do not need specific treatment. However, there are uncommon neurological or cardiac complications such as meningitis and acute flaccid paralysis that can be fatal. HFMD is most commonly caused by infection with coxsackievirus A16, and secondly by enterovirus 71 (EV71). Many other strains of coxsackievirus and enterovirus can also cause HFMD. Importantly, HFMD caused by EV71 tends to be associated with fatal complications. Therefore, there is an urgent need to protect against EV71 infection. Development of vaccines against EV71 would be the most effective approach to prevent EV71 outbreaks. Here, we summarize EV71 infection and development of vaccines, focusing on current scientific and clinical progress.
Collapse
Affiliation(s)
- Eun-Je Yi
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Yun-Ju Shin
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Jeong-Hwan Kim
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Tae-Gyun Kim
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea.; Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Korea
| |
Collapse
|
16
|
Purification and assembling a fused capsid protein as an enterovirus 71 vaccine candidate from inclusion bodies to pentamer-based nanoparticles. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Xu Y, Ma S, Zhu L, Huang Z, Chen L, Xu Y, Yin H, Peng T, Wang Y. Clinically isolated enterovirus A71 subgenogroup C4 strain with lethal pathogenicity in 14-day-old mice and the application as an EV-A71 mouse infection model. Antiviral Res 2016; 137:67-75. [PMID: 27864074 DOI: 10.1016/j.antiviral.2016.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 11/25/2022]
Abstract
The Enterovirus A71 (EV-A71) subgenogroup C4 is prevalent in China. EV-A71 causes hand, foot and mouth disease (HFMD) in children and may lead to severe neurological diseases. The development of antiviral and protective vaccines against EV-A71 is significantly hindered by the lack of suitable animal models to recapitulate human neurological symptoms. In this study, GZ-CII, a highly virulent EV-A71 subgenogroup C4 strain, was isolated from hospitalized children with HFMD. Intraperitoneal infections of GZ-CII resulted in progressive neurological disease in mice as old as 14 days. Administration of an inactivated EV-A71 vaccine or an anti-EV-A71 immune serum protected the mice against the GZ-CII infection. This demonstrated that a mouse model with EV-A71 GZ-CII could be used to evaluate potential vaccine candidates and therapeutics for subgenogroup C4. Comparing the genome sequence of GZ-CII with that of the avirulent EV-A71 subgenogroup C4 strain revealed unique mutations in GZ-CII. When mutation VP2-K149I was introduced into the nonpathogenic EV-A71 subgenogroup C4 strain, the variant similar to GZ-CII significantly increased viral replication and virulence in mice. These results indicated that the VP2-K149I mutation played an important role in enhancing the virulence of the EV-A71 subgenogroup C4 strain in mice, and that mice infected with the GZ-CII strain are a promising model for evaluating vaccines and therapeutics against the EV-A71 subgenogroup C4.
Collapse
Affiliation(s)
- Yi Xu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou, China
| | - Shuzhi Ma
- Guangdong South China United Vaccine Institute, Guangzhou, China; Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, College of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Limeng Zhu
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, College of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Zhiqiu Huang
- Guangdong South China United Vaccine Institute, Guangzhou, China
| | - Liyun Chen
- Guangdong South China United Vaccine Institute, Guangzhou, China
| | - Yuhua Xu
- Guangdong South China United Vaccine Institute, Guangzhou, China; Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, College of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Haibin Yin
- Guangdong South China United Vaccine Institute, Guangzhou, China
| | - Tao Peng
- Guangdong South China United Vaccine Institute, Guangzhou, China; Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, College of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.
| | - Yi Wang
- Guangdong South China United Vaccine Institute, Guangzhou, China; The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
18
|
Hand, foot and mouth disease (HFMD): emerging epidemiology and the need for a vaccine strategy. Med Microbiol Immunol 2016; 205:397-407. [DOI: 10.1007/s00430-016-0465-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/29/2016] [Indexed: 12/24/2022]
|
19
|
Sun S, Gao F, Mao Q, Shao J, Jiang L, Liu D, Wang Y, Yao X, Wu X, Sun B, Zhao D, Ma Y, Lu J, Kong W, Jiang C, Liang Z. Immunogenicity and protective efficacy of an EV71 virus-like particle vaccine against lethal challenge in newborn mice. Hum Vaccin Immunother 2016; 11:2406-13. [PMID: 26036916 DOI: 10.1080/21645515.2015.1053675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Enterovirus 71(EV71) has caused severe epidemics of hand, foot and mouth disease (HFMD) in the Asia Pacific in recent years, particularly in infants and pre-school children. It has become a serious public health threat, as currently there are no approved vaccines or antiviral drugs for EV71 infection. Many EV71 vaccines have been under development worldwide, however the main focus is inactivated EV71 vaccines. For example, the inactivated EV71 vaccine has recently finished phase III clinical trial in Mainland China. There have been very few studies on EV71 virus like particles (VLPs). In this study, the immunogenicity and protective potency of the EV71 VLPs produced in insect cells were evaluated in mice with different dosages. Our results showed that EV71 VLPs could elicit high titers of neutralizing antibodies (NTAbs) in a dose-dependent manner and NTAbs were sustained after the second injection with an average GMT (geometric mean titer) level from 19 to 2960 in immunized mice. Survival rates were 100%, 100%, 85%, and 40% after challenge with 15 LD50 (median lethal dose) of EV71 in these newborn mice, respectively. ED50 (50% effective dose) of VLPs was 0.20 μg/dose in newborn mice, while NTAb titer under this dosage was about 50. Passive protection was determined with 2 methods and demonstrated that the survival rates were positively correlated with NTAb titers, which at 24 and 54 induced 50% survival rates in experimental animals. The ED50 of VLP vaccines and the passive NTAb titers were also analyzed. The maternal NTAb titer was similar as the passive NTAb titer in the mouse model challenged with our lethal mouse EV71 strain. Hence, our work has provided preliminary data on the protection potency of VLPs as a vaccine candidate and would facilitate future VLP vaccine development.
Collapse
Affiliation(s)
- Shiyang Sun
- a School of Life Sciences; Jilin University ; Changchun , PR China.,b National Engineering Laboratory for AIDS Vaccine; Jilin University ; Changchun , PR China
| | - Fan Gao
- c National Institutes for Food and Drug Control ; Beijing , PR China
| | - Qunying Mao
- c National Institutes for Food and Drug Control ; Beijing , PR China
| | - Jie Shao
- a School of Life Sciences; Jilin University ; Changchun , PR China.,b National Engineering Laboratory for AIDS Vaccine; Jilin University ; Changchun , PR China
| | - Liping Jiang
- a School of Life Sciences; Jilin University ; Changchun , PR China.,b National Engineering Laboratory for AIDS Vaccine; Jilin University ; Changchun , PR China
| | - Dawei Liu
- d Changchun BCHT Biotechnology Co. ; Changchun , PR China
| | - Yiping Wang
- c National Institutes for Food and Drug Control ; Beijing , PR China
| | - Xin Yao
- c National Institutes for Food and Drug Control ; Beijing , PR China
| | - Xing Wu
- c National Institutes for Food and Drug Control ; Beijing , PR China
| | - Bo Sun
- d Changchun BCHT Biotechnology Co. ; Changchun , PR China
| | - Dandan Zhao
- a School of Life Sciences; Jilin University ; Changchun , PR China.,b National Engineering Laboratory for AIDS Vaccine; Jilin University ; Changchun , PR China
| | - Youlei Ma
- d Changchun BCHT Biotechnology Co. ; Changchun , PR China
| | - Jingcai Lu
- a School of Life Sciences; Jilin University ; Changchun , PR China.,b National Engineering Laboratory for AIDS Vaccine; Jilin University ; Changchun , PR China
| | - Wei Kong
- a School of Life Sciences; Jilin University ; Changchun , PR China.,b National Engineering Laboratory for AIDS Vaccine; Jilin University ; Changchun , PR China.,e Key Laboratory for Molecular Enzymology & Engineering; The Ministry of Education; Jilin University ; Changchun , PR China
| | - Chunlai Jiang
- a School of Life Sciences; Jilin University ; Changchun , PR China.,b National Engineering Laboratory for AIDS Vaccine; Jilin University ; Changchun , PR China.,e Key Laboratory for Molecular Enzymology & Engineering; The Ministry of Education; Jilin University ; Changchun , PR China
| | - Zhenglun Liang
- c National Institutes for Food and Drug Control ; Beijing , PR China
| |
Collapse
|
20
|
Wang X, Xiao X, Zhao M, Liu W, Pang L, Sun X, Cen S, Yang BB, Huang Y, Sheng W, Zeng Y. EV71 virus-like particles produced by co-expression of capsid proteins in yeast cells elicit humoral protective response against EV71 lethal challenge. BMC Res Notes 2016; 9:42. [PMID: 26809443 PMCID: PMC4724958 DOI: 10.1186/s13104-015-1780-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Enterovirus 71 (EV71) is the most common causative pathogens of hand, foot and mouth disease (HFMD) associated with severe neurological complications. There is a great need to develop prophylactic vaccine against EV71 infection. RESULTS EV71 virus-like particle (VLP) was produced in yeast expression system by the co-expression of four EV71 structural proteins VP1-VP4. Immunization with the recombinant VLPs elicited potent anti-EV71 antibody responses in adult mice and anti-VLP sera were able to neutralize EV71 virus in vitro. Neonatal mice model demonstrated VLP immunization conferred protection to suckling mice against the lethal viral challenge. CONCLUSIONS Co-expression of four EV71 structural proteins VP1-VP4 in yeast expression systems is an effective method to produce EV71 VLPs. VLP-based vaccine shows great potential to prevent EV71 infection.
Collapse
Affiliation(s)
- Xiaowen Wang
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, People's Republic of China.
| | - Xiangqian Xiao
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, People's Republic of China.
| | - Miao Zhao
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, People's Republic of China.
| | - Wei Liu
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, People's Republic of China.
| | - Lin Pang
- Department of Neurology, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Xin Sun
- Research Center for Life Science, Beihua University, Jilin, People's Republic of China.
| | - Shan Cen
- Department of Virology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, People's Republic of China.
| | - Burton B Yang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 2075 Bayview Avenue, Toronto, M4N 3M5, Canada.
| | - Yuming Huang
- Department of Neurology, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Wang Sheng
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, People's Republic of China.
| | - Yi Zeng
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, People's Republic of China.
| |
Collapse
|
21
|
Zhang C, Yang Y, Chi Y, Yin J, Yan L, Ku Z, Liu Q, Huang Z, Zhou D. Hexon-modified recombinant E1-deleted adenoviral vectors as bivalent vaccine carriers for Coxsackievirus A16 and Enterovirus 71. Vaccine 2015; 33:5087-94. [PMID: 26296491 DOI: 10.1016/j.vaccine.2015.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/31/2015] [Accepted: 08/06/2015] [Indexed: 02/03/2023]
Abstract
Hand, foot and mouth disease (HFMD) is a major public health concern in Asia; more efficient vaccines against HFMD are urgently required. Adenoviral (Ad) capsids have been used widely for the presentation of foreign antigens to induce specific immune responses in the host. Here, we describe a novel bivalent vaccine for HFMD based on the hexon-modified, E1-deleted chimpanzee adenovirus serotype 68 (AdC68). The novel vaccine candidate was generated by incorporating the neutralising epitope of Coxsackievirus A16 (CA16), PEP71, into hypervariable region 1 (HVR1), and a shortened neutralising epitope of Enterovirus 71 (EV71), sSP70, into HVR2 of the AdC68 hexon. In order to enhance the immunogenicity of EV71, VP1 of EV71 was cloned into the E1-region of the AdC68 vectors. The results demonstrated that these two epitopes were well presented on the virion surface and had high affinity towards specific antibodies, and VP1 of EV71 was also significantly expressed. In pre-clinical mouse models, the hexon-modified AdC68 elicited neutralising antibodies against both CA16 and EV71, which conferred protection to suckling mice against a lethal challenge of CA16 and EV71. In summary, this study demonstrates that the hexon-modified AdC68 may represent a promising bivalent vaccine carrier against EV71 and CA16 and an epitope-display platform for other pathogens.
Collapse
Affiliation(s)
- Chao Zhang
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Yang
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yudan Chi
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jieyun Yin
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lijun Yan
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiqiang Ku
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qingwei Liu
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhong Huang
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Dongming Zhou
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
22
|
Achievements, challenges and prospects for the development of broadly protective multivalent vaccines and therapeutic antibodies against hand, foot and mouth disease. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0847-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Klein M, Chong P. Is a multivalent hand, foot, and mouth disease vaccine feasible? Hum Vaccin Immunother 2015; 11:2688-704. [PMID: 26009802 DOI: 10.1080/21645515.2015.1049780] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Enterovirus A infections are the primary cause of hand, foot and mouth disease (HFMD) in infants and young children. Although enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) are the predominant causes of HFMD epidemics worldwide, EV-A71 has emerged as a major neurovirulent virus responsible for severe neurological complications and fatal outcomes. HFMD is a serious health threat and economic burden across the Asia-Pacific region. Inactivated EV-A71 vaccines have elicited protection against EV-A71 but not against CV-A16 infections in large efficacy trials. The current development of a bivalent inactivated EV-A71/CV-A16 vaccine is the next step toward that of multivalent HFMD vaccines. These vaccines should ultimately include other prevalent pathogenic coxsackieviruses A (CV-A6 and CV-A10), coxsackieviruses B (B3 and B5) and echovirus 30 that often co-circulate during HFMD epidemics and can cause severe HFMD, aseptic meningitis and acute viral myocarditis. The prospect and challenges for the development of such multivalent vaccines are discussed.
Collapse
Affiliation(s)
| | - Pele Chong
- b Vaccine R&D Center; National Health Research Institutes ; Zhunan Town, Miaoli County , Taiwan.,c Graduate Institute of Immunology; China Medical University ; Taichung , Taiwan
| |
Collapse
|
24
|
Kok CC. Therapeutic and prevention strategies against human enterovirus 71 infection. World J Virol 2015; 4:78-95. [PMID: 25964873 PMCID: PMC4419123 DOI: 10.5501/wjv.v4.i2.78] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/21/2014] [Accepted: 02/11/2015] [Indexed: 02/05/2023] Open
Abstract
Human enterovirus 71 (HEV71) is the cause of hand, foot and mouth disease and associated neurological complications in children under five years of age. There has been an increase in HEV71 epidemic activity throughout the Asia-Pacific region in the past decade, and it is predicted to replace poliovirus as the extant neurotropic enterovirus of highest global public health significance. To date there is no effective antiviral treatment and no vaccine is available to prevent HEV71 infection. The increase in prevalence, virulence and geographic spread of HEV71 infection over the past decade provides increasing incentive for the development of new therapeutic and prevention strategies against this emerging viral infection. The current review focuses on the potential, advantages and disadvantages of these strategies. Since the explosion of outbreaks leading to large epidemics in China, research in natural therapeutic products has identified several groups of compounds with anti-HEV71 activities. Concurrently, the search for effective synthetic antivirals has produced promising results. Other therapeutic strategies including immunotherapy and the use of oligonucleotides have also been explored. A sound prevention strategy is crucial in order to control the spread of HEV71. To this end the ultimate goal is the rapid development, regulatory approval and widespread implementation of a safe and effective vaccine. The various forms of HEV71 vaccine designs are highlighted in this review. Given the rapid progress of research in this area, eradication of the virus is likely to be achieved.
Collapse
|
25
|
Tsou YL, Lin YW, Shao HY, Yu SL, Wu SR, Lin HY, Liu CC, Huang C, Chong P, Chow YH. Recombinant adeno-vaccine expressing enterovirus 71-like particles against hand, foot, and mouth disease. PLoS Negl Trop Dis 2015; 9:e0003692. [PMID: 25855976 PMCID: PMC4391779 DOI: 10.1371/journal.pntd.0003692] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/10/2015] [Indexed: 12/24/2022] Open
Abstract
Enterovirus 71 (EV71) and coxsackieviruses (CV) are the major causative agents of hand, foot and mouth disease (HFMD). There is not currently a vaccine available against HFMD, even though a newly developed formalin-inactivated EV71 (FI-EV71) vaccine has been tested in clinical trial and has shown efficacy against EV71. We have designed and genetically engineered a recombinant adenovirus Ad-EVVLP with the EV71 P1 and 3CD genes inserted into the E1/E3-deleted adenoviral genome. Ad-EVVLP were produced in HEK-293A cells. In addition to Ad-EVVLP particles, virus-like particles (VLPs) formed from the physical association of EV71 capsid proteins, VP0, VP1, and VP3 expressed from P1 gene products. They were digested by 3CD protease and confirmed to be produced by Ad-EVVLP-producing cells, as determined using transmission electron microscopy and western blotting. Mouse immunogenicity studies showed that Ad-EVVLP-immunized antisera neutralized the EV71 B4 and C2 genotypes. Activation of VLP-specific CD4+ and CD8+/IFN-γ T cells associated with Th1/Th2-balanced IFN-ɣ, IL-17, IL-4, and IL-13 was induced; in contrast, FI-EV71 induced only Th2-mediated neutralizing antibody against EV71 and low VLP-specific CD4+ and CD8+ T cell responses. The antiviral immunity against EV71 was clearly demonstrated in mice vaccinated with Ad-EVVLP in a hSCARB2 transgenic (hSCARB2-Tg) mouse challenge model. Ad-EVVLP-vaccinated mice were 100% protected and demonstrated reduced viral load in both the CNS and muscle tissues. Ad-EVVLP successfully induced anti-CVA16 immunities. Although antisera had no neutralizing activity against CVA16, the 3C-specific CD4+ and CD8+/IFN-γ T cells were identified, which could mediate protection against CVA16 challenge. FI-EV71 did not induce 3C-mediated immunity and had no efficacy against the CVA16 challenge. These results suggest that Ad-EVVLP can enhance neutralizing antibody and protective cellular immune responses to prevent EV71 infection and cellular immune responses against CV infection.
Collapse
Affiliation(s)
- Yueh-Liang Tsou
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Graduate Program of Biotechnology in Medicine, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Wen Lin
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Hsiao-Yun Shao
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Graduate Program of Biotechnology in Medicine, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Ling Yu
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Hsiao-Yu Lin
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Chyi Liu
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chieh Huang
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Pele Chong
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Yen-Hung Chow
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
26
|
Abstract
This chapter reviews papers mostly written since 2005 that report results using live attenuated bacterial vectors to deliver after administration through mucosal surfaces, protective antigens, and DNA vaccines, encoding protective antigens to induce immune responses and/or protective immunity to pathogens that colonize on or invade through mucosal surfaces. Papers that report use of such vaccine vector systems for parenteral vaccination or to deal with nonmucosal pathogens or do not address induction of mucosal antibody and/or cellular immune responses are not reviewed.
Collapse
|
27
|
Liu Q, Tong X, Huang Z. Towards broadly protective polyvalent vaccines against hand, foot and mouth disease. Microbes Infect 2014; 17:155-62. [PMID: 25449959 DOI: 10.1016/j.micinf.2014.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 11/21/2014] [Accepted: 11/21/2014] [Indexed: 11/17/2022]
Abstract
Hand, foot, and mouth disease (HFMD) caused by multiple enterovirus infections is a serious health threat to children in the Asia-Pacific region. This article reviews progresses in the development of vaccines for HFMD and discusses the need for polyvalent HFMD vaccines for conferring broad-spectrum protection.
Collapse
Affiliation(s)
- Qingwei Liu
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xin Tong
- Shanghai Zerun Biotechnology Co., Ltd., Building 9, 1690 Zhangheng Rd, Zhangjiang, Pudong New District, Shanghai 201203, China
| | - Zhong Huang
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| |
Collapse
|
28
|
Abstract
INTRODUCTION Enterovirus 71 (EV71) is an etiological agent that causes severe neurological complications in children. EV71 outbreaks have occurred throughout the Asia-Pacific region, posing a severe global public health threat; however, no specific therapeutic strategy exists for treating EV71-infected children. AREAS COVERED Five manufacturers have produced inactivated EV71 whole virus vaccines in mainland China, Taiwan, and Singapore, which have completed Phase III (mainland China) and Phase I (Taiwan and Singapore) clinical trials. Various EV71 vaccine candidates are being researched in animal models, including live-attenuated virus vaccine, recombinant VP1 vaccine, VP1-based DNA vaccine, synthetic peptide vaccine and virus-like particle vaccine. In this review, the present situation is summarized, and feasible improvements to the EV71 vaccine are explored. EXPERT OPINION Although inactivated EV71 vaccines are safe, efficient and elicit strong immune responses to protect adults, children and infants against infection, the quality control of production is critical.
Collapse
Affiliation(s)
- Yu-An Kung
- Chang Gung University, Research Center for Emerging Viral Infections , 259 Wen-Hua 1st Road, Kwei-Shan, Taoyuan, 333 (Zip code) , Taiwan +886 3 2118800 ext. 5497 ; +886 3 2118174 ;
| | | | | | | |
Collapse
|
29
|
Li YX, Zhao H, Cao RY, Deng YQ, Han JF, Zhu SY, Ma J, Liu L, Qin ED, Qin CF. Recombinant tandem multi-linear neutralizing epitopes of human enterovirus 71 elicited protective immunity in mice. Virol J 2014; 11:79. [PMID: 24885030 PMCID: PMC4030048 DOI: 10.1186/1743-422x-11-79] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Human Enterovirus 71 (EV71) has emerged as the leading cause of viral encephalitis in children, especially in the Asia-Pacific regions. EV71 vaccine development is of high priority at present, and neutralization antibodies have been documented to play critical roles during in vitro and in vivo protection against EV71 infection. RESULTS In this study, a novel strategy to produce EV71 vaccine candidate based on recombinant multiple tandem linear neutralizing epitopes (mTLNE) was proposed. The three well identified EV71 linear neutralizing epitopes in capsid proteins, VP1-SP55, VP1-SP70 and VP2-SP28, were sequentially linked by a Gly-Ser linker ((G4S)3), and expressed in E.coli in fusion with the Trx and His tag at either terminal. The recombinant protein mTLNE was soluble and could be purified by standard affinity chromatography. Following three dosage of immunization in adult mice, EV71-specific IgG and neutralization antibodies were readily induced by recombinant mTLNE. IgG subtyping demonstrated that lgG1 antibodies dominated the mTLNE-induced humoral immune response. Especially, cytokine profiling in spleen cells from the mTLNE-immunized mice revealed high production of IL-4 and IL-6. Finally, in vivo challenge experiments showed that passive transfer with anti-mTLNE sera conferred full protection against lethal EV71 challenge in neonatal mice. CONCLUSION Our results demonstrated that this rational designed recombinant mTLNE might have the potential to be further developed as an EV71 vaccine in the future.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Chromatography, Affinity
- Cytokines/analysis
- Disease Models, Animal
- Enterovirus A, Human/immunology
- Enterovirus Infections/immunology
- Enterovirus Infections/prevention & control
- Epitopes, B-Lymphocyte/immunology
- Escherichia coli/genetics
- Female
- Gene Expression
- Immunization, Passive
- Immunoglobulin G/blood
- Leukocytes, Mononuclear/immunology
- Mice, Inbred BALB C
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Survival Analysis
- Vaccination/methods
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Yue-Xiang Li
- Graduate School, Anhui Medical University, Hefei 230032, Anhui, China
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hui Zhao
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Rui-Yuan Cao
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yong-Qiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jian-Feng Han
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shun-Ya Zhu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jie Ma
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Long Liu
- Graduate School, Anhui Medical University, Hefei 230032, Anhui, China
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - E-De Qin
- Graduate School, Anhui Medical University, Hefei 230032, Anhui, China
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Cheng-Feng Qin
- Graduate School, Anhui Medical University, Hefei 230032, Anhui, China
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
30
|
Wang YF, Yu CK. Animal models of enterovirus 71 infection: applications and limitations. J Biomed Sci 2014; 21:31. [PMID: 24742252 PMCID: PMC4013435 DOI: 10.1186/1423-0127-21-31] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/11/2014] [Indexed: 01/06/2023] Open
Abstract
Human enterovirus 71 (EV71) has emerged as a neuroinvasive virus that is responsible for several outbreaks in the Asia-Pacific region over the past 15 years. Appropriate animal models are needed to understand EV71 neuropathogenesis better and to facilitate the development of effective vaccines and drugs. Non-human primate models have been used to characterize and evaluate the neurovirulence of EV71 after the early outbreaks in late 1990s. However, these models were not suitable for assessing the neurovirulence level of the virus and were associated with ethical and economic difficulties in terms of broad application. Several strategies have been applied to develop mouse models of EV71 infection, including strategies that employ virus adaption and immunodeficient hosts. Although these mouse models do not closely mimic human disease, they have been applied to determine the pathogenesis of and treatment and prevention of the disease. EV71 receptor-transgenic mouse models have recently been developed and have significantly advanced our understanding of the biological features of the virus and the host-parasite interactions. Overall, each of these models has advantages and disadvantages, and these models are differentially suited for studies of EV71 pathogenesis and/or the pre-clinical testing of antiviral drugs and vaccines. In this paper, we review the characteristics, applications and limitation of these EV71 animal models, including non-human primate and mouse models.
Collapse
Affiliation(s)
| | - Chun-Keung Yu
- Center of Infectious Disease and Signaling Research, Collage of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
31
|
Dong H, Guo HC, Sun SQ. Virus-like particles in picornavirus vaccine development. Appl Microbiol Biotechnol 2014; 98:4321-9. [PMID: 24647496 DOI: 10.1007/s00253-014-5639-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/20/2014] [Accepted: 02/23/2014] [Indexed: 12/19/2022]
Abstract
Virus-like particles (VLP), which are similar to natural virus particles but do not contain viral genes, have brought about significant breakthroughs in many research fields because of their unique advantages. The ordered repeating epitopes of VLP can induce immunity responses similar to those prompted by natural viral infection; thus, VLP vaccines are regarded as candidate alternatives to whole-virus vaccines. As picornavirus has serious impacts on human and animal health, the development of efficient and safe vaccines is a key endeavor in preventing virus infections. The characteristics of picornavirus capsid proteins allow the development of VLP vaccines. This paper investigates research scenarios and progress on picornavirus VLP vaccines with the aim of providing a reference for researchers focusing on virology and vaccinology.
Collapse
Affiliation(s)
- Hu Dong
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, People's Republic of China
| | | | | |
Collapse
|
32
|
Li JX, Mao QY, Liang ZL, Ji H, Zhu FC. Development of enterovirus 71 vaccines: from the lab bench to Phase III clinical trials. Expert Rev Vaccines 2014; 13:609-18. [PMID: 24621093 DOI: 10.1586/14760584.2014.897617] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The widespread epidemics of enterovirus 71 (EV71) seriously affected the Western Pacific Region. Young children, especially those younger than 3 years are the most susceptible population to the EV71-associated diseases. Several Asian countries have begun to focus on the research and development of EV71 vaccines. Five inactivated whole-virus EV71 candidate vaccines (three were manufactured in mainland China based on a C4 genotype strain, one in Taiwan based on a B4 genotype strain and one in Singapore based on a B2 genotype strain) have been assessed in clinical trials. Three candidate vaccines developed in mainland China have already completed Phase III clinical trials recently. The tested EV71 vaccine could provide good efficacy, satisfactory safety, and high immunogenicity. Thus, inactivated EV71 vaccines are expected to become the first available vaccines against EV71 in the near future.
Collapse
Affiliation(s)
- Jing-Xin Li
- College of Pharmacy, Third Military Medical University and National Engineering Research Center for Immunological Products, Chongqing, PR China
| | | | | | | | | |
Collapse
|
33
|
Zhao M, Bai Y, Liu W, Xiao X, Huang Y, Cen S, Chan PKS, Sun X, Sheng W, Zeng Y. Immunization of N terminus of enterovirus 71 VP4 elicits cross-protective antibody responses. BMC Microbiol 2013; 13:287. [PMID: 24320792 PMCID: PMC4029445 DOI: 10.1186/1471-2180-13-287] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Enterovirus 71 (EV71) is major cause of hand, foot and mouth disease. Large epidemics of EV71 infection have been recently reported in the Asian-Pacific region. Currently, no vaccine is available to prevent EV71 infection. RESULTS The peptide (VP4N20) consisting of the first 20 amino acids at the N-terminal of VP4 of EV71 genotype C4 were fused to hepatitis B core (HBcAg) protein. Expression of fusion proteins in E. coli resulted in the formation of chimeric virus-like particles (VLPs). Mice immunized with the chimeric VLPs elicited anti-VP4N20 antibody response. In vitro microneutralization experiments showed that anti-chimeric VLPs sera were able to neutralize not only EV71 of genotype C4 but also EV71 of genotype A. Neonatal mice model confirmed the neutralizing ability of anti-chimeric VLPs sera. Eiptope mapping led to the identification of a "core sequence" responsible for antibody recognition within the peptide. CONCLUSIONS Immunization of chimeric VLPs is able to elicit antibodies displaying a broad neutralizing activity against different genotypes of EV71 in vitro. The "core sequence" of EV71-VP4 is highly conserved across EV71 genotypes. The chimeric VLPs have a great potential to be a novel vaccine candidate with a broad cross-protection against different EV71 genotypes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xin Sun
- College of Life Science and Bioengineering, Beijing University of Technology, 100, Pingleyuan, Chaoyang District, Beijing 100124, PR China.
| | | | | |
Collapse
|
34
|
Hwa SH, Lee YA, Brewoo JN, Partidos CD, Osorio JE, Santangelo JD. Preclinical evaluation of the immunogenicity and safety of an inactivated enterovirus 71 candidate vaccine. PLoS Negl Trop Dis 2013; 7:e2538. [PMID: 24244774 PMCID: PMC3820736 DOI: 10.1371/journal.pntd.0002538] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 09/30/2013] [Indexed: 02/06/2023] Open
Abstract
Human enterovirus 71 (EV71) is a significant cause of morbidity and mortality from Hand, Foot and Mouth Disease (HFMD) and neurological complications, particularly in young children in the Asia-Pacific region. There are no vaccines or antiviral therapies currently available for prevention or treatment of HFMD caused by EV71. Therefore, the development of therapeutic and preventive strategies against HFMD is of growing importance. We report the immunogenic and safety profile of inactivated, purified EV71 preparations formulated with aluminum hydroxide adjuvant in preclinical studies in mice and rabbits. In mice, the candidate vaccine formulations elicited high neutralizing antibody responses. A toxicology study of the vaccine formulations planned for human use performed in rabbits showed no vaccine-related pathological changes and all animals remained healthy. Based on these preclinical studies, Phase 1 clinical testing of the EV71 inactivated vaccine was initiated.
Collapse
Affiliation(s)
- Shi-Hsia Hwa
- Inviragen (Singapore) Pte. Ltd., Singapore, Singapore
| | - Yock Ann Lee
- Inviragen (Singapore) Pte. Ltd., Singapore, Singapore
| | | | | | - Jorge E. Osorio
- Inviragen Inc., Madison, Wisconsin, United States of America
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | | |
Collapse
|
35
|
Liang ZL, Mao QY, Wang YP, Zhu FC, Li JX, Yao X, Gao F, Wu X, Xu M, Wang JZ. Progress on the research and development of inactivated EV71 whole-virus vaccines. Hum Vaccin Immunother 2013; 9:1701-5. [PMID: 23744508 PMCID: PMC3906269 DOI: 10.4161/hv.24949] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/06/2013] [Indexed: 12/12/2022] Open
Abstract
The prevalence of diseases caused by EV71 infection has become a serious public health problem in the Western Pacific region. Due to a lack of effective treatment options, controlling EV71 epidemics has mainly focused on the research and development (R&D) of EV71 vaccines. Thus far, five organizations have completed pre-clinical studies focused on the development of inactivated EV71 whole-virus vaccines, including vaccine strain screening, process optimization, safety and immunogenicity evaluation, and are in different stages of clinical trials. Among these organizations, three companies in Mainland China [Beijing Vigoo Biological Co., Ltd. (Vigoo), Sinovac Biotech Ltd. (Sinovac) and Institute of Medical Biology, Chinese Academy of Medical Science (CAMS)] have recently completed Phase III trials for the vaccines they developed. In addition, the other two vaccines, developed by National Health Research Institutes (NHRI) of Taiwan and Inviragen Pte., Ltd (Inviragen), of Singapore, have also completed Phase I clinical trials. Published clinical trial results indicate that the inactivated EV71 vaccines have good safety and immunogenicity in the target population (infants) and confer a relatively high rate of protection against EV71 infection-related diseases. The results of clinical trials suggest a promising future for the clinical use of EV71 vaccines. Here, we review and highlight the recent progress on the R&D of inactivated EV71 whole-virus vaccines.
Collapse
Affiliation(s)
- Zheng-Lun Liang
- National Institutes for Food and Drug Control; Beijing, P.R. China
| | - Qun-Ying Mao
- National Institutes for Food and Drug Control; Beijing, P.R. China
| | - Yi-Ping Wang
- National Institutes for Food and Drug Control; Beijing, P.R. China
| | - Feng-Cai Zhu
- Jiangsu Provincial Center for Disease Control and Prevention; Nanjing, P.R. China
| | - Jing-Xin Li
- Jiangsu Provincial Center for Disease Control and Prevention; Nanjing, P.R. China
| | - Xin Yao
- National Institutes for Food and Drug Control; Beijing, P.R. China
| | - Fan Gao
- National Institutes for Food and Drug Control; Beijing, P.R. China
| | - Xing Wu
- National Institutes for Food and Drug Control; Beijing, P.R. China
| | - Miao Xu
- National Institutes for Food and Drug Control; Beijing, P.R. China
| | - Jun-Zhi Wang
- National Institutes for Food and Drug Control; Beijing, P.R. China
| |
Collapse
|
36
|
Premanand B, Prabakaran M, Kiener TK, Kwang J. Recombinant baculovirus associated with bilosomes as an oral vaccine candidate against HEV71 infection in mice. PLoS One 2013; 8:e55536. [PMID: 23390538 PMCID: PMC3563597 DOI: 10.1371/journal.pone.0055536] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 12/29/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human enterovirus 71 (HEV71) is one of the major pathogen responsible for hand, foot and mouth disease (HFMD). Currently no effective vaccine or antiviral drugs are available. Like poliovirus, EV71 is transmitted mainly by the feco-oral route. To date the majority of the studied EV71 vaccine candidates are administered parenterally. Injectable vaccines induce good systemic immunity but mucosal responses are often unsatisfactory, whereas mucosal vaccines provide both systemic and mucosal immunity. Therefore, oral immunization appears to be an attractive alternative to parenteral immunization. METHODOLOGY/PRINCIPAL FINDINGS In this report, we studied the efficacy of an orally administered vaccine candidate developed using recombinant baculovirus displaying VP1 (Bac-VP1) in a murine model. Gastrointestinal delivery of Bac-VP1 significantly induced VP1-specific humoral (IgG) and mucosal (IgA) immune responses. Further, we studied the efficacy of the Bac-VP1 associated with bilosomes and observed that the Bac-VP1 associated with bilosomes elicited significantly higher immune responses compared to bilosomes non-associated with Bac-VP1. However, mice immunized subcutaneously with live Bac-VP1 had significantly enhanced VP1 specific serum IgG levels and higher neutralizing antibody titers compared with mice orally immunized with live Bac-VP1 alone or associated with bilosomes. CONCLUSION Bilosomes have been shown to possess inherent adjuvant properties when associated with antigen. Therefore Bac-VP1 with bilosomes could be a promising oral vaccine candidate against EV71 infections. Thus, Bac-VP1 loaded bilosomes may provide a needle free, painless approach for immunization against EV71, thereby increasing patient compliance and consequently increasing vaccination coverage.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Baculoviridae/genetics
- Baculoviridae/immunology
- Enterovirus A, Human/drug effects
- Enterovirus A, Human/immunology
- Female
- Hand, Foot and Mouth Disease/blood
- Hand, Foot and Mouth Disease/immunology
- Hand, Foot and Mouth Disease/prevention & control
- Humans
- Immunity, Humoral/drug effects
- Immunity, Mucosal/drug effects
- Immunization
- Liposomes/administration & dosage
- Liposomes/chemistry
- Liposomes/immunology
- Mice
- Mice, Inbred BALB C
- Vaccines, Synthetic
- Viral Structural Proteins/genetics
- Viral Structural Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Balraj Premanand
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Mookkan Prabakaran
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Tanja K. Kiener
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Microbiology, Faculty of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
37
|
Oral immunization of mice using Bifidobacterium longum expressing VP1 protein from enterovirus 71. Arch Virol 2013; 158:1071-7. [PMID: 23275129 DOI: 10.1007/s00705-012-1589-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/22/2012] [Indexed: 12/17/2022]
Abstract
Bifidobacterium longum is an attractive candidate for delivering biologically active proteins by the mucosal route due to its non-pathogenic and colonizing properties. Enterovirus 71 (EV71) has aroused widespread attention recently due to several epidemics, and great attention should be paid to the fact that there are currently no effective antiviral drugs or vaccines against EV71 infection. In this report, we described a recombinant B. longum that could be used to develop an oral vaccine against EV71 infection. A VP1 expression vector (pBBADs-VP1) was constructed by amplifying the EV71 VP1 gene and inserting it into the E. coli-Bifidobacterium shuttle expression vector pBBAD/Xs. Then, the expression of VP1 protein in pBBADs-VP1-transformed bacteria was demonstrated by western blot. In vivo studies indicated that oral immunization of BALB/c mice with pBBADs-VP1-transformed bacteria induced potent immune responses against EV71 infection, including virus-neutralising titers, anti-EV71-VP1 antibody and the induction of Th1 immune responses in the spleen and Peyer's patches. Importantly, immunization of mother mice with this recombinant VP1-expressing B. longum conferred protection to neonatal mice. These results demonstrate that the novel oral vaccine utilizing B. longum expressing the VP1 protein might successfully elicit a specific immune response against EV71 infection.
Collapse
|
38
|
Shang L, Xu M, Yin Z. Antiviral drug discovery for the treatment of enterovirus 71 infections. Antiviral Res 2012; 97:183-94. [PMID: 23261847 DOI: 10.1016/j.antiviral.2012.12.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 12/17/2022]
Abstract
Enterovirus 71 (EV71) is a small, positive-sense, single-stranded RNA virus in the genus Enterovirus, family Picornavirus. It causes hand, foot and mouth disease in infants and children, which in a small percentage of cases progresses to central nervous system infection, ranging from aseptic meningitis to fatal encephalitis. Sporadic cases of EV71 infection occur throughout the world, but large epidemics have occurred recently in Southeast Asia and China. There are currently no approved vaccines or antiviral therapies for the prevention or treatment of EV71 infection. This paper reviews efforts to develop antiviral therapies against EV71.
Collapse
Affiliation(s)
- Luqing Shang
- College of Pharmacy, Nankai University, Tianjin, PR China
| | | | | |
Collapse
|
39
|
Chong P, Guo MS, Lin FHY, Hsiao KN, Weng SY, Chou AH, Wang JR, Hsieh SY, Su IJ, Liu CC. Immunological and biochemical characterization of coxsackie virus A16 viral particles. PLoS One 2012; 7:e49973. [PMID: 23226233 PMCID: PMC3511423 DOI: 10.1371/journal.pone.0049973] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/15/2012] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Coxsackie virus A16 (CVA16) infections have become a serious public health problem in the Asia-Pacific region. It manifests most often in childhood exanthema, commonly known as hand-foot-and-mouth disease (HFMD). There are currently no vaccine or effective medical treatments available. PRINCIPAL FINDING In this study, we describe the production, purification and characterization of CVA16 virus produced from Vero cells grown on 5 g/L Cytodex 1 microcarrier beads in a five-liter serum-free bioreactor system. The viral titer was found to be >10(6) the tissue culture's infectious dose (TCID(50)) per mL within 7 days post-infection when a multiplicity of infection (MOI) of 10(-5) was used for initial infection. Two CVA16 virus fractions were separated and detected when the harvested CVA16 viral concentrate was purified by a sucrose gradient zonal ultracentrifugation. The viral particles detected in the 24-28% sucrose fractions had low viral infectivity and RNA content. The viral particles obtained from 35-38% sucrose fractions were found to have high viral infectivity and RNA content, and composed of four viral proteins (VP1, VP2, VP3 and VP4), as shown by SDS-PAGE analyses. These two virus fractions were formalin-inactivated and only the infectious particle fraction was found to be capable of inducing CVA16-specific neutralizing antibody responses in both mouse and rabbit immunogenicity studies. But these antisera failed to neutralize enterovirus 71. In addition, rabbit antisera did not react with any peptides derived from CVA16 capsid proteins. Mouse antisera recognized a single linear immunodominant epitope of VP3 corresponding to residues 176-190. CONCLUSION These results provide important information for cell-based CVA16 vaccine development. To eliminate HFMD, a bivalent EV71/CVA16 vaccine formulation is necessary.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Bioreactors
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Centrifugation, Density Gradient
- Chlorocebus aethiops
- Electrophoresis, Polyacrylamide Gel
- Enterovirus A, Human/growth & development
- Enterovirus A, Human/immunology
- Enterovirus A, Human/isolation & purification
- Enterovirus A, Human/ultrastructure
- Epitopes/immunology
- Hand, Foot and Mouth Disease/prevention & control
- Humans
- Mice
- Microscopy, Electron, Transmission
- Neutralization Tests
- Rabbits
- Vero Cells
- Virion/growth & development
- Virion/immunology
- Virion/isolation & purification
- Virion/ultrastructure
Collapse
Affiliation(s)
- Pele Chong
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Meng-Shin Guo
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Fion Hsiao-Yu Lin
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Kuang-Nan Hsiao
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Shu-Yang Weng
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Ai-Hsiang Chou
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine National Cheng Kung University, Tainan, Taiwan
| | - Shih-Yang Hsieh
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Ih-Jen Su
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Chia-Chyi Liu
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
40
|
Reactogenicity and immunogenicity of an enterovirus 71 vaccine in Chinese healthy children and infants. Pediatr Infect Dis J 2012; 31:1158-65. [PMID: 22926209 DOI: 10.1097/inf.0b013e31826eba74] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Enterovirus 71 (EV71) is highly contagious and can cause severe complications. A safe and effective vaccine is needed. We assessed the reactogenicity and immunogenicity of an inactivated, alum-adjuvanted EV71 vaccine in this study. METHODS A randomized, double-blind, placebo-controlled clinical trial was undertaken in 360 healthy participants who were stratified into 2 age groups (6-12 and 13-60 months), and randomly allocated to receive placebo or the investigational vaccine containing 160 U, 320 U or 640 U antigen per dose by the ratio of 1:1:1:1 at days 0 and 28. Reactogenic data within 28 days after each vaccination were recorded. Blood samples were obtained on days 0, 28 and 56 for neutralizing antibody assay. RESULTS Overall, 193 participants reported at least 1 injection-site or systemic adverse reaction with 53.3% and 54.4% participants receiving the study vaccine and placebo, respectively. Most of the reactions were mild or moderate. Three serious adverse events were observed, but none was related to vaccination. In the participants with seronegative baseline, after 2 doses all the participants receiving EV71 vaccines were seropositive and the seroconversion rates were more than 98.1%. In the participants with seropositive baseline, 1 dose induced good seroconversion rates of more than 64.3% in participants receiving EV71 vaccines. CONCLUSIONS This study found that the inactivated EV71 vaccine was well tolerated and had good immunogenicity in healthy children and infants. A single dose induced typical booster response in the participants with a seropositive baseline, and 2 doses were needed for the immunologically naive participants.
Collapse
|
41
|
Ji H, Li L, Liu Y, Ge H, Wang X, Hu J, Wu B, Fu J, Zhang Z, Chen X, Zhang M, Ding Q, Xu W, Tang F, Zhou M, Wang H, Zhu F. Seroepidemiology of human enterovirus71 and coxsackievirusA16 in Jiangsu province, China. Virol J 2012; 9:248. [PMID: 23102275 PMCID: PMC3545860 DOI: 10.1186/1743-422x-9-248] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 09/25/2012] [Indexed: 11/29/2022] Open
Abstract
Background The major etiology of hand, foot and mouth disease (HFMD) is infection with human enterovirus A (HEV-A). Among subtypes of HEV-A, coxsackievirusA16 (CoxA16) and enterovirus 71 (EV71) are major causes for recurrent HFMD among infants and children in Jiangsu Province, mainland China. Here, we analyzed maternal antibodies between prenatal women and their neonates, to determine age-specific seroprevalence of human EV71 and CoxA16 infections in infants and children aged 0 to 15 years. The results may facilitate the development of immunization against HFMD. Methods This study used cross-section of 40 pairs of pregnant women and neonates and 800 subjects aged 1 month to 15 years old. Micro-dose cytopathogenic effects measured neutralizing antibodies against EV71 and CoxA16. Chi-square test compared seroprevalence rates between age groups and McNemar test, paired-Samples t-test and independent-samples t-test analyzed differences of geometric mean titers. Results A strong correlation between titers of neutralizing antibody against EV71 and CoxA16 in prenatal women and neonates was observed (rEV71 = 0.67, rCoxA16 = 0.56, respectively, p < 0.05). Seroprevalence rates of anti-EV71 antibody gradually decreased with age between 0 to 6 months old, remained low between 7 to 11 months (5.0–10.0%), and increased between 1 and 4 years (22.5–87.5%). Age-specific seroprevalence rates of anti-EV71 antibody stabilized in >80% of children between 5 to 15 years of age. However, seroprevalence rates of anti-CoxA16 antibody were very low (0.0–13.0%) between 0 to 6 months of age, gradually increased between 7 months to 4 years (15.0–70.0%), and stabilized at 54.0% (108/200) between 5 to 15 years. Seroprevalence rates against EV71 and CoxA16 were low under 1 year (0.0–10.0%), and showed an age dependent increase with high seroprevalence (52.5–62.5%) between 4 and10 years of age. Conclusions Concomitant infection of EV71 and CoxA16 was common in Jiangsu Province. Therefore, development of bivalent vaccine against both EV71 and CoxA16 is critical. The optimal schedule for vaccination may be 4 to11 months of age.
Collapse
Affiliation(s)
- Hong Ji
- Jiangsu Provincial Center for Disease Control and Prevention, No,172, Jiangsu Road, Gulou District, Nanjing, 210009 Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Xin KW, Huimin Y, Alonso S. Enterovirus 71: pathogenesis, control and models of disease. Future Virol 2012. [DOI: 10.2217/fvl.12.89] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enterovirus 71 (EV71) is one of the major agents responsible for hand, foot and mouth disease. The increasing incidence of hand, foot and mouth disease outbreaks, epidemics due to EV71 infection in South East Asia and the propensity of EV71 strains to cause severe neurological complications in young children underscore the need to further our knowledge and understanding of the mechanisms involved in EV71 pathogenesis; such knowledge could then be translated to the identification of biomarkers of disease severity, and the development of effective therapeutics and vaccines. This article reviews the current knowledge of EV71 pathogenesis, control measures and models of infection.
Collapse
Affiliation(s)
- Khong Wei Xin
- Yong Loo Lin School of Medicine, Department of Microbiology, Life Sciences Institute, Immunology Programme, National University of Singapore, Singapore
| | - Yeo Huimin
- Yong Loo Lin School of Medicine, Department of Microbiology, Life Sciences Institute, Immunology Programme, National University of Singapore, Singapore
| | - Sylvie Alonso
- Yong Loo Lin School of Medicine, Department of Microbiology, Life Sciences Institute, Immunology Programme, National University of Singapore, Singapore
| |
Collapse
|
43
|
Mao Q, Dong C, Li X, Gao Q, Guo Z, Yao X, Wang Y, Gao F, Li F, Xu M, Yin W, Li Q, Shen X, Liang Z, Wang J. Comparative analysis of the immunogenicity and protective effects of inactivated EV71 vaccines in mice. PLoS One 2012; 7:e46043. [PMID: 23029378 PMCID: PMC3460965 DOI: 10.1371/journal.pone.0046043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 08/28/2012] [Indexed: 11/29/2022] Open
Abstract
Background Enterovirus 71 (EV71) is the major causative agent of hand, foot, and mouth disease (HFMD). Three inactivated EV71 whole-virus vaccines of different strains developed by different manufacturers in mainland China have recently entered clinical trials. Although several studies on these vaccines have been published, a study directly comparing the immunogenicity and protective effects among them has not been carried out, which makes evaluating their relative effectiveness difficult. Thus, properly comparing newly developed vaccines has become a priority, especially in China. Methods and Findings This comparative immunogenicity study was carried out on vaccine strains (both live and inactivated), final container products (FCPs) without adjuvant, and corresponding FCPs containing adjuvant (FCP-As) produced by three manufacturers. These vaccines were evaluated by neutralizing antibody (NAb) responses induced by the same or different dosages at one or multiple time points post-immunization. The protective efficacy of the three vaccines was also determined in one-day-old ICR mice born to immunized female mice. Survival rates were observed in these suckling mice after challenge with 20 LD50 of EV71/048M3C2. Three FCP-As, in a dose of 200 U, generated nearly 100% NAb positivity rates and similar geometric mean titers (GMTs), especially at 14–21 days post-inoculation. However, the dynamic NAb responses were different among three vaccine strains or three FCPs. The FCP-As at the lowest dose used in clinical trials (162 U) showed good protective effects in suckling mice against lethal challenge (90–100% survival), while the ED50 of NAb responses and protective effects varied among three FCP-As. Conclusions These studies establish a standard method for measuring the immunogenicity of EV71 vaccines in mice. The data generated from our mouse model study indicated a clear dose-response relationship, which is important for vaccine quality control and assessment, especially for predicting protective efficacy in humans when combined with future clinical trial results.
Collapse
Affiliation(s)
- Qunying Mao
- National Institutes for Food and Drug Control, Beijing, China
| | - Chenghong Dong
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, China
| | - Xiuling Li
- National Vaccine and Serum Institute, Beijing, China
| | - Qiang Gao
- Sinovac Biotech Co., Ltd., Beijing, China
| | | | - Xin Yao
- National Institutes for Food and Drug Control, Beijing, China
| | - Yiping Wang
- National Institutes for Food and Drug Control, Beijing, China
| | - Fan Gao
- National Institutes for Food and Drug Control, Beijing, China
| | - Fengxiang Li
- National Institutes for Food and Drug Control, Beijing, China
| | - Miao Xu
- National Institutes for Food and Drug Control, Beijing, China
| | | | - Qihan Li
- Hualan Biological Engineering Inc, Henan, China
| | - Xinliang Shen
- National Vaccine and Serum Institute, Beijing, China
| | - Zhenglun Liang
- National Institutes for Food and Drug Control, Beijing, China
- * E-mail: (ZL); (JW)
| | - Junzhi Wang
- National Institutes for Food and Drug Control, Beijing, China
- * E-mail: (ZL); (JW)
| |
Collapse
|
44
|
Chong P, Hsieh SY, Liu CC, Chou AH, Chang JY, Wu SC, Liu SJ, Chow YH, Su IJ, Klein M. Production of EV71 vaccine candidates. Hum Vaccin Immunother 2012; 8:1775-83. [PMID: 22992566 PMCID: PMC3656065 DOI: 10.4161/hv.21739] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enterovirus 71 (EV71) is now recognized as an emerging neurotropic virus in Asia and with Coxsackie virus (CV) it is the other major causative agent of hand-foot-mouth diseases (HFMD). Effective medications and/or prophylactic vaccines against HFMD are urgently needed. From a scientific (the feasibility of bioprocess, immunological responses and potency in animal challenge model) and business development (cost of goods) points of view, we in this review address and discuss the pros and cons of different EV71 vaccine candidates that have been produced and evaluated in animal models. Epitope-based synthetic peptide vaccine candidates containing residues 211–225 of VP1 formulated with Freund’s adjuvant (CFA/IFA) elicited low EV71 virus neutralizing antibody responses, but were protective in the suckling mouse challenge model. Among recombinant EV71 subunits (rVP1, rVP2 and rVP3) expressed in E. coli, purified and formulated with CFA/IFA, only VP1 elicited mouse antibody responses with measurable EV71-specific virus neutralization titers. Immunization of mice with either a DNA plasmid containing VP1 gene or VP1 expressed in Salmonella typhimurium also generated neutralizing antibody responses and protected animals against a live EV71 challenge. Recombinant EV71 virus-like particles (rVLP) produced from baculovirus formulated either with CFA/IFA or alum elicited good virus neutralization titers in both mice and non-human primates, and were found to be protective in the suckling mouse EV71 challenge model. Synthetic peptides or recombinant EV71 subunit vaccines (rVP1 and rVLP) formulated in alum were found to be poorly immunogenic in rabbits. Only formalin-inactivated (FI) EV71 virions formulated in alum elicited cross-neutralizing antibodies against different EV71 genotypes in mice, rabbits and non-human primates but induced weak neutralizing responses against CAV16. From a regulatory, economic and market acceptability standpoint, FI-EV71 virion vaccines are the most promising candidates and are currently being evaluated in human clinical trials. We further describe and analyze some new bioprocesses technologies that have great potential applications in EV71 vaccine development. This review also demonstrates the opportunities and challenges that the Asian vaccine industry faces today.
Collapse
Affiliation(s)
- Pele Chong
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
To evaluate vaccine efficacy in protecting against coxsackievirus A16 (CA16), which causes human hand, foot, and mouth disease (HFMD), we established the first neonatal mouse model. In this article, we report data concerning CA16-induced pathological changes, and we demonstrate that anti-CA16 antibody can protect mice against lethal challenge and that the neonatal mouse model could be used to evaluate vaccine efficacy. To establish a mouse model, a BJCA08/CA16 strain (at 260 50% lethal doses [LD(50)]) was isolated from a patient and used to intracerebrally (i.c.) inoculate neonatal mice. The infection resulted in wasting, hind-limb paralysis, and even death. Pathological examination and immunohistochemistry (IHC) staining indicated that BJCA08 had a strong tropism to muscle and caused severe necrosis in skeletal and cardiac muscles. We then found that BJCA08 pretreated with goat anti-G10/CA16 serum could significantly lose its lethal effect in neonatal mice. When the anti-G10 serum was intraperitoneally (i.p.) injected into the neonatal mice and, within 1 h, the same mice were intracerebrally inoculated with BJCA08, there was significant passive immunization protection. In a separate experiment, female mice were immunized with formaldehyde-inactivated G10/CA16 and BJCA08/CA16 and then allowed to mate 1 h after the first immunization. We found that there was significant protection against BJCA08 for neonatal mice born to the immunized dams. These data demonstrated that anti-CA16 antibody may block virus invasion and protect mice against lethal challenge, and that the neonatal mouse model was a viable tool for evaluating vaccine efficacy.
Collapse
|
46
|
Ch'ng WC, Stanbridge EJ, Wong KT, Ong KC, Yusoff K, Shafee N. Immunization with recombinant enterovirus 71 viral capsid protein 1 fragment stimulated antibody responses in hamsters. Virol J 2012; 9:155. [PMID: 22877087 PMCID: PMC3462122 DOI: 10.1186/1743-422x-9-155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 08/01/2012] [Indexed: 01/30/2023] Open
Abstract
Enterovirus 71 (EV71) causes severe neurological diseases resulting in high mortality in young children worldwide. Development of an effective vaccine against EV71 infection is hampered by the lack of appropriate animal models for efficacy testing of candidate vaccines. Previously, we have successfully tested the immunogenicity and protectiveness of a candidate EV71 vaccine, containing recombinant Newcastle disease virus capsids that display an EV71 VP1 fragment (NPt-VP11-100) protein, in a mouse model of EV71 infection. A drawback of this system is its limited window of EV71 susceptibility period, 2 weeks after birth, leading to restricted options in the evaluation of optimal dosing regimens. To address this issue, we have assessed the NPt-VP11-100 candidate vaccine in a hamster system, which offers a 4-week susceptibility period to EV71 infection. Results obtained showed that the NPt-VP11-100 candidate vaccine stimulated excellent humoral immune response in the hamsters. Despite the high level of antibody production, they failed to neutralize EV71 viruses or protect vaccinated hamsters in viral challenge studies. Nevertheless, these findings have contributed towards a better understanding of the NPt-VP11-100 recombinant protein as a candidate vaccine in an alternative animal model system.
Collapse
Affiliation(s)
- Wei-Choong Ch'ng
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| | | | | | | | | | | |
Collapse
|
47
|
Zhang J, Dong M, Jiang B, Dai X, Meng J. Antigenic characteristics of the complete and truncated capsid protein VP1 of enterovirus 71. Virus Res 2012; 167:337-42. [DOI: 10.1016/j.virusres.2012.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/16/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
|
48
|
Han X, Ying X, Huang H, Zhou S, Huang Q. Expression and purification of enterovirus type 71 polyprotein P1 using Pichia pastoris system. Virol Sin 2012; 27:254-8. [PMID: 22899434 DOI: 10.1007/s12250-012-3256-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/03/2012] [Indexed: 01/26/2023] Open
Abstract
Enterovirus type 71(EV71) causes severe hand-foot-and-mouth disease (HFMD) resulting in hundreds of deaths of children every year; However, currently, there is no effective treatment for EV71. In this study, the EV71 poly-protein (EV71-P1 protein) gene was processed and cloned into the eukaryotic expression vector pPIC9k and then expressed in Pichia pastoris strain GS115. The EV71 P1 protein with a molecular weight of 100 kD was produced and secreted into the medium. The soluble EV71 P1 protein was purified by column chromatography with a recovery efficiency of 70%. The result of the immunological analysis showed that the EV71 P1 protein had excellent immunogenicity and could stimulate the production of EV71-VP1 IgG antibody in injected rabbits. We suggest that EV71-P1 protein is an ideal candidate for an EV71 vaccine to prevent EV71 infection.
Collapse
Affiliation(s)
- Xue Han
- College of life science, Jianghan University, Wuhan, 430056, Hubei, China.
| | | | | | | | | |
Collapse
|
49
|
Xu J, Wang S, Gan W, Zhang W, Ju L, Huang Z, Lu S. Expression and immunogenicity of novel subunit enterovirus 71 VP1 antigens. Biochem Biophys Res Commun 2012; 420:755-61. [PMID: 22450314 DOI: 10.1016/j.bbrc.2012.03.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 03/12/2012] [Indexed: 12/11/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is a common viral illness in young children. HFMD is caused by viruses belonging to the enterovirus genus of the picornavirus family. Recently, enterovirus 71 (EV71) has emerged as a virulent agent for HFMD with severe clinical outcomes. In the current report, we conducted a pilot antigen engineering study to optimize the expression and immunogenicity of subunit VP1 antigen for the design of EV71 vaccines. DNA immunization was adopted as a simple technical approach to test different designs of VP1 antigens without the need to express VP1 protein in vitro first. Our studies indicated that the expression and immunogenicity of VP1 protein can be improved with alternated VP1 antigen designs. Data presented in the current report revealed novel pathways to optimize the design of VP1 antigen-based EV71 vaccines.
Collapse
Affiliation(s)
- Juan Xu
- China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Ch'ng WC, Stanbridge EJ, Ong KC, Wong KT, Yusoff K, Shafee N. Partial protection against enterovirus 71 (EV71) infection in a mouse model immunized with recombinant Newcastle disease virus capsids displaying the EV71 VP1 fragment. J Med Virol 2012; 83:1783-91. [PMID: 21837796 DOI: 10.1002/jmv.22198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Enterovirus 71 (EV71) infection may cause severe neurological complications, particularly in young children. Despite the risks, there are still no commercially available EV71 vaccines. Hence, a candidate vaccine construct, containing recombinant Newcastle disease virus capsids that display an EV71 VP1 fragment (NPt-VP1(1-100) ) protein, was evaluated in a mouse model of EV71 infection. Previously, it was shown that this protein construct provoked a strong immune response in vaccinated adult rabbits. That study, however, did not address the issue of its effectiveness against EV71 infection in young animals. In the present study, EV71 viral challenge in vaccinated newborn mice resulted in more than 40% increase in survival rate. Significantly, half of the surviving mice fully recovered from their paralysis. Histological analysis of all of the surviving mice revealed a complete clearance of EV71 viral antigens from their brains and spinal cords. In hind limb muscles, the amounts of the antigens detected correlated with the degrees of tissue damage and paralysis. Findings from this study provide evidence that immunization with the NPt-VP1(1-100) immunogen in a newborn mouse model confers partial protection against EV71 infection, and also highlights the importance of NPt-VP1(1-100) as a possible candidate vaccine for protection against EV71 infections.
Collapse
Affiliation(s)
- Wei-Choong Ch'ng
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | | | | | | | | | | |
Collapse
|