1
|
Abend JR, Sathe A, Wrobel MB, Knapp M, Xu L, Zhao L, Kim P, Desai S, Nguyen A, Leber XC, Hein A, Scharenberg M, Shaul J, Ornelas E, Wong K, Pietzonka T, Sterling LM, Hodges MR, Pertel P, Traggiai E, Patick AK, Kovacs SJ. Nonclinical and clinical characterization of MAU868, a novel human-derived monoclonal neutralizing antibody targeting BK polyomavirus VP1. Am J Transplant 2024; 24:1994-2006. [PMID: 38996969 DOI: 10.1016/j.ajt.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Reactivation of BK polyomavirus (BKPyV) can cause significant kidney and bladder disease in immunocompromised patients. There are currently no effective, BKPyV-specific therapies. MAU868 is a novel, human immunoglobulin (Ig) G1 monoclonal antibody that binds the major capsid protein, VP1, of BKPyV with picomolar affinity, neutralizes infection by the 4 major BKPyV genotypes (EC50 ranging from 0.009-0.093 μg/mL; EC90 ranging from 0.102-4.160 μg/mL), and has comparable activity against variants with highly prevalent VP1 polymorphisms. No resistance-associated variants were identified in long-term selection studies, indicating a high in vitro barrier-to-resistance. The high-resolution crystal structure of MAU868 in complex with VP1 pentamer identified 3 key contact residues in VP1 (Y169, R170, and K172). A first-in-human study was conducted to assess the safety, tolerability, and pharmacokinetics of MAU868 following intravenous and subcutaneous administration to healthy adults in a randomized, placebo-controlled, double-blinded, single ascending dose design. MAU868 was safe and well-tolerated. All adverse events were grade 1 and resolved. The pharmacokinetics of MAU868 was typical of a human IgG, with dose-proportional systemic exposure and an elimination half-life ranging between 23 and 30 days. These results demonstrate the potential of MAU868 as a first-in-class therapeutic agent for the treatment or prevention of BKPyV disease.
Collapse
Affiliation(s)
- Johanna R Abend
- Novartis Institutes for BioMedical Research, Infectious Disease Area, Emeryville, California, USA.
| | - Atul Sathe
- Novartis Institutes for BioMedical Research, Infectious Disease Area, Emeryville, California, USA
| | - Matthias B Wrobel
- Novartis Institutes for BioMedical Research, Biologics, Basel, Switzerland
| | - Mark Knapp
- Novartis Institutes for BioMedical Research, Infectious Disease Area, Emeryville, California, USA
| | - Lucy Xu
- Novartis Institutes for BioMedical Research, Translational Medicine, East Hanover, New Jersey, USA
| | - Lihong Zhao
- Novartis Institutes for BioMedical Research, Infectious Disease Area, Emeryville, California, USA
| | - Peter Kim
- Novartis Institutes for BioMedical Research, Infectious Disease Area, Emeryville, California, USA
| | - Sachin Desai
- Novartis Institutes for BioMedical Research, Translational Medicine, East Hanover, New Jersey, USA
| | - Amanda Nguyen
- Novartis Institutes for BioMedical Research, Translational Medicine, East Hanover, New Jersey, USA
| | | | - Andreas Hein
- Novartis Institutes for BioMedical Research, Biologics, Basel, Switzerland
| | - Meike Scharenberg
- Novartis Institutes for BioMedical Research, Biologics, Basel, Switzerland
| | - Jacob Shaul
- Novartis Institutes for BioMedical Research, Infectious Disease Area, Emeryville, California, USA
| | - Elisabeth Ornelas
- Novartis Institutes for BioMedical Research, Infectious Disease Area, Emeryville, California, USA
| | - Kelly Wong
- Novartis Institutes for BioMedical Research, Infectious Disease Area, Emeryville, California, USA
| | - Thomas Pietzonka
- Novartis Institutes for BioMedical Research, Biologics, Basel, Switzerland
| | | | | | - Peter Pertel
- Novartis Institutes for BioMedical Research, Translational Medicine, East Hanover, New Jersey, USA
| | | | - Amy K Patick
- Amplyx Pharmaceuticals, San Diego, California, USA
| | - Steven J Kovacs
- Novartis Institutes for BioMedical Research, Translational Medicine, East Hanover, New Jersey, USA
| |
Collapse
|
2
|
Helle F, Aubry A, Morel V, Descamps V, Demey B, Brochot E. Neutralizing Antibodies Targeting BK Polyomavirus: Clinical Importance and Therapeutic Potential for Kidney Transplant Recipients. J Am Soc Nephrol 2024; 35:1425-1433. [PMID: 39352862 PMCID: PMC11452134 DOI: 10.1681/asn.0000000000000457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Most of the world's adult population is latently infected by the BK polyomavirus. It causes asymptomatic infection in healthy individuals but emerged as a threat to kidney transplant recipients because of virus-associated nephropathy caused by immunosuppressive therapy. In these conditions, when a functional cellular response is impaired by immunosuppression, neutralizing antibodies may play a major role because they can directly prevent infection of target cells, independently of cell-mediated immunity, by binding to the viral particles. Studying the contribution of anti-BK virus neutralizing antibodies in viral control has long been hampered by the lack of convenient in vitro models, but major progress has been made in the past decade. The four BK virus genotypes have been demonstrated to behave as distinct serotypes. A low recipient neutralizing antibody titer against the donor's serotype before kidney transplant has been significantly associated with BK virus replication after transplant. Different mechanisms exploited by the BK virus to evade neutralizing antibodies have been described. Recent studies also support the potential benefit of administering intravenous Igs or monoclonal neutralizing antibodies as a therapeutic strategy, and more interestingly, this could also be used as preventive or preemptive therapy before advanced kidney damage has occurred. Besides, neutralizing antibodies could be induced by vaccination. In this review, we summarize accumulated knowledge on anti-BK virus neutralizing antibodies as well as their clinical importance and therapeutic potential for kidney transplant recipients.
Collapse
Affiliation(s)
- Francois Helle
- UR-UPJV4294, Agents Infectieux, Résistance et chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Aurélien Aubry
- UR-UPJV4294, Agents Infectieux, Résistance et chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
- Laboratoire de Virologie, Centre Hospitalier Universitaire, Amiens, France
| | - Virginie Morel
- UR-UPJV4294, Agents Infectieux, Résistance et chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
- Laboratoire de Virologie, Centre Hospitalier Universitaire, Amiens, France
| | - Véronique Descamps
- UR-UPJV4294, Agents Infectieux, Résistance et chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
- Laboratoire de Virologie, Centre Hospitalier Universitaire, Amiens, France
| | - Baptiste Demey
- UR-UPJV4294, Agents Infectieux, Résistance et chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
- Laboratoire de Virologie, Centre Hospitalier Universitaire, Amiens, France
| | - Etienne Brochot
- UR-UPJV4294, Agents Infectieux, Résistance et chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
- Laboratoire de Virologie, Centre Hospitalier Universitaire, Amiens, France
| |
Collapse
|
3
|
Laowalert S, Naitook N, Boonnim K, Prungrit U, Aekkachaipitak N, Lamjantuek P, Liwlompaisan W, Khunprakant R, Techawathanawanna N, Mavichak V, Udomkarnjananun S. Report on post-transplantation cancer in southeast Asia from the Thai kidney transplantation cohort. Sci Rep 2024; 14:20154. [PMID: 39215076 PMCID: PMC11364626 DOI: 10.1038/s41598-024-71041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Post-transplantation cancer is a significant cause of mortality among kidney transplant recipients (KTR). The incidence of post-transplantation cancer varies based on geographic region and ethnicity. However, data on KTR from South East Asia, where characteristics differ from other parts of Asia, is lacking. We conducted a retrospective cohort study at a transplant center in Thailand to investigate the incidence of post-transplantation cancer and mortality rates. Factors associated with post-transplantation cancer and patient outcomes were analyzed using competing-risks regression. The study included 1156 KTR with a post-transplant follow-up duration of 5.1 (2.7-9.4) years. The age- and sex-adjusted incidence rate of post-transplant cancer was highest for urothelial cancer (6.9 per 1000 person-years), which also resulted in the highest standardized incidence ratio (SIR) of 42.5 when compared to the general population. Kidney cancer had the second-highest SIR of 24.4. Increasing age was the factor associated with an increased risk of post-transplant cancer (SHR 1.03; 95% CI 1.01-1.05). Human leukocyte antigen (HLA) DR mismatch was associated with a decreased risk of post-transplant cancer (SHR 0.72; 95% CI 0.52-0.98). Post-transplantation cancer was significantly associated with patient mortality (HR 3.16; 95% CI 2.21-4.52). Cancer significantly contributes to KTR mortality, and the risk profile for cancer development in Thai KTRs differs from that of Western and most Asian counterparts. Further research is essential to explore appropriate screening protocols for countries with high rates of urothelial and kidney cancer, including Thailand.
Collapse
Affiliation(s)
| | - Nattakan Naitook
- Kidney Transplant Institute, Praram 9 Hospital, Bangkok, Thailand
| | - Kesawan Boonnim
- Kidney Transplant Institute, Praram 9 Hospital, Bangkok, Thailand
| | - Uayporn Prungrit
- Kidney Transplant Institute, Praram 9 Hospital, Bangkok, Thailand
| | | | | | | | | | | | - Viroon Mavichak
- Kidney Transplant Institute, Praram 9 Hospital, Bangkok, Thailand
| | - Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, 1873, Rama 4 Road, Pathumwan, 10330, Bangkok, Thailand.
| |
Collapse
|
4
|
Sahragard I, Yaghobi R, Mohammadi A, Afshari A, Pakfetrat M, Hossein Karimi M, Reza Pourkarim M. Impact of BK Polyomavirus NCCR variations in post kidney transplant outcomes. Gene 2024; 913:148376. [PMID: 38490510 DOI: 10.1016/j.gene.2024.148376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The human BK Polyomavirus (BKPyV) is a DNA virus that is prevalent in 80 % of the population. Infection with this virus may begin in childhood, followed by asymptomatic persistence in the urinary tract. However, in immunocompromised individuals, especially kidney transplant recipients (KTRs), heightened replication of BKPyV can lead to severe complications. The genome of this virus is divided into three parts; the early and late region, and the non-coding control region (NCCR). Mutations in the NCCR can change the archetype strain to the rearranged strain, and NCCR rearrangements play a significant in virus pathogenesis. Interestingly, diverse types of NCCR block rearrangement result in significant differences in conversion potential and host cell viability in the infected cells. A correlation has been detected between increased viral replication potential and pathogenesis in BKPyV-infected KTRs with specific NCCR rearrangements. The objective of this review study was to examine the disease-causing and clinical consequences of variations in the NCCR in BKPyV-infected KTRs such as virus-associated nephropathy (BKPyVAN).
Collapse
Affiliation(s)
- Ilnaz Sahragard
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Mohammadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Pakfetrat
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahmoud Reza Pourkarim
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, Herestraat 49 BE-3000, Leuven, Belgium
| |
Collapse
|
5
|
Demey B, Aubry A, Descamps V, Morel V, Le MHH, Presne C, Brazier F, Helle F, Brochot E. Molecular epidemiology and risk factors associated with BK and JC polyomavirus urinary shedding after kidney allograft. J Med Virol 2024; 96:e29742. [PMID: 38874263 DOI: 10.1002/jmv.29742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Polyomaviruses BK (BKPyV) and JC (JCPyV), belonging to the Polyomaviridae, are responsible for human pathologies. In kidney transplant recipients, BKPyV replication can lead to irreversible nephron damage whereas JCPyV replication remains asymptomatic. Concomitant replication is rare and potential competition between the infections has been described. The aim of this retrospective case-control study was to describe the molecular epidemiology and risk factors associated with BKPyV and JCPyV replication in a cohort of kidney transplant recipients. In total, 655 urine samples from 460 patients were tested for BKPyV and JCPyV DNA. Positive samples were submitted to strain genotyping. Demographic and clinical characteristics were also compared. Isolated JCPyV and BKPyV was found in 16.5% and 23.3% of patients, respectively; co-replication was rare (3.9%). BKPyV strains Ib-2, Ib-1, and IVc-2 were the most prevalent. JCPyV strains mostly belonged to genotypes 4 and 1B. During follow-up, JCPyV shedding significantly reduced the risk of BKPyV DNAuria, with an odds ratio of 0.57 (95% confidence interval: 0.35-0.99), and was associated with better prognosis than BKPyV replication, based on the estimated glomerular filtration rate. Molecular epidemiology of BKPyV and JCPyV strains in our region was similar to previous studies. This study suggests that JCPyV is benign and appears to limit damaging BKPyV replication. JCPyV DNAuria screening could thus be a useful strategy to predict BKPyV-related outcomes.
Collapse
Affiliation(s)
- Baptiste Demey
- Department of Virology, CHU Amiens-Picardie, Amiens, France
- AGIR Laboratory UR4294, Université Picardie Jules Verne, Amiens, France
| | - Aurélien Aubry
- Department of Virology, CHU Amiens-Picardie, Amiens, France
- AGIR Laboratory UR4294, Université Picardie Jules Verne, Amiens, France
| | | | - Virginie Morel
- AGIR Laboratory UR4294, Université Picardie Jules Verne, Amiens, France
| | | | - Claire Presne
- Department of Nephrology, Dialysis, and Transplantation, CHU Amiens-Picardie, Amiens, France
| | - François Brazier
- Department of Nephrology, Dialysis, and Transplantation, CHU Amiens-Picardie, Amiens, France
- MP3CV Laboratory EA7517, Jules Verne University of Picardie, Amiens, France
| | - François Helle
- AGIR Laboratory UR4294, Université Picardie Jules Verne, Amiens, France
| | - Etienne Brochot
- Department of Virology, CHU Amiens-Picardie, Amiens, France
- AGIR Laboratory UR4294, Université Picardie Jules Verne, Amiens, France
| |
Collapse
|
6
|
Lorant C, Zigmantaviciute J, Ali N, Bonnevier U, Tejde M, von Zur-Mühlen B, Eriksson BM, Bergqvist A, Westman G. The risk factors associated with post-transplantation BKPyV nephropathy and BKPyV DNAemia: a prospective study in kidney transplant recipients. BMC Infect Dis 2024; 24:245. [PMID: 38388351 PMCID: PMC10885533 DOI: 10.1186/s12879-024-09093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND BK polyomavirus (BKPyV) infection after kidney transplantation can lead to serious complications such as BKPyV-associated nephropathy (BKPyVAN) and graft loss. The aim of this study was to investigate the incidence of BKPyVAN after implementing a BKPyV screening program, to map the distribution of BKPyV genotypes and subtypes in the Uppsala-Örebro region and to identify host and viral risk factors for clinically significant events. METHODS This single-center prospective cohort study included kidney transplant patients aged ≥ 18 years at the Uppsala University Hospital in Sweden between 2016 and 2018. BKPyV DNA was analyzed in plasma and urine every 3 months until 18 months after transplantation. Also genotype and subtype were determined. A logistic regression model was used to analyze selected risk factors including recipient sex and age, AB0 incompatibility and rejection treatment prior to BKPyVAN or high-level BKPyV DNAemia. RESULTS In total, 205 patients were included. Of these, 151 (73.7%) followed the screening protocol with 6 plasma samples, while184 (89.8%) were sampled at least 5 times. Ten (4.9%) patients developed biopsy confirmed BKPyVAN and 33 (16.1%) patients met criteria for high-level BKPyV DNAemia. Male sex (OR 2.85, p = 0.025) and age (OR 1.03 per year, p = 0.020) were identified as significant risk factors for developing BKPyVAN or high-level BKPyV DNAemia. BKPyVAN was associated with increased viral load at 3 months post transplantation (82,000 vs. < 400 copies/mL; p = 0.0029) and with transient, high-level DNAemia (n = 7 (27%); p < 0.0001). The most common genotypes were subtype Ib2 (n = 50 (65.8%)) and IVc2 (n = 20 (26.3%)). CONCLUSIONS Male sex and increasing age are related to an increased risk of BKPyVAN or high-level BKPyV DNAemia. BKPyVAN is associated with transient, high-level DNAemia but no differences related to viral genotype were detected.
Collapse
Affiliation(s)
- Camilla Lorant
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, SE-751 85, Uppsala, Sweden.
| | - Justina Zigmantaviciute
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
- Clinical Microbiology and Infection Control, Uppsala University Hospital, Uppsala, Sweden
| | - Naima Ali
- Clinical Microbiology and Infection Control, Uppsala University Hospital, Uppsala, Sweden
| | | | - Mattias Tejde
- Department of Nephrology, Falun Hospital, Falun, Sweden
| | - Bengt von Zur-Mühlen
- Department of Surgical Sciences, Section of Transplantation Surgery, Uppsala University, Uppsala, Sweden
| | - Britt-Marie Eriksson
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Anders Bergqvist
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
- Clinical Microbiology and Infection Control, Uppsala University Hospital, Uppsala, Sweden
| | - Gabriel Westman
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, SE-751 85, Uppsala, Sweden
| |
Collapse
|
7
|
Parajuli S, Aziz F, Zhong W, Djamali A. BK polyomavirus infection: more than 50 years and still a threat to kidney transplant recipients. FRONTIERS IN TRANSPLANTATION 2024; 3:1309927. [PMID: 38993764 PMCID: PMC11235301 DOI: 10.3389/frtra.2024.1309927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/08/2024] [Indexed: 07/13/2024]
Abstract
BK polyomavirus (BKPyV) is a ubiquitous human polyomavirus and a major infection after kidney transplantation, primarily due to immunosuppression. BKPyV reactivation can manifest as viruria in 30%-40%, viremia in 10%-20%, and BK polyomavirus-associated nephropathy (BKPyVAN) in 1%-10% of recipients. BKPyVAN is an important cause of kidney graft failure. Although the first case of BKPyV was identified in 1971, progress in its management has been limited. Specifically, there is no safe and effective antiviral agent or vaccine to treat or prevent the infection. Even in the current era, the mainstay approach to BKPyV is a reduction in immunosuppression, which is also limited by safety (risk of de novo donor specific antibody and rejection) and efficacy (graft failure). However, recently BKPyV has been getting more attention in the field, and some new treatment strategies including the utilization of viral-specific T-cell therapy are emerging. Given all these challenges, the primary focus of this article is complications associated with BKPyV, as well as strategies to mitigate negative outcomes.
Collapse
Affiliation(s)
- Sandesh Parajuli
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Fahad Aziz
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Weixiong Zhong
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Arjang Djamali
- Department of Medicine, Maine Medical Center Maine Health, Portland, ME, United States
| |
Collapse
|
8
|
Odegard EA, Meeds HL, Kleiboeker SB, Ziady A, Sabulski A, Jodele S, Seif AE, Davies SM, Laskin BL, Blackard JT. BK Polyomavirus Diversity After Hematopoietic Stem Cell Transplantation. J Infect Dis 2023; 228:1208-1218. [PMID: 37165301 PMCID: PMC10629712 DOI: 10.1093/infdis/jiad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/21/2023] [Indexed: 05/12/2023] Open
Abstract
BK polyomavirus (BKPyV) infection is common after hematopoietic stem cell transplantation (HSCT) and is associated with the development of hemorrhagic cystitis (HC). The role that BKPyV plays in the pathogenesis of HC is not well characterized. We investigated the impact of BKPyV diversity on the development of HC using a previously established cohort of pediatric HSCT patients. There were 147 urine samples with quantifiable BKPyV at month 1 after HSCT; 137 (93.2%) were amplified using our in-house polymerase chain reaction approach and sent for next-generation sequencing. Subtype Ia was most frequent (61.3%), followed by subtype Ib1 (31.4%). The median viral load of subtype Ia samples was higher than for subtype Ib1 at month 1. Across the protein coding regions, APOBEC-induced mutations and signature patterns associated with HC were identified. This is the largest sequencing study of a single cohort of HSCT patients, providing a vast resource of sequence data for future analyses.
Collapse
Affiliation(s)
- Elizabeth A Odegard
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Ohio
| | - Heidi L Meeds
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Ohio
| | | | - Assem Ziady
- Department of Pediatrics, University of Cincinnati College of Medicine, Ohio
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Ohio
| | - Anthony Sabulski
- Department of Pediatrics, University of Cincinnati College of Medicine, Ohio
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Ohio
| | - Sonata Jodele
- Department of Pediatrics, University of Cincinnati College of Medicine, Ohio
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Ohio
| | - Alix E Seif
- Perelman School of Medicine, University of Pennsylvania, Pennsylvania
- Division of Oncology, The Children's Hospital of Philadelphia, Pennsylvania
| | - Stella M Davies
- Department of Pediatrics, University of Cincinnati College of Medicine, Ohio
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Ohio
| | - Benjamin L Laskin
- Perelman School of Medicine, University of Pennsylvania, Pennsylvania
- Division of Nephrology, The Children's Hospital of Philadelphia, Pennsylvania
| | - Jason T Blackard
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Ohio
| |
Collapse
|
9
|
Gras J, Nere ML, Peraldi MN, Bonnet-Madin L, Salmona M, Taupin JL, Desgrandchamps F, Verine J, Brochot E, Amara A, Molina JM, Delaugerre C. BK virus genotypes and humoral response in kidney transplant recipients with BKV associated nephropathy. Transpl Infect Dis 2023; 25:e14012. [PMID: 36748721 DOI: 10.1111/tid.14012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Among kidney transplant recipients (KTR) with BK virus associated nephropathy (BKVN), BKV genotypes' evolution and anti-BKV humoral response are not well established. We aim to analyze BKV replication and genetic evolution following transplantation, and characterize concomitant anti-BKV-VP1 humoral response. METHODS We retrospectively analyzed 32 cases of biopsy-proven BKVN. Stored plasma and kidney biopsies were tested for BKV viral load, and VP1 sequencing performed on positive samples. BKV-VP1 genotype-specific neutralizing antibodies (NAbs) titers were determined at transplantation and BKVN. RESULTS At the time of BKVN diagnosis, BKV viral load was 8.2 log10 IU/106 cells and 5.4 log10 IU/mL in kidney and plasma, respectively. VP1 sequencing identified the same BKV-subtype in both compartments in 31/32 cases. At the time of transplantation, 8/20 (40%) of biopsies tested positive for BKV detection, whereas concomitant BKV viremia was negative. VP1 sequencing identified a different subtype compared to BKVN in 5/6 of these samples. This was confirmed following transplantation: 8 patients had a BKV+ biopsy before BKV viremia, and VP1 sequencing identified a different subtype compared to BKVN in all of them. After the onset of BKV viremia and prior to BKVN diagnosis, the BKV subtype in BKV+ plasma and kidney biopsy was the same as the one isolated at BKVN. BKV-VP1 NAbs titers were significantly higher at the time of BKVN compared to transplantation (p = .0031), with similar titers across genotypes. CONCLUSION Altogether, our data suggest that among some KTR with BKVN, the BKV genotype from the donor may not be responsible for BKVN pathogenesis.
Collapse
Affiliation(s)
- Julien Gras
- Infectious Disease Department, APHP-Saint-Louis Hospital, Paris, France.,INSERM U944, Biology of Emerging Viruses Team, Institut de Recherche Saint Louis, APHP-Saint-Louis Hospital, Paris, France.,Université Paris Cité, Paris, France
| | | | - Marie Noëlle Peraldi
- Université Paris Cité, Paris, France.,Nephrology and Kidney Transplant Department, APHP-Saint Louis Hospital, Paris, France
| | - Lucie Bonnet-Madin
- INSERM U944, Biology of Emerging Viruses Team, Institut de Recherche Saint Louis, APHP-Saint-Louis Hospital, Paris, France
| | - Maud Salmona
- Université Paris Cité, Paris, France.,Virology Department, APHP-Saint Louis Hospital, Paris, France
| | - Jean Luc Taupin
- Université Paris Cité, Paris, France.,Immunology Department, APHP-Saint Louis Hospital, Paris, France
| | - François Desgrandchamps
- Université Paris Cité, Paris, France.,Urology Department, APHP-Saint Louis Hospital, Paris, France
| | - Jérôme Verine
- Pathology Department, APHP-Saint Louis Hospital, Paris, France
| | | | - Ali Amara
- INSERM U944, Biology of Emerging Viruses Team, Institut de Recherche Saint Louis, APHP-Saint-Louis Hospital, Paris, France.,Université Paris Cité, Paris, France
| | - Jean Michel Molina
- Infectious Disease Department, APHP-Saint-Louis Hospital, Paris, France.,INSERM U944, Biology of Emerging Viruses Team, Institut de Recherche Saint Louis, APHP-Saint-Louis Hospital, Paris, France.,Université Paris Cité, Paris, France
| | - Constance Delaugerre
- INSERM U944, Biology of Emerging Viruses Team, Institut de Recherche Saint Louis, APHP-Saint-Louis Hospital, Paris, France.,Université Paris Cité, Paris, France.,Virology Department, APHP-Saint Louis Hospital, Paris, France
| |
Collapse
|
10
|
Brochot E. Commentary on: Lack of predictive capacity of pre-transplant anti-BK virus antibodies for post-transplant reactivation. J Nephrol 2023; 36:953-954. [PMID: 36715823 DOI: 10.1007/s40620-023-01579-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/31/2022] [Indexed: 01/31/2023]
Affiliation(s)
- Etienne Brochot
- Department of Virology, Amiens University Hospital, Amiens, France. .,AGIR Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France. .,Laboratoire de Virologie, Centre de Biologie Humaine-CHU Amiens, 80054, Amiens Cedex 1, France.
| |
Collapse
|
11
|
Furmaga J, Kowalczyk M, Furmaga-Rokou O, Rokos CA, Zapolski T, Krakowski L, Jakubczak A, Rudzki S. Genotypes and Variants of BKPyV in Organ Donors after Brain Death. Int J Mol Sci 2022; 23:ijms23169173. [PMID: 36012435 PMCID: PMC9409029 DOI: 10.3390/ijms23169173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 01/08/2023] Open
Abstract
Kidney transplantation from a donor with latent BKPyV might be the cause of serious complications, such as BK virus-associated nephropathy. The aim of the study was to determine the prevalence of BKPyV infection in donors after brain death (DBDs), to analyse the molecular variation of BKPyV and to compare clinical and inflammation parameters of DBDs infected with various genotypes of BKPyV. BKPyV was investigated in blood and urine samples of 103 DBDs using PCR followed by sequencing and bioinformatic analysis, and the viral load was assessed by qPCR. Clinical parameters, including cellular markers of inflammation were assessed. The results confirm high prevalence of BKPyV (48%),and genotype IV (49%) over genotype I (43%) and the co-infection with genotypes I and IV in 8.2%. Viral load ranged from 102 to 107 copies/mL, with an average of 1.92 × 106 copies/mL. No specific markers for BKPyV infection were detected among the parameters tested. Infection with genotype I may be associated with the adverse impact on thekidney function, while infection with genotype IV was associated with the anemia Not only the viral load but also the genotype of BKPyV may have an impact on the course of infection.
Collapse
Affiliation(s)
- Jacek Furmaga
- Department of General and Transplant Surgery and Nutritional Treatment, Medical University of Lublin, 20-954 Lublin, Poland
| | - Marek Kowalczyk
- Institute of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, 20-950 Lublin, Poland
- Correspondence: (M.K.); (A.J.); Tel.: +48-81-445-67-27 (M.K.); +48-81-445-69-92 (A.J.)
| | - Olga Furmaga-Rokou
- Department of Radiology, General Hospital of Thessaloniki George Papanicolaou, 56403 Thessaloniki, Greece
| | - Christos A. Rokos
- Department of Otolaryngology, Head and Neck Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Kiriakidi 1, 54636 Thessaloniki, Greece
| | - Tomasz Zapolski
- Department of Cardiology, Medical University of Lublin, 20-954 Lublin, Poland
| | - Leszek Krakowski
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Gleboka 30, 20-612 Lublin, Poland
| | - Andrzej Jakubczak
- Institute of Biological Basis of Animal Production, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland
- Correspondence: (M.K.); (A.J.); Tel.: +48-81-445-67-27 (M.K.); +48-81-445-69-92 (A.J.)
| | - Sławomir Rudzki
- Department of General and Transplant Surgery and Nutritional Treatment, Medical University of Lublin, 20-954 Lublin, Poland
| |
Collapse
|
12
|
The effect of BK polyomavirus large T antigen on CD4 and CD8 T cells in kidney transplant recipients. Transpl Immunol 2022; 74:101655. [PMID: 35777612 DOI: 10.1016/j.trim.2022.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/01/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
Abstract
Human BK polyomavirus (BKPyV) can affect the machinery of the host cell to induce optimal viral replication or transform them into tumor cells. Reactivation of BKPyV happens due to immunosuppression therapies following renal transplantation which might result in BK polyomavirus nephropathy (BKPyVAN) and allograft loss. The first protein that expresses after entering into host cells and has an important role in pathogenicity is the Large T antigen (LT-Ag). In this review tries to study the molecular and cellular inter-regulatory counteractions especially between CD4 and CD8 T cells, and BKPyV LT-Ag may have role in nephropathy after renal transplantation.
Collapse
|
13
|
Maung Myint T, Chong CH, von Huben A, Attia J, Webster AC, Blosser CD, Craig JC, Teixeira-Pinto A, Wong G. Serum and urine nucleic acid screening tests for polyomavirus-associated nephropathy in kidney and kidney-pancreas transplant recipients. Hippokratia 2022. [DOI: 10.1002/14651858.cd014839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Thida Maung Myint
- John Hunter Hospital; Newcastle Australia
- Sydney School of Public Health; University of Sydney; Sydney Australia
| | - Chanel H Chong
- Sydney School of Public Health; University of Sydney; Sydney Australia
| | - Amy von Huben
- Sydney School of Public Health; University of Sydney; Sydney Australia
| | - John Attia
- University of Newcastle; Newcastle Australia
| | - Angela C Webster
- Sydney School of Public Health; University of Sydney; Sydney Australia
- Centre for Transplant and Renal Research; Westmead Hospital; Westmead Australia
| | - Christopher D Blosser
- Department of Medicine, Nephrology; University of Washington & Seattle Children’s Hospital; Seattle WA USA
| | - Jonathan C Craig
- College of Medicine and Public Health; Flinders University; Adelaide Australia
- Cochrane Kidney and Transplant, Centre for Kidney Research; The Children's Hospital at Westmead; Westmead Australia
| | | | - Germaine Wong
- Sydney School of Public Health; University of Sydney; Sydney Australia
- Centre for Transplant and Renal Research; Westmead Hospital; Westmead Australia
| |
Collapse
|
14
|
Baghi FR, Harzandi N, Moniri A, Nadji SA. Phylogenetic analysis of BKV genetic variations, based on the whole sequence of the genome and different genomic sections. J Med Virol 2022; 94:3930-3945. [PMID: 35437782 DOI: 10.1002/jmv.27791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/05/2022] [Accepted: 04/12/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE(S) BK polyomavirus virus primarily infects humans in their early life stages, and in later life stages, immunosuppressed patients may develop asymptomatic infections. The nucleotides 1744-1812 in the VP1 gene are traditionally used to determine this virus's genotype. MATERIALS AND METHODS The complete genome of the BKV samples from patients referred to Masih Daneshvari Hospital's virology research center was amplified by previously known primer sets. The phylogenetic diversity of the whole genome, different genomic sections, and the non-coding control region of BK virus samples were investigated. Using software Mega X and references, the samples' genotype was determined in separate genomic fragments and the whole genome. RESULTS The samples were classified into two genotypes (I and IV) and five subtypes (Ia, Ib-2, IVc-1, and IVc-2), but none of the isolates belonged to genotype II, III, V, or VI. The Large T antigen-based phylogenetic tree provided 100% bootstrap values for these divisions, which were superior to those (96-100%) used in the VP1 sequence. Among the genomic segments, LTag and VP1 had the most mutations. The non-coding control area contained mutations at the O41 position in the granulocyte/macrophage stimulus gene and the P31 position in the NF-1 gene. CONCLUSION The validity of the phylogenetic analysis was supported by sequence analysis, which found SNPs that could be useful for sub-classifying isolates. More research with a large number of samples and in the wider geographical areas is needed to understand the genetic diversity of the BKV in Iran and also to determine these SNPs' clinical significance in terms of patient outcome and viral load dynamics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Naser Harzandi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Afshin Moniri
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Nadji
- Virology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Molecular Epidemiology and Variation of the BK Polyomavirus in the Population of Central and Eastern Europe Based on the Example of Poland. Viruses 2022; 14:v14020209. [PMID: 35215804 PMCID: PMC8878621 DOI: 10.3390/v14020209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
The BK polyomavirus (BKPyV) is a widespread pathogen in humans. Polymorphism of the region encoding the VP1 protein of BKPyV provides the basis for classifying the virus into types and subtypes, whose frequency varies depending on geographic location. The aim of our study was to determine the frequency of BKPyV in the Polish population and to assess its variation by analysing polymorphism in the typing region. The study was conducted on 168 healthy, Polish volunteers, whose blood (plasma) and urine were sampled. The virus was detected using PCR, products, sequenced and subjected to bioinformatic analysis. In addition, viral load was assessed by qPCR. The presence of the genetic material of the BK virus was noted in 61/168 urine samples but in none of the plasma sample. Sequencing and phylogenetic analysis confirmed that the BKPyV isolates were of types I and IV, dominant in Europe (63.93% and 36.07%, respectively). All isolates from genotype I belonged to subtype Ib-2, showing polymorphism at position 1809 with a frequency of 61.54% (G1809A) and 38.46% (G1809C). To the best of our knowledge, this is the first study of this magnitude on the genetic variation of BKPyV among healthy volunteers in Poland.
Collapse
|
16
|
Myint TM, Chong CHY, Wyld M, Nankivell B, Kable K, Wong G. Polyoma BK Virus in Kidney Transplant Recipients: Screening, Monitoring, and Management. Transplantation 2022; 106:e76-e89. [PMID: 33908382 DOI: 10.1097/tp.0000000000003801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Polyomavirus BK virus (BKPyV) infection is an important complication of kidney transplantation and allograft failure. The prevalence of viremia is 10%-15%, compared with BK-associated nephropathy (BKPyVAN) at 3%-5%. Given that there are no effective antiviral prophylaxis or treatment strategies for BKPyVAN, active screening to detect BKPyV viremia is recommended, particularly during the early posttransplant period. Immunosuppression reduction to allow viral clearance may avoid progression to severe and irreversible allograft damage. The frequency and duration of screening are highly variable between transplant centers because the evidence is reliant largely on observational data. While the primary treatment goals center on achieving viral clearance through immunosuppression reduction, prevention of subsequent acute rejection, premature graft loss, and return to dialysis remain as major challenges. Treatment strategies for BKPyV infection should be individualized to the recipient's underlying immunological risk and severity of the allograft infection. Efficacy data for adjuvant therapies including intravenous immunoglobulin and cidofovir are sparse. Future well-powered and high-quality randomized controlled trials are needed to inform evidence-based clinical practice for the management of BKPy infection.
Collapse
Affiliation(s)
- Thida Maung Myint
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- Newcastle Transplant Unit, John Hunter Hospital, Newcastle, NSW, Australia
| | - Chanel H Y Chong
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Melanie Wyld
- Department of Renal Medicine, Centre for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, Australia
| | - Brian Nankivell
- Department of Renal Medicine, Centre for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, Australia
| | - Kathy Kable
- Department of Renal Medicine, Centre for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, Australia
| | - Germaine Wong
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- Department of Renal Medicine, Centre for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, NSW, Australia
| |
Collapse
|
17
|
Human Polyomaviruses (HPyV) in Wastewater and Environmental Samples from the Lisbon Metropolitan Area: Detection and Genetic Characterization of Viral Structural Protein-Coding Sequences. Pathogens 2021; 10:pathogens10101309. [PMID: 34684259 PMCID: PMC8540013 DOI: 10.3390/pathogens10101309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/02/2022] Open
Abstract
Due to the lack of reliable epidemiological information regarding the geographic distribution and genetic diversity of human polyomaviruses (HPyV) in Portugal, we addressed these issues in this initial study by focusing on the Lisbon Metropolitan area, the most populated and culturally diverse hub in the country. The HPyV structural protein-coding sequence was partially amplified using two touch-down PCR multiplex protocols, starting from water samples, collected between 2018 and 2020, where viral genomes were detected. The obtained results disclosed the frequent detection of HPyV1, HPyV2, HPyV5, and HPyV6 in 35.3% (n = 6), 29.4% (n = 5), 47.1% (n = 8) and 29.4% (n = 5), respectively, of the water samples analyzed. The sequences assigned to a given viral species did not segregate to a single genotype, this being especially true for HPyV2 for which five genotypes (including a putative new genotype 9) could be identified. The phylogenetic trees obtained for HPyV5 and HPyV6 had less resolving power than those obtained for HPyV1/HPyV2, but both viruses were shown to be genetically diverse. This analysis emphasizes the epidemiological helpfulness of these detection/genetic characterization studies in addition to being relevant tools for assessment of human waste contamination.
Collapse
|
18
|
BK Polyomavirus Subtypes IVc-1 and Ib-1 in Vietnamese Renal Transplant Recipients. Microbiol Resour Announc 2021; 10:e0042721. [PMID: 34435854 PMCID: PMC8388545 DOI: 10.1128/mra.00427-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We report here the nearly complete genome sequences of two human BK polyomavirus (BKV) strains recovered from two Vietnamese renal allograft recipients and belonging to subtypes IVc1 (strain VN_PBK185) and Ib1 (strain VN_PBK212). The genome sequences of VN_PBK185 and VN_PBK212 were highly similar (99.9% nucleotide identity) to the reference BKV strains VNM-1 and VNM-9, respectively.
Collapse
|
19
|
BK Polyomavirus-Biology, Genomic Variation and Diagnosis. Viruses 2021; 13:v13081502. [PMID: 34452367 PMCID: PMC8402805 DOI: 10.3390/v13081502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
The BK polyomavirus (BKPyV), a representative of the family Polyomaviridae, is widespread in the human population. While the virus does not cause significant clinical symptoms in immunocompetent individuals, it is activated in cases of immune deficiency, both pharmacological and pathological. Infection with the BKPyV is of particular importance in recipients of kidney transplants or HSC transplantation, in which it can lead to the loss of the transplanted kidney or to haemorrhagic cystitis, respectively. Four main genotypes of the virus are distinguished on the basis of molecular differentiation. The most common genotype worldwide is genotype I, with a frequency of about 80%, followed by genotype IV (about 15%), while genotypes II and III are isolated only sporadically. The distribution of the molecular variants of the virus is associated with the region of origin. BKPyV subtype Ia is most common in Africa, Ib-1 in Southeast Asia, and Ib-2 in Europe, while Ic is the most common variant in Northeast Asia. The development of molecular methods has enabled significant improvement not only in BKPyV diagnostics, but in monitoring the effectiveness of treatment as well. Amplification of viral DNA from urine by PCR (Polymerase Chain Reaction) and qPCR Quantitative Polymerase Chain Reaction) is a non-invasive method that can be used to confirm the presence of the genetic material of the virus and to determine the viral load. Sequencing techniques together with bioinformatics tools and databases can be used to determine variants of the virus, analyse their circulation in populations, identify relationships between them, and investigate the directions of evolution of the virus.
Collapse
|
20
|
Muñoz-Gallego I, Díaz-Madridano N, Moral N, Pascual C, Polanco N, González E, Andrés A, Folgueira MD. Detection of BK polyomavirus genotypes to predict the development of BK polyomavirus-associated complications in kidney transplant recipients: A retrospective analysis. Transpl Infect Dis 2021; 23:e13615. [PMID: 33866657 DOI: 10.1111/tid.13615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/22/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This study focused on the role that BK polyomavirus (BKPyV) genotypes can play in the development of BKPyV-associated complications in renal transplant recipients. METHODS A retrospective observational study (January 2015 to April 2018) was conducted by analyzing BKPyV genotypes in 180 blood samples with detectable BKPyV viral load (VL) > 1000 copies/mL, from 63 renal transplant recipients. VL and BKPyV genotypes detections were based on real-time PCR (rt-PCR)-specific assays. RESULTS Forty-four patients (44/63 [69.8%]) were men, and the median age was 55.0 (interquartile range 49.0-66.0 years). Eleven patients had clinical manifestations (11/63 [17.5%]). The most frequently detected genotypes were I (14/63 [22.2%]) and II (13/63 [20.6%]). Half of the patients (33/63 [52.4%]) had a mixed genotype, most with genotypes I and II (25/33 [75.8%]). Patients with infection by mixed genotypes showed VLs that were detected earlier (in the first year after transplantation) than those with a single genotype (25/33 [75.8%] vs 13/30 [43.3%], P = .009) and demonstrated greater risk of developing clinical manifestations associated with BKPyV (odds ratio 12.609, 95% confidence interval 1.503-105.807). Moreover, patients with first BKPyV VL > 10 000 copies/mL more frequently presented mixed genotypes (12/16 [75.0%] vs 21/47 [44.7%], P = .036). CONCLUSIONS The probability of developing clinical manifestations is higher in infections by mixed genotypes. Therefore, the detection of BKPyV genotypes by rt-PCR can provide relevant information to stratify patients' risk of BKPyV-associated complications and guide the clinical management of BKPyV infection in kidney transplant recipients.
Collapse
Affiliation(s)
- Irene Muñoz-Gallego
- Virology Laboratory, Microbiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Nerea Díaz-Madridano
- Virology Laboratory, Microbiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Noelia Moral
- Virology Laboratory, Microbiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Consuelo Pascual
- Virology Laboratory, Microbiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Natalia Polanco
- Nephrology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Esther González
- Nephrology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Amado Andrés
- Nephrology Department, Hospital Universitario 12 de Octubre, Madrid, Spain.,Biomedical Research Institute imas12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - María Dolores Folgueira
- Virology Laboratory, Microbiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain.,Biomedical Research Institute imas12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
21
|
Leuzinger K, Kaur A, Wilhelm M, Hirsch HH. Variations in BK Polyomavirus Immunodominant Large Tumor Antigen-Specific 9mer CD8 T-Cell Epitopes Predict Altered HLA-Presentation and Immune Failure. Viruses 2020; 12:v12121476. [PMID: 33371492 PMCID: PMC7767524 DOI: 10.3390/v12121476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Failing BK polyomavirus (BKPyV)-specific immune control is underlying onset and duration of BKPyV-replication and disease. We focused on BKPyV-specific CD8 T-cells as key effectors and characterized immunodominant 9mer epitopes in the viral large tumor-antigen (LTag). We investigated the variation of LTag-epitopes and their predicted effects on HLA-class 1 binding and T-cell activation. Available BKPyV sequences in the NCBI-nucleotide (N = 3263), and the NCBI protein database (N = 4189) were extracted (1368 sequences) and analyzed for non-synonymous aa-exchanges in LTag. Variant 9mer-epitopes were assessed for predicted changes in HLA-A and HLA-B-binding compared to immunodominant 9mer reference. We identified 159 non-synonymous aa-exchanges in immunodominant LTag-9mer T-cell epitopes reflecting different BKPyV-genotypes as well as genotype-independent variants altering HLA-A/HLA-B-binding scores. Decreased binding scores for HLA-A/HLA-B were found in 27/159 (17%). This included the immunodominant LPLMRKAYL affecting HLA-B*07:02-, HLA-B*08:01- and HLA-B*51:01-presentation. In two healthy BKPyV-seropositive HLA-B*07:02 blood donors, variant LSLMRKAYL showed reduced CD8 T-cell responses compared to LPLMRKAYL. Thus, despite LTag being highly conserved, aa-exchanges occur in immunodominant CD8 T-cell epitopes of BKPyV-genotypes as well as of genotypes -independent variants, which may contribute to genotype-dependent and genotype-independent failure of cellular immune control over BKPyV-replication. The data warrant epidemiological and immunological investigations in carefully designed clinical studies.
Collapse
Affiliation(s)
- Karoline Leuzinger
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland; (K.L.); (A.K.); (M.W.)
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Amandeep Kaur
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland; (K.L.); (A.K.); (M.W.)
| | - Maud Wilhelm
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland; (K.L.); (A.K.); (M.W.)
| | - Hans H. Hirsch
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland; (K.L.); (A.K.); (M.W.)
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
- Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-207-3266 or +41-61-207-3225
| |
Collapse
|
22
|
Signorini L, Dolci M, Favi E, Colico C, Ferraresso M, Ticozzi R, Basile G, Ferrante P, Delbue S. Viral Genomic Characterization and Replication Pattern of Human Polyomaviruses in Kidney Transplant Recipients. Viruses 2020; 12:1280. [PMID: 33182443 PMCID: PMC7696855 DOI: 10.3390/v12111280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Human Polyomavirus (HPyV) infections are common, ranging from 60% to 100%. In kidney transplant (KTx) recipients, HPyVs have been associated with allograft nephropathy, progressive multifocal leukoencephalopathy, and skin cancer. Whether such complications are caused by viral reactivation or primary infection transmitted by the donor remains debated. This study aimed to investigate the replication pattern and genomic characterization of BK Polyomavirus (BKPyV), JC Polyomavirus (JCPyV), and Merkel Cell Polyomavirus (MCPyV) infections in KTx. Urine samples from 57 KTx donor/recipient pairs were collected immediately before organ retrieval/transplant and periodically up to post-operative day 540. Specimens were tested for the presence of BKPyV, JCPyV, and MCPyV genome by virus-specific Real-Time PCR and molecularly characterized. HPyVs genome was detected in 49.1% of donors and 77.2% of recipients. Sequences analysis revealed the archetypal strain for JCPyV, TU and Dunlop strains for BKPyV, and IIa-2 strain for MCPyV. VP1 genotyping showed a high frequency for JCPyV genotype 1 and BKPyV genotype I. Our experience demonstrates that after KTx, HPyVs genome remains stable over time with no emergence of quasi-species. HPyVs strains isolated in donor/recipient pairs are mostly identical, suggesting that viruses detected in the recipient may be transmitted by the allograft.
Collapse
Affiliation(s)
- Lucia Signorini
- Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milano, Italy; (M.D.); (R.T.); (P.F.); (S.D.)
| | - Maria Dolci
- Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milano, Italy; (M.D.); (R.T.); (P.F.); (S.D.)
| | - Evaldo Favi
- Department of Clinical Sciences and Community Health, University of Milano, 20122 Milano, Italy; (E.F.); (M.F.)
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy;
| | - Caterina Colico
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy;
| | - Mariano Ferraresso
- Department of Clinical Sciences and Community Health, University of Milano, 20122 Milano, Italy; (E.F.); (M.F.)
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy;
| | - Rosalia Ticozzi
- Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milano, Italy; (M.D.); (R.T.); (P.F.); (S.D.)
| | - Giuseppe Basile
- Service of Legal Medicine, San Siro Clinical Institute, 20148 Milano, Italy;
| | - Pasquale Ferrante
- Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milano, Italy; (M.D.); (R.T.); (P.F.); (S.D.)
| | - Serena Delbue
- Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milano, Italy; (M.D.); (R.T.); (P.F.); (S.D.)
| |
Collapse
|
23
|
Beyond Cytomegalovirus and Epstein-Barr Virus: a Review of Viruses Composing the Blood Virome of Solid Organ Transplant and Hematopoietic Stem Cell Transplant Recipients. Clin Microbiol Rev 2020; 33:33/4/e00027-20. [PMID: 32847820 DOI: 10.1128/cmr.00027-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viral primary infections and reactivations are common complications in patients after solid organ transplantation (SOT) and hematopoietic stem cell transplantation (HSCT) and are associated with high morbidity and mortality. Among these patients, viral infections are frequently associated with viremia. Beyond the usual well-known viruses that are part of the routine clinical management of transplant recipients, numerous other viral signatures or genomes can be identified in the blood of these patients. The identification of novel viral species and variants by metagenomic next-generation sequencing has opened up a new field of investigation and new paradigms. Thus, there is a need to thoroughly describe the state of knowledge in this field with a review of all viral infections that should be scrutinized in high-risk populations. Here, we review the eukaryotic DNA and RNA viruses identified in blood, plasma, or serum samples of pediatric and adult SOT/HSCT recipients and the prevalence of their detection, with a particular focus on recently identified viruses and those for which their potential association with disease remains to be investigated, such as members of the Polyomaviridae, Anelloviridae, Flaviviridae, and Astroviridae families. Current knowledge of the clinical significance of these viral infections with associated viremia among transplant recipients is also discussed. To ensure a comprehensive description in these two populations, individuals described as healthy (mostly blood donors) are considered for comparative purposes. The list of viruses that should be on the clinicians' radar is certainly incomplete and will expand, but the challenge is to identify those of possible clinical significance.
Collapse
|
24
|
Evolution and molecular epidemiology of polyomaviruses. INFECTION GENETICS AND EVOLUTION 2019; 79:104150. [PMID: 31870972 DOI: 10.1016/j.meegid.2019.104150] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 02/08/2023]
Abstract
Polyomaviruses (PyVs) are small DNA viruses that infect several species, including mammals, birds and fishes. Their study gained momentum after the report of previously unidentified viral species in the past decade, and especially, since the description of the first polyomavirus clearly oncogenic for humans. The aim of this work was to review the most relevant aspects of the evolution and molecular epidemiology of polyomaviruses, allowing to reveal general evolutionary patterns and to identify some unaddressed issues and future challenges. The main points analysed included: 1) the species and genera assignation criteria; 2) the hypotheses, mechanisms and timescale of the ancient and recent evolutionary history of polyomaviruses; and 3) the molecular epidemiology of human viruses, with special attention to JC, BK and Merkel cell polyomaviruses.
Collapse
|
25
|
Hashida Y, Higuchi T, Matsui K, Shibata Y, Nakajima K, Sano S, Daibata M. Genetic Variability of the Noncoding Control Region of Cutaneous Merkel Cell Polyomavirus: Identification of Geographically Related Genotypes. J Infect Dis 2019; 217:1601-1611. [PMID: 29409030 DOI: 10.1093/infdis/jiy070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/30/2018] [Indexed: 12/14/2022] Open
Abstract
Background Merkel cell polyomavirus (MCPyV) is a ubiquitous cutaneous virus that causes Merkel cell carcinoma, which develops preferentially in white populations from Europe and North America. However, the genomic variations of MCPyV among ethnic groups have not been well delineated, and even less is known regarding alterations in the noncoding control region (NCCR) in the general population. Methods MCPyV strains recovered from skin swab specimens from 250 healthy participants with distinct ethnicities and geographic origins were subjected to sequencing analysis of the NCCR. Results A 25-base pair tandem repeat caused by a 25-base pair insertion within the NCCR was found predominantly in Japanese and East Asian individuals. Based on the presence of 2 other insertions and a deletion, the NCCR could be classified further into 5 genotypes. This tandem repeat was also found exclusively in the NCCR from Japanese patients with Merkel cell carcinoma, while other genotypes were detected in white patients from Europe and North America. Conclusions Our results suggest that the MCPyV NCCR varies according to ethnicity and that assessing the short NCCR sequence provides a rapid and simple means for identification of the Japanese and East Asian variant genotype. It remains to be established whether these NCCR variations are associated differentially with the pathogenesis of MCPyV-driven Merkel cell carcinoma between regions with varying endemicity.
Collapse
Affiliation(s)
- Yumiko Hashida
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tomonori Higuchi
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Kochi, Japan
| | - Kiyohiko Matsui
- Clinical Laboratory Science, Nitobe Bunka College, Tokyo, Japan
| | - Yuka Shibata
- Department of Dermatology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Kimiko Nakajima
- Department of Dermatology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Masanori Daibata
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
26
|
Govind S, Hockley J, Morris C, Almond N. The development and establishment of the 1st WHO BKV International Standard for nucleic acid based techniques. Biologicals 2019; 60:75-84. [DOI: 10.1016/j.biologicals.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/15/2019] [Accepted: 04/25/2019] [Indexed: 12/25/2022] Open
|
27
|
Shah A, Kumar V, Palmer MB, Trofe-Clark J, Laskin B, Sawinski D, Hogan JJ. Native kidney BK virus nephropathy, a systematic review. Transpl Infect Dis 2019; 21:e13083. [PMID: 30907978 DOI: 10.1111/tid.13083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/10/2019] [Accepted: 02/15/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND There is a growing base of literature describing BK nephropathy (BKVN) in patients outside of the setting of kidney transplant. Previous systematic reviews of the literature have been limited by methodology or by the scope of patients included. STUDY DESIGN AND METHODS Systematic Review (Prospero # CRD42018088524). SETTING & POPULATION Patients without kidney transplant who had biopsy-proven BKVN. SELECTION CRITERIA FOR STUDIES Full-text articles that describe native BKVN patient cases. ANALYTICAL APPROACH Descriptive synthesis. RESULTS The search identified 630 unique articles of which 51 were included in the final review. Sixty-five cases (including two new cases presented in this review) were identified, all but one occurred in the setting of known immunosuppression. LIMITATIONS The primary limitation was the exclusion of studies that did not fulfill the stringent review criteria. We excluded reports with only a clinical diagnosis of BKVN, such as those with viruria and/or viremia without biopsy. CONCLUSIONS As of May 2018, there are 65 reported cases of BKVN in native kidneys. This represents the most comprehensive description of biopsy-proven BKVN in native kidneys to date. Evaluation for BK nephropathy should be considered in immunocompromised patients who exhibit unexplained renal failure.
Collapse
Affiliation(s)
- Ankur Shah
- Division of Nephrology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vinayak Kumar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew B Palmer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer Trofe-Clark
- Division of Nephrology, University of Pennsylvania, Philadelphia, Pennsylvania.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Pharmacy Services, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin Laskin
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Division of Nephrology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Deirdre Sawinski
- Division of Nephrology, University of Pennsylvania, Philadelphia, Pennsylvania.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jonathan J Hogan
- Division of Nephrology, University of Pennsylvania, Philadelphia, Pennsylvania.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Hashida Y, Higuchi T, Matsuzaki S, Nakajima K, Sano S, Daibata M. Prevalence and Genetic Variability of Human Polyomaviruses 6 and 7 in Healthy Skin Among Asymptomatic Individuals. J Infect Dis 2019; 217:483-493. [PMID: 29161422 DOI: 10.1093/infdis/jix516] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022] Open
Abstract
Background Despite the pathogenetic potential of human polyomavirus 6 (HPyV6) and human polyomavirus 7 (HPyV7), they have been found in the normal skin of healthy individuals. However, little is known about the prevalence, infection levels, and geographical variations of these polyomaviruses in the skin. Methods Using skin swabs from 470 participants aged 2-98 years, we estimated the prevalence of copy numbers of HPyV6 and HPyV7 with respect to age and ethnicity. Phylogenetic analyses were conducted based on viral sequences obtained from Asian and white populations. Results This study provides the first analyses of the age-specific prevalence and levels of HPyV6 and HPyV7 infections in normal skin. Comparisons of age groups revealed that the prevalence and viral loads were significantly higher in elderly persons. Phylogenetic analyses demonstrated the existence of Asian/Japanese-specific strains genetically distinct from strains prevalent in the skin of the white population studied. Conclusions This large study suggests that HPyV6 and HPyV7 infections in the skin are highly prevalent in elderly adults. Further research is warranted to understand whether persistent infection with high viral loads in the skin could be a risk factor for the development of HPyV6- and HPyV7-associated skin disorders.
Collapse
Affiliation(s)
- Yumiko Hashida
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Japan
| | - Tomonori Higuchi
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Japan
| | - Shigenobu Matsuzaki
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Japan
| | - Kimiko Nakajima
- Department of Dermatology, Kochi Medical School, Kochi University, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Japan
| | - Masanori Daibata
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Japan
| |
Collapse
|
29
|
Chong S, Antoni M, Macdonald A, Reeves M, Harber M, Magee CN. BK virus: Current understanding of pathogenicity and clinical disease in transplantation. Rev Med Virol 2019; 29:e2044. [PMID: 30958614 DOI: 10.1002/rmv.2044] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022]
Abstract
BK polyomavirus (BKV) is an important cause of graft loss in renal transplant recipients that continues to pose a significant challenge to clinicians due to its frequently unpredictable onset, persistence, and the lack of effective antiviral agents or prevention strategies. This review covers our current understanding of epidemiology, viral transmission and disease progression, and treatment and prevention strategies that have been used to manage this disease.
Collapse
Affiliation(s)
- Stephanie Chong
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Michelle Antoni
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, London, UK
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, London, UK
| | - Matthew Reeves
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
| | - Mark Harber
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Ciara N Magee
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| |
Collapse
|
30
|
Wunderink HF, De Brouwer CS, Gard L, De Fijter JW, Kroes ACM, Rotmans JI, Feltkamp MCW. Source and Relevance of the BK Polyomavirus Genotype for Infection After Kidney Transplantation. Open Forum Infect Dis 2019; 6:ofz078. [PMID: 30949528 PMCID: PMC6440680 DOI: 10.1093/ofid/ofz078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/14/2019] [Indexed: 12/23/2022] Open
Abstract
Background BK polyomavirus (BKPyV)–associated nephropathy (BKPyVAN) is a major threat for kidney transplant recipients (KTRs). The role of specific BKPyV genotypes/serotypes in development of BKPyVAN is poorly understood. Pretransplantation serotyping of kidney donors and recipients and posttransplantation genotyping of viremic recipients, could reveal the clinical relevance of specific BKPyV variants. Methods A retrospective cohort of 386 living kidney donor-recipient pairs was serotyped before transplantation against BKPyV genotype I–IV viral capsid protein 1 antigen, using a novel BKPyV serotyping assay. Replicating BKPyV isolates in viremic KTRs after transplantation were genotyped using real-time polymerase chain reaction and confirmed by means of sequencing. BKPyV serotype and genotype data were used to determine the source of infection and analyze the risk of viremia and BKPyVAN. Results Donor and recipient BKPyV genotype and serotype distribution was dominated by genotype I (>80%), especially Ib, over II, III and IV. Donor serotype was significantly correlated with the replicating genotype in viremic KTRs (P < .001). Individual donor and recipient serotype, serotype (mis)matching and the recipient replicating BKPyV genotype were not associated with development of viremia or BKPyVAN after transplantation. Conclusions BKPyV donor and recipient serotyping and genotyping indicates the donor origin of replicating BKPyV in viremic KTRs but provides no evidence for BKPyV genotype–specific virulence.
Collapse
Affiliation(s)
- H F Wunderink
- Department of Medical Microbiology, Leiden University Medical Center, the Netherlands
| | - C S De Brouwer
- Department of Medical Microbiology, Leiden University Medical Center, the Netherlands
| | - L Gard
- Department of Medical Microbiology, University Medical Center Groningen, the Netherlands
| | - J W De Fijter
- Department of Internal Medicine, Leiden University Medical Center, the Netherlands
| | - A C M Kroes
- Department of Medical Microbiology, Leiden University Medical Center, the Netherlands
| | - J I Rotmans
- Department of Internal Medicine, Leiden University Medical Center, the Netherlands
| | - M C W Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, the Netherlands
| |
Collapse
|
31
|
Korth J, Anastasiou OE, Bräsen JH, Brinkhoff A, Lehmann U, Kribben A, Dittmer U, Verheyen J, Wilde B, Ciesek S, Witzke O, Widera M. The detection of BKPyV genotypes II and IV after renal transplantation as a simple tool for risk assessment for PyVAN and transplant outcome already at early stages of BKPyV reactivation. J Clin Virol 2019; 113:14-19. [PMID: 30771597 DOI: 10.1016/j.jcv.2019.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/07/2019] [Accepted: 02/08/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND After reactivation the BK-polyomavirus (BKPyV) associated nephropathy (PyVAN) is observed in 1-10% of renal transplant recipients, of which up to 80% undergo graft failure. BKPyV reactivation after renal transplantation was associated with donor-derived serotypes against which the recipient has no immunological protection. However, PyVAN risk assessment seroactivity testing is a time-consuming and cost intensive process. OBJECTIVES Since BKPyV serotypes can be attributed to distinct genotypes I to IV, in the present study we retrospectively analyzed whether a simple PCR-based BKPyV genotyping assay might be a fast and inexpensive method to assess the risk for PyVAN and transplant outcome already at early stages of BKPyV reactivation. STUDY DESIGN 56 patients who were renal transplanted and tested positive for BKPyV viremia were included into the study. The BKPyV-VP1-coding sequences were PCR-amplified, sequenced, and subjected to genotyping. For group specific analysis patients were grouped in genotype I (n = 46) and a second group including genotype II and IV (n = 10) and associated with their clinical outcomes. RESULTS The most abundant genotype I was detected in 46 of 56 (82%) patients, however, in the genotype II and IV group PyVAN was twice as frequent as compared to the genotype I group 24 months after transplantation (8 of 10 (80%) vs. 17 of 46 (37%); p = 0.001). Accordingly, graft failure was significantly more frequent in the genotype II and IV group (3 of 10 (30%) vs. 2 of 46 (4%); p = 0.007). CONCLUSION PCR-based BKPyV genotyping might represent a fast and inexpensive method to assess the risk for PyVAN and transplant outcome already at early stages of BKPyV reactivation even if matched samples of the donor are not available.
Collapse
Affiliation(s)
- Johannes Korth
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany; Institute for Virology, University Hospital Essen, University of Duisburg-Essen Virchowstr. 179, 45147, Essen, Germany.
| | - Olympia Evdoxia Anastasiou
- Department of Gastroenterology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Jan Hinrich Bräsen
- Institute for Pathology, Hanover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany
| | - Alexandra Brinkhoff
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Ulrich Lehmann
- Institute for Pathology, Hanover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen Virchowstr. 179, 45147, Essen, Germany
| | - Jens Verheyen
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen Virchowstr. 179, 45147, Essen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Sandra Ciesek
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen Virchowstr. 179, 45147, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Marek Widera
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen Virchowstr. 179, 45147, Essen, Germany
| |
Collapse
|
32
|
Hejtmánková A, Roubalová K, Forejtová A, Žáčková Suchanová J, Forstová J, Viklický O, Španielová H. Prevalence of antibodies against BKPyV subtype I and IV in kidney transplant recipients and in the general Czech population. J Med Virol 2019; 91:856-864. [PMID: 30609063 DOI: 10.1002/jmv.25388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/24/2018] [Indexed: 01/04/2023]
Abstract
Active infection with BK polyomavirus (BKPyV) may cause serious complications in transplantation settings. Recently, the level of BKPyV IgG seroreactivity in graft donors has been shown to predict viremia and BKPyV-associated nephropathy in kidney transplant (KTx) recipients. Pretransplantation testing of the donor and recipient BKPyV serostatus could, therefore, identify patients at high risk. For the development of serological immunoassays, antibody response to the predominant BKPyV subtypes (BKPyV-I and BKPyV-IV) was studied using virus-like particle (VLP)-based enzyme-linked immunosorbent assay (ELISA). VLPs made from the capsid protein, VP1, derived from BKPyV-I and BKPyV-IV subtypes were produced using a baculovirus expression system and used as antigens. The tests were used for IgG antibody determination in 50 KTx recipients and 111 healthy blood donors. While 87% of samples reacted with mixed BKPyV-I and BKPyV-IV antigens, only 49% of samples were reactive in both ELISA tests when using BKPyV-I or BKPyV-IV antigens separately. Twenty-seven percent of healthy blood donors and 26% of KTx recipients were reactive only with BKPyV-I, while 9% and 20% were reactive only with BKPyV-IV, respectively. To determine the specificities of the antigens, selected seropositive samples were retested after preadsorption with soluble BKPyV-I, BKPyV-IV, or JC polyomavirus antigens. The experiments confirmed that recombinant VP1 VLP-based ELISAs predominantly detected BKPyV type-specific antibodies. The results imply that anti-BKPyV antibody ELISA tests should contain a mixture of subtype-specific VLP-based antigens instead of antigen derived from the most prevalent BKPyV-I subtype. The tests can be used for serological surveys of BKPyV infection and improved KTx patient management.
Collapse
Affiliation(s)
- Alžběta Hejtmánková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | | | - Jiřina Žáčková Suchanová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jitka Forstová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondřej Viklický
- Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Hana Španielová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
33
|
Jagannath S, Sachithanandham J, Ramalingam VV, Demosthenes JP, Abraham AM, Zachariah A, Varghese GM, Kannangai R. BK virus characterisation among HIV-1-Infected individuals and its association with immunosuppression. Indian J Med Microbiol 2018; 36:172-177. [PMID: 30084406 DOI: 10.4103/ijmm.ijmm_18_54] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Purpose BK virus (BKV) is an opportunistic pathogen which causes significant morbidity and mortality in individuals who are immunodeficient. We aimed to quantitate and characterise BKV and to correlate with the degree of immunosuppression among human immunodeficiency virus (HIV)-1-infected individuals. Methods BKV DNA detection was carried out using an in-house quantitative real-time polymerase chain reaction on paired whole-blood and urine samples collected from 187 antiretroviral therapy (ART)-naïve HIV-1-infected individuals and 93 healthy individuals who served as controls. Sequencing was performed for a proportion of high BK viral load (VL) samples to observe non-coding control region (NCCR) rearrangements. Results BKV positivity in urine was 25.6% among HIV-infected individuals and 10.7% in control individuals (P = 0.03). The BK VL showed a significant negative correlation with CD4+ T-cell counts, a positive correlation with WHO clinical staging and no significant correlation with HIV-1 VL. Of 42 BKVs from urine samples sequenced, two showed rearrangements without clinically severe disease or high VL. Their NCCR and VP1 sequence-based genotyping revealed genotype I. In a small subset of individuals (n = 8) on ART who were being followed up, six individuals showed either decrease or complete clearance of virus with ART. Conclusion There was a higher frequency of BK viruria in HIV-1-infected individuals than among healthy controls and the positivity correlated with the degree of immunosuppression. There was no association of high VL with NCCR rearrangements in urine.
Collapse
Affiliation(s)
- Subha Jagannath
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Veena V Ramalingam
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - John Paul Demosthenes
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Asha M Abraham
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Anand Zachariah
- Department of Medicine and Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - George M Varghese
- Department of Medicine and Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - Rajesh Kannangai
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
34
|
Wunderink HF, de Brouwer CS, van der Meijden E, Pastrana DV, Kroes ACM, Buck CB, Feltkamp MCW. Development and evaluation of a BK polyomavirus serotyping assay using Luminex technology. J Clin Virol 2018; 110:22-28. [PMID: 30529638 DOI: 10.1016/j.jcv.2018.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/22/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND The BK polyomavirus (BKPyV) is subdivided into four genotypes. The consequences of each genotype and of donor-recipient genotype (mis)match for BKPyV-associated nephropathy (BKPyVAN) in kidney transplant recipients (KTRs) are unknown. OBJECTIVES To develop and evaluate a genotype-specific IgG antibody-based BKPyV serotyping assay, in order to classify kidney transplant donors and recipients accordingly. STUDY DESIGN VP1 antigens of six BKPyV variants (Ib1, Ib2, Ic, II, III and IV) were expressed as recombinant glutathione-s-transferase-fusion proteins and coupled to fluorescent Luminex beads. Sera from 87 healthy blood donors and 39 KTRs were used to analyze seroreactivity and serospecificity against the different BKPyV genotypes. Six sera with marked BKPyV serotype profiles were analyzed further for genotype-specific BKPyV pseudovirus neutralizing capacity. RESULTS Seroreactivity was observed against all genotypes, with seropositivity rates above 77% comparable for KTRs and blood donors. Strong cross-reactivity (r > 0.8) was observed among genotype I subtypes, and among genotypes II, III and IV. Seroresponses against genotypes I and IV seemed genuine, while those against II and III could be out(cross)competed. GMT (Luminex) and IC50 (neutralization assay) values showed good agreement in determining the genotype with the strongest seroresponse within an individual. CONCLUSIONS Despite some degree of cross-reactivity, this serotyping assay seems a useful tool to identify the main infecting BKPyV genotype within a given individual. This information, which cannot be obtained otherwise from nonviremic/nonviruric individuals, could provide valuable information regarding the prevalent BKPyV genotype in kidney donors and recipients and warrants further study.
Collapse
Affiliation(s)
- Herman F Wunderink
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Caroline S de Brouwer
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Diana V Pastrana
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-4263, USA
| | - Aloysius C M Kroes
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Christopher B Buck
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-4263, USA
| | - Mariet C W Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
35
|
Occurrence and regression of BK polyomavirus associated carcinoma: a clinical and next-generation sequencing study. Clin Sci (Lond) 2018; 132:1753-1763. [PMID: 30026258 DOI: 10.1042/cs20180443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/07/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Abstract
Low-level BK polyomavirus (BKPyV) shedding is seen in at least 10% of seropositive immunocompetent adults. Moreover, BKPyV infection is highly prevalent amongst immunocompromised populations, yet little is known on its relationship with malignancy. We studied a female patient with BKPyV-associated and donor-derived de novo high-grade sarcomatoid urothelial carcinoma developed 8 years after kidney transplantation from a male donor. Through whole-genome sequencing, we discovered integration of genotype IV BKPyV genome into the non-coding RNA (ncRNA) intronic region of human chromosome 18. The two breakpoints in the virus genome were located at the non-coding control region (NCCR) and large T antigen (TAg) coding region, respectively. Nevertheless, the TAg was overexpressed. We, therefore, inferred that the BKPyV was clonally integrated into the human genome in the form of concatemers, facilitating the expression of the TAg. The patient presented with multiorgan metastases, which were reduced in size and number throughout the body after removal of the graft and cessation of immunosuppressants. The few remaining lesions located in the liver were identified, through biopsy to be necrotic tumor tissue with TAg detected; additionally, genomic sequencing of the liver mass found Y chromosome. In conclusion, we propose that integration of the BKPyV genome is closely related to oncogenesis in this patient; while oncogenesis occurred when host immunity was impaired, recovery of the patient's native immunity effectively curbed viral replication and eliminated the metastatic lesions.
Collapse
|
36
|
Torres C, Barrios ME, Cammarata RV, Victoria M, Fernandez-Cassi X, Bofill-Mas S, Colina R, Blanco Fernández MD, Mbayed VA. Phylodynamics of Merkel-cell polyomavirus and human polyomavirus 6: A long-term history with humans. Mol Phylogenet Evol 2018; 126:210-220. [PMID: 29680507 DOI: 10.1016/j.ympev.2018.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/06/2018] [Accepted: 04/16/2018] [Indexed: 01/10/2023]
Abstract
New human polyomaviruses have been described in the last years, including the Merkel-cell polyomavirus (MCPyV; Human polyomavirus 5) and the Human polyomavirus 6 (HPyV6). Although their infection is usually asymptomatic, in immunocompromised host can cause life-threatening pathologies, such as the Merkel cell carcinoma, an aggressive skin neoplasia associated to the MCPyV. Despite being prevalent viruses in population, epidemiological data from South America are scarce, as well as the characterization of the viral types circulating and their origin. The aims of this work were to describe MCPyV and HPyV6 from environmental samples with different geographical origin and to analyze their phylogenetic and evolutionary histories, particularly for MCPyV. Partial and complete genome sequences were obtained from sewage samples from Argentina, Uruguay and Spain. A total number of 87 sequences were obtained for MCPyV and 33 for HPyV6. Phylogenetic analysis showed that MCPyV sequences distributed according to their geographic origin in Europe/North America, Africa, Asia, South America and Oceania groups, suggesting that viral diversification might have followed human migrations across the globe. In particular, viruses from Argentina associated with Europe/North America and South America genotypes, whereas those from Uruguay and Spain also grouped with Africa genotype, reflecting the origin of the current population in each country, which could arrive not only during ancient human migration but also during recent migratory events. In addition, the South American group presented a high level of clusterization, showing internal clusters that could be related to specific locations, such as French Guiana and Brazil or the Southern region into South America, such as Argentina and Uruguay, suggesting a long term evolutionary process in the region. Additionally, in this work, we carried out the first analysis about the evolutionary history of MCPyV trough the integration of phylogenetic, epidemiological and historical data. Since a strong association is observed between the phylogenetic relationships and the origin of the sampled population, this analysis was based on the hypothesis of co-divergence between the virus and human populations. This analysis resulted in a substitution rate of 5.1 × 10-8 s/s/y (∼5.1% of divergence per million years) for the complete genome of MCPyV, which is in the range of those estimated for other double-stranded DNA viruses. Regarding HPyV6, a South American group with clusterization was observed (sequences from Uruguay). Meanwhile, sequences from Argentina grouped with European ones (France and Spain) and remained separated from those isolated in China, USA or Australia. The analysis of viruses from the environment allowed us to deep characterize prevalent infections in different geographic regions, reveling that viruses circulating in each population reflected its origin and that there are specific lineages associated with South America.
Collapse
Affiliation(s)
- Carolina Torres
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Virología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina.
| | - Melina Elizabeth Barrios
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Virología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Robertina Viviana Cammarata
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Virología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Matías Victoria
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Sede Salto, Universidad de la República, Uruguay
| | - Xavier Fernandez-Cassi
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
| | - Silvia Bofill-Mas
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
| | - Rodney Colina
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Sede Salto, Universidad de la República, Uruguay
| | - María Dolores Blanco Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Virología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Viviana Andrea Mbayed
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Virología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| |
Collapse
|
37
|
Cobos M, Aquilia L, Garay E, Ochiuzzi S, Alvarez S, Flores D, Raimondi C. Epidemiologic Study and Genotyping of BK Virus in Renal Transplant Recipients. Transplant Proc 2018; 50:458-460. [DOI: 10.1016/j.transproceed.2017.12.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/05/2017] [Indexed: 10/17/2022]
|
38
|
Hu C, Huang Y, Su J, Wang M, Zhou Q, Zhu B. The prevalence and isolated subtypes of BK polyomavirus reactivation among patients infected with human immunodeficiency virus-1 in southeastern China. Arch Virol 2018; 163:1463-1468. [PMID: 29435709 PMCID: PMC5958166 DOI: 10.1007/s00705-018-3724-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/18/2017] [Indexed: 12/17/2022]
Abstract
BK polyomavirus (BKPyV) is an opportunistic infectious pathogen that is associated with hemorrhagic cystitis and nephropathy, mainly in transplant recipients and human immunodeficiency virus 1 (HIV-1) infected patients. However, molecular characterization studies of BKPyV in China are rare. This study was designed to elucidate the prevalence and to determine the main subtypes of BKPyV among HIV-1-infected patients in southeastern China. In addition, the increased incidences for BKPyV reactivation were analyzed. The isolated BKPyV DNA was amplified by polymerase chain reaction (PCR) and the specimen sequences were aligned with the reference sequences for phylogenetic analysis. In this study, BKPyV viruria was detected in 64.2% (88/137) of HIV-1-infected patients. Patients in the BKPyV-positive group were more diverse with respect to gender (P = 0.039) and age (P = 0.023) than their counterparts in the BKPyV-negative group, and they had a higher rate of co-infection with tuberculosis (TB) (P = 0.026). Viruria was more commonly found in patients with CD4 counts <200 cells/mm (72.7%) than in those with CD4 counts ≥200 cells/mm (58.5%) (not significant). All sequenced BKPyV isolates belonged to subtype I (13/32) and IV (19/32). A high prevalence of BKPyV reactivation was discovered in patients with HIV-1 infection. Females and elderly individuals, as well as those with a TB co-infection, appeared more susceptible to BKPyV reactivation in this study. BKPyV viruria was found more often and was associated with lower CD4 counts.
Collapse
Affiliation(s)
- Caiqin Hu
- The Department of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Huang
- The Department of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Juwei Su
- The Department of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mengyan Wang
- The Department of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qihui Zhou
- The Department of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Biao Zhu
- The Department of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
39
|
Abstract
BK polyomavirus (BKV) causes frequent infections during childhood and establishes persistent infections within renal tubular cells and the uroepithelium, with minimal clinical implications. However, reactivation of BKV in immunocompromised individuals following renal or hematopoietic stem cell transplantation may cause serious complications, including BKV-associated nephropathy (BKVAN), ureteric stenosis, or hemorrhagic cystitis. Implementation of more potent immunosuppression and increased posttransplant surveillance has resulted in a higher incidence of BKVAN. Antiviral immunity plays a crucial role in controlling BKV replication, and our increasing knowledge about host-virus interactions has led to the development of improved diagnostic tools and clinical management strategies. Currently, there are no effective antiviral agents for BKV infection, and the mainstay of managing reactivation is reduction of immunosuppression. Development of immune-based therapies to combat BKV may provide new and exciting opportunities for the successful treatment of BKV-associated complications.
Collapse
|
40
|
Trang VD, Rockett R, Jeoffreys N, Trung NV, Hai An HP, Kok J, Dwyer DE. BK polyomavirus: a review of the virology, pathogenesis, clinical and laboratory features, and treatment. Future Virol 2017. [DOI: 10.2217/fvl-2017-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BK polyomavirus (BKPyV) is a non-enveloped, circular dsDNA virus with a genome of approximately 5100 base pairs. It can be divided into four major genotypes, but the effects of different genotypes on clinical disease are uncertain. Primary BKPyV infection is generally acquired asymptomatically in childhood. It establishes low-level persistence in many tissues, particularly the genitourinary tract. Reactivation can lead to severe disease including BKPyV-associated nephropathy confirmed by renal biopsy, hemorrhagic cystitis and meningoencephalitis. Nucleic acid amplification testing of blood and urine is the main diagnostic and prognostic test for BKPyV infection. The treatment of BKPyV infection has concentrated on reduction in immunosuppressive therapy. Recent studies suggest that antiviral drugs have demonstrated only modest benefit, but adoptive T-cell therapies offer potential advances.
Collapse
Affiliation(s)
- Van Dinh Trang
- Clinical Laboratory, National Hospital of Tropical Diseases, 78-Giai Phong, Dong Da, Hanoi, Vietnam
- Western Clinical School, Westmead Hospital, The University of Sydney, NSW 2006, Australia
| | - Rebecca Rockett
- Center for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, NSW Health Pathology, Westmead Hospital, Westmead NSW 2145, Australia
| | - Neisha Jeoffreys
- Center for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, NSW Health Pathology, Westmead Hospital, Westmead NSW 2145, Australia
| | - Nguyen Vu Trung
- Clinical Laboratory, National Hospital of Tropical Diseases, 78-Giai Phong, Dong Da, Hanoi, Vietnam
- Department of Medical Microbiology, Hanoi Medical University, No. 1 Ton That Tung St, Dong Da, Hanoi, Vietnam
| | - Ha Phan Hai An
- Department of International Cooperation, Hanoi Medical University, No. 1 Ton That Tung St, Dong Da, Hanoi, Vietnam
- Kidney Diseases & Dialysis Department, Viet Duc Hospital, No. 40 Trang Thi St, Hoan Kiem, Hanoi, Vietnam
| | - Jen Kok
- Center for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, NSW Health Pathology, Westmead Hospital, Westmead NSW 2145, Australia
| | - Dominic E Dwyer
- Western Clinical School, Westmead Hospital, The University of Sydney, NSW 2006, Australia
- Center for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, NSW Health Pathology, Westmead Hospital, Westmead NSW 2145, Australia
| |
Collapse
|
41
|
Höller K, Fabeni L, Herling M, Holtick U, Scheid C, Knops E, Lübke N, Kaiser R, Pfister H, Di Cristanziano V. Dynamics of BKPyV reactivation and risk of hemorrhagic cystitis after allogeneic hematopoietic stem cell transplantation. Eur J Haematol 2017; 99:133-140. [DOI: 10.1111/ejh.12895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2017] [Indexed: 12/20/2022]
Affiliation(s)
| | - Lavinia Fabeni
- National Institute for Infectious Diseases L. Spallanzani - IRCCS; Rome Italy
| | - Marco Herling
- Department I of Internal Medicine; Center for Integrated Oncology (CIO) Köln-Bonn and Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD); University Hospital of Cologne; Cologne Germany
| | - Udo Holtick
- Department I of Internal Medicine; Center for Integrated Oncology (CIO) Köln-Bonn and Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD); University Hospital of Cologne; Cologne Germany
| | - Christof Scheid
- Department I of Internal Medicine; Center for Integrated Oncology (CIO) Köln-Bonn and Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD); University Hospital of Cologne; Cologne Germany
| | - Elena Knops
- Institute of Virology; University of Cologne; Cologne Germany
| | - Nadine Lübke
- Institute of Virology; University of Cologne; Cologne Germany
| | - Rolf Kaiser
- Institute of Virology; University of Cologne; Cologne Germany
| | - Herbert Pfister
- Institute of Virology; University of Cologne; Cologne Germany
| | | |
Collapse
|
42
|
Phylogenetic and structural analysis of merkel cell polyomavirus VP1 in Brazilian samples. Virus Res 2016; 221:1-7. [PMID: 27173789 DOI: 10.1016/j.virusres.2016.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 12/29/2022]
Abstract
Our understanding of the phylogenetic and structural characteristics of the Merkel Cell Polyomavirus (MCPyV) is increasing but still scarce, especially in samples originating from South America. In order to investigate the properties of MCPyV circulating in the continent in more detail, MCPyV Viral Protein 1 (VP1) sequences from five basal cell carcinoma (BCC) and four saliva samples from Brazilian individuals were evaluated from the phylogenetic and structural standpoint, along with all complete MCPyV VP1 sequences available at Genbank database so far. The VP1 phylogenetic analysis confirmed the previously reported pattern of geographic distribution of MCPyV genotypes and the complexity of the South-American clade. The nine Brazilian samples were equally distributed in the South-American (3 saliva samples); North American/European (2 BCC and 1 saliva sample); and in the African clades (3 BCC). The classification of mutations according to the functional regions of VP1 protein revealed a differentiated pattern for South-American sequences, with higher number of mutations on the neutralizing epitope loops and lower on the region of C-terminus, responsible for capsid formation, when compared to other continents. In conclusion, the phylogenetic analysis showed that the distribution of Brazilian VP1 sequences agrees with the ethnic composition of the country, indicating that VP1 can be successfully used for MCPyV phylogenetic studies. Finally, the structural analysis suggests that some mutations could have impact on the protein folding, membrane binding or antibody escape, and therefore they should be further studied.
Collapse
|
43
|
Torres C, Barrios ME, Cammarata RV, Cisterna DM, Estrada T, Martini Novas S, Cahn P, Blanco Fernández MD, Mbayed VA. High diversity of human polyomaviruses in environmental and clinical samples in Argentina: Detection of JC, BK, Merkel-cell, Malawi, and human 6 and 7 polyomaviruses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 542:192-202. [PMID: 26519580 DOI: 10.1016/j.scitotenv.2015.10.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/01/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
New human polyomaviruses have been recently described. The aim of this work was to detect and characterize human polyomaviruses circulating in Argentina by recovering viruses from environmental and sewage samples and evaluating their potential role as viral indicators of human waste contamination. Analysis was performed in a wider context including viruses from clinical samples from an immunocompromised population. River water and sewage samples were analyzed as a strategy to study the molecular epidemiology of viruses excreted by millions of people. Samples belonged to the Matanza-Riachuelo River (2005-2006: n=25 and 2012: n=20) and sewage from Buenos Aires city and suburbs (2011 and 2013: n=24). Viral detection was performed by PCR and the amplified viral genomes were characterized by phylogenetic analysis. Polyomaviruses were detected in 95.8% of sewage samples, identifying BKPyV (87.5%), JCPyV (83.3%), MCPyV (8.3%) and HPyV6 (8.3%). Besides, one sample collected in 2009 resulted positive for HPyV7. In 2005-2006, polyomaviruses were detected in 84.0% of river water samples, with the highest detection for MCPyV (52.0%), followed by BKPyV (44.0%), JCPyV (20.0%) and MWPyV (4.0%). In 2012, polyomaviruses were detected in 85.0% of river samples, finding JCPyV (85.0%), BKPyV (75.0%), MCPyV (25.0%) and HPyV6 (25.0%). Also, polyomaviruses, including JCPyV, BKPyV and MCPyV, were detected in 63.2% of urine samples from patients infected with HIV (n=19). Characterization indicated the coexistence of different genotypes and variants for each virus, particularly in sewage. MCPyV sequences (the only sequences from Argentina) formed a monophyletic group with the single sequence available for South America (French Guiana). The high level of detection and viral diversity found by environmental surveillance, which involved the characterization of viruses not previously described in South America, reinforces the usefulness of this approach to monitor viral contamination and describe the viral epidemiology in the general population.
Collapse
Affiliation(s)
- Carolina Torres
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Ciudad Autónoma de Buenos Aires (C1113AAD), Argentina; CONICET, Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires (C1033AAJ), Argentina.
| | - Melina Elizabeth Barrios
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Ciudad Autónoma de Buenos Aires (C1113AAD), Argentina
| | - Robertina Viviana Cammarata
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Ciudad Autónoma de Buenos Aires (C1113AAD), Argentina; CONICET, Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires (C1033AAJ), Argentina
| | - Daniel Marcelo Cisterna
- Servicio de Neurovirosis, INEI-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563, Ciudad Autónoma de Buenos Aires (C1282AFF), Argentina
| | - Tatiana Estrada
- División Infectología, Hospital General de Agudos "Juan A. Fernández", Cerviño 3356, Ciudad Autónoma de Buenos Aires (C1425AGP), Argentina
| | - Sergio Martini Novas
- División Infectología, Hospital General de Agudos "Juan A. Fernández", Cerviño 3356, Ciudad Autónoma de Buenos Aires (C1425AGP), Argentina
| | - Pedro Cahn
- División Infectología, Hospital General de Agudos "Juan A. Fernández", Cerviño 3356, Ciudad Autónoma de Buenos Aires (C1425AGP), Argentina
| | - María Dolores Blanco Fernández
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Ciudad Autónoma de Buenos Aires (C1113AAD), Argentina; CONICET, Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires (C1033AAJ), Argentina
| | - Viviana Andrea Mbayed
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Ciudad Autónoma de Buenos Aires (C1113AAD), Argentina; CONICET, Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires (C1033AAJ), Argentina
| |
Collapse
|
44
|
Karalic D, Lazarevic I, Banko A, Cupic M, Jevtovic D, Jovanovic T. Molecular characterization of BK virus in patients infected with human immunodeficiency virus. Med Microbiol Immunol 2015; 205:185-93. [PMID: 26498471 DOI: 10.1007/s00430-015-0439-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 10/16/2015] [Indexed: 12/18/2022]
Abstract
Immunosuppression seems to be the most important cause of BKPyV reactivation. Recently, a spectrum of diseases associated with BKPyV infection has been reported in HIV-infected patients. BKPyV isolates can be classified into four subtypes based on nucleotide polymorphisms within VP1 coding region. Mutations within the BC loop of the VP1 may be associated with an increase in the viral pathogenicity. The aims of this study were to determine prevalence and distribution of BKPyV subtypes, sequence variation and mutations within VP1 among HIV-infected patients and healthy donors. Urine samples from 114 HIV-infected patients and 120 healthy donors were collected. PCR followed by sequence analysis was carried out using primers specific for VP1 and NCRR of the virus genome. The predominant BKPyV subtype was I, followed by IV. In isolates from HIV-infected patients, the majority of non-synonymous alterations were located within the BC loop. BKV sequences from healthy donors showed non-synonymous alterations outside of the receptor loops in the β-sheets. The higher frequency of mutations in the BC loop of VP1 protein was detected among HIV-infected patients. The most frequent mutation was E82D. All HIV-infected patients who harbored mutations had CD4(+) cell counts less than 200 cell/mm(3). It seems that immunosuppression is a very important factor for BKPyV reactivation that can increase viral replication rate and leads to higher frequency of mutations in the BC loop of the VP1. These mutations may change receptor specificity, and further studies are needed to determine the effect of these mutations on the biological properties of the BKPyV.
Collapse
Affiliation(s)
- Danijela Karalic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotica 1, Belgrade, 11000, Serbia.
| | - Ivana Lazarevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotica 1, Belgrade, 11000, Serbia
| | - Ana Banko
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotica 1, Belgrade, 11000, Serbia
| | - Maja Cupic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotica 1, Belgrade, 11000, Serbia
| | - Djordje Jevtovic
- Clinics of Infectious and Tropical Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Serbia, Bulevar oslobodjenja 16, Belgrade, 11000, Serbia
| | - Tanja Jovanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotica 1, Belgrade, 11000, Serbia
| |
Collapse
|
45
|
Sequence Variation in Amplification Target Genes and Standards Influences Interlaboratory Comparison of BK Virus DNA Load Measurement. J Clin Microbiol 2015; 53:3842-52. [PMID: 26468499 DOI: 10.1128/jcm.02145-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022] Open
Abstract
International guidelines define a BK virus (BKV) load of ≥4 log10 copies/ml as presumptive of BKV-associated nephropathy (BKVN) and a cutoff for therapeutic intervention. To investigate whether BKV DNA loads (BKVL) are comparable between laboratories, 2 panels of 15 and 8 clinical specimens (urine, whole blood, and plasma) harboring different BKV genotypes were distributed to 20 and 27 French hospital centers in 2013 and 2014, respectively. Although 68% of the reported results fell within the acceptable range of the expected result ±0.5 log10, the interlaboratory variation ranged from 1.32 to 5.55 log10. Polymorphisms specific to BKV genotypes II and IV, namely, the number and position of mutations in amplification target genes and/or deletion in standards, arose as major sources of interlaboratory disagreements. The diversity of DNA purification methods also contributed to the interlaboratory variability, in particular for urine samples. Our data strongly suggest that (i) commercial external quality controls for BKVL assessment should include all major BKV genotypes to allow a correct evaluation of BKV assays, and (ii) the BKV sequence of commercial standards should be provided to users to verify the absence of mismatches with the primers and probes of their BKV assays. Finally, the optimization of primer and probe design and standardization of DNA extraction methods may substantially decrease interlaboratory variability and allow interinstitutional studies to define a universal cutoff for presumptive BKVN and, ultimately, ensure adequate patient care.
Collapse
|
46
|
Madhavan HN, Bagyalakshmi R, Revathy M, Aarthi P, Malathi J. Optimisation and analysis of polymerase chain reaction based DNA sequencing for genotyping polyoma virus in renal transplant patients: a report from South India. Indian J Med Microbiol 2015; 33 Suppl:37-42. [PMID: 25657154 DOI: 10.4103/0255-0857.150878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE To optimise a polymerase chain reaction (PCR) based DNA sequencing technique for genotyping polyoma virus in clinical specimens obtained from renal transplant patients. MATERIALS AND METHODS A hundred and thirty (106 peripheral blood and 24 urine) clinical specimens collected from renal transplant patients were included in the study for detecting the presence of DNA of BK virus (BKV), JC virus (JCV) by PCR targeting the viral protein 1 (VP1) gene. PCR based DNA sequencing was performed to determine the genotypes of polyoma virus and subjected to bioinformatics analysis to determine the amino acid sequences and screen for mutations in the VP1 gene. RESULTS Polyoma virus was detected in 23 (17.69%) specimens of which 19 (82.60%) were positive for BK virus, 3 (13.04%) for JC virus and 1 for both BK and JC virus. PCR based DNA sequencing detected BK virus genotype I in 12 (50%), genotype IV in 8 (33.3%) and JC virus in 4 (16.6%) clinical specimens. BKV genotype I was the predominant genotype (64.2% in peripheral blood and 33.33% in urine) prevalent in south India. Six novel mutations were found--at position 29, 30 to 47 of BKV genotype I; at position 11 and 15 of BKV genotype IV and at position 2 and 30 of JCV. CONCLUSION BKV genotype I is the prominent genotype in India and novel mutations detected in the VP1 gene of BKV and JCV are being reported for the first time in literature.
Collapse
Affiliation(s)
- H N Madhavan
- L and T, Larsen and Toubro Microbiology Research Centre, Kamal Nayan Bajaj Research Centre, Vision Research Foundation, Chennai, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
47
|
Comparative Evaluation of Three Nucleic Acid-Based Assays for BK Virus Quantification. J Clin Microbiol 2015; 53:3822-7. [PMID: 26424842 DOI: 10.1128/jcm.02116-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/23/2015] [Indexed: 12/25/2022] Open
Abstract
With the growing importance of BK virus (BKV), effective and efficient screening for BKV replication in plasma and urine samples is very important for monitoring renal transplant and hematopoietic stem cell transplant recipients, who are at increased risk of BKV-associated diseases. However, recent assays proposed by many manufacturers have not been tested, and the available tests have not been standardized. The aim of the present study was to evaluate and compare the performances of three commercially available kits, R-gene, GeneProof, and RealStar, on plasma and urine specimens from patients infected with various genotypes and to determine the correlations with the results from a reference laboratory. A qualitatively excellent global agreement (96.8%) was obtained. RealStar PCR tended to give a higher sensitivity, especially for subtype Ib1 samples. Comparison of 30 plasma samples and 53 urine samples showed a good agreement between the three assays, with Spearman's Rho correlation coefficient values falling between 0.92 and 0.98 (P < 0.001). Moreover, a perfect correlation was obtained for comparison of the assay performances with the AcroMetrix BKV panel (P < 0.001 for all comparisons). According to Bland-Altman analysis, more than 95% (240/249 comparisons) of sample comparisons were situated in the range of the mean ± 2 standard deviations (SD). The greatest variability between assays was observed for 10.2% of subtype Ib2 samples, with differences of >1 log10 copies/ml. In conclusion, this study demonstrated the reliable and comparable performances of the R-gene, GeneProof, and RealStar real-time PCR systems for quantification of BKV in urine and plasma samples. All three real-time PCR assays are appropriate for screening of BKV replication in patients.
Collapse
|
48
|
Wang ZY, Hong WL, Zhu ZH, Chen YH, Ye WLE, Chu GY, Li JL, Chen BC, Xia P. Phylogenetic reconstruction and polymorphism analysis of BK virus VP2 gene isolated from renal transplant recipients in China. Exp Ther Med 2015; 10:1759-1767. [PMID: 26640547 PMCID: PMC4665150 DOI: 10.3892/etm.2015.2723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 08/13/2015] [Indexed: 01/31/2023] Open
Abstract
BK polyomavirus (BKV) is important pathogen for kidney transplant recipients, as it is frequently re-activated, leading to nephropathy. The aim of this study was to investigate the phylogenetic reconstruction and polymorphism of the VP2 gene in BKV isolated from Chinese kidney transplant recipients. Phylogenetic analysis was carried out in the VP2 region from 135 BKV-positive samples and 28 reference strains retrieved from GenBank. The unweighted pair-group method with arithmetic mean (UPGMA) grouped all strains into subtypes, but failed to subdivide strains into subgroups. Among the plasma and urine samples, all plasma (23/23) and 82 urine samples (82/95) were identified to contain subtype I; the other 10 urine samples contained subtype IV. A 86-bp fragment was identified as a highly conserved sequence. Following alignment with 36 published BKV sequences from China, 92 sites of polymorphism were identified, including 11 single nucleotide polymorphisms (SNPs) prevalent in Chinese individuals and 30 SNPs that were specific to the two predominant subtypes I and IV. The limitations of the VP2 gene segment in subgrouping were confirmed by phylogenetic analysis. The conserved sequence and polymorphism identified in this study may be helpful in the detection and genotyping of BKV.
Collapse
Affiliation(s)
- Zhang-Yang Wang
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wei-Long Hong
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhe-Hui Zhu
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yun-Hao Chen
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wen-LE Ye
- Transplantation Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guang-Yu Chu
- Transplantation Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jia-Lin Li
- Transplantation Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Bi-Cheng Chen
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Peng Xia
- Transplantation Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
49
|
Urbano PRP, Oliveira RR, Romano CM, Pannuti CS, Fink MCDDS. Occurrence, genotypic characterization, and patterns of shedding of human polyomavirus JCPyV and BKPyV in urine samples of healthy individuals in São Paulo, Brazil. J Med Virol 2015; 88:153-8. [DOI: 10.1002/jmv.24318] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Paulo Roberto Palma Urbano
- Laboratory of Virology, São Paulo Institute of Tropical Medicine; University of São Paulo School of Medicine; São Paulo Brazil
| | - Renato Reis Oliveira
- Laboratory of Virology, São Paulo Institute of Tropical Medicine; University of São Paulo School of Medicine; São Paulo Brazil
| | - Camila Malta Romano
- Laboratory of Virology, São Paulo Institute of Tropical Medicine; University of São Paulo School of Medicine; São Paulo Brazil
| | - Claudio Sergio Pannuti
- Laboratory of Virology, São Paulo Institute of Tropical Medicine; University of São Paulo School of Medicine; São Paulo Brazil
| | | |
Collapse
|
50
|
Akhgari S, Mohraz M, Azadmanesh K, Vahabpour R, Kazemimanesh M, Aghakhani A, Jozpanahi M, Banifazl M, Bavand A, Ramezani A. Frequency and subtype of BK virus infection in Iranian patients infected with HIV. Med Microbiol Immunol 2015; 205:57-62. [PMID: 26141042 DOI: 10.1007/s00430-015-0426-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 06/25/2015] [Indexed: 12/23/2022]
Abstract
Human polyomavirus BK virus (BKV) is a double-stranded DNA virus that infects approximately 90 % of the general population as a subclinical or mild infection. In immunosuppressed patients, such as HIV cases, BKV may be reactivated resulting hemorrhagic cystitis and tubulointerstitial nephritis. However, there are limited studies on prevalence and molecular epidemiology of BKV in Iran. We therefore aimed to evaluate the prevalence and subtypes of BKV in Iranian HIV patients. A total of 99 patients with HIV infection were enrolled in the study. Presence of BKV DNA in plasma was evaluated by nested PCR. PCR products were sequenced directly, and phylogenetic analysis was performed. BKV DNA was detected in 8.08 % of HIV patients. BKV viremia presented in 4 out of 25 patients (16 %) not receiving antiretroviral therapy in comparison with 4 out 74 of HAART-treated patients (5.4 %) (P = 0.023). In patients with CD4 counts ≥200 cells/mm(3), viremia was found more commonly (7/80 = 8.8 %) than in those with lower counts (1/19 = 5.2 %) (not significant). All sequenced BKV isolates belonged to subtype Ib-2. Our findings indicated that the prevalence of BKV viremia is relatively prevalent in patients with HIV infection and significantly higher in naïve than HAART-treated cases. Therefore, HAART can eliminate BKV infection from plasma and reduce viremia although the actual implication of BKV viremia in HIV patients is not clear.
Collapse
Affiliation(s)
| | - Minoo Mohraz
- Iranian Research Center for HIV/AIDS, Tehran, Iran.
| | | | | | | | - Arezoo Aghakhani
- Clinical Research Department, Pasteur Institute of Iran, 13164, Pasteur Ave., Tehran, Iran.
| | | | - Mohammad Banifazl
- Iranian Society for Support of Patients with Infectious Disease, Tehran, Iran.
| | - Anahita Bavand
- Clinical Research Department, Pasteur Institute of Iran, 13164, Pasteur Ave., Tehran, Iran.
| | - Amitis Ramezani
- Clinical Research Department, Pasteur Institute of Iran, 13164, Pasteur Ave., Tehran, Iran.
| |
Collapse
|