1
|
Gopi P, Krishna G, Veettil MV. Biology of Variola Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:139-149. [PMID: 38801576 DOI: 10.1007/978-3-031-57165-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Variola virus is an anthroponotic agent that belongs to the orthopoxvirus family. It is an etiological agent of smallpox, an ancient disease that caused massive mortality of human populations. Twentieth century has witnessed the death of about 300 million people due to the unavailability of an effective vaccine. Early detection is the primary strategy to prevent an outbreak of smallpox. Variola virus forms the characteristic pus-filled pustules and centrifugal rash distribution in the infected patients while transmission occurs mainly through respiratory droplets during the early stage of infection. No antiviral drugs are approved for variola virus till date. Generation of first-generation vaccines helped in the eradication of smallpox which was declared by the World Health Organization.
Collapse
Affiliation(s)
- Poornima Gopi
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682022, India
| | - Gayathri Krishna
- Institute of Advanced Virology, Thonnakkal, Trivandrum, Kerala, 695317, India
| | | |
Collapse
|
2
|
Srivastava S, Kumar S, Jain S, Mohanty A, Thapa N, Poudel P, Bhusal K, Al-Qaim ZH, Barboza JJ, Padhi BK, Sah R. The Global Monkeypox (Mpox) Outbreak: A Comprehensive Review. Vaccines (Basel) 2023; 11:1093. [PMID: 37376482 DOI: 10.3390/vaccines11061093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2023] Open
Abstract
Monkeypox (Mpox) is a contagious illness that is caused by the monkeypox virus, which is part of the same family of viruses as variola, vaccinia, and cowpox. It was first detected in the Democratic Republic of the Congo in 1970 and has since caused sporadic cases and outbreaks in a few countries in West and Central Africa. In July 2022, the World Health Organization (WHO) declared a public-health emergency of international concern due to the unprecedented global spread of the disease. Despite breakthroughs in medical treatments, vaccines, and diagnostics, diseases like monkeypox still cause death and suffering around the world and have a heavy economic impact. The 85,189 reported cases of Mpox as of 29 January 2023 have raised alarm bells. Vaccines for the vaccinia virus can protect against monkeypox, but these immunizations were stopped after smallpox was eradicated. There are, however, treatments available once the illness has taken hold. During the 2022 outbreak, most cases occurred among men who had sex with men, and there was a range of 7-10 days between exposure and the onset of symptoms. Three vaccines are currently used against the Monkeypox virus. Two of these vaccines were initially developed for smallpox, and the third is specifically designed for biological-terrorism protection. The first vaccine is an attenuated, nonreplicating smallpox vaccine that can also be used for immunocompromised individuals, marketed under different names in different regions. The second vaccine, ACAM2000, is a recombinant second-generation vaccine initially developed for smallpox. It is recommended for use in preventing monkeypox infection but is not recommended for individuals with certain health conditions or during pregnancy. The third vaccine, LC16m8, is a licensed attenuated smallpox vaccine designed to lack the B5R envelope-protein gene to reduce neurotoxicity. It generates neutralizing antibodies to multiple poxviruses and broad T-cell responses. The immune response takes 14 days after the second dose of the first two vaccines and 4 weeks after the ACAM2000 dose for maximal immunity development. The efficacy of these vaccines in the current outbreak of monkeypox is uncertain. Adverse events have been reported, and a next generation of safer and specific vaccines is needed. Although some experts claim that developing vaccines with a large spectrum of specificity can be advantageous, epitope-focused immunogens are often more effective in enhancing neutralization.
Collapse
Affiliation(s)
- Shriyansh Srivastava
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi 110017, India
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi 110017, India
| | - Shagun Jain
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi 110017, India
| | - Aroop Mohanty
- Department of Clinical Microbiology, All India Institute of Medical Sciences, Gorakhpur 273008, India
| | - Neeraj Thapa
- Nepal Medical College, Jorpati, Kathmandu 44600, Nepal
| | | | - Krishna Bhusal
- Lumbini Medical College, Tansen-11, Pravas, Palpa 32500, Nepal
| | - Zahraa Haleem Al-Qaim
- Department of Anesthesia Techniques, Al-Mustaqbal University College, Hilla 51001, Iraq
| | - Joshuan J Barboza
- Escuela de Medicina, Universidad César Vallejo, Trujillo 13007, Peru
| | - Bijaya Kumar Padhi
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu 44600, Nepal
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune 411018, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune 411018, India
| |
Collapse
|
3
|
Bruneau RC, Tazi L, Rothenburg S. Cowpox Viruses: A Zoo Full of Viral Diversity and Lurking Threats. Biomolecules 2023; 13:325. [PMID: 36830694 PMCID: PMC9953750 DOI: 10.3390/biom13020325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Cowpox viruses (CPXVs) exhibit the broadest known host range among the Poxviridae family and have caused lethal outbreaks in various zoo animals and pets across 12 Eurasian countries, as well as an increasing number of human cases. Herein, we review the history of how the cowpox name has evolved since the 1700s up to modern times. Despite early documentation of the different properties of CPXV isolates, only modern genetic analyses and phylogenies have revealed the existence of multiple Orthopoxvirus species that are currently constrained under the CPXV designation. We further chronicle modern outbreaks in zoos, domesticated animals, and humans, and describe animal models of experimental CPXV infections and how these can help shaping CPXV species distinctions. We also describe the pathogenesis of modern CPXV infections in animals and humans, the geographic range of CPXVs, and discuss CPXV-host interactions at the molecular level and their effects on pathogenicity and host range. Finally, we discuss the potential threat of these viruses and the future of CPXV research to provide a comprehensive review of CPXVs.
Collapse
Affiliation(s)
| | | | - Stefan Rothenburg
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
4
|
Ballesteros-Sanabria L, Pelaez-Prestel HF, Reche PA, Lafuente EM. EPIPOX: A Resource Facilitating Epitope-Vaccine Design Against Human Pathogenic Orthopoxviruses. Methods Mol Biol 2023; 2673:175-185. [PMID: 37258914 DOI: 10.1007/978-1-0716-3239-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
EPIPOX is a specialized online resource intended to facilitate the design of epitope-based vaccines against orthopoxviruses. EPIPOX is built upon a collection of T cell epitopes that are shared by eight pathogenic orthopoxviruses, including variola minor and major strains, monkeypox, cowpox, and vaccinia viruses. In EPIPOX, users can select T cell epitopes attending to the predicted binding to distinct major histocompatibility molecules (MHC) and according to various features that may have an impact on epitope immunogenicity. Among others, EPIPOX allows to discern epitopes by their structural location in the virion and the temporal expression of the counterpart antigens. Overall, the annotations in EPIPOX are optimized to facilitate the rational design of T cell epitope-based vaccines. In this chapter, we describe the main features of EPIPOX and exemplify its use, retrieving orthopoxvirus-specific T cell epitopes with features set to enhance their immunogenicity. EPIPOX is available for free public use at http://bio.med.ucm.es/epipox/ .
Collapse
Affiliation(s)
| | - Hector F Pelaez-Prestel
- School of Medicine, Department of Immunology, Complutense University of Madrid, Madrid, Spain
| | - Pedro A Reche
- School of Medicine, Department of Immunology, Complutense University of Madrid, Madrid, Spain.
| | - Esther M Lafuente
- School of Medicine, Department of Immunology, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
5
|
Li H, Huang QZ, Zhang H, Liu ZX, Chen XH, Ye LL, Luo Y. The land-scape of immune response to monkeypox virus. EBioMedicine 2022; 87:104424. [PMID: 36584594 PMCID: PMC9797195 DOI: 10.1016/j.ebiom.2022.104424] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/11/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022] Open
Abstract
Human monkeypox is a viral zoonotic smallpox-like disease caused by the monkeypox virus (MPXV) and has become the greatest public health threat in the genus Orthopoxvirus after smallpox was eradicated. The host immune response to MPXV plays an essential role in disease pathogenesis and clinical manifestations. MPXV infection leads to skin lesions with the genital area as the main feature in the current outbreak and triggers a strong immune response that results in sepsis, deep tissue abscess, severe respiratory disease, and injuries to multiple immune organs. Emerging evidence shows that the immunopathogenesis of MPXV infection is closely associated with impaired NK-cell function, lymphopenia, immune evasion, increased antibodies, increased blood monocytes and granulocytes, cytokine storm, inhibition of the host complement system, and antibody-dependent enhancement. In this overview, we discuss the immunopathology and immunopathogenesis of monkeypox to aid the development of novel immunotherapeutic strategies against monkeypox.
Collapse
Affiliation(s)
- Heng Li
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Qi-Zhao Huang
- Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Hong Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Zhen-Xing Liu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Xiao-Hui Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Li-Lin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, 400038, PR China,Corresponding author: Institute of Immunology, Third Military Medical University, Chongqing, 400038, PR China.
| | - Yang Luo
- College of Life Sciences and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan, 650500, PR China,Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, 650118, PR China,Department of Laboratory Medicine, Jiangjin Hospital, Chongqing University, Chongqing, 402260, PR China,Corresponding author: College of Life Sciences and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan, 650500, PR China.
| |
Collapse
|
6
|
The evolving epidemiology of monkeypox virus. Cytokine Growth Factor Rev 2022; 68:1-12. [PMID: 36244878 PMCID: PMC9547435 DOI: 10.1016/j.cytogfr.2022.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 02/07/2023]
Abstract
Monkeypox, caused by the monkeypox virus (MPXV), is a zoonotic disease endemic mainly in West and Central Africa. As of 27 September 2022, human monkeypox has occurred in more than 100 countries (mostly in non-endemic regions) and caused over 66,000 confirmed cases, which differs from previous epidemics that mainly affected African countries. Due to the increasing number of confirmed cases worldwide, the World Health Organization (WHO) has declared the monkeypox outbreak as a Public Health Emergency of International Concern on July 23, 2022. The international outbreak of human monkeypox represents a novel route of transmission for MPXV, with genital lesions as the primary infection, and the emergence of monkeypox in the current outbreak is also new, as novel variants emerge. Clinical physicians and scientists should be aware of this emerging situation, which presents a different scenario from previous outbreaks. In this review, we will discuss the molecular virology, evasion of antiviral immunity, epidemiology, evolution, and detection of MPXV, as well as prophylaxis and treatment strategies for monkeypox. This review also emphasizes the integration of relevant epidemiological data with genomic surveillance data to obtain real-time data, which could formulate prevention and control measures to curb this outbreak.
Collapse
|
7
|
Iyer RF, Edwards DM, Kolb P, Raué HP, Nelson CA, Epperson ML, Slifka MK, Nolz JC, Hengel H, Fremont DH, Früh K. The secreted protein Cowpox Virus 14 contributes to viral virulence and immune evasion by engaging Fc-gamma-receptors. PLoS Pathog 2022; 18:e1010783. [PMID: 36121874 PMCID: PMC9521928 DOI: 10.1371/journal.ppat.1010783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/29/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
The genome of cowpoxvirus (CPXV) could be considered prototypical for orthopoxviridae (OXPV) since it contains many open reading frames (ORFs) absent or lost in other OPXV, including vaccinia virus (VACV). These additional ORFs are non-essential for growth in vitro but are expected to contribute to the broad host range, virulence and immune evasion characteristics of CPXV. For instance, unlike VACV, CPXV encodes proteins that interfere with T cell stimulation, either directly or by preventing antigen presentation or co-stimulation. When studying the priming of naïve T cells, we discovered that CPXV, but not VACV, encodes a secreted factor that interferes with activation and proliferation of naïve CD8+ and CD4+ T cells, respectively, in response to anti-CD3 antibodies, but not to other stimuli. Deletion mapping revealed that the inhibitory protein is encoded by CPXV14, a small secreted glycoprotein belonging to the poxvirus immune evasion (PIE) family and containing a smallpoxvirus encoded chemokine receptor (SECRET) domain that mediates binding to chemokines. We demonstrate that CPXV14 inhibition of antibody-mediated T cell activation depends on the presence of Fc-gamma receptors (FcγRs) on bystander cells. In vitro, CPXV14 inhibits FcγR-activation by antigen/antibody complexes by binding to FcγRs with high affinity and immobilized CPXV14 can trigger signaling through FcγRs, particularly the inhibitory FcγRIIB. In vivo, CPXV14-deleted virus showed reduced viremia and virulence resulting in reduced weight loss and death compared to wildtype virus whereas both antibody and CD8+ T cell responses were increased in the absence of CPXV14. Furthermore, no impact of CPXV14-deletion on virulence was observed in mice lacking the inhibitory FcγRIIB. Taken together our results suggest that CPXV14 contributes to virulence and immune evasion by binding to host FcγRs.
Collapse
Affiliation(s)
- Ravi F. Iyer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - David M. Edwards
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Philipp Kolb
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Peter Raué
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Chris A. Nelson
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Megan L. Epperson
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Mark K. Slifka
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jeffrey C. Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Hartmut Hengel
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
8
|
Bourquain D, Schrick L, Tischer BK, Osterrieder K, Schaade L, Nitsche A. Replication of cowpox virus in macrophages is dependent on the host range factor p28/N1R. Virol J 2021; 18:173. [PMID: 34425838 PMCID: PMC8381512 DOI: 10.1186/s12985-021-01640-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022] Open
Abstract
Zoonotic orthopoxvirus infections continue to represent a threat to human health. The disease caused by distinct orthopoxviruses differs in terms of symptoms and severity, which may be explained by the unique repertoire of virus factors that modulate the host’s immune response and cellular machinery. We report here on the construction of recombinant cowpox viruses (CPXV) which either lack the host range factor p28 completely or express truncated variants of p28. We show that p28 is essential for CPXV replication in macrophages of human or mouse origin and that the C-terminal RING finger domain of p28 is necessary to allow CPXV replication in macrophages.
Collapse
Affiliation(s)
- Daniel Bourquain
- Centre for Biological Threats and Special Pathogens 1, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.
| | - Livia Schrick
- Centre for Biological Threats and Special Pathogens 1, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Bernd Karsten Tischer
- Institute of Virology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Klaus Osterrieder
- Institute of Virology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Lars Schaade
- Centre for Biological Threats and Special Pathogens 1, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens 1, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| |
Collapse
|
9
|
Alvarez-de Miranda FJ, Alonso-Sánchez I, Alcamí A, Hernaez B. TNF Decoy Receptors Encoded by Poxviruses. Pathogens 2021; 10:pathogens10081065. [PMID: 34451529 PMCID: PMC8401223 DOI: 10.3390/pathogens10081065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/29/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Tumour necrosis factor (TNF) is an inflammatory cytokine produced in response to viral infections that promotes the recruitment and activation of leukocytes to sites of infection. This TNF-based host response is essential to limit virus spreading, thus poxviruses have evolutionarily adopted diverse molecular mechanisms to counteract TNF antiviral action. These include the expression of poxvirus-encoded soluble receptors or proteins able to bind and neutralize TNF and other members of the TNF ligand superfamily, acting as decoy receptors. This article reviews in detail the various TNF decoy receptors identified to date in the genomes from different poxvirus species, with a special focus on their impact on poxvirus pathogenesis and their potential use as therapeutic molecules.
Collapse
|
10
|
Acute Late-Stage Myocarditis in the Crab-Eating Macaque Model of Hemorrhagic Smallpox. Viruses 2021; 13:v13081571. [PMID: 34452435 PMCID: PMC8402688 DOI: 10.3390/v13081571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/28/2022] Open
Abstract
Hemorrhagic smallpox, caused by variola virus (VARV), was a rare but nearly 100% lethal human disease manifestation. Hemorrhagic smallpox is frequently characterized by secondary bacterial infection, coagulopathy, and myocardial and subendocardial hemorrhages. Previous experiments have demonstrated that intravenous (IV) cowpox virus (CPXV) exposure of macaques mimics human hemorrhagic smallpox. The goal of this experiment was to further understand the onset, nature, and severity of cardiac pathology and how it may contribute to disease. The findings support an acute late-stage myocarditis with lymphohistiocytic infiltrates in the CPXV model of hemorrhagic smallpox.
Collapse
|
11
|
Jeske K, Weber S, Pfaff F, Imholt C, Jacob J, Beer M, Ulrich RG, Hoffmann D. Molecular Detection and Characterization of the First Cowpox Virus Isolate Derived from a Bank Vole. Viruses 2019; 11:v11111075. [PMID: 31752129 PMCID: PMC6893522 DOI: 10.3390/v11111075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/16/2022] Open
Abstract
Cowpox virus (CPXV) is a zoonotic orthopoxvirus (OPV) that infects a wide range of mammals. CPXV-specific DNA and antibodies were detected in different vole species, such as common voles (Microtus arvalis) and bank voles (Myodes glareolus). Therefore, voles are the putative main reservoir host of CPXV. However, CPXV was up to now only isolated from common voles. Here we report the detection and isolation of a bank vole-derived CPXV strain (GerMygEK 938/17) resulting from a large-scale screening of bank voles collected in Thuringia, Germany, during 2017 and 2018. Phylogenetic analysis using the complete viral genome sequence indicated a high similarity of the novel strain to CPXV clade 3 and to OPV “Abatino” but also to Ectromeliavirus (ECTV) strains. Phenotypic characterization of CPXV GerMygEK 938/17 using inoculation of embryonated chicken eggs displayed hemorrhagic pock lesions on the chorioallantoic membrane that are typical for CPXV but not for ECTV. CPXV GerMygEK 938/17 replicated in vole-derived kidney cell lines but at lower level than on Vero76 cell line. In conclusion, the first bank vole-derived CPXV isolate provides new insights into the genetic variability of CPXV in the putative reservoir host and is a valuable tool for further studies about CPXV-host interaction and molecular evolution of OPV.
Collapse
Affiliation(s)
- Kathrin Jeske
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Saskia Weber
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christian Imholt
- Vertebrate Research, Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Toppheideweg 88, 48161 Münster, Germany
| | - Jens Jacob
- Vertebrate Research, Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Toppheideweg 88, 48161 Münster, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
12
|
Praest P, Liaci AM, Förster F, Wiertz EJ. New insights into the structure of the MHC class I peptide-loading complex and mechanisms of TAP inhibition by viral immune evasion proteins. Mol Immunol 2019; 113:103-114. [DOI: 10.1016/j.molimm.2018.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
|
13
|
Rodrigues RAL, Arantes TS, Oliveira GP, dos Santos Silva LK, Abrahão JS. The Complex Nature of Tupanviruses. Adv Virus Res 2019; 103:135-166. [PMID: 30635075 DOI: 10.1016/bs.aivir.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The discovery of giant viruses revealed a new level of complexity in the virosphere, raising important questions about the diversity, ecology, and evolution of these viruses. The family Mimiviridae was the first group of amoebal giant viruses to be discovered (by Bernard La Scola and Didier Raoult team), containing viruses with structural and genetic features that challenged many concepts of classic virology. The tupanviruses are among the newest members of this family and exhibit structural, biological, and genetic features never previously observed in other giant viruses. The complexity of these viruses has put us one step forward toward the comprehension of giant virus biology and evolution, but also has raised important questions that still need to be addressed. In this chapter, we tell the history behind the discovery of one of the most complex viruses isolated to date, highlighting the unique features exhibited by tupanviruses, and discuss how these giant viruses have contributed to redefining limits for the virosphere.
Collapse
|
14
|
|
15
|
Spel L, Luteijn RD, Drijfhout JW, Nierkens S, Boes M, Wiertz EJH. Endocytosed soluble cowpox virus protein CPXV012 inhibits antigen cross-presentation in human monocyte-derived dendritic cells. Immunol Cell Biol 2018; 96:137-148. [PMID: 29363167 DOI: 10.1111/imcb.1024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/12/2017] [Accepted: 10/02/2017] [Indexed: 11/29/2022]
Abstract
Viruses may interfere with the MHC class I antigen presentation pathway in order to avoid CD8+ T cell-mediated immunity. A key target within this pathway is the peptide transporter TAP. This transporter plays a central role in MHC class I-mediated peptide presentation of endogenous antigens. In addition, TAP plays a role in antigen cross-presentation of exogenously derived antigens by dendritic cells (DCs). In this study, a soluble form of the cowpox virus TAP inhibitor CPXV012 is synthesized for exogenous delivery into the antigen cross-presentation route of human monocyte-derived (mo)DCs. We show that soluble CPXV012 localizes to TAP+ compartments that carry internalized antigen and is a potent inhibitor of antigen cross-presentation. CPXV012 stimulates the prolonged deposition of antigen fragments in storage compartments of moDCs, as a result of reduced endosomal acidification and reduced antigen proteolysis when soluble CPXV012 is present. Thus, a dual function can be proposed for CPXV012: inhibition of TAP-mediated peptide transport and inhibition of endosomal antigen degradation. We propose this second function for soluble CPXV012 can serve to interfere with antigen cross-presentation in a peptide transport-independent manner.
Collapse
Affiliation(s)
- Lotte Spel
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| | - Rutger D Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Stefan Nierkens
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| | - Marianne Boes
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| | - Emmanuel J H Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| |
Collapse
|
16
|
Oliveira GP, Rodrigues RAL, Lima MT, Drumond BP, Abrahão JS. Poxvirus Host Range Genes and Virus-Host Spectrum: A Critical Review. Viruses 2017; 9:E331. [PMID: 29112165 PMCID: PMC5707538 DOI: 10.3390/v9110331] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/30/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023] Open
Abstract
The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses' host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings.
Collapse
Affiliation(s)
- Graziele Pereira Oliveira
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Rodrigo Araújo Lima Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Maurício Teixeira Lima
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Betânia Paiva Drumond
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
17
|
Qin Y, Li M, Zhou SL, Yin W, Bian Z, Shu HB. SPI-2/CrmA inhibits IFN-β induction by targeting TBK1/IKKε. Sci Rep 2017; 7:10495. [PMID: 28874755 PMCID: PMC5585206 DOI: 10.1038/s41598-017-11016-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
Viruses modulate the host immune system to evade host antiviral responses. The poxvirus proteins serine proteinase inhibitor 2 (SPI-2) and cytokine response modifier A (CrmA) are involved in multiple poxvirus evasion strategies. SPI-2 and CrmA target caspase-1 to prevent apoptosis and cytokine activation. Here, we identified SPI-2 and CrmA as negative regulators of virus-triggered induction of IFN-β. Ectopic expression of SPI-2 or CrmA inhibited virus-triggered induction of IFN-β and its downstream genes. Consistently, knockdown of SPI-2 by RNAi potentiated VACV-induced transcription of antiviral genes. Further studies revealed that SPI-2 and CrmA associated with TBK1 and IKKε to disrupt the MITA-TBK1/IKKε-IRF3 complex. These findings reveal a novel mechanism of SPI-2/CrmA-mediated poxvirus immune evasion.
Collapse
Affiliation(s)
- Yue Qin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province and Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Mi Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Sheng-Long Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province and Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wei Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province and Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province and Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Hong-Bing Shu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, Collaborative Innovation Center for Viral Immunology, School of Medicine, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
18
|
Arriero E, Wanelik KM, Birtles RJ, Bradley JE, Jackson JA, Paterson S, Begon M. From the animal house to the field: Are there consistent individual differences in immunological profile in wild populations of field voles (Microtus agrestis)? PLoS One 2017; 12:e0183450. [PMID: 28817724 PMCID: PMC5560671 DOI: 10.1371/journal.pone.0183450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/06/2017] [Indexed: 12/20/2022] Open
Abstract
Inbred mouse strains, living in simple laboratory environments far removed from nature, have been shown to vary consistently in their immune response. However, wildlife populations are typically outbreeding and face a multiplicity of challenges, parasitological and otherwise. In this study we seek evidence of consistent difference in immunological profile amongst individuals in the wild. We apply a novel method in this context, using longitudinal (repeated capture) data from natural populations of field voles, Microtus agrestis, on a range of life history and infection metrics, and on gene expression levels. We focus on three immune genes, IFN-γ, Gata3, and IL-10, representing respectively the Th1, Th2 and regulatory elements of the immune response. Our results show that there was clear evidence of consistent differences between individuals in their typical level of expression of at least one immune gene, and at most all three immune genes, after other measured sources of variation had been taken into account. Furthermore, individuals that responded to changing circumstances by increasing expression levels of Gata3 had a correlated increase in expression levels of IFN-γ. Our work stresses the importance of acknowledging immunological variation amongst individuals in studies of parasitological and infectious disease risk in wildlife populations.
Collapse
Affiliation(s)
- Elena Arriero
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Department of Zoology and Physical Anthropology, University Complutense of Madrid, Madrid, Spain
| | - Klara M Wanelik
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Richard J Birtles
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Janette E Bradley
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Joseph A Jackson
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Mike Begon
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
19
|
Yu Y, Huang Y, Ni S, Zhou L, Liu J, Zhang J, Zhang X, Hu Y, Huang X, Qin Q. Singapore grouper iridovirus (SGIV) TNFR homolog VP51 functions as a virulence factor via modulating host inflammation response. Virology 2017; 511:280-289. [PMID: 28689858 DOI: 10.1016/j.virol.2017.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
Virus encoded tumor necrosis factor receptor (TNFR) homologues are usually involved in immune evasion by regulating host immune response or cell death. Singapore grouper iridovirus (SGIV) is a novel ranavirus which causes great economic losses in aquaculture industry. Previous studies demonstrated that SGIV VP51, a TNFR-like protein regulated apoptotic process in VP51 overexpression cells. Here, we developed a VP51-deleted recombinant virus Δ51-SGIV by replacing VP51 with puroR-GFP. Deletion of VP51 resulted in the decrease of SGIV virulence, evidenced by the reduced replication in vitro and the decreased cumulative mortalities in Δ51-SGIV challenged grouper compared to WT-SGIV. Moreover, VP51 deletion significantly increased virus induced apoptosis, and reduced the expression of pro-inflammatory cytokines in vitro. In addition, the expression of several pro-inflammatory genes were decreased in Δ51-SGIV infected grouper compared to WT-SGIV. Thus, we speculate that SGIV VP51 functions as a critical virulence factor via regulating host cell apoptosis and inflammation response.
Collapse
Affiliation(s)
- Yepin Yu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Youhua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Songwei Ni
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingli Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingcheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Yin Hu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China.
| |
Collapse
|
20
|
Abou-El-Hassan H, Zaraket H. Viral-derived complement inhibitors: current status and potential role in immunomodulation. Exp Biol Med (Maywood) 2016; 242:397-410. [PMID: 27798122 DOI: 10.1177/1535370216675772] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The complement system is one of the body's major innate immune defense mechanisms in vertebrates. Its function is to detect foreign bodies and promote their elimination through opsonisation or lysis. Complement proteins play an important role in the immunopathogenesis of several disorders. However, excessive complement activation does not confer more protection but instead leads to several autoimmune and inflammatory diseases. With inappropriate activation of the complement system, activated complement proteins and glycoproteins may damage both healthy and diseased tissues. Development of complement inhibitors represents an effective approach in controlling dysregulated complement activity and reducing disease severity, yet few studies have investigated the nature and role of novel complement inhibitory proteins of viral origin. Viral complement inhibitors have important implications in understanding the importance of complement inhibition and their role as a promising novel therapeutic approach in diseases caused by dysregulated complement function. In this review, we discuss the role and importance of complement inhibitors derived from several viruses in the scope of human inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- 1 Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,2 Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hassan Zaraket
- 2 Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,3 Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
21
|
Pontejo SM, Alejo A, Alcami A. Poxvirus-encoded TNF decoy receptors inhibit the biological activity of transmembrane TNF. J Gen Virol 2015; 96:3118-3123. [PMID: 26242179 DOI: 10.1099/jgv.0.000255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Poxviruses encode up to four different soluble TNF receptors, named cytokine response modifier B (CrmB), CrmC, CrmD and CrmE. These proteins mimic the extracellular domain of the cellular TNF receptors to bind and inhibit the activity of TNF and, in some cases, other TNF superfamily ligands. Most of these ligands are released after the enzymic cleavage of a membrane precursor. However, transmembrane TNF (tmTNF) is not only a precursor of soluble TNF but also exerts specific pro-inflammatory and immunological activities. Here, we report that viral TNF receptors bound and inhibited tmTNF and describe some interesting differences in their activity against the soluble cytokine. Thus, CrmE, which does not inhibit mouse soluble TNF, could block murine tmTNF-induced cytotoxicity. We propose that this anti-tmTNF effect should be taken into consideration when assessing the role of viral TNF decoy receptors in the pathogenesis of poxvirus.
Collapse
Affiliation(s)
- Sergio M Pontejo
- Centro de Biologia Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autonoma de Madrid), 28049 Madrid, Spain
| | - Ali Alejo
- Centro de Investigacion en Sanidad Animal (Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria), 28130 Valdeolmos, Madrid, Spain
| | - Antonio Alcami
- Centro de Biologia Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autonoma de Madrid), 28049 Madrid, Spain
| |
Collapse
|
22
|
Strategies of NF-κB signaling modulation by ectromelia virus in BALB/3T3 murine fibroblasts. Microb Pathog 2015; 87:59-68. [PMID: 26232502 DOI: 10.1016/j.micpath.2015.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 12/22/2022]
Abstract
Nuclear factor κB (NF-κB) is a pleiotropic transcription factor that regulates the expression of immune response genes. NF-κB signaling can be disrupted by pathogens that prevent host immune response. In this work, we examined the influence of ectromelia (mousepox) virus (ECTV) on NF-κB signaling in murine BALB/3T3 fibroblasts. Activation of NF-κB via tumor necrosis factor (TNF) receptor 1 (TNFR1) in these cells induces proinflammatory cytokine secretion. We show that ECTV does not recruit NF-κB to viral factories or induce NF-κB nuclear translocation in BALB/3T3 cells. Additionally, ECTV counteracts TNF-α-induced p65 NF-κB nuclear translocation during the course of infection. Inhibition of TNF-α-induced p65 nuclear translocation was also observed in neighboring cells that underwent fusion with ECTV-infected cells. ECTV inhibits the key step of NF-κB activation, i.e. Ser32 phosphorylation and degradation of inhibitor κBα (IκBα) induced by TNF-α. We also observed that ECTV prevents TNF-α-induced Ser536 of p65 phosphorylation in BALB/3T3 cells. Studying TNFR1 signaling provides information about regulation of inflammatory response and cell survival. Unraveling poxviral immunomodulatory strategies may be helpful in drug target identification as well as in vaccine development.
Collapse
|
23
|
Struzik J, Szulc-Dąbrowska L, Papiernik D, Winnicka A, Niemiałtowski M. Modulation of proinflammatory NF-κB signaling by ectromelia virus in RAW 264.7 murine macrophages. Arch Virol 2015; 160:2301-14. [PMID: 26141411 DOI: 10.1007/s00705-015-2507-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/19/2015] [Indexed: 02/07/2023]
Abstract
Macrophages are antigen-presenting cells (APCs) that play a crucial role in the innate immune response and may be involved in both clearance and spread of viruses. Stimulation of macrophages via Toll-like receptors (TLRs) results in activation of nuclear factor κB (NF-κB) and synthesis of proinflammatory cytokines. In this work, we show modulation of proinflammatory NF-κB signaling by a member of the family Poxviridae, genus Orthopoxvirus--ectromelia virus (ECTV)--in RAW 264.7 murine macrophages. ECTV interfered with p65 NF-κB nuclear translocation induced by TLR ligands such as lipopolysaccharide (LPS) (TLR4), polyinosinic-polycytidylic acid (poly(I:C)) (TLR3) and diacylated lipopeptide Pam2CSK4 (TLR2/6). We observed that ECTV modulates phosphorylation of Ser32 of inhibitor of κB (IκBα) and Ser536 of p65. Interference of ECTV with TLR signaling pathways implied that proinflammatory cytokine synthesis was inhibited. Our studies provide new insights into the strategies of proinflammatory signaling modulation by orthopoxviruses during their replication cycle in immune cells. Understanding important immune interactions between viral pathogens and APCs might contribute to the identification of drug targets and the development of vaccines.
Collapse
Affiliation(s)
- Justyna Struzik
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland
| | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- David J. Pickup
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
25
|
Herbert MH, Squire CJ, Mercer AA. Poxviral ankyrin proteins. Viruses 2015; 7:709-38. [PMID: 25690795 PMCID: PMC4353913 DOI: 10.3390/v7020709] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 02/08/2023] Open
Abstract
Multiple repeats of the ankyrin motif (ANK) are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range.
Collapse
Affiliation(s)
- Michael H Herbert
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
| | - Christopher J Squire
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
26
|
Guimarães AP, de Souza FR, Oliveira AA, Gonçalves AS, de Alencastro RB, Ramalho TC, França TC. Design of inhibitors of thymidylate kinase from Variola virus as new selective drugs against smallpox. Eur J Med Chem 2015; 91:72-90. [DOI: 10.1016/j.ejmech.2014.09.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/15/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
|
27
|
Luteijn RD, Hoelen H, Kruse E, van Leeuwen WF, Grootens J, Horst D, Koorengevel M, Drijfhout JW, Kremmer E, Früh K, Neefjes JJ, Killian A, Lebbink RJ, Ressing ME, Wiertz EJHJ. Cowpox virus protein CPXV012 eludes CTLs by blocking ATP binding to TAP. THE JOURNAL OF IMMUNOLOGY 2014; 193:1578-89. [PMID: 25024387 DOI: 10.4049/jimmunol.1400964] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
CD8(+) CTLs detect virus-infected cells through recognition of virus-derived peptides presented at the cell surface by MHC class I molecules. The cowpox virus protein CPXV012 deprives the endoplasmic reticulum (ER) lumen of peptides for loading onto newly synthesized MHC class I molecules by inhibiting the transporter associated with Ag processing (TAP). This evasion strategy allows the virus to avoid detection by the immune system. In this article, we show that CPXV012, a 9-kDa type II transmembrane protein, prevents peptide transport by inhibiting ATP binding to TAP. We identified a segment within the ER-luminal domain of CPXV012 that imposes the block in peptide transport by TAP. Biophysical studies show that this domain has a strong affinity for phospholipids that are also abundant in the ER membrane. We discuss these findings in an evolutionary context and show that a frameshift deletion in the CPXV012 gene in an ancestral cowpox virus created the current form of CPXV012 that is capable of inhibiting TAP. In conclusion, our findings indicate that the ER-luminal domain of CPXV012 inserts into the ER membrane, where it interacts with TAP. CPXV012 presumably induces a conformational arrest that precludes ATP binding to TAP and, thus, activity of TAP, thereby preventing the presentation of viral peptides to CTLs.
Collapse
Affiliation(s)
- Rutger D Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Hanneke Hoelen
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Elisabeth Kruse
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Wouter F van Leeuwen
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jennine Grootens
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Daniëlle Horst
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Martijn Koorengevel
- Department of Membrane Biochemistry and Biophysics, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Elisabeth Kremmer
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Molecular Immunology, 81377 Munich, Germany
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006; and
| | - Jacques J Neefjes
- Department of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Antoinette Killian
- Department of Membrane Biochemistry and Biophysics, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Maaike E Ressing
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Emmanuel J H J Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands;
| |
Collapse
|
28
|
Brady G, Bowie AG. Innate immune activation of NFκB and its antagonism by poxviruses. Cytokine Growth Factor Rev 2014; 25:611-20. [PMID: 25081317 DOI: 10.1016/j.cytogfr.2014.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/03/2014] [Indexed: 12/18/2022]
Abstract
In recent years there has been an acceleration of discovery in the field of innate anti-viral immunity to the point that many of the key events in early virus sensing and the discrete anti-viral responses they trigger have been elucidated in detail. In particular, pattern recognition receptors (PRRs) that detect viruses at the plasma membrane, in endosomes, and within the cytosol have been characterized. Upon stimulation by viruses, most of these PRRs trigger signal transduction pathways culminating in NFκB activation. NFκB contributes both to type I interferon induction, and to production of pro-inflammatory cytokines from infected cells. Our understanding of host anti-viral innate immunity has been greatly aided by an appreciation of the ways in which poxviruses have evolved strategies to inhibit both innate sensing and effector responses. A recurring feature of poxviral immunomodulation is the apparent necessity for poxviruses to evolve multiple, non-redundant inhibitors of NFκB activation which often appear to act on the same innate signalling pathway. The reason for such apparent over-targeting of one transcription factor is not clear. Here we describe the current understanding of how host cells sense poxvirus infection to trigger signalling pathways leading to NFκB activation and pro-inflammatory cytokine induction, and the ways in which poxviruses have evolved to concisely antagonize these systems.
Collapse
Affiliation(s)
- Gareth Brady
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
29
|
|
30
|
Dabrowski PW, Radonić A, Kurth A, Nitsche A. Genome-wide comparison of cowpox viruses reveals a new clade related to Variola virus. PLoS One 2013; 8:e79953. [PMID: 24312452 PMCID: PMC3848979 DOI: 10.1371/journal.pone.0079953] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/27/2013] [Indexed: 11/19/2022] Open
Abstract
Zoonotic infections caused by several orthopoxviruses (OPV) like monkeypox virus or vaccinia virus have a significant impact on human health. In Europe, the number of diagnosed infections with cowpox viruses (CPXV) is increasing in animals as well as in humans. CPXV used to be enzootic in cattle; however, such infections were not being diagnosed over the last decades. Instead, individual cases of cowpox are being found in cats or exotic zoo animals that transmit the infection to humans. Both animals and humans reveal local exanthema on arms and legs or on the face. Although cowpox is generally regarded as a self-limiting disease, immunosuppressed patients can develop a lethal systemic disease resembling smallpox. To date, only limited information on the complex and, compared to other OPV, sparsely conserved CPXV genomes is available. Since CPXV displays the widest host range of all OPV known, it seems important to comprehend the genetic repertoire of CPXV which in turn may help elucidate specific mechanisms of CPXV pathogenesis and origin. Therefore, 22 genomes of independent CPXV strains from clinical cases, involving ten humans, four rats, two cats, two jaguarundis, one beaver, one elephant, one marah and one mongoose, were sequenced by using massive parallel pyrosequencing. The extensive phylogenetic analysis showed that the CPXV strains sequenced clearly cluster into several distinct clades, some of which are closely related to Vaccinia viruses while others represent different clades in a CPXV cluster. Particularly one CPXV clade is more closely related to Camelpox virus, Taterapox virus and Variola virus than to any other known OPV. These results support and extend recent data from other groups who postulate that CPXV does not form a monophyletic clade and should be divided into multiple lineages.
Collapse
Affiliation(s)
- Piotr Wojtek Dabrowski
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Aleksandar Radonić
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andreas Kurth
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
- * E-mail:
| |
Collapse
|
31
|
López D, Lorente E, Barriga A, Johnstone C, Mir C. Vaccination and the TAP-independent antigen processing pathways. Expert Rev Vaccines 2013; 12:1077-83. [PMID: 24053400 DOI: 10.1586/14760584.2013.825447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cytotoxic CD8(+) T lymphocyte-mediated cellular response is important for the elimination of virus-infected cells and requires the prior recognition of short viral peptide antigens previously translocated to the endoplasmic reticulum by the transporter associated with antigen processing (TAP). However, individuals with nonfunctional TAP complexes or infected cells with TAP molecules blocked by specific viral proteins, such as the cowpoxvirus, a component of the first source of early empirical vaccination against smallpox, are still able to present several HLA class I ligands generated by the TAP-independent antigen processing pathways to specific cytotoxic CD8(+) T lymphocytes. Currently, bioterrorism and emerging infectious diseases have renewed interest in poxviruses. Recent works that have identified HLA class I ligands and epitopes in virus-infected TAP-deficient cells have implications for the study of both the effectiveness of early empirical vaccination and the analysis of HLA class I antigen processing in TAP-deficient subjects.
Collapse
Affiliation(s)
- Daniel López
- From Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | | | | | | | | |
Collapse
|
32
|
Guimarães AP, Ramalho TC, França TCC. Preventing the return of smallpox: molecular modeling studies on thymidylate kinase fromVariola virus. J Biomol Struct Dyn 2013; 32:1601-12. [PMID: 23998201 PMCID: PMC9491126 DOI: 10.1080/07391102.2013.830578] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Smallpox was one of the most devastating diseases in the human history and still represents a serious menace today due to its potential use by bioterrorists. Considering this threat and the non-existence of effective chemotherapy, we propose the enzyme thymidylate kinase from Variola virus (VarTMPK) as a potential target to the drug design against smallpox. We first built a homology model for VarTMPK and performed molecular docking studies on it in order to investigate the interactions with inhibitors of Vaccinia virus TMPK (VacTMPK). Subsequently, molecular dynamics (MD) simulations of these compounds inside VarTMPK and human TMPK (HssTMPK) were carried out in order to select the most promising and selective compounds as leads for the design of potential VarTMPK inhibitors. Results of the docking and MD simulations corroborated to each other, suggesting selectivity towards VarTMPK and, also, a good correlation with the experimental data.
Collapse
|
33
|
Elevation of human leukocyte antigen-G expression is associated with the severe encephalitis associated with neurogenic pulmonary edema caused by Enterovirus 71. Clin Exp Med 2013; 14:161-7. [PMID: 23605689 DOI: 10.1007/s10238-013-0237-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 03/29/2013] [Indexed: 01/22/2023]
Abstract
Enterovirus 71 (EV71) infection can develop devastating clinical outcomes such as brain stem encephalitis (BE) and pulmonary edema (PE). Alteration of human leukocyte antigen-G (HLA-G) expression or cytokine production was considered playing important roles in virus-related pathogenesis. However, clinical relevance of HLA-G in EV71 infection remains unknown. In the current study, patients were stratified by disease severity as BE (n = 107) and PE (n = 18). HLA-G expression on peripheral blood monocytes from patients with BE (n = 15), patients with PE (n = 15) and control subjects (n = 31) was analyzed with flow cytometry. Plasma soluble HLA-G (sHLA-G) (in 67 BE, 18 PE and 120 control subjects), IL-6 and IL-10 (in 50 patients with BE, 18 patients with PE and 45 control subjects) were determined with enzyme-linked immunosorbent assay. Data showed that the percentage of HLA-G-positive monocytes (mean 7.76 vs 3.68 %, p < 0.001), levels for sHLA-G (median 129.2 vs 70.6 U/ml, p < 0.001), IL-10 (median 160.5 vs 29.5 pg/ml, p < 0.001) and IL-6 (median 20.50 vs 5.21 pg/ml, p = 0.002) was significantly higher in patients with PE than in patients with BE. Taken together, our findings indicated that elevation of HLA-G expression on monocytes, plasma sHLA-G, IL-10 and IL-6 levels was associated with PE in patients infected with EV71.
Collapse
|
34
|
Identification and utility of innate immune system evasion mechanisms of ASFV. Virus Res 2013; 173:87-100. [DOI: 10.1016/j.virusres.2012.10.013] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 12/24/2022]
|
35
|
Duraffour S, Mertens B, Meyer H, van den Oord JJ, Mitera T, Matthys P, Snoeck R, Andrei G. Emergence of cowpox: study of the virulence of clinical strains and evaluation of antivirals. PLoS One 2013; 8:e55808. [PMID: 23457480 PMCID: PMC3574090 DOI: 10.1371/journal.pone.0055808] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/02/2013] [Indexed: 11/18/2022] Open
Abstract
The last years, cowpox infections are being increasingly reported through Eurasia. Cowpox viruses (CPXVs) have been reported to have different genotypes and may be subdivided in at least five genetically distinct monophyletic clusters. However, little is known about their in vitro and in vivo features. In this report, five genetically diverse CPXVs, including one reference strain (CPXV strain Brighton) and four clinical isolates from human and animal cases, were compared with regard to growth in cells, pathogenicity in mice and inhibition by antivirals. While all CPXVs replicated similarly in vitro and showed comparable antiviral susceptibility, marked discrepancies were seen in vivo, including differences in virulence with recorded mortality rates of 0%, 20% and 100%. The four CPXV clinical isolates appeared less pathogenic than two reference strains, CPXV Brighton and vaccinia virus Western-Reserve. Disease severity seemed to correlate with high viral DNA loads in several organs, virus titers in lung tissues and levels of IL-6 cytokine in the sera. Our study highlighted that the species CPXV consists of viruses that not only differ considerably in their genotypes but also in their in vivo phenotypes, indicating that CPXVs should not be longer classified as a single species. Lung virus titers and IL-6 cytokine level in mice may be used as biomarkers for predicting disease severity. We further demonstrated the potential benefit of cidofovir, CMX001 and ST-246 use as antiviral therapy.
Collapse
Affiliation(s)
- Sophie Duraffour
- Rega Institute, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Origgi FC, Sattler U, Pilo P, Waldvogel AS. Fatal combined infection with canine distemper virus and orthopoxvirus in a group of Asian marmots (Marmota caudata). Vet Pathol 2013; 50:914-20. [PMID: 23381928 DOI: 10.1177/0300985813476060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A fatal combined infection with canine distemper virus (CDV) and orthopoxvirus (OPXV) in Asian marmots (Marmota caudata) is reported in this article. A total of 7 Asian marmots from a small zoological garden in Switzerland were found dead in hibernation during a routine check in the winter of 2011. The marmots died in February 2011. No clinical signs of disease were observed at any time. The viruses were detected in all individuals for which the tissues were available (n = 3). Detection of the viruses was performed by reverse transcription polymerase chain reaction. The most consistent gross lesion was a neck and thorax edema. A necrotizing pharyngitis and a multifocal necrotizing pneumonia were observed histologically. Numerous large intracytoplasmic eosinophilic inclusions were seen in the epithelial cells of the pharynx, of the airways, and in the skin keratinocytes. Brain lesions were limited to mild multifocal gliosis. Phylogenetic analysis revealed that the marmot CDV strain was closely related to the clusters of CDVs detected in Switzerland in wild carnivores during a local outbreak in 2002 and the 2009-2010 nationwide epidemic, suggesting a spillover of this virus from wildlife. The OPXV was most closely related to a strain of cowpoxvirus, a poxvirus species considered endemic in Europe. This is the first reported instance of CDV infection in a rodent species and of a combined CDV and OPXV infection.
Collapse
Affiliation(s)
- F C Origgi
- DVM, PhD, DACVM, DACVP, Centre for Fish and Wildlife Health (FIWI), Institute of Animal Pathology, College of Veterinary Medicine, Vetsuisse Faculty, University of Bern; Laenggassstrasse 122, 3012 Bern, Switzerland.
| | | | | | | |
Collapse
|
37
|
|
38
|
Bourquain D, Nitsche A. Cowpox virus but not Vaccinia virus induces secretion of CXCL1, IL-8 and IL-6 and chemotaxis of monocytes in vitro. Virus Res 2012. [PMID: 23207068 PMCID: PMC9533815 DOI: 10.1016/j.virusres.2012.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Orthopoxviruses are large DNA viruses which can cause disease in numerous host species. Today, after eradication of Variola virus and the end of vaccination against smallpox, zoonotic Orthopoxvirus infections are emerging as potential threat to human health. The most common causes of zoonotic Orthopoxvirus infections are Cowpox virus in Europe, Monkeypox virus in Africa and Vaccinia virus in South America. Although all three viruses are genetically and antigenically closely related, the human diseases caused by each virus differ considerably. This observation may reflect different capabilities of these viruses to modulate the hosts' immune response. Therefore, we aimed at characterizing the specific cytokine response induced by Orthopoxvirus infection in vitro. We analysed the gene expression of nine human pro-inflammatory cytokines and chemokines in response to infection of HeLa cells and could identify an upregulation of cytokine gene expression following Cowpox virus and Monkeypox virus infection but not following Vaccinia virus infection. This was verified by a strong induction of especially IL-6, IL-8 and CXCL1 secretion into the cell culture supernatant following Cowpox virus infection. We could further show that supernatants derived from Cowpox virus-infected cells exhibit an increased chemotactic activity towards monocytic and macrophage-like cells. On the one hand, increased cytokine secretion by Cowpox virus-infected cells and subsequent monocyte/macrophage recruitment may contribute to host defence and facilitate clearance of the infection. On the other hand, given the assumed important role of circulating macrophages in viral spread, this may also point towards a mechanism facilitating delivery of the virus to further tissues in vivo.
Collapse
Affiliation(s)
- Daniel Bourquain
- Centre for Biological Security 1, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| | | |
Collapse
|
39
|
Roth SJ, Klopfleisch R, Osterrieder N, Tischer BK. Cowpox virus serpin CrmA is necessary but not sufficient for the red pock phenotype on chicken chorioallantoic membranes. Virus Res 2011; 163:254-61. [PMID: 22016035 DOI: 10.1016/j.virusres.2011.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/04/2011] [Accepted: 10/04/2011] [Indexed: 11/30/2022]
Abstract
It was previously reported that cowpox virus (CPXV) strain Brighton Red (BR) causes red pocks upon inoculation of chorioallantoic membranes (CAMs) of embryonated chicken eggs. Red pocks are characterized by hemorrhage and reduced numbers of inflammatory cells while white pocks induced by other members of the genus Orthopoxvirus lack hemorrhage and have higher numbers of infiltrating heterophils. Analyses of CPXV BR white pock variants identified the cytokine response modifier A (CrmA) as the factor responsible for the differences in pock phenotype through induction of hemorrhage and inhibition of chemotaxis. In the present study CPXV crmA deletion mutants were generated based on a full-length bacterial artificial chromosome clone of CPXV BR (pBR). Deletion of the first crmA start codon was sufficient to abolish protein expression, whereas modification of a potential second start codon had no impact on CrmA production as shown by Western blot analysis. Immunohistochemistry of CAMs inoculated with crmA-positive BR viruses showed accumulation of viral antigen in endothelial cells, which was consistent with the red pock phenotype. On the other hand, crmA-negative mutants were characterized by the induction of white pocks and the absence of CPXV antigen in endothelia. The introduction of the complete CPXV BR crmA gene into the homologous genome region of the attenuated vaccinia virus strain MVA (modified vaccinia virus Ankara), however, resulted in CrmA production but not the red pock phenotype. We therefore conclude that (i) CPXV CrmA is associated with increased accumulation of virus in endothelial cells and (ii) the poxvirus-encoded serpin is necessary but not sufficient for the red pock phenotype and the anti-chemotactic capabilities on CAMs.
Collapse
Affiliation(s)
- Swaantje J Roth
- Institut für Virologie, Freie Universität Berlin, Philippstrasse 13, 10115 Berlin, Germany
| | | | | | | |
Collapse
|
40
|
Friberg IM, Lowe A, Ralli C, Bradley JE, Jackson JA. Temporal anomalies in immunological gene expression in a time series of wild mice: signature of an epidemic? PLoS One 2011; 6:e20070. [PMID: 21629775 PMCID: PMC3100328 DOI: 10.1371/journal.pone.0020070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 04/21/2011] [Indexed: 12/25/2022] Open
Abstract
Although the ecological importance of coinfection is increasingly recognized, analyses of microbial pathogen dynamics in wildlife usually focus on an ad hoc subset of the species present due to technological limitations on detection. Here we demonstrate the use of expression profiles for immunological genes (pattern recognition receptors, cytokines and transcription factors) as a means to identify, without preconception, the likelihood of important acute microbial infections in wildlife. Using a wood mouse population in the UK as a model we identified significant temporal clusters of individuals with extreme expression of immunological mediators across multiple loci, typical of an acute microbial infection. These clusters were circumstantially associated with demographic perturbation in the summertime wood mouse population. Animals in one cluster also had significantly higher individual macroparasite burdens than contemporaries with "normal" expression patterns. If the extreme transcriptional profiles observed are induced by an infectious agent then this implicates macroparasites as a possible player in mediating individual susceptibility or resilience to infection. The form of survey described here, combined with next generation nucleic acids sequencing methods for the broad detection of microbial infectious agents in individuals with anomalous immunological transcriptional profiles, could be a powerful tool for revealing unrecognized, ecologically important infectious agents circulating in wildlife populations.
Collapse
Affiliation(s)
- Ida M. Friberg
- School of Biology, The University of Nottingham, Nottingham, United Kingdom
- IBERS, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, United Kingdom
| | - Ann Lowe
- School of Biology, The University of Nottingham, Nottingham, United Kingdom
| | - Catriona Ralli
- School of Biology, The University of Nottingham, Nottingham, United Kingdom
| | - Janette E. Bradley
- School of Biology, The University of Nottingham, Nottingham, United Kingdom
| | - Joseph A. Jackson
- IBERS, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, United Kingdom
| |
Collapse
|