1
|
Chen K, Jin S, Ma Y, Cai L, Xu P, Nie Y, Luo L, Yu Q, Shen Y, Zhou Z, Liu C. Adjudicative efficacy of Bifidobacterium animalis subsp. lactis BLa80 in treating acute diarrhea in children: a randomized, double-blinded, placebo-controlled study. Eur J Clin Nutr 2024; 78:501-508. [PMID: 38467857 PMCID: PMC11182741 DOI: 10.1038/s41430-024-01428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
The goal of this study is to assess the efficacy and safety of Bifidobacterium animalis subsp. lactis BLa80, as an adjunct treatment for diarrhea in children with a randomized, double-blinded, placebo-controlled study design. Eligible diarrheal children, aged 0-3 years without the need for antibiotic treatment based on clinical diagnosis when recruited, were randomized into the intervention group (IG, n = 58, with probiotic) or the control group (CG, n = 53, placebo). The primary assessment was the duration of diarrhea. Fecal samples were collected for biochemical index measurement, analysis of gut microbiome composition, and prediction of gene family abundances. The total duration of diarrhea in the IG (122.6 ± 13.1 h) was significantly shorter than in the CG (148.4 ± 17.6 h, p < 0.001). More children in the IG showed improvements in diarrhea compared to the CG, both in intention-to-treat analysis (81.7% vs. 40.0%, p < 0.001) and per protocol analysis (84.4% vs 45.3%, p < 0.001). Cathelicidin level in the IG was significantly higher than that in the CG after the intervention (4415.00 ± 1036.93 pg/g vs. 3679.49 ± 871.18 pg/g, p = 0.0175). The intervention led to an increased abundance of Bifidobacterium breve and Collinsella aerofaciens species, higher alpha-diversity (p < 0.05), and enrichment of functional genes in the gut microbiota related to immunity regulation. Administration of BLa80 at a dose of 5 × 109 CFU/day resulted in a shorter duration of diarrhea and alterations in gut microbiome composition and gene functions.
Collapse
Affiliation(s)
- Ke Chen
- Department of Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Shanshan Jin
- Department of Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Ma
- Department of Neonatology, Dayi Maternal and Child Health Care Hospital, Chengdu, China
| | - Limei Cai
- Department of Neonatology, Qingbaijiang Maternal and Child Health Care Hospital, Chengdu, China
| | - Ping Xu
- Department of Child Health Care, Qingbaijiang Maternal and Child Health Care Hospital, Chengdu, China
| | - Yang Nie
- Department of Child Health Care, Chongzhou Maternal and Child Health Care Hospital, Chengdu, China
| | - Li Luo
- Department of Pediatrics, Dayi Maternal and Child Health Care Hospital, Chengdu, China
| | - Qinghua Yu
- Laboratory of Microbiology, Immunology and Metabolism, Diprobio (Shanghai) Co., Limited, Shanghai, China
| | - Yang Shen
- Laboratory of Microbiology, Immunology and Metabolism, Diprobio (Shanghai) Co., Limited, Shanghai, China
| | - Zengyuan Zhou
- Department of Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| |
Collapse
|
2
|
Fu J, Zong X, Jin M, Min J, Wang F, Wang Y. Mechanisms and regulation of defensins in host defense. Signal Transduct Target Ther 2023; 8:300. [PMID: 37574471 PMCID: PMC10423725 DOI: 10.1038/s41392-023-01553-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.
Collapse
Affiliation(s)
- Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
3
|
Holmgren J. An Update on Cholera Immunity and Current and Future Cholera Vaccines. Trop Med Infect Dis 2021; 6:tropicalmed6020064. [PMID: 33925118 PMCID: PMC8167659 DOI: 10.3390/tropicalmed6020064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022] Open
Abstract
Individual resistance to cholera infection and disease depends on both innate host factors and adaptive immunity acquired by a previous infection or vaccination. Locally produced, intestinal-mucosal secretory IgA (SIgA) antibodies against bacterial surface lipopolysaccharide (LPS) O antigens and/or secreted cholera toxins are responsible for the protective adaptive immunity, in conjunction with an effective mucosal immunologic memory that can elicit a rapid anamnestic SIgA antibody response upon re-exposure to the antigen/pathogen even many years later. Oral cholera vaccines (OCVs), based on inactivated Vibrio cholerae whole-cell components, either together with the cholera toxin B subunit (Dukoral™) or administered alone (Shanchol™/Euvichol-Plus™) were shown to be consistently safe and effective in large field trials in all settings. These OCVs are recommended by the World Health Organisation (WHO) for the control of both endemic cholera and epidemic cholera outbreaks. OCVs are now a cornerstone in WHO’s global strategy found in “Ending Cholera: A Global Roadmap to 2030.” However, the forecasted global demands for OCV, estimated by the Global Alliance for Vaccines and Immunization (GAVI) to 1.5 billion doses for the period 2020–2029, markedly exceed the existing manufacturing capacity. This calls for an increased production capacity of existing OCVs, as well as the rapid introduction of additional and improved vaccines under development.
Collapse
Affiliation(s)
- Jan Holmgren
- University of Gothenburg Vaccine Research Institute, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- University of Gothenburg Vaccine Research Institute, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
4
|
Qin Z, Yang X, Chen G, Park C, Liu Z. Crosstalks Between Gut Microbiota and Vibrio Cholerae. Front Cell Infect Microbiol 2020; 10:582554. [PMID: 33194819 PMCID: PMC7644805 DOI: 10.3389/fcimb.2020.582554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera, could proliferate in aquatic environment and infect humans through contaminated food and water. Enormous microorganisms residing in human gastrointestinal tract establish a special microecological system, which immediately responds to the invasion of V. cholerae, through “colonization resistance” mechanisms, such as antimicrobial peptide production, nutrients competition, and intestinal barrier maintenances. Meanwhile, V. cholerae could quickly sense those signals and modulate the expression of relevant genes to circumvent those stresses during infection, leading to successful colonization on the surface of small intestinal epithelial cells. In this review, we summarized the crosstalks profiles between gut microbiota and V. cholerae in the terms of Type VI Secretion System (T6SS), Quorum Sensing (QS), Reactive Oxygen Species (ROS)/pH stress, and Bioactive metabolites. These mechanisms can also be applied to molecular bacterial pathogenesis of other pathogens in host.
Collapse
Affiliation(s)
- Zixin Qin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guozhong Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chaiwoo Park
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Bergman P, Raqib R, Rekha RS, Agerberth B, Gudmundsson GH. Host Directed Therapy Against Infection by Boosting Innate Immunity. Front Immunol 2020; 11:1209. [PMID: 32595649 PMCID: PMC7304486 DOI: 10.3389/fimmu.2020.01209] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
The innate immune system constitutes the first line of defense against invading pathogens, regulating the normal microbiota and contributes to homeostasis. Today we have obtained detailed knowledge on receptors, signaling pathways, and effector molecules of innate immunity. Our research constellation has focused on ways to induce the expression of antimicrobial peptides (AMPs), the production of oxygen species (ROS and NO), and to activate autophagy, during the last two decades. These innate effectors, with different mechanisms of action, constitute a powerful defense armament in phagocytes and in epithelial cells. Innate immunity does not only protect the host from invading pathogens, but also regulates the composition of the microbiota, which is an area of intense research. Notably, some virulent bacteria have the capacity to downregulate innate defenses and can thereby cause invasive disease. Understanding the detailed mechanisms behind pathogen-mediated suppression of innate effectors are currently in progress. This information can be of importance for the development of novel treatments based on counteraction of the downregulation; we have designated this type of treatment as host directed therapy (HDT). The concept to boost innate immunity may be particularly relevant as many pathogens are developing resistance against classical antibiotics. Many pathogens that are resistant to antibiotics are sensitive to the endogenous effectors included in early host defenses, which contain multiple effectors working in cooperation to control infections. Here, we review recent data related to downregulation of AMPs by pathogenic bacteria, induction of innate effector mechanisms, including cytokine-mediated effects, repurposed drugs and the role of antibiotics as direct modulators of host responses. These findings can form a platform for the development of novel treatment strategies against infection and/or inflammation.
Collapse
Affiliation(s)
- Peter Bergman
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,The Immunodeficiency Unit, Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Rubhana Raqib
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rokeya Sultana Rekha
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Agerberth
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gudmundur H Gudmundsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Biomedical Center, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
6
|
Baindara P, Ghosh AK, Mandal SM. Coevolution of Resistance Against Antimicrobial Peptides. Microb Drug Resist 2020; 26:880-899. [PMID: 32119634 DOI: 10.1089/mdr.2019.0291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are produced by all forms of life, ranging from eukaryotes to prokaryotes, and they are a crucial component of innate immunity, involved in clearing infection by inhibiting pathogen colonization. In the recent past, AMPs received high attention due to the increase of extensive antibiotic resistance by these pathogens. AMPs exhibit a diverse spectrum of activity against bacteria, fungi, parasites, and various types of cancer. AMPs are active against various bacterial pathogens that cause disease in animals and plants. However, because of the coevolution of host and pathogen interaction, bacteria have developed the mechanisms to sense and exhibit an adaptive response against AMPs. These resistance mechanisms are playing an important role in bacterial virulence within the host. Here, we have discussed the different resistance mechanisms used by gram-positive and gram-negative bacteria to sense and combat AMP actions. Understanding the mechanism of AMP resistance may provide directions toward the development of novel therapeutic strategies to control multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ananta K Ghosh
- Department of Biotechnology, Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Santi M Mandal
- Department of Biotechnology, Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
7
|
Treatment with Entinostat Heals Experimental Cholera by Affecting Physical and Chemical Barrier Functions of Intestinal Epithelia. Antimicrob Agents Chemother 2017; 61:AAC.02570-16. [PMID: 28438947 DOI: 10.1128/aac.02570-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/15/2017] [Indexed: 12/14/2022] Open
Abstract
We have shown previously that oral treatment with sodium butyrate or phenylbutyrate in an experimental model of shigellosis improves clinical outcomes and induces the expression of the antimicrobial peptide CAP-18 in the large intestinal epithelia. In a subsequent study, we found that entinostat, an aroylated phenylenediamine compound, has similar therapeutic potential against shigellosis. In this study, we aimed to evaluate entinostat as a potential candidate for host-directed therapy against cholera in an experimental model. Vibrio cholerae-infected rabbits were treated with two different dose regimens of entinostat: either 0.5 mg twice daily for 2 days or 1 mg once daily for 2 days. The effects of treatment on clinical outcomes and V. cholerae shedding (CFU count in stool) were observed. Immunohistochemical analysis was carried out to assess CAP-18 expression in ileal and jejunal mucosae. The serum zonulin level was measured by an enzyme-linked immunosorbent assay (ELISA) to evaluate gut permeability. Infection of rabbits with V. cholerae downregulated CAP-18 expression in the ileal epithelium; the expression was replenished by oral treatment with entinostat at either dose regimen. The level of zonulin, a marker of gut permeability, in serum was upregulated after infection, and this upregulation was counteracted after treatment with entinostat. Entinostat treatment also led to recovery from cholera and a decline in the V. cholerae count in stool. In conclusion, the improved clinical outcome of cholera for rabbits treated with entinostat is associated with the induction of CAP-18 and the reduction of gut epithelial permeability.
Collapse
|
8
|
Induction of immunomodulatory miR-146a and miR-155 in small intestinal epithelium of Vibrio cholerae infected patients at acute stage of cholera. PLoS One 2017; 12:e0173817. [PMID: 28319200 PMCID: PMC5358779 DOI: 10.1371/journal.pone.0173817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/27/2017] [Indexed: 12/30/2022] Open
Abstract
The potential immunomodulatory role of microRNAs in small intestine of patients with acute watery diarrhea caused by Vibrio cholerae O1 or enterotoxigenic Escherichia coli (ETEC) infection was investigated. Duodenal biopsies were obtained from study-participants at the acute (day 2) and convalescent (day 21) stages of disease, and from healthy individuals. Levels of miR-146a, miR-155 and miR-375 and target gene (IRAK1, TRAF6, CARD10) and 11 cytokine mRNAs were determined by qRT-PCR. The cellular source of microRNAs in biopsies was analyzed by in situ hybridization. The ability of V. cholerae bacteria and their secreted products to cause changes in microRNA- and mRNA levels in polarized tight monolayers of intestinal epithelial cells was investigated. miR-146a and miR-155 were expressed at significantly elevated levels at acute stage of V. cholerae infection and declined to normal at convalescent stage (P<0.009 versus controls; P = 0.03 versus convalescent stage, pairwise). Both microRNAs were mainly expressed in the epithelium. Only marginal down-regulation of target genes IRAK1 and CARD10 was seen and a weak cytokine-profile was identified in the acute infected mucosa. No elevation of microRNA levels was seen in ETEC infection. Challenge of tight monolayers with the wild type V. cholerae O1 strain C6706 and clinical isolates from two study-participants, caused significant increase in miR-155 and miR-146a by the strain C6706 (P<0.01). One clinical isolate caused reduction in IRAK1 levels (P<0.05) and none of the strains induced inflammatory cytokines. In contrast, secreted factors from these strains caused markedly increased levels of IL-8, IL-1β, and CARD10 (P<0.001), without inducing microRNA expression. Thus, miR-146a and miR-155 are expressed in the duodenal epithelium at the acute stage of cholera. The inducer is probably the V. cholerae bacterium. By inducing microRNAs the bacterium can limit the innate immune response of the host, including inflammation evoked by its own secreted factors, thereby decreasing the risk of being eliminated.
Collapse
|
9
|
Simuyandi M, Kapulu M, Kelly P. Anti-microbial peptide gene expression during oral vaccination: analysis of a randomized controlled trial. Clin Exp Immunol 2016; 186:205-213. [PMID: 27465597 PMCID: PMC5054565 DOI: 10.1111/cei.12848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2016] [Indexed: 12/04/2022] Open
Abstract
We have observed previously that micronutrient supplementation ameliorated suppression of α‐defensin expression during diarrhoea. However, how interactions between anti‐microbial peptide (AMP) expression and diarrhoeal disease are altered by micronutrient supplementation remain unclear. Using oral vaccination as a model of intestinal infection, we measured changes in AMP expression during multiple micronutrient supplementation. In the first part, volunteers underwent duodenal jejunal biopsy before and at 1, 2, 4 or 7 days after administration of one of three live, attenuated oral vaccines against rotavirus, typhoid and enterotoxigenic Escherichia coli. In the second part, participants were randomized to receive a multiple micronutrient supplement or placebo for 6 weeks before undergoing intestinal biopsy, vaccination against typhoid and rebiopsy after 14 days. Expression of human alpha‐defensin (HD)5, HD6, hBD1, hBD2 and LL‐37 was measured by quantitative reverse transcription–polymerase chain reaction. Taken together, the bacterial vaccines, but not rotavirus vaccine, reduced HD5 expression (P = 0·02, signed‐rank test) and reduced LL‐37 expression in seven of the eight individuals whose biopsies had expression prevaccination (P = 0·03). hBD2 was not detected. In the controlled trial, HD5 and HD6 expression after vaccination was lower [median ratio 0·5, interquartile range (IQR) = 0·07–2·2 and 0·58, IQR = 0·13–2·3, respectively] than before vaccination. There was no significant effect detected of micronutrient supplementation on expression of HD5, HD6, hBD1 or LL‐37. We conclude that live attenuated bacterial vaccines, but not rotavirus vaccine, can reduce intestinal α‐defensins, and typhoid vaccine reduced LL‐37 expression. We found no evidence that micronutrient supplementation in the short term had any impact on anti‐microbial peptide expression.
Collapse
Affiliation(s)
- M Simuyandi
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia.,Programme for the Awareness and Elimination of Diarrhoea (PAED), Centre for Infectious Disease Research in Zambia
| | - M Kapulu
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia.,Biological Sciences Department, School of Natural Sciences, University of Zambia, Lusaka, Zambia
| | - P Kelly
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia. .,Barts and the London School of Medicine, London, UK.
| |
Collapse
|
10
|
Heimlich DR, Harrison A, Mason KM. Host Antimicrobial Peptides in Bacterial Homeostasis and Pathogenesis of Disease. Antibiotics (Basel) 2014; 3:645-76. [PMID: 26029470 PMCID: PMC4448142 DOI: 10.3390/antibiotics3040645] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 01/10/2023] Open
Abstract
Innate immune responses function as a first line of host defense against the development of bacterial infection, and in some cases to preserve the sterility of privileged sites in the human host. Bacteria that enter these sites must counter host responses for colonization. From the host's perspective, the innate immune system works expeditiously to minimize the bacterial threat before colonization and subsequent dysbiosis. The multifactorial nature of disease further challenges predictions of how each independent variable influences bacterial pathogenesis. From bacterial colonization to infection and through disease, the microenvironments of the host are in constant flux as bacterial and host factors contribute to changes at the host-pathogen interface, with the host attempting to eradicate bacteria and the bacteria fighting to maintain residency. A key component of this innate host response towards bacterial infection is the production of antimicrobial peptides (AMPs). As an early component of the host response, AMPs modulate bacterial load and prevent establishment of infection. Under quiescent conditions, some AMPs are constitutively expressed by the epithelium. Bacterial infection can subsequently induce production of other AMPs in an effort to maintain sterility, or to restrict colonization. As demonstrated in various studies, the absence of a single AMP can influence pathogenesis, highlighting the importance of AMP concentration in maintaining homeostasis. Yet, AMPs can increase bacterial virulence through the co-opting of the peptides or alteration of bacterial virulence gene expression. Further, bacterial factors used to subvert AMPs can modify host microenvironments and alter colonization of the residential flora that principally maintain homeostasis. Thus, the dynamic interplay between host defense peptides and bacterial factors produced to quell peptide activity play a critical role in the progression and outcome of disease.
Collapse
Affiliation(s)
- Derek R. Heimlich
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
| | - Alistair Harrison
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
| | - Kevin M. Mason
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
- The Ohio State University College of Medicine, Department of Pediatrics, Columbus, OH 43205, USA
| |
Collapse
|
11
|
Destoumieux-Garzón D, Duperthuy M, Vanhove AS, Schmitt P, Wai SN. Resistance to Antimicrobial Peptides in Vibrios. Antibiotics (Basel) 2014; 3:540-63. [PMID: 27025756 PMCID: PMC4790380 DOI: 10.3390/antibiotics3040540] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 09/25/2014] [Accepted: 10/08/2014] [Indexed: 12/19/2022] Open
Abstract
Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs) as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- Ecology of Coastal Marine Systems, CNRS, Ifremer, University of Montpellier, IRD, Place Eugène Bataillon, CC80, 34095 Montpellier, France.
| | - Marylise Duperthuy
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden.
| | - Audrey Sophie Vanhove
- Ecology of Coastal Marine Systems, CNRS, Ifremer, University of Montpellier, IRD, Place Eugène Bataillon, CC80, 34095 Montpellier, France.
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile.
| | - Sun Nyunt Wai
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
12
|
Leung DT, Bhuiyan TR, Nishat NS, Hoq MR, Aktar A, Rahman MA, Uddin T, Khan AI, Chowdhury F, Charles RC, Harris JB, Calderwood SB, Qadri F, Ryan ET. Circulating mucosal associated invariant T cells are activated in Vibrio cholerae O1 infection and associated with lipopolysaccharide antibody responses. PLoS Negl Trop Dis 2014; 8:e3076. [PMID: 25144724 PMCID: PMC4140671 DOI: 10.1371/journal.pntd.0003076] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/26/2014] [Indexed: 01/10/2023] Open
Abstract
Background Mucosal Associated Invariant T (MAIT) cells are innate-like T cells found in abundance in the intestinal mucosa, and are thought to play a role in bridging the innate-adaptive interface. Methods We measured MAIT cell frequencies and antibody responses in blood from patients presenting with culture-confirmed severe cholera to a hospital in Dhaka, Bangladesh at days 2, 7, 30, and 90 of illness. Results We found that MAIT (CD3+CD4−CD161hiVα7.2+) cells were maximally activated at day 7 after onset of cholera. In adult patients, MAIT frequencies did not change over time, whereas in child patients, MAITs were significantly decreased at day 7, and this decrease persisted to day 90. Fold changes in MAIT frequency correlated with increases in LPS IgA and IgG, but not LPS IgM nor antibody responses to cholera toxin B subunit. Conclusions In the acute phase of cholera, MAIT cells are activated, depleted from the periphery, and as part of the innate response against V. cholerae infection, are possibly involved in mechanisms underlying class switching of antibody responses to T cell-independent antigens. Vibrio cholerae is the bacterium that causes cholera, which can be a potentially fatal diarrheal disease that affects millions of people worldwide each year. How our immune system provides protection against cholera is poorly understood. Mucosal Associated Invariant T (MAIT) cells are recently discovered immune cells found in the blood and intestinal tract of humans. In this study of cholera patients in Dhaka, Bangladesh, we found that blood MAIT cells are activated during cholera, and that in children, blood MAIT cells are decreased in number during the course of disease. We also found that the MAIT cell response correlates with the antibody response to V. cholerae O1 lipopolysaccharide, which in the past has been shown to be an important determinant of protection. These findings suggest that MAIT cells may play an important role in the body's defense against cholera.
Collapse
Affiliation(s)
- Daniel T. Leung
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Taufiqur R. Bhuiyan
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Naoshin S. Nishat
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Rubel Hoq
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Amena Aktar
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - M. Arifur Rahman
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Taher Uddin
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful I. Khan
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Fahima Chowdhury
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Richelle C. Charles
- Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jason B. Harris
- Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Prenatal vitamin D₃ supplementation suppresses LL-37 peptide expression in ex vivo activated neonatal macrophages but not their killing capacity. Br J Nutr 2014; 112:908-15. [PMID: 25089537 DOI: 10.1017/s0007114514001512] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vitamin D has regulatory effects on innate immunity. In the present study, we aimed to assess the effect of prenatal vitamin D₃ (vitD₃) supplementation on neonatal innate immunity in a randomised, placebo-controlled trial by evaluating cathelicidin (LL-37) expression and the killing capacity of macrophages. Healthy pregnant women (n 129) attending a clinic in Dhaka were randomised to receive either a weekly oral dose of 0·875 mg vitD₃ or placebo starting from 26 weeks of gestation up to delivery. Serum, plasma and monocyte-derived macrophages (MDM) were obtained from the cord blood. 25-Hydroxyvitamin D (25(OH)D) concentration was measured in serum. MDM were stimulated with or without Toll-like-receptor 4 ligand (TLR4L). Innate immune function was assessed by measuring LL-37 peptide levels in the culture supernatant of MDM by ELISA, LL-37 transcript levels by quantitative PCR, and ex vivo bactericidal capacity of MDM. VitD₃ supplementation did not increase LL-37 peptide levels in plasma or in the extracellular fluid of macrophages with or without TLR4L induction. However, stimulated intracellular LL-37 expression (ratio of stimulated:unstimulated MDM) was significantly reduced in the vitamin D group v. placebo (P=0·02). Multivariate-adjusted analyses showed that intracellular LL-37 peptide concentration from stimulated MDM was inversely associated with 25(OH)D concentration in serum (P=0·03). TLR4L stimulation increased the bactericidal capacity of MDM compared with the unstimulated ones (P=0·01); however, there was no difference in killing capacity between the two groups. A weekly dose of 0·875 mg vitD₃ to healthy pregnant women suppressed the intracellular LL-37 peptide stores of activated macrophages, but did not significantly affect the ex vivo bactericidal capacity of cord blood MDM.
Collapse
|
14
|
Striz I, Brabcova E, Kolesar L, Sekerkova A. Cytokine networking of innate immunity cells: a potential target of therapy. Clin Sci (Lond) 2014; 126:593-612. [PMID: 24450743 DOI: 10.1042/cs20130497] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Innate immune cells, particularly macrophages and epithelial cells, play a key role in multiple layers of immune responses. Alarmins and pro-inflammatory cytokines from the IL (interleukin)-1 and TNF (tumour necrosis factor) families initiate the cascade of events by inducing chemokine release from bystander cells and by the up-regulation of adhesion molecules required for transendothelial trafficking of immune cells. Furthermore, innate cytokines produced by dendritic cells, macrophages, epithelial cells and innate lymphoid cells seem to play a critical role in polarization of helper T-cell cytokine profiles into specific subsets of Th1/Th2/Th17 effector cells or regulatory T-cells. Lastly, the innate immune system down-regulates effector mechanisms and restores homoeostasis in injured tissue via cytokines from the IL-10 and TGF (transforming growth factor) families mainly released from macrophages, preferentially the M2 subset, which have a capacity to induce regulatory T-cells, inhibit the production of pro-inflammatory cytokines and induce healing of the tissue by regulating extracellular matrix protein deposition and angiogenesis. Cytokines produced by innate immune cells represent an attractive target for therapeutic intervention, and multiple molecules are currently being tested clinically in patients with inflammatory bowel disease, rheumatoid arthritis, systemic diseases, autoinflammatory syndromes, fibrosing processes or malignancies. In addition to the already widely used blockers of TNFα and the tested inhibitors of IL-1 and IL-6, multiple therapeutic molecules are currently in clinical trials targeting TNF-related molecules [APRIL (a proliferation-inducing ligand) and BAFF (B-cell-activating factor belonging to the TNF family)], chemokine receptors, IL-17, TGFβ and other cytokines.
Collapse
Affiliation(s)
| | - Eva Brabcova
- *Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Videnska 1958/9 Prague, Czech Republic
| | - Libor Kolesar
- *Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Videnska 1958/9 Prague, Czech Republic
| | - Alena Sekerkova
- *Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Videnska 1958/9 Prague, Czech Republic
| |
Collapse
|
15
|
Thomassin JL, Lee MJ, Brannon JR, Sheppard DC, Gruenheid S, Le Moual H. Both group 4 capsule and lipopolysaccharide O-antigen contribute to enteropathogenic Escherichia coli resistance to human α-defensin 5. PLoS One 2013; 8:e82475. [PMID: 24324796 PMCID: PMC3853201 DOI: 10.1371/journal.pone.0082475] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/02/2013] [Indexed: 12/18/2022] Open
Abstract
Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are food-borne pathogens that colonize the small intestine and colon, respectively. To cause disease, these pathogens must overcome the action of different host antimicrobial peptides (AMPs) secreted into these distinct niches. We have shown previously that EHEC expresses high levels of the OmpT protease to inactivate the human cathelicidin LL-37, an AMP present in the colon. In this study, we investigate the mechanisms used by EPEC to resist human α-defensin 5 (HD-5), the most abundant AMP in the small intestine. Quantitative PCR was used to measure transcript levels of various EPEC surface structures. High transcript levels of gfcA, a gene required for group 4 capsule (G4C) production, were observed in EPEC, but not in EHEC. The unencapsulated EPEC ∆gfcA and EHEC wild-type strains were more susceptible to HD-5 than EPEC wild-type. Since the G4C is composed of the same sugar repeats as the lipopolysaccharide O-antigen, an -antigen ligase (waaL) deletion mutant was generated in EPEC to assess its role in HD-5 resistance. The ∆waaL EPEC strain was more susceptible to HD-5 than both the wild-type and ∆gfcA strains. The ∆gfcA∆waaL EPEC strain was not significantly more susceptible to HD-5 than the ∆waaL strain, suggesting that the absence of -antigen influences G4C formation. To determine whether the G4C and -antigen interact with HD-5, total polysaccharide was purified from wild-type EPEC and added to the ∆gfcA∆waaL strain in the presence of HD-5. The addition of exogenous polysaccharide protected the susceptible strain against HD-5 killing in a dose-dependent manner, suggesting that HD-5 binds to the polysaccharides present on the surface of EPEC. Altogether, these findings indicate that EPEC relies on both the G4C and the -antigen to resist the bactericidal activity of HD-5.
Collapse
Affiliation(s)
- Jenny-Lee Thomassin
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Mark J. Lee
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - John R. Brannon
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Donald C. Sheppard
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec, Canada
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec, Canada
| | - Hervé Le Moual
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec, Canada
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
16
|
Al-Mamun A, Mily A, Sarker P, Tiash S, Navarro A, Akter M, Talukder KA, Islam MF, Agerberth B, Gudmundsson GH, Cravioto A, Raqib R. Treatment with phenylbutyrate in a pre-clinical trial reduces diarrhea due to enteropathogenic Escherichia coli: link to cathelicidin induction. Microbes Infect 2013; 15:939-50. [DOI: 10.1016/j.micinf.2013.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 07/24/2013] [Accepted: 08/29/2013] [Indexed: 01/02/2023]
|
17
|
Abstract
Synthesis and large-scale manufacturing technologies are now available for the commercial production of even the most complex peptide anti-infectives. Married with the potential of this class of molecule as the next generation of effective, resistance-free and safe antimicrobials, and a much better understanding of their biology, pharmacology and pharmacodynamics, the first regulatory approvals and introduction into clinical practice of these promising drug candidates will likely be soon. This is a key juncture in the history/life cycle of peptide anti-infectives and, perhaps, their commercial and therapeutic potential is about to be realized. This review highlights the promise of these agents as the next generation of therapeutics and summarizes the challenges faced in, and lessons learned from, the past.
Collapse
|
18
|
de Oca EPM. Antimicrobial peptide elicitors: New hope for the post-antibiotic era. Innate Immun 2012; 19:227-41. [DOI: 10.1177/1753425912460708] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides or host defense peptides are fundamental components of human innate immunity. Recent and growing evidence suggests they have a role in a broad range of diseases, including cancer, allergies and susceptibility to infection, including HIV/AIDS. Antimicrobial peptide elicitors (APEs) are physical, biological or chemical agents that boost human antimicrobial peptide expression. The current knowledge of APEs and their potential use in the treatment of human infectious diseases are reviewed, and a classification system for APEs is proposed. The efficient use of APEs in clinical practice could mark the beginning of the urgently needed post-antibiotic era, but further trials assessing their efficacy and safety are required.
Collapse
Affiliation(s)
- Ernesto Prado Montes de Oca
- Molecular Biology Laboratory, Biosecurity Area, CIATEJ – National Council of Science and Technology, Guadalajara, Jalisco, Mexico
- In silico Laboratory, Pharmaceutical and Medical Biotechnology Unit, CIATEJ – National Council of Science and Technology, Guadalajara, Jalisco, Mexico
| |
Collapse
|
19
|
Leung DT, Chowdhury F, Calderwood SB, Qadri F, Ryan ET. Immune responses to cholera in children. Expert Rev Anti Infect Ther 2012; 10:435-44. [PMID: 22512753 DOI: 10.1586/eri.12.23] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cholera is a severe acute dehydrating diarrheal disease caused by Vibrio cholerae O1 or O139 infection, and is associated with significant mortality and morbidity globally. Although young children bear a high burden of the disease, currently available oral vaccines give a lower efficacy and shorter duration of protection in this group than in adults. According to the studies of natural infection, young children achieve comparable systemic anti-V. cholerae antigen-specific antibody, gut-homing antibody-secreting cell and memory B-cell responses as adults. Studies on innate and cell-mediated immune responses are lacking in children, and may offer important insights into differences in vaccine efficacy. The impact of host factors such as malnutrition, genetics and coinfection with other pathogens also remains to be fully defined.
Collapse
Affiliation(s)
- Daniel T Leung
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh.
| | | | | | | | | |
Collapse
|