1
|
Tang CT, Liu ZD, Wang P, Zeng CY, Chen YX. Lipopolysaccharide-regulated RNF31/NRF2 axis in colonic epithelial cells mediates homeostasis of the intestinal barrier in ulcerative colitis. Cell Signal 2024; 124:111480. [PMID: 39437901 DOI: 10.1016/j.cellsig.2024.111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/05/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Although previous studies have shown that the Ring Finger Protein 31 (RNF31) gene confers susceptibility to inflammatory disease and colorectal cancer, the exact function of this protein in ulcerative colitis (UC) has not been determined. METHODS A mouse dextran sulfate sodium (DSS)-induced experimental colitis model was used to study RNF31 and NRF2 in colitis. RNF31 silencing or overexpression in vitro was applied to address the role of RNF31 in colonic mucosal barrier damage. Immunohistochemistry and silico analysis was performed to investigate the expression of RNF31 via taking advantage of UC tissue samples and Gene Expression Omnibus (GEO) data, respectively. The cycloheximide (CHX)-chase experiment and Co-Immunoprecipitation (Co-IP) assays were conducted to explore the association of RNF31 protein with NRF2 and P62. RESULTS RNF31 is highly expressed in UC patients, in inflamed murine colon induced DSS and Lipopolysaccharide (LPS)-treated epithelial cells, while the express of NRF2 was Tabdecreased. RNF31-knockdown mice in the DSS-induced colitis model had a less severe phenotype, which was associated with a more integrated barrier of colon epithelial cells. While depletion of NRF2 in colitis model exacerbated intestinal inflammation. Mechanistically, RNF31 promoted the degradation of NRF2 by regulating its ubiquitination. Upon stimulation by RNF31, NRF2 is K63 ubiquitinated, which is associated with the C871 residue of RNF31. Moreover, downregulated NRF2 mediates inflammation by promoting the secretion of IL1β and IL18, leading to damage of the intestinal barrier. Upon LPS stimulation, the interaction of the PUB domain of RNF31 with the UBA domain of P62 increased, resulting in decreased degradation of the RNF31 protein via autophagy. CONCLUSION Overall, depletion of RNF31 effectively relieves DSS-induced colitis in mice by inhibiting NRF2 degradation, suggesting that RNF31 may be a potential therapy for human ulcerative colitis.
Collapse
Affiliation(s)
- Chao-Tao Tang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Zi-de Liu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Peng Wang
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Chun-Yan Zeng
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Department of Gastroenterology, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang 330003, China.
| | - You-Xiang Chen
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
2
|
Zhang Y, Tian Y, Zhong X, Zhang R, Yang S, Jin J, Lyu C, Fan J, Shi B, Zhu K, Xiao Y, Lin N, Ma D, Tou J, Shu Q, Lai D. RNF31-mediated IKKα ubiquitination aggravates inflammation and intestinal injury through regulating NF-κB activation in human and mouse neonates. Life Sci 2024; 352:122893. [PMID: 38971367 DOI: 10.1016/j.lfs.2024.122893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
AIMS Neonatal necrotizing enterocolitis (NEC) is a leading cause of intestine inflammatory disease, and macrophage is significantly activated during NEC development. Posttranslational modifications (PTMs) of proteins, particularly ubiquitination, play critical roles in immune response. This study aimed to investigate the effects of ubiquitin-modified proteins on macrophage activation and NEC, and discover novel NEC-related inflammatory proteins. MATERIALS AND METHODS Proteomic and ubiquitin proteomic analyses of intestinal macrophages in NEC/healthy mouse pups were carried out. In vitro macrophage inflammation model and in vivo NEC mouse model, as well as clinical human samples were used for further verification the inhibitor of nuclear factor-κB kinase α (IKKα) ubiquitination on NEC development through Western blot, immunofluorescence, quantitative real-time polymerase chain reaction (qRT-PCR) and flow cytometry. KEY FINDINGS We report here that IKKα was a new ubiquitin-modified protein during NEC through ubiquitin proteomics, and RING finger protein 31 (RNF31) acted as an E3 ligase to be involved in IKKα degradation. Inhibition of IKKα ubiquitination and degradation with siRNF31 or proteasome inhibitor decreased nuclear factor-κB (NF-κB) activation, thereby decreasing the expression of pro-inflammatory factors and M1 macrophage polarization, resulting in reliving the severity of NEC. SIGNIFICANCE Our study suggests the activation of RNF31-IKKα-NF-κB axis triggering NEC development and suppressing RNF31-mediated IKKα degradation may be therapeutic strategies to be developed for NEC treatment.
Collapse
Affiliation(s)
- Yuebai Zhang
- Department of Thoracic and Cardiovascular Surgery, Children's hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yangfan Tian
- Department of Thoracic and Cardiovascular Surgery, Children's hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaohui Zhong
- Department of Thoracic and Cardiovascular Surgery, Children's hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ruoyang Zhang
- Department of Thoracic and Cardiovascular Surgery, Children's hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Sisi Yang
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jingyi Jin
- Department of Thoracic and Cardiovascular Surgery, Children's hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chengjie Lyu
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiajie Fan
- Department of Thoracic and Cardiovascular Surgery, Children's hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Bo Shi
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kun Zhu
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yi Xiao
- Department of Thoracic and Cardiovascular Surgery, Children's hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Nan Lin
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Daqing Ma
- Perioperative and Systems Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, China; Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Jinfa Tou
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery, Children's hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Dengming Lai
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
3
|
Moss CD, Wilson AL, Reed KJ, Jennings KJ, Kunz IGZ, Landolt GA, Metcalf J, Engle TE, Coleman SJ. Gene Expression Analysis before and after the Pelvic Flexure in the Epithelium of the Equine Hindgut. Animals (Basel) 2024; 14:2303. [PMID: 39199837 PMCID: PMC11350661 DOI: 10.3390/ani14162303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Previous research demonstrated the distribution of distinct microbial communities in the equine hindgut surrounding the pelvic flexure. The current study evaluated gene expression in epithelial tissues surrounding the pelvic flexure to characterize patterns that might correlate with microbial distribution. Gene expression was determined by analyzing RNA sequence data from the pelvic flexure, the left and right ventral colon, and the left and right dorsal colon. An average of 18,330 genes were expressed across the five tissues sampled. Most of the genes showed some level of expression in all five tissues. Tissue-restricted patterns of expression were also observed. Genes with restricted expression in the left ventral and left dorsal colons have communication, signaling, and regulatory functions that correlate with their known physiology. In contrast, genes expressed exclusively in the pelvic flexure have diverse functions. The ontology of genes differentially expressed between the pelvic flexure and the surrounding tissues was associated with immune functions and signaling processes. Despite being non-significant, these enrichment trends were reinforced by the functions of statistically significant expression differences between tissues of the hindgut. These results provide insight into the physiology of the equine hindgut epithelium that might influence the microbiota and its distribution.
Collapse
Affiliation(s)
- Cameron D. Moss
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| | - Amber L. Wilson
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| | - Kailee J. Reed
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
- Watchmaker Genomics, Boulder, CO 80301, USA
| | - Kaysie J. Jennings
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
- Transnetyx, Memphis, TN 38016, USA
| | - Isabelle G. Z. Kunz
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| | - Gabriele A. Landolt
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 8023, USA
| | - Jessica Metcalf
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| | - Terry E. Engle
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| | - Stephen J. Coleman
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| |
Collapse
|
4
|
Park HB, Baek KH. Current and future directions of USP7 interactome in cancer study. Biochim Biophys Acta Rev Cancer 2023; 1878:188992. [PMID: 37775071 DOI: 10.1016/j.bbcan.2023.188992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
The ubiquitin-proteasome system (UPS) is an essential protein quality controller for regulating protein homeostasis and autophagy. Ubiquitination is a protein modification process that involves the binding of one or more ubiquitins to substrates through a series of enzymatic processes. These include ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). Conversely, deubiquitination is a reverse process that removes ubiquitin from substrates via deubiquitinating enzymes (DUBs). Dysregulation of ubiquitination-related enzymes can lead to various human diseases, including cancer, through the modulation of protein ubiquitination. The most structurally and functionally studied DUB is the ubiquitin-specific protease 7 (USP7). Both the TRAF and UBL domains of USP7 are known to bind to the [P/A/E]-X-X-S or K-X-X-X-K motif of substrates. USP7 has been shown to be involved in cancer pathogenesis by binding with numerous substrates. Recently, a novel substrate of USP7 was discovered through a systemic analysis of its binding motif. This review summarizes the currently discovered substrates and cellular functions of USP7 in cancer and suggests putative substrates of USP7 through a comprehensive systemic analysis.
Collapse
Affiliation(s)
- Hong-Beom Park
- Department of Convergence, CHA University, Gyeonggi-Do 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Convergence, CHA University, Gyeonggi-Do 13488, Republic of Korea; International Ubiquitin Center(,) CHA University, Gyeonggi-Do 13488, Republic of Korea.
| |
Collapse
|
5
|
Wang X, Xiao Y, Dong Y, Wang Z, Yi J, Wang J, Wang X, Zhou H, Zhang L, Shi Y. A20 interacts with mTORC2 to inhibit the mTORC2/Akt/Rac1 signaling axis in hepatocellular carcinoma cells. Cancer Gene Ther 2023; 30:424-436. [PMID: 36411371 DOI: 10.1038/s41417-022-00562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
A20 acts as a tumor suppressor in hepatocellular carcinoma, especially inhibiting metastasis of the malignant cells. However, the mechanisms whereby A20 plays the inhibitory roles are not understood completely. Rac1 signaling is essential for cell migration in hepatocellular carcinoma metastasis. Nevertheless, it is not known whether and how A20 inhibits Rac1 signaling to suppress the migration of hepatocellular carcinoma cell. Thereby, we analyzed the relationship between A20 and Rac1 activation, as well as the activity of Akt and mTORC2, two signaling components upstream of Rac1, using gain and loss of function experiments. We found that the overexpression of A20 repressed, while the knockdown or knockout of A20 promoted, the activation of Rac1, Akt and mTORC2 in hepatocellular carcinoma cells. Moreover, the inhibitory effect of A20 on the mTORC2/Akt/Rac1 signaling axis was due to the interaction between A20 and mTORC2 complex. The binding of A20 to mTORC2 was mediated by the ZnF7 domain of A20 and M1 ubiquitin chain in the mTORC2 complex. Furthermore, A20 inhibited metastasis of hepatocellular carcinoma cells via restraining mTORC2 in a hepatocellular carcinoma xenograft mouse model. These findings revealed the relationship between A20 and mTORC2, and explained the molecular mechanisms of A20 in inhibition of hepatocellular carcinoma metastasis.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ying Xiao
- Laboratory of Cellular and Molecular Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanlei Dong
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhida Wang
- Department of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, China
| | - Jing Yi
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianing Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoyan Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huaiyu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lining Zhang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongyu Shi
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
6
|
Karlowitz R, van Wijk SJL. Surviving death: emerging concepts of RIPK3 and MLKL ubiquitination in the regulation of necroptosis. FEBS J 2023; 290:37-54. [PMID: 34710282 DOI: 10.1111/febs.16255] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 01/14/2023]
Abstract
Lytic forms of programmed cell death, like necroptosis, are characterised by cell rupture and the release of cellular contents, often provoking inflammatory responses. In the recent years, necroptosis has been shown to play important roles in human diseases like cancer, infections and ischaemia/reperfusion injury. Coordinated interactions between RIPK1, RIPK3 and MLKL lead to the formation of a dedicated death complex called the necrosome that triggers MLKL-mediated membrane rupture and necroptotic cell death. Necroptotic cell death is tightly controlled by post-translational modifications, among which especially phosphorylation has been characterised in great detail. Although selective ubiquitination is relatively well-explored in the early initiation stages of necroptosis, the mechanisms and functional consequences of RIPK3 and MLKL ubiquitination for necrosome function and necroptosis are only starting to emerge. This review provides an overview on how site-specific ubiquitination of RIPK3 and MLKL regulates, fine-tunes and reverses the execution of necroptotic cell death.
Collapse
Affiliation(s)
- Rebekka Karlowitz
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| |
Collapse
|
7
|
The resurrection of RIP kinase 1 as an early cell death checkpoint regulator-a potential target for therapy in the necroptosis era. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1401-1411. [PMID: 36171264 PMCID: PMC9534832 DOI: 10.1038/s12276-022-00847-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 01/05/2023]
Abstract
Receptor-interacting serine threonine protein kinase 1 (RIPK1) has emerged as a central molecular switch in controlling the balance between cell survival and cell death. The pro-survival role of RIPK1 in maintaining cell survival is achieved via its ability to induce NF-κB-dependent expression of anti-apoptotic genes. However, recent advances have identified the pro-death function of RIPK1: posttranslational modifications of RIPK1 in the tumor necrosis factor receptor 1 (TNFR1)-associated complex-I, in the cytosolic complex-IIb or in necrosomes regulate the cytotoxic potential of RIPK1, forming an early cell death checkpoint. Since the kinase activity of RIPK1 is indispensable in RIPK3- and MLKL-mediated necroptosis induction, while it is dispensable in apoptosis, a better understanding of this early cell death checkpoint via RIPK1 might lead to new insights into the molecular mechanisms controlling both apoptotic and necroptotic modes of cell death and help develop novel therapeutic approaches for cancer. Here, we present an emerging view of the regulatory mechanisms for RIPK1 activity, especially with respect to the early cell death checkpoint. We also discuss the impact of dysregulated RIPK1 activity in pathophysiological settings and highlight its therapeutic potential in treating human diseases. Improved understanding of the molecular mechanisms that allow a protein to control the balance between cell survival or early death could reveal new approaches to treating conditions including chronic inflammatory disease and cancer. Gang Min Hur and colleagues at Chungnam National University in Daejeon, South Korea, with Han-Ming Shen at the University of Macau in China, review emerging evidence about how the protein called receptor-interacting serine/threonine-protein kinase 1 (RIPK1) influences whether cells move towards death or survival at a key ‘checkpoint’ in cell development. Cells can undergo a natural process of programmed cell death called apoptosis, die abnormally in a disease process called necroptosis, or survive. RIPK1 appears able to influence which path is chosen depending on which genes it regulates and which proteins it interacts with. Many details are still unclear, and need further investigation.
Collapse
|
8
|
Latanova A, Starodubova E, Karpov V. Flaviviridae Nonstructural Proteins: The Role in Molecular Mechanisms of Triggering Inflammation. Viruses 2022; 14:v14081808. [PMID: 36016430 PMCID: PMC9414172 DOI: 10.3390/v14081808] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Members of the Flaviviridae family are posing a significant threat to human health worldwide. Many flaviviruses are capable of inducing severe inflammation in humans. Flaviviridae nonstructural proteins, apart from their canonical roles in viral replication, have noncanonical functions strongly affecting antiviral innate immunity. Among these functions, antagonism of type I IFN is the most investigated; meanwhile, more data are accumulated on their role in the other pathways of innate response. This review systematizes the last known data on the role of Flaviviridae nonstructural proteins in molecular mechanisms of triggering inflammation, with an emphasis on their interactions with TLRs and RLRs, interference with NF-κB and cGAS-STING signaling, and activation of inflammasomes.
Collapse
|
9
|
Abstract
The immune repertoires of mollusks beyond commercially important organisms such as the pacific oyster Crassostrea gigas or vectors for human pathogens like the bloodfluke planorb Biomphalaria glabrata are understudied. Despite being an important model for neural aging and the role of inflammation in neuropathic pain, the immune repertoire of Aplysia californica is poorly understood. Recent discovery of a neurotropic nidovirus in Aplysia has highlighted the need for a better understanding of the Aplysia immunome. To address this gap in the literature, the Aplysia reference genome was mined using InterProScan and OrthoFinder for putative immune genes. The Aplysia genome encodes orthologs of all critical components of the classical Toll-like receptor (TLR) signaling pathway. The presence of many more TLRs and TLR associated adapters than known from vertebrates suggest yet uncharacterized, novel TLR associated signaling pathways. Aplysia also retains many nucleotide receptors and antiviral effectors known to play a key role in viral defense in vertebrates. However, the absence of key antiviral signaling adapters MAVS and STING in the Aplysia genome suggests divergence from vertebrates and bivalves in these pathways. The resulting immune gene set of this in silico study provides a basis for interpretation of future immune studies in this important model organism.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| |
Collapse
|
10
|
Wang G, Zhuang Z, Cheng J, Yang F, Zhu D, Jiang Z, Du W, Shen S, Huang J, Hua L, Chen Y. Overexpression of SHARPIN promotes tumor progression in ovarian cancer. Exp Mol Pathol 2022:104806. [PMID: 35798064 DOI: 10.1016/j.yexmp.2022.104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/04/2022] [Accepted: 06/29/2022] [Indexed: 11/04/2022]
Abstract
SHARPIN (Shank-associated RH domain interacting protein) plays an important role in tumorigenesis. However, its role in ovarian cancer remains largely unknown. To investigate this issue, we systematically analyzed the amplification and expression of the SHARPIN in the TCGA database. From the database, we found that SHARPIN was amplified in ovarian cancer compared to normal ovarian tissue, and the mRNA level of SHARPIN was significantly elevated in ovarian cancer compared to non-tumorigenic ovarian tissue. In addition, we observed similar results from ovarian cancer cell lines and clinical samples from ovarian cancer patients, which indicated that increased SHARPIN expression is associated with tumorigenesis in ovarian cancer. SHARPIN knockdown inhibited the migration and invasion of ovarian cancer cells, also inhibited cell cycle and promoted apoptosis, thereby suppressing cell proliferation. RNA-seq results showed that SHARPIN significantly increased the expression of P53 and P21 and decreased the expression of Cyclin D1 and c-Myc, all of which are involved in the regulation of cell proliferation. Subsequent mechanistic exploration revealed that SHARPIN knockdown increased the expression of caspases 3 and 9, leading to apoptosis of ovarian cancer cells. We also found that high expression of SHARPIN was associated with poor prognosis of ovarian cancer patients. Collectively, we demonstrated a positive correlation between SHARPIN and ovarian cancer progression and provide a basis for combined targeted therapy strategies for future ovarian cancer treatment.
Collapse
Affiliation(s)
- Guanghui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zi Zhuang
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jianxiang Cheng
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fan Yang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dachun Zhu
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiyuan Jiang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wensheng Du
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Siyuan Shen
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ju Huang
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Hua
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
11
|
Integrin Regulators in Neutrophils. Cells 2022; 11:cells11132025. [PMID: 35805108 PMCID: PMC9266208 DOI: 10.3390/cells11132025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Neutrophils are the most abundant leukocytes in humans and are critical for innate immunity and inflammation. Integrins are critical for neutrophil functions, especially for their recruitment to sites of inflammation or infections. Integrin conformational changes during activation have been heavily investigated but are still not fully understood. Many regulators, such as talin, Rap1-interacting adaptor molecule (RIAM), Rap1, and kindlin, are critical for integrin activation and might be potential targets for integrin-regulating drugs in treating inflammatory diseases. In this review, we outline integrin activation regulators in neutrophils with a focus on the above critical regulators, as well as newly discovered modulators that are involved in integrin activation.
Collapse
|
12
|
Yu B, Wang F, Wang Y. Advances in the Structural and Physiological Functions of SHARPIN. Front Immunol 2022; 13:858505. [PMID: 35547743 PMCID: PMC9084887 DOI: 10.3389/fimmu.2022.858505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
SHARPIN was initially found as a SHANK-associated protein. SHARPIN can be used as an important component to form the linear ubiquitin chain assembly complex (LUBAC) with HOIL-1L, HOIP to produce a linear ubiquitin chain connected N-terminal Met1, playing a critical role in various cellular processes including NF-κB signaling, inflammation, embryogenesis and apoptosis. SHARPIN alone can also participate in many critical physiological activities and cause various disorders such as chronic dermatitis, tumor, and Alzheimer’s disease. Mice with spontaneous autosomal recessive mutations in the SHARPIN protein mainly exhibit chronic dermatitis and immunodeficiency with elevated IgM. Additionally, SHARPIN alone also plays a key role in various cellular events, such as B cells activation and platelet aggregation. Structural studies of the SHARPIN or LUBAC have been reported continuously, advancing our understanding of it at the molecular level. However, the full-length structure of the SHARPIN or LUBAC was lagging, and the molecular mechanism underlying these physiological processes is also unclear. Herein, we summarized the currently resolved structure of SHARPIN as well as the emerging physiological role of SHARPIN alone or in LUBAC. Further structural and functional study of SHARPIN will provide insight into the role and underlying mechanism of SHARPIN in disease, as well as its potential application in therapeutic.
Collapse
Affiliation(s)
- Beiming Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
13
|
Ning S, Luo L, Yu B, Mai D, Wang F. Structures, functions, and inhibitors of LUBAC and its related diseases. J Leukoc Biol 2022; 112:799-811. [PMID: 35266190 DOI: 10.1002/jlb.3mr0222-508r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/12/2022] [Indexed: 11/09/2022] Open
Abstract
Ubiquitination is a reversible posttranslational modification in which ubiquitin is covalently attached to substrates at catalysis by E1, E2, and E3 enzymes. As the only E3 ligase for assembling linear ubiquitin chains in animals, the LUBAC complex exerts an essential role in the wide variety of cellular activities. Recent advances in the LUBAC complex, including structure, physiology, and correlation with malignant diseases, have enabled the discovery of potent inhibitors to treat immune-related diseases and cancer brought by LUBAC complex dysfunction. In this review, we summarize the current progress on the structures, physiologic functions, inhibitors of LUBAC, and its potential role in immune diseases, tumors, and other diseases, providing the theoretical basis for therapy of related diseases targeting the LUBAC complex.
Collapse
Affiliation(s)
- Shuo Ning
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lingling Luo
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Beiming Yu
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Dina Mai
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
14
|
Vozandychova V, Stojkova P, Hercik K, Rehulka P, Stulik J. The Ubiquitination System within Bacterial Host-Pathogen Interactions. Microorganisms 2021; 9:638. [PMID: 33808578 PMCID: PMC8003559 DOI: 10.3390/microorganisms9030638] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Ubiquitination of proteins, like phosphorylation and acetylation, is an important regulatory aspect influencing numerous and various cell processes, such as immune response signaling and autophagy. The study of ubiquitination has become essential to learning about host-pathogen interactions, and a better understanding of the detailed mechanisms through which pathogens affect ubiquitination processes in host cell will contribute to vaccine development and effective treatment of diseases. Pathogenic bacteria (e.g., Salmonella enterica, Legionella pneumophila and Shigella flexneri) encode many effector proteins, such as deubiquitinating enzymes (DUBs), targeting the host ubiquitin machinery and thus disrupting pertinent ubiquitin-dependent anti-bacterial response. We focus here upon the host ubiquitination system as an integral unit, its interconnection with the regulation of inflammation and autophagy, and primarily while examining pathogens manipulating the host ubiquitination system. Many bacterial effector proteins have already been described as being translocated into the host cell, where they directly regulate host defense processes. Due to their importance in pathogenic bacteria progression within the host, they are regarded as virulence factors essential for bacterial evasion. However, in some cases (e.g., Francisella tularensis) the host ubiquitination system is influenced by bacterial infection, although the responsible bacterial effectors are still unknown.
Collapse
Affiliation(s)
- Vera Vozandychova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| | - Pavla Stojkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| | - Kamil Hercik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000 Prague, Czech Republic
| | - Pavel Rehulka
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| |
Collapse
|
15
|
Hayashi K, Kataoka H, Minami M, Ikedo T, Miyata T, Shimizu K, Nagata M, Yang T, Yamamoto Y, Yokode M, Miyamoto S. Association of zinc administration with growth suppression of intracranial aneurysms via induction of A20. J Neurosurg 2021; 134:992-998. [PMID: 32217803 DOI: 10.3171/2020.1.jns192047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/20/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Zinc is an essential micronutrient with multiple biological effects, including antiinflammation. Previously, the authors demonstrated that the pathogenesis of intracranial aneurysms (IAs) is strongly related to chronic inflammation. In this study, the authors investigated whether administration of zinc inhibits the growth of IAs in a rat model. METHODS The authors analyzed surgically induced IAs in Sprague-Dawley male rats, which were subsequently treated with intraperitoneal injections of zinc sulfate heptahydrate (ZnSO4; 3 mg/kg/day) or vehicle for 4 weeks. RESULTS Size and wall thickness ratios of experimentally induced IAs were assessed in both treatment groups after induction and in a control group. The effects of zinc administration in IAs were examined by immunohistochemistry and Western blotting. Zinc administration significantly suppressed aneurysm size and also preserved the internal elastic lumen. Administration of zinc significantly attenuated infiltration of macrophages into IAs. CONCLUSIONS Zinc treatment significantly increased expression of the antiinflammatory signaling protein A20, an inhibitor of the nuclear factor κB (NF-κB) pathway, in rat IAs. Zinc administration may prevent the growth of rat IAs by inducing A20-attributed inactivation of NF-κB signaling.
Collapse
Affiliation(s)
- Kosuke Hayashi
- 1Department of Neurosurgery and
- 2Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Manabu Minami
- 2Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Taichi Ikedo
- 1Department of Neurosurgery and
- 2Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Miyata
- 1Department of Neurosurgery and
- 2Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Manabu Nagata
- 1Department of Neurosurgery and
- 2Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tao Yang
- 1Department of Neurosurgery and
- 2Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yu Yamamoto
- 1Department of Neurosurgery and
- 2Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masayuki Yokode
- 2Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
16
|
Meng Y, Sandow JJ, Czabotar PE, Murphy JM. The regulation of necroptosis by post-translational modifications. Cell Death Differ 2021; 28:861-883. [PMID: 33462412 PMCID: PMC7937688 DOI: 10.1038/s41418-020-00722-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023] Open
Abstract
Necroptosis is a caspase-independent, lytic form of programmed cell death whose errant activation has been widely implicated in many pathologies. The pathway relies on the assembly of the apical protein kinases, RIPK1 and RIPK3, into a high molecular weight cytoplasmic complex, termed the necrosome, downstream of death receptor or pathogen detector ligation. The necrosome serves as a platform for RIPK3-mediated phosphorylation of the terminal effector, the MLKL pseudokinase, which induces its oligomerization, translocation to, and perturbation of, the plasma membrane to cause cell death. Over the past 10 years, knowledge of the post-translational modifications that govern RIPK1, RIPK3 and MLKL conformation, activity, interactions, stability and localization has rapidly expanded. Here, we review current knowledge of the functions of phosphorylation, ubiquitylation, GlcNAcylation, proteolytic cleavage, and disulfide bonding in regulating necroptotic signaling. Post-translational modifications serve a broad array of functions in modulating RIPK1 engagement in, or exclusion from, cell death signaling, whereas the bulk of identified RIPK3 and MLKL modifications promote their necroptotic functions. An enhanced understanding of the modifying enzymes that tune RIPK1, RIPK3, and MLKL necroptotic functions will prove valuable in efforts to therapeutically modulate necroptosis.
Collapse
Affiliation(s)
- Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jarrod J Sandow
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
17
|
Hansen FM, Tanzer MC, Brüning F, Bludau I, Stafford C, Schulman BA, Robles MS, Karayel O, Mann M. Data-independent acquisition method for ubiquitinome analysis reveals regulation of circadian biology. Nat Commun 2021; 12:254. [PMID: 33431886 PMCID: PMC7801436 DOI: 10.1038/s41467-020-20509-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Protein ubiquitination is involved in virtually all cellular processes. Enrichment strategies employing antibodies targeting ubiquitin-derived diGly remnants combined with mass spectrometry (MS) have enabled investigations of ubiquitin signaling at a large scale. However, so far the power of data independent acquisition (DIA) with regards to sensitivity in single run analysis and data completeness have not yet been explored. Here, we develop a sensitive workflow combining diGly antibody-based enrichment and optimized Orbitrap-based DIA with comprehensive spectral libraries together containing more than 90,000 diGly peptides. This approach identifies 35,000 diGly peptides in single measurements of proteasome inhibitor-treated cells - double the number and quantitative accuracy of data dependent acquisition. Applied to TNF signaling, the workflow comprehensively captures known sites while adding many novel ones. An in-depth, systems-wide investigation of ubiquitination across the circadian cycle uncovers hundreds of cycling ubiquitination sites and dozens of cycling ubiquitin clusters within individual membrane protein receptors and transporters, highlighting new connections between metabolism and circadian regulation.
Collapse
Affiliation(s)
- Fynn M Hansen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maria C Tanzer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Franziska Brüning
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Medical Psychology, Faculty of Medicine, LMU, Munich, Germany
| | - Isabell Bludau
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Che Stafford
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maria S Robles
- Institute of Medical Psychology, Faculty of Medicine, LMU, Munich, Germany.
| | - Ozge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
18
|
Ubiquitination modification: critical regulation of IRF family stability and activity. SCIENCE CHINA-LIFE SCIENCES 2020; 64:957-965. [PMID: 33141302 PMCID: PMC7607542 DOI: 10.1007/s11427-020-1796-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 11/09/2022]
Abstract
Interferon regulatory factors (IRFs) play pivotal and critical roles in innate and adaptive immune responses; thus, precise and stringent regulation of the stability and activation of IRFs in physiological processes is necessary. The stability and activities of IRFs are directly or indirectly targeted by endogenous and exogenous proteins in an ubiquitin-dependent manner. However, few reviews have summarized how host E3 ligases/DUBs or viral proteins regulate IRF stability and activity. Additionally, with recent technological developments, details about the ubiquitination of IRFs have been continuously revealed. As knowledge of how these proteins function and interact with IRFs may facilitate a better understanding of the regulation of IRFs in immune responses or other biological processes, we summarized current studies on the direct ubiquitination of IRFs, with an emphasis on how these proteins interact with IRFs and affect their activities, which may provide exciting targets for drug development by regulating the functions of specific E3 ligases.
Collapse
|
19
|
Brazee PL, Morales-Nebreda L, Magnani ND, Garcia JG, Misharin AV, Ridge KM, Budinger GRS, Iwai K, Dada LA, Sznajder JI. Linear ubiquitin assembly complex regulates lung epithelial-driven responses during influenza infection. J Clin Invest 2020; 130:1301-1314. [PMID: 31714898 DOI: 10.1172/jci128368] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022] Open
Abstract
Influenza A virus (IAV) is among the most common causes of pneumonia-related death worldwide. Pulmonary epithelial cells are the primary target for viral infection and replication and respond by releasing inflammatory mediators that recruit immune cells to mount the host response. Severe lung injury and death during IAV infection result from an exuberant host inflammatory response. The linear ubiquitin assembly complex (LUBAC), composed of SHARPIN, HOIL-1L, and HOIP, is a critical regulator of NF-κB-dependent inflammation. Using mice with lung epithelial-specific deletions of HOIL-1L or HOIP in a model of IAV infection, we provided evidence that, while a reduction in the inflammatory response was beneficial, ablation of the LUBAC-dependent lung epithelial-driven response worsened lung injury and increased mortality. Moreover, we described a mechanism for the upregulation of HOIL-1L in infected and noninfected cells triggered by the activation of type I IFN receptor and mediated by IRF1, which was maladaptive and contributed to hyperinflammation. Thus, we propose that lung epithelial LUBAC acts as a molecular rheostat that could be selectively targeted to modulate the immune response in patients with severe IAV-induced pneumonia.
Collapse
Affiliation(s)
- Patricia L Brazee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Natalia D Magnani
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Joe Gn Garcia
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Kyoto, Japan
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
20
|
Brazee PL, Sznajder JI. Targeting the Linear Ubiquitin Assembly Complex to Modulate the Host Response and Improve Influenza A Virus Induced Lung Injury. Arch Bronconeumol 2020; 56:586-591. [PMID: 33994643 PMCID: PMC7489339 DOI: 10.1016/j.arbr.2020.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/15/2020] [Indexed: 12/01/2022]
Abstract
Influenza virus infection is characterized by symptoms ranging from mild congestion and body aches to severe pulmonary edema and respiratory failure. While the majority of those exposed have minor symptoms and recover with little morbidity, an estimated 500,000 people succumb to IAV-related complications each year worldwide. In these severe cases, an exaggerated inflammatory response, known as "cytokine storm", occurs which results in damage to the respiratory epithelial barrier and development of acute respiratory distress syndrome (ARDS). Data from retrospective human studies as well as experimental animal models of influenza virus infection highlight the fine line between an excessive and an inadequate immune response, where the host response must balance viral clearance with exuberant inflammation. Current pharmacological modulators of inflammation, including corticosteroids and statins, have not been successful in improving outcomes during influenza virus infection. We have reported that the amplitude of the inflammatory response is regulated by Linear Ubiquitin Assembly Complex (LUBAC) activity and that dampening of LUBAC activity is protective during severe influenza virus infection. Therapeutic modulation of LUBAC activity may be crucial to improve outcomes during severe influenza virus infection, as it functions as a molecular rheostat of the host response. Here we review the evidence for modulating inflammation to ameliorate influenza virus infection-induced lung injury, data on current anti-inflammatory strategies, and potential new avenues to target viral inflammation and improve outcomes.
Collapse
Affiliation(s)
- Patricia L Brazee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, United States
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, United States
| |
Collapse
|
21
|
Genes containing hexanucleotide repeats resembling C9ORF72 and expressed in the central nervous system are frequent in the human genome. Neurobiol Aging 2020; 97:148.e1-148.e7. [PMID: 32843153 DOI: 10.1016/j.neurobiolaging.2020.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022]
Abstract
More than 40 human diseases, mainly diseases affecting the central nervous system, are caused by the expansion of unstable nucleotide repeats. Repeats of sequences like (CAG)n present in different genes can be responsible for various diseases of the central nervous system. An expanded hexanucleotide repeat (GGGGCC)n in the C9ORF72 gene has been characterized as the most frequent genetic cause of amyotrophic lateral sclerosis and frontotemporal lobar dementia. In this study, we performed a genome-wide analysis in the human genome and identified 74 genes containing this precise hexanucleotide repeat, with a preference for a location in exon 1 or intron 1, similar to the C9ORF72 gene. A total of 36 of these 74 genes may be of interest as candidates in neurodevelopmental or neurodegenerative diseases, based on their function.
Collapse
|
22
|
Webster JD, Vucic D. The Balance of TNF Mediated Pathways Regulates Inflammatory Cell Death Signaling in Healthy and Diseased Tissues. Front Cell Dev Biol 2020; 8:365. [PMID: 32671059 PMCID: PMC7326080 DOI: 10.3389/fcell.2020.00365] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
Tumor necrosis factor alpha (TNF; TNFα) is a critical regulator of immune responses in healthy organisms and in disease. TNF is involved in the development and proper functioning of the immune system by mediating cell survival and cell death inducing signaling. TNF stimulated signaling pathways are tightly regulated by a series of phosphorylation and ubiquitination events, which enable timely association of TNF receptors-associated intracellular signaling complexes. Disruption of these signaling events can disturb the balance and the composition of signaling complexes, potentially resulting in severe inflammatory diseases.
Collapse
Affiliation(s)
- Joshua D Webster
- Departments of Pathology and Early Discovery Biochemistry, Genentech, South San Francisco, CA, United States
| | - Domagoj Vucic
- Departments of Pathology and Early Discovery Biochemistry, Genentech, South San Francisco, CA, United States
| |
Collapse
|
23
|
Brazee PL, Sznajder JI. Targeting the Linear Ubiquitin Assembly Complex to Modulate the Host Response and Improve Influenza A Virus Induced Lung Injury. Arch Bronconeumol 2020; 56:586-591. [PMID: 32405132 PMCID: PMC7218391 DOI: 10.1016/j.arbres.2020.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/15/2020] [Indexed: 11/17/2022]
Abstract
Influenza virus infection is characterized by symptoms ranging from mild congestion and body aches to severe pulmonary edema and respiratory failure. While the majority of those exposed have minor symptoms and recover with little morbidity, an estimated 500,000 people succumb to IAV-related complications each year worldwide. In these severe cases, an exaggerated inflammatory response, known as "cytokine storm", occurs which results in damage to the respiratory epithelial barrier and development of acute respiratory distress syndrome (ARDS). Data from retrospective human studies as well as experimental animal models of influenza virus infection highlight the fine line between an excessive and an inadequate immune response, where the host response must balance viral clearance with exuberant inflammation. Current pharmacological modulators of inflammation, including corticosteroids and statins, have not been successful in improving outcomes during influenza virus infection. We have reported that the amplitude of the inflammatory response is regulated by Linear Ubiquitin Assembly Complex (LUBAC) activity and that dampening of LUBAC activity is protective during severe influenza virus infection. Therapeutic modulation of LUBAC activity may be crucial to improve outcomes during severe influenza virus infection, as it functions as a molecular rheostat of the host response. Here we review the evidence for modulating inflammation to ameliorate influenza virus infection-induced lung injury, data on current anti-inflammatory strategies, and potential new avenues to target viral inflammation and improve outcomes.
Collapse
Affiliation(s)
- Patricia L Brazee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, United States
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, United States.
| |
Collapse
|
24
|
Tao M, Liu T, You Q, Jiang Z. p62 as a therapeutic target for tumor. Eur J Med Chem 2020; 193:112231. [PMID: 32193054 DOI: 10.1016/j.ejmech.2020.112231] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
Abstract
p62/SQSTM1 (hereafter as p62) is a stress-inducible cellular protein, which interacts with various signaling proteins to regulate a variety of cellular functions. Growing lines of evidence supported a critical role of p62 in tumorigenesis, and p62 may become a therapeutic target for tumor. In this review, we summarize biological functions of structural domains of p62, reported bioactive molecules targeting p62, and the relationship between p62 and tumorigenesis.
Collapse
Affiliation(s)
- Mengmin Tao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
25
|
Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther 2020; 5:11. [PMID: 32296023 PMCID: PMC7048745 DOI: 10.1038/s41392-020-0107-0] [Citation(s) in RCA: 391] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Ubiquitination, an important type of protein posttranslational modification (PTM), plays a crucial role in controlling substrate degradation and subsequently mediates the "quantity" and "quality" of various proteins, serving to ensure cell homeostasis and guarantee life activities. The regulation of ubiquitination is multifaceted and works not only at the transcriptional and posttranslational levels (phosphorylation, acetylation, methylation, etc.) but also at the protein level (activators or repressors). When regulatory mechanisms are aberrant, the altered biological processes may subsequently induce serious human diseases, especially various types of cancer. In tumorigenesis, the altered biological processes involve tumor metabolism, the immunological tumor microenvironment (TME), cancer stem cell (CSC) stemness and so on. With regard to tumor metabolism, the ubiquitination of some key proteins such as RagA, mTOR, PTEN, AKT, c-Myc and P53 significantly regulates the activity of the mTORC1, AMPK and PTEN-AKT signaling pathways. In addition, ubiquitination in the TLR, RLR and STING-dependent signaling pathways also modulates the TME. Moreover, the ubiquitination of core stem cell regulator triplets (Nanog, Oct4 and Sox2) and members of the Wnt and Hippo-YAP signaling pathways participates in the maintenance of CSC stemness. Based on the altered components, including the proteasome, E3 ligases, E1, E2 and deubiquitinases (DUBs), many molecular targeted drugs have been developed to combat cancer. Among them, small molecule inhibitors targeting the proteasome, such as bortezomib, carfilzomib, oprozomib and ixazomib, have achieved tangible success. In addition, MLN7243 and MLN4924 (targeting the E1 enzyme), Leucettamol A and CC0651 (targeting the E2 enzyme), nutlin and MI-219 (targeting the E3 enzyme), and compounds G5 and F6 (targeting DUB activity) have also shown potential in preclinical cancer treatment. In this review, we summarize the latest progress in understanding the substrates for ubiquitination and their special functions in tumor metabolism regulation, TME modulation and CSC stemness maintenance. Moreover, potential therapeutic targets for cancer are reviewed, as are the therapeutic effects of targeted drugs.
Collapse
Affiliation(s)
- Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China.
| | - Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
| | - Lei Chen
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
26
|
Krishnan D, Menon RN, Mathuranath PS, Gopala S. A novel role for SHARPIN in amyloid-β phagocytosis and inflammation by peripheral blood-derived macrophages in Alzheimer's disease. Neurobiol Aging 2020; 93:131-141. [PMID: 32165044 DOI: 10.1016/j.neurobiolaging.2020.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/03/2020] [Accepted: 02/03/2020] [Indexed: 01/06/2023]
Abstract
Defective immune cell-mediated clearance of amyloid-beta (Aβ) and Aβ-associated inflammatory activation of immune cells are key contributors in pathogenesis of Alzheimer's disease (AD). However, the underlying mechanisms remain elusive. Shank-associated RH domain-interacting protein (SHARPIN) is a critical regulator of inflammatory response. Using in vitro cultures of THP-1-derived macrophages exposed to Aβ and AD patient-derived macrophages, we demonstrate the role of SHARPIN as an obligate regulator of Aβ phagocytosis and inflammation in macrophages. Specifically, Aβ-stimulated SHARPIN in THP-1 macrophages promoted Aβ phagocytosis and expression of proinflammatory markers. In addition, Aβ-stimulated SHARPIN in macrophages promoted neuronal cell-death in differentiated SHSY5Y neurons. Furthermore, we report a novel regulatory link between SHARPIN and the NLRP3 inflammasome in response to Aβ in THP-1 macrophages. In line with our in vitro observations, a strong positive association was demonstrated between levels of Aβ42 in blood plasma of mild cognitive impairment and AD patients with SHARPIN expression in macrophages obtained from respective patient-derived peripheral blood mononuclear cells. Together, our findings show SHARPIN as a critical determinant in mediating macrophage response to Aβ and pathogenesis of AD.
Collapse
Affiliation(s)
- Dhanya Krishnan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Trivandrum, Kerala, India
| | - Ramsekhar N Menon
- Department of Neurology, Cognition & Behavioural Neurology Section, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Trivandrum, Kerala, India
| | | | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Trivandrum, Kerala, India.
| |
Collapse
|
27
|
The Immuno-Modulatory Effects of Inhibitor of Apoptosis Protein Antagonists in Cancer Immunotherapy. Cells 2020; 9:cells9010207. [PMID: 31947615 PMCID: PMC7017284 DOI: 10.3390/cells9010207] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/06/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
One of the hallmarks of cancer cells is their ability to evade cell death via apoptosis. The inhibitor of apoptosis proteins (IAPs) are a family of proteins that act to promote cell survival. For this reason, upregulation of IAPs is associated with a number of cancer types as a mechanism of resistance to cell death and chemotherapy. As such, IAPs are considered a promising therapeutic target for cancer treatment, based on the role of IAPs in resistance to apoptosis, tumour progression and poor patient prognosis. The mitochondrial protein smac (second mitochondrial activator of caspases), is an endogenous inhibitor of IAPs, and several small molecule mimetics of smac (smac-mimetics) have been developed in order to antagonise IAPs in cancer cells and restore sensitivity to apoptotic stimuli. However, recent studies have revealed that smac-mimetics have broader effects than was first attributed. It is now understood that they are key regulators of innate immune signalling and have wide reaching immuno-modulatory properties. As such, they are ideal candidates for immunotherapy combinations. Pre-clinically, successful combination therapies incorporating smac-mimetics and oncolytic viruses, as with chimeric antigen receptor (CAR) T cell therapy, have been reported, and clinical trials incorporating smac-mimetics and immune checkpoint blockade are ongoing. Here, the potential of IAP antagonism to enhance immunotherapy strategies for the treatment of cancer will be discussed.
Collapse
|
28
|
Martínez-Torres RJ, Chamaillard M. The Ubiquitin Code of NODs Signaling Pathways in Health and Disease. Front Immunol 2019; 10:2648. [PMID: 31803185 PMCID: PMC6877504 DOI: 10.3389/fimmu.2019.02648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022] Open
Abstract
NOD1 and NOD2 belong to the family of intracellular Nod-like receptors (NLRs) that are involved in the maintenance of tissue homeostasis and host defense against bacteria and some viruses. When sensing such microbes, those NLRs act as hitherto scaffolding proteins for activating multiple downstream inflammatory signaling pathways to promote the production of cytokines and chemokines that are ultimately important for pathogen clearance. In recent years, substantial advances have been made on our understanding of a contextual series of intracellular processes that regulate such group of innate immune molecules, including phosphorylation and ubiquitination. Specifically, we will herein discuss those recently described posttranslational modifications of either NOD1 or NOD2 that fundamentally contribute to the robustness of protective responses within specific tissues through either internal domain association or external interactions with various proteins. From a public health perspective, it is then anticipated that a better understanding how genetic mutations and deregulation of these activating and repressing mechanisms might break down in diseases would open up new therapeutic avenues for humanity.
Collapse
Affiliation(s)
- Rubén Julio Martínez-Torres
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Mathias Chamaillard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
29
|
Tian Z, Tang J, Yang Q, Li X, Zhu J, Wu G. Atypical ubiquitin-binding protein SHARPIN promotes breast cancer progression. Biomed Pharmacother 2019; 119:109414. [DOI: 10.1016/j.biopha.2019.109414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 01/16/2023] Open
|
30
|
Luo L, Zhu D, Huang R, Xiong L, Mehjabin R, He L, Liao L, Li Y, Zhu Z, Wang Y. Molecular cloning and preliminary functional analysis of six RING-between-ring (RBR) genes in grass carp (Ctenopharyngodon idellus). FISH & SHELLFISH IMMUNOLOGY 2019; 87:62-72. [PMID: 30610929 DOI: 10.1016/j.fsi.2018.12.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Ubiquitination is a post-translational modification of proteins that is widely present in eukaryotic cells. There is increasing evidence that ubiquitinated proteins play crucial roles in the immune response process. In mammals, RING-between-RING (RBR) proteins play a key role in regulating immune signaling as the important E3 ubiquitin ligases during ubiquitination. However, the function of RBR in fish is still unclear. In the present study, six RBR genes (RNF19A, RNF19B, RNF144AA, RNF144AB, RNF144B and RNF217) of grass carp (Ctenopharyngodon idellus) were cloned and characterized. Similar to mammals, all six members of RBR family contained RING, in-between-ring (IBR) and transmembrane (TM) domains. These genes were constitutively expressed in all studied tissues, but the relative expression level differed. Following grass carp reovirus(GCRV) infection, the expression of six RBR genes in liver, gill, spleen and intestine significantly altered. Additionally, their expression in Ctenopharyngodon idellus kidney (CIK) cells was significantly increased after GCRV infection. And deficiency of RNF144B in CIK with small interference RNA (siRNA) up-regulated polyinosinic:polycytidylic acid poly(I:C))-induced inflammatory cytokines production, including IFN-I, TNF-α, IL-6, and transcription factor IRF3, which demonstrated that RNF144B was a negative regulator of inflammatory cytokines. Our results suggested that the RBR might play a vital role in regulating immune signaling and laid the foundation for the further mechanism research of RBR in fishes.
Collapse
Affiliation(s)
- Lifei Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Denghui Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lv Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rumana Mehjabin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
31
|
Post-translational modification of the death receptor complex as a potential therapeutic target in cancer. Arch Pharm Res 2019; 42:76-87. [PMID: 30610617 DOI: 10.1007/s12272-018-01107-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/27/2018] [Indexed: 12/26/2022]
Abstract
Programmed cell death is critical to the physiological function of multi-cellular organisms, controlling development, immunity, inflammation, and cancer progression. Death receptor (DR)-mediated regulation of a protease functions as a second messenger to initiate a death signal cascade to induce apoptosis or necroptosis. Recently, it has become clear that post-translational modifications (PTMs) of signaling components in the DR complex are highly complex, temporally controlled, and tightly regulated, and play an important role in cell death signaling. This review focuses on the molecular mechanisms and pathophysiological consequences of PTMs on the formation of the DR signaling complex, especially with respect to tumor necrosis factor receptor 1 (TNFR1). Furthermore, characterization of the role of PTMs in spatially different TNFR1 complexes (complexes I and II), especially with respect to the role of ubiquitination and phosphorylation of receptor interacting protein 1 (RIP1) in programmed cell death in cancer cells, will be reviewed. By integrating recently gained insight of the functional importance of PTMs in complex I or II, this review discusses how the concerted action of PTMs results in life or death upon DR ligation. Finally, the emerging concept of a sequential cell death checkpoint by the PTMs of RIP1, which may reveal novel therapeutic opportunities for the treatment of some cancers, will be discussed.
Collapse
|
32
|
Ullah K, Zubia E, Narayan M, Yang J, Xu G. Diverse roles of the E2/E3 hybrid enzyme
UBE
2O in the regulation of protein ubiquitination, cellular functions, and disease onset. FEBS J 2018; 286:2018-2034. [DOI: 10.1111/febs.14708] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/18/2018] [Accepted: 11/19/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Kifayat Ullah
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Emmanuel Zubia
- Department of Chemistry and Biochemistry The University of Texas at El Paso TX USA
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry The University of Texas at El Paso TX USA
| | - Jing Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| |
Collapse
|
33
|
Lork M, Staal J, Beyaert R. Ubiquitination and phosphorylation of the CARD11-BCL10-MALT1 signalosome in T cells. Cell Immunol 2018; 340:103877. [PMID: 30514565 DOI: 10.1016/j.cellimm.2018.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022]
Abstract
Antigen receptor-induced signaling plays an important role in inflammation and immunity. Formation of a CARD11-BCL10-MALT1 (CBM) signaling complex is a key event in T- and B cell receptor-induced gene expression by regulating NF-κB activation and mRNA stability. Deregulated CARD11, BCL10 or MALT1 expression or CBM signaling have been associated with immunodeficiency, autoimmunity and cancer, indicating that CBM formation and function have to be tightly regulated. Over the past years great progress has been made in deciphering the molecular mechanisms of assembly and disassembly of the CBM complex. In this context, several posttranslational modifications play an indispensable role in regulating CBM function and downstream signal transduction. In this review we summarize how the different CBM components as well as their interplay are regulated by protein ubiquitination and phosphorylation in the context of T cell receptor signaling.
Collapse
Affiliation(s)
- Marie Lork
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium
| | - Jens Staal
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium.
| |
Collapse
|
34
|
Tang L, Wang J, Zhu J, Liang Y. Down-regulated SHARPIN may accelerate the development of atopic dermatitis through activating interleukin-33/ST2 signalling. Exp Dermatol 2018; 27:1328-1335. [PMID: 30230040 DOI: 10.1111/exd.13784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/05/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022]
Abstract
SHARPIN is an important component of the linear ubiquitin chain assembly complex (LUBAC). Loss of function of SHARPIN results in eosinophilic inflammation in multiple organs including skin with Th2 -dominant cytokines and dysregulated development of lymphoid tissues in mice. The clinicopathological features are similar to atopic dermatitis (AD) in humans. In order to investigate the potential role of SHARPIN in the pathogenesis of AD, we performed genetic association study of the genotypes and haplotypes as well as SHARPIN's expression between AD cases and controls. We found three mutations (g.480G>A, g.4576A>G and g.5070C>T) in patient group, and significantly decreased expression in AD lesions, suggesting a primary role of SHARPIN during AD development. Lentivirus-mediated in vitro assays identified that knockdown of SHARPIN can induce elevated expression of IL-33 and its orphan receptor ST2, FLG and STAT3 and NF-κB inactivation in HaCaT keratinocytes, which has been widely evidenced in regulating AD development. ST2 expression was highly induced in SHARPIN-silenced HaCaT keratinocytes after the combined stimulation of IL-4 and IL-13. Our in vivo and in vitro findings implicated that SHARPIN may be a novel participant in the pathogenesis and/or new therapeutic target of AD.
Collapse
Affiliation(s)
- Lingjie Tang
- Department of Dermatology, Cosmetology & Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jiaman Wang
- Department of Dermatology, Cosmetology & Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jingna Zhu
- Department of Dermatology, Cosmetology & Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yanhua Liang
- Department of Dermatology, Cosmetology & Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
35
|
Norkowski S, Schmidt MA, Rüter C. The species-spanning family of LPX-motif harbouring effector proteins. Cell Microbiol 2018; 20:e12945. [PMID: 30137651 DOI: 10.1111/cmi.12945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022]
Abstract
The delivery of effector proteins into infected eukaryotic cells represents a key virulence feature of many microbial pathogens in order to derail essential cellular processes and effectively counter the host defence system. Although bacterial effectors are truly numerous and exhibit a wide range of biochemical activities, commonalities in terms of protein structure and function shared by many bacterial pathogens exist. Recent progress has shed light on a species-spanning family of bacterial effectors containing an LPX repeat motif as a subtype of the leucine-rich repeat superfamily, partially combined with a novel E3 ubiquitin ligase domain. This review highlights the immunomodulatory effects of LPX effector proteins, with particular emphasis on the exploitation of the host ubiquitin system.
Collapse
Affiliation(s)
- Stefanie Norkowski
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - M Alexander Schmidt
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Christian Rüter
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| |
Collapse
|
36
|
Magnani ND, Dada LA, Sznajder JI. Ubiquitin-proteasome signaling in lung injury. Transl Res 2018; 198:29-39. [PMID: 29752900 PMCID: PMC6986356 DOI: 10.1016/j.trsl.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 12/21/2022]
Abstract
Cell homeostasis requires precise coordination of cellular proteins function. Ubiquitination is a post-translational modification that modulates protein half-life and function and is tightly regulated by ubiquitin E3 ligases and deubiquitinating enzymes. Lung injury can progress to acute respiratory distress syndrome that is characterized by an inflammatory response and disruption of the alveolocapillary barrier resulting in alveolar edema accumulation and hypoxemia. Ubiquitination plays an important role in the pathobiology of acute lung injury as it regulates the proteins modulating the alveolocapillary barrier and the inflammatory response. Better understanding of the signaling pathways regulated by ubiquitination may lead to novel therapeutic approaches by targeting specific elements of the ubiquitination pathways.
Collapse
Affiliation(s)
- Natalia D Magnani
- Pulmonary and Critical Care Division, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Laura A Dada
- Pulmonary and Critical Care Division, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Jacob I Sznajder
- Pulmonary and Critical Care Division, Northwestern Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
37
|
The Superimposed Deubiquitination Effect of OTULIN and Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Nsp11 Promotes Multiplication of PRRSV. J Virol 2018; 92:JVI.00175-18. [PMID: 29444948 DOI: 10.1128/jvi.00175-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023] Open
Abstract
Linear ubiquitination plays an important role in the regulation of the immune response by regulating nuclear factor κB (NF-κB). The linear ubiquitination-specific deubiquitinase ovarian tumor domain deubiquitinase with linear linkage specificity (OTULIN) can control the immune signaling transduction pathway by restricting the Met1-linked ubiquitination process. In our study, the porcine OTLLIN gene was cloned and deubiquitin functions were detected in a porcine reproductive and respiratory syndrome virus (PRRSV)-infected-cell model. PRRSV infection promotes the expression of the OTULIN gene; in turn, overexpression of OTULIN contributes to PRRSV proliferation. There is negative regulation of innate immunity with OTULIN during viral infection. The cooperative effects of swine OTULIN and PRRSV Nsp11 potentiate the ability to reduce levels of cellular protein ubiquitin associated with innate immunity. Importantly, PRRSV Nsp11 recruits OTULIN through a nonenzymatic combination to enhance its ability to remove linear ubiquitination targeting NEMO, resulting in a superimposed effect that inhibits the production of type I interferons (IFNs). Our report presents a new model of virus utilization of the ubiquitin-protease system in vivo from the perspective of the viral proteins that interact with cell deubiquitination enzymes, providing new ideas for prevention and control of PRRSV.IMPORTANCE Deubiquitination effects of swine OTULIN were identified. The interaction between porcine OTULIN and PRRSV Nsp11 is dependent on the OTU domain. PRRSV Nsp11 recruits OTULIN through a nonenzymatic combination to promote removal of linear ubiquitination targeting NEMO, resulting in a superimposed effect that inhibits the production of type I IFNs.
Collapse
|
38
|
Courtois G, Fauvarque MO. The Many Roles of Ubiquitin in NF-κB Signaling. Biomedicines 2018; 6:E43. [PMID: 29642643 PMCID: PMC6027159 DOI: 10.3390/biomedicines6020043] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
The nuclear factor κB (NF-κB) signaling pathway ubiquitously controls cell growth and survival in basic conditions as well as rapid resetting of cellular functions following environment changes or pathogenic insults. Moreover, its deregulation is frequently observed during cell transformation, chronic inflammation or autoimmunity. Understanding how it is properly regulated therefore is a prerequisite to managing these adverse situations. Over the last years evidence has accumulated showing that ubiquitination is a key process in NF-κB activation and its resolution. Here, we examine the various functions of ubiquitin in NF-κB signaling and more specifically, how it controls signal transduction at the molecular level and impacts in vivo on NF-κB regulated cellular processes.
Collapse
|
39
|
|
40
|
Aguilar-Alonso F, Whiting AL, Kim YJ, Bernal F. Biophysical and biological evaluation of optimized stapled peptide inhibitors of the linear ubiquitin chain assembly complex (LUBAC). Bioorg Med Chem 2017; 26:1179-1188. [PMID: 29246782 DOI: 10.1016/j.bmc.2017.11.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/17/2017] [Accepted: 11/29/2017] [Indexed: 10/18/2022]
Abstract
Linear ubiquitylation, in which ubiquitin units are covalently linked through N- and C-terminal amino acids, is a unique cellular signaling mechanism. This process is controlled by a single E3 ubiquitin ligase, the linear ubiquitin chain assembly complex (LUBAC), which is composed of three proteins - HOIL-1L, HOIP and SHARPIN. LUBAC is involved in the activation of the canonical NF-κB pathway and has been linked to NF-κB dependent malignancies. In this work, we present HOIP-based stapled alpha-helical peptides designed to inhibit LUBAC through the disruption of the HOIL-1L-HOIP interaction and loss of the functional complex. We find our HOIP peptides to be active LUBAC ubiquitylation inhibitors in vitro, though through interaction with HOIP rather than HOIL. Active peptides were shown to have inhibitory effects on cell viability, reduced NF-κB activity and decreased production of NF-κB related gene products. This work further demonstrates the potential of LUBAC as a therapeutic target and of the use of stapled peptides as inhibitors of protein-protein interactions.
Collapse
Affiliation(s)
- Francisco Aguilar-Alonso
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Amanda L Whiting
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Ye Joon Kim
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Federico Bernal
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States.
| |
Collapse
|
41
|
Martín-Vicente M, Medrano LM, Resino S, García-Sastre A, Martínez I. TRIM25 in the Regulation of the Antiviral Innate Immunity. Front Immunol 2017; 8:1187. [PMID: 29018447 PMCID: PMC5614919 DOI: 10.3389/fimmu.2017.01187] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022] Open
Abstract
TRIM25 is an E3 ubiquitin ligase enzyme that is involved in various cellular processes, including regulation of the innate immune response against viruses. TRIM25-mediated ubiquitination of the cytosolic pattern recognition receptor RIG-I is an essential step for initiation of the intracellular antiviral response and has been thoroughly documented. In recent years, however, additional roles of TRIM25 in early innate immunity are emerging, including negative regulation of RIG-I, activation of the melanoma differentiation-associated protein 5–mitochondrial antiviral signaling protein–TRAF6 antiviral axis and modulation of p53 levels and activity. In addition, the ability of TRIM25 to bind RNA may uncover new mechanisms by which this molecule regulates intracellular signaling and/or RNA virus replication.
Collapse
Affiliation(s)
- María Martín-Vicente
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Luz M Medrano
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
42
|
Meininger I, Krappmann D. Lymphocyte signaling and activation by the CARMA1-BCL10-MALT1 signalosome. Biol Chem 2017; 397:1315-1333. [PMID: 27420898 DOI: 10.1515/hsz-2016-0216] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/10/2016] [Indexed: 12/16/2022]
Abstract
The CARMA1-BCL10-MALT1 (CBM) signalosome triggers canonical NF-κB signaling and lymphocyte activation upon antigen-receptor stimulation. Genetic studies in mice and the analysis of human immune pathologies unveiled a critical role of the CBM complex in adaptive immune responses. Great progress has been made in elucidating the fundamental mechanisms that dictate CBM assembly and disassembly. By bridging proximal antigen-receptor signaling to downstream signaling pathways, the CBM complex exerts a crucial scaffolding function. Moreover, the MALT1 subunit confers a unique proteolytic activity that is key for lymphocyte activation. Deregulated 'chronic' CBM signaling drives constitutive NF-κB signaling and MALT1 activation, which contribute to the development of autoimmune and inflammatory diseases as well as lymphomagenesis. Thus, the processes that govern CBM activation and function are promising targets for the treatment of immune disorders. Here, we summarize the current knowledge on the functions and mechanisms of CBM signaling in lymphocytes and how CBM deregulations contribute to aberrant signaling in malignant lymphomas.
Collapse
|
43
|
Brazee P, Dada LA, Sznajder JI. Role of Linear Ubiquitination in Health and Disease. Am J Respir Cell Mol Biol 2017; 54:761-8. [PMID: 26848516 DOI: 10.1165/rcmb.2016-0014tr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The covalent attachment of ubiquitin to target proteins is one of the most prevalent post-translational modifications, regulating a myriad of cellular processes including cell growth, survival, and metabolism. Recently, a novel RING E3 ligase complex was described, called linear ubiquitin assembly complex (LUBAC), which is capable of connecting ubiquitin molecules in a novel head-to-tail fashion via the N-terminal methionine residue. LUBAC is a heteromeric complex composed of heme-oxidized iron-responsive element-binding protein 2 ubiquitin ligase-1L (HOIL-1L), HOIL-1L-interacting protein, and shank-associated RH domain-interacting protein (SHARPIN). The essential role of LUBAC-generated linear chains for activation of nuclear factor-κB (NF-κB) signaling was first described in the activation of tumor necrosis factor-α receptor signaling complex. A decade of research has identified additional pathways that use LUBAC for downstream signaling, including CD40 ligand and the IL-1β receptor, as well as cytosolic pattern recognition receptors including nucleotide-binding oligomerization domain containing 2 (NOD2), retinoic acid-inducible gene 1 (RIG-1), and the NOD-like receptor family, pyrin domain containing 3 inflammasome (NLRP3). Even though the three components of the complex are required for full activation of NF-κB, the individual components of LUBAC regulate specific cell type- and stimuli-dependent effects. In humans, autosomal defects in LUBAC are associated with both autoinflammation and immunodeficiency, with additional disorders described in mice. Moreover, in the lung epithelium, HOIL-1L ubiquitinates target proteins independently of the other LUBAC components, adding another layer of complexity to the function and regulation of LUBAC. Although many advances have been made, the diverse functions of linear ubiquitin chains and the regulation of LUBAC are not yet completely understood. In this review, we discuss the various roles of linear ubiquitin chains and point to areas of study that would benefit from further investigation into LUBAC-mediated signaling pathways in lung pathophysiology.
Collapse
Affiliation(s)
- Patricia Brazee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
44
|
Bal E, Laplantine E, Hamel Y, Dubosclard V, Boisson B, Pescatore A, Picard C, Hadj-Rabia S, Royer G, Steffann J, Bonnefont JP, Ursini VM, Vabres P, Munnich A, Casanova JL, Bodemer C, Weil R, Agou F, Smahi A. Lack of interaction between NEMO and SHARPIN impairs linear ubiquitination and NF-κB activation and leads to incontinentia pigmenti. J Allergy Clin Immunol 2017; 140:1671-1682.e2. [PMID: 28249776 DOI: 10.1016/j.jaci.2016.11.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Incontinentia pigmenti (IP; MIM308300) is a severe, male-lethal, X-linked, dominant genodermatosis resulting from loss-of-function mutations in the IKBKG gene encoding nuclear factor κB (NF-κB) essential modulator (NEMO; the regulatory subunit of the IκB kinase [IKK] complex). In 80% of cases of IP, the deletion of exons 4 to 10 leads to the absence of NEMO and total inhibition of NF-κB signaling. Here we describe a new IKBKG mutation responsible for IP resulting in an inactive truncated form of NEMO. OBJECTIVES We sought to identify the mechanism or mechanisms by which the truncated NEMO protein inhibits the NF-κB signaling pathway. METHODS We sequenced the IKBKG gene in patients with IP and performed complementation and transactivation assays in NEMO-deficient cells. We also used immunoprecipitation assays, immunoblotting, and an in situ proximity ligation assay to characterize the truncated NEMO protein interactions with IKK-α, IKK-β, TNF receptor-associated factor 6, TNF receptor-associated factor 2, receptor-interacting protein 1, Hemo-oxidized iron regulatory protein 2 ligase 1 (HOIL-1), HOIL-1-interacting protein, and SHANK-associated RH domain-interacting protein. Lastly, we assessed NEMO linear ubiquitination using immunoblotting and investigated the formation of NEMO-containing structures (using immunostaining and confocal microscopy) after cell stimulation with IL-1β. RESULTS We identified a novel splice mutation in IKBKG (c.518+2T>G, resulting in an in-frame deletion: p.DelQ134_R256). The mutant NEMO lacked part of the CC1 coiled-coil and HLX2 helical domain. The p.DelQ134_R256 mutation caused inhibition of NF-κB signaling, although the truncated NEMO protein interacted with proteins involved in activation of NF-κB signaling. The IL-1β-induced formation of NEMO-containing structures was impaired in fibroblasts from patients with IP carrying the truncated NEMO form (as also observed in HOIL-1-/- cells). The truncated NEMO interaction with SHANK-associated RH domain-interacting protein was impaired in a male fetus with IP, leading to defective linear ubiquitination. CONCLUSION We identified a hitherto unreported disease mechanism (defective linear ubiquitination) in patients with IP.
Collapse
Affiliation(s)
- Elodie Bal
- INSERM U1163 Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France
| | - Emmanuel Laplantine
- Laboratory of Signaling and Pathogenesis, CNRS UMR 3691, Pasteur Institute, Paris, France
| | - Yamina Hamel
- INSERM U1163 Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France
| | - Virginie Dubosclard
- Departments of Cell Biology and Infection and of Structural Biology and Chemistry, URA 2185, Pasteur Institute, Paris, France
| | - Bertrand Boisson
- Rockefeller Branch, St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY; Necker Branch, Laboratory of Human Genetics of Infectious Diseases, UMR 1163, Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France
| | - Alessandra Pescatore
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" (CNR), Naples, Italy
| | - Capucine Picard
- Rockefeller Branch, St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY; Necker Branch, Laboratory of Human Genetics of Infectious Diseases, UMR 1163, Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France; Immunodeficiency Study Center, Necker Children's Hospital, Paris, France
| | - Smaïl Hadj-Rabia
- INSERM U1163 Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France; Department of Dermatology, Referral Center for Genodermatoses (MAGEC), Imagine Institute, Necker-Enfants Malades Hospital (AP-HP), Paris, France
| | - Ghislaine Royer
- INSERM U1163 Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France
| | - Julie Steffann
- INSERM U1163 Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France
| | - Jean-Paul Bonnefont
- INSERM U1163 Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France
| | - Valeria M Ursini
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" (CNR), Naples, Italy
| | - Pierre Vabres
- Department of Dermatology, Dijon CHU, Medicine Faculty and Bourgogne University, EA427 Genetic of Development Abonomalies, Bocage Hospital, Dijon, France
| | - Arnold Munnich
- INSERM U1163 Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France
| | - Jean-Laurent Casanova
- Rockefeller Branch, St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY; Necker Branch, Laboratory of Human Genetics of Infectious Diseases, UMR 1163, Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France; Pediatric Hematology, Immunology & Rheumatology Unit, Necker Children's Hospital, Paris, France
| | - Christine Bodemer
- INSERM U1163 Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France; Department of Dermatology, Referral Center for Genodermatoses (MAGEC), Imagine Institute, Necker-Enfants Malades Hospital (AP-HP), Paris, France
| | - Robert Weil
- Laboratory of Signaling and Pathogenesis, CNRS UMR 3691, Pasteur Institute, Paris, France
| | - Fabrice Agou
- Departments of Cell Biology and Infection and of Structural Biology and Chemistry, URA 2185, Pasteur Institute, Paris, France
| | - Asma Smahi
- INSERM U1163 Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France.
| |
Collapse
|
45
|
Funakoshi-Tago M, Moriwaki T, Ueda F, Tamura H, Kasahara T, Tago K. Phosphorylated CIS suppresses the Epo or JAK2 V617F mutant-triggered cell proliferation through binding to EpoR. Cell Signal 2017; 31:41-57. [DOI: 10.1016/j.cellsig.2016.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 11/21/2016] [Accepted: 12/23/2016] [Indexed: 12/01/2022]
|
46
|
Okamura K, Kitamura A, Sasaki Y, Chung DH, Kagami S, Iwai K, Yasutomo K. Survival of mature T cells depends on signaling through HOIP. Sci Rep 2016; 6:36135. [PMID: 27786304 PMCID: PMC5081559 DOI: 10.1038/srep36135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/11/2016] [Indexed: 01/19/2023] Open
Abstract
T cell development in the thymus is controlled by a multistep process. The NF-κB pathway regulates T cell development as well as T cell activation at multiple differentiation stages. The linear ubiquitin chain assembly complex (LUBAC) is composed of Sharpin, HOIL-1L and HOIP, and it is crucial for regulating the NF-κB and cell death pathways. However, little is known about the roles of LUBAC in T-cell development and activation. Here, we show that in T-HOIPΔlinear mice lacking the ubiquitin ligase activity of LUBAC, thymic CD4+ or CD8+ T cell numbers were markedly reduced with severe defects in NKT cell development. HOIPΔlinear CD4+ T cells failed to phosphorylate IκBα and JNK through T cell receptor-mediated stimulation. Mature CD4+ and CD8+ T cells in T-HOIPΔlinear mice underwent apoptosis more rapidly than control T cells, and it was accompanied by lower CD127 expression on CD4+CD24low and CD8+CD24low T cells in the thymus. The enforced expression of CD127 in T-HOIPΔlinear thymocytes rescued the development of mature CD8+ T cells. Collectively, our results showed that LUBAC ligase activity is key for the survival of mature T cells, and suggest multiple roles of the NF-κB and cell death pathways in activating or maintaining T cell-mediated adaptive immune responses.
Collapse
Affiliation(s)
- Kazumi Okamura
- Department of Immunology &Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan.,Department of Pediatrics, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Akiko Kitamura
- Department of Immunology &Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yoshiteru Sasaki
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Shoji Kagami
- Department of Pediatrics, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Yasutomo
- Department of Immunology &Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
47
|
Qin Z, Bai Z, Sun Y, Niu X, Xiao W. PCNA-Ub polyubiquitination inhibits cell proliferation and induces cell-cycle checkpoints. Cell Cycle 2016; 15:3390-3401. [PMID: 27753536 DOI: 10.1080/15384101.2016.1245247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
In response to replication-blocking lesions, proliferating cell nuclear antigen (PCNA) can be sequentially ubiquitinated at the K164 residue leading to 2 modes of DNA-damage tolerance, namely translesion DNA synthesis (TLS) and error-free lesion bypass. Ectopic expression of PCNA fused with ubiquitin (Ub) lacking the 2 C-terminal Gly residues resembles PCNA monoubiquitination-mediated TLS. However, if the fused Ub contains C-terminal Gly residues, it is further polyubiquitinated and inhibits cell proliferation. Unexpectedly, the polyubiquitination chain does not require any surface Lys residues and is likely to be head-to-tail linked. Such PCNA polyubiquitination interferes with replication, arrests cells at the S-phase and activates the p53 checkpoint pathway. The above cell-cycle arrest is reversible in an ATR-dependent manner, as simultaneous inhibition of ATR, but not ATM, induces apoptosis. Since ectopic expression of PCNA-Ub also induces double-strand breaks that colocalize with single-stranded DNA, we infer that this non-canonical PCNA poly-Ub chain serves as a signal to activate ATR checkpoint and recruit double-strand-break repair apparatus.
Collapse
Affiliation(s)
- Zhoushuai Qin
- a College of Life Sciences, Capital Normal University , Beijing China.,b Department of Microbiology and Immunology , University of Saskatchewan , Saskatoon , SK , Canada
| | - Zhiqiang Bai
- a College of Life Sciences, Capital Normal University , Beijing China
| | - Ying Sun
- a College of Life Sciences, Capital Normal University , Beijing China
| | - Xiaohong Niu
- a College of Life Sciences, Capital Normal University , Beijing China
| | - Wei Xiao
- a College of Life Sciences, Capital Normal University , Beijing China.,b Department of Microbiology and Immunology , University of Saskatchewan , Saskatoon , SK , Canada
| |
Collapse
|
48
|
Goru SK, Pandey A, Gaikwad AB. E3 ubiquitin ligases as novel targets for inflammatory diseases. Pharmacol Res 2016; 106:1-9. [PMID: 26875639 DOI: 10.1016/j.phrs.2016.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 11/29/2022]
Abstract
Ubiquitination is one of the post translational modifications which decide the fate of various proteins in the cells, by either directing them towards proteasomal degradation or participation in several cell signalling pathways. Recently, the role of ubiquitination has been unravelled in pathogenesis and progression of various diseases, where inflammation is critical, like obesity, insulin resistance, atherosclerosis, angiotensin-II induced cardiac inflammation and asthma. E3 ligases are known to be instrumental in regulation of the inflammatory cascade. This review focuses on the role of different E3 ligases in the development of inflammatory diseases and thus may help us to target these E3 ligases in future drug discovery to prevent inflammation.
Collapse
Affiliation(s)
- Santosh Kumar Goru
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anuradha Pandey
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
49
|
Ariffin JK, Kapetanovic R, Schaale K, Gatica-Andrades M, Blumenthal A, Schroder K, Sweet MJ. The E3 ubiquitin ligase RNF144B is LPS-inducible in human, but not mouse, macrophages and promotes inducible IL-1β expression. J Leukoc Biol 2016; 100:155-61. [PMID: 26819317 DOI: 10.1189/jlb.2ab0815-339r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/04/2016] [Indexed: 11/24/2022] Open
Abstract
Differences in human and mouse immune responses may partly reflect species-specific adaptations and can provide important insights into human immunity. In this study, we show that RNF144B, which encodes an E3 ubiquitin ligase, was lipopolysaccharide-inducible in primary human macrophages and in human macrophage-like THP-1 cells. In contrast, Rnf144b was not lipopolysaccharide-inducible in several mouse cell populations, including primary macrophages from C57BL/6 and BALB/c mice and RAW264.7 macrophages. Similarly, Rnf144b was not up-regulated by infection of C57BL/6 mice with Escherichia coli Although the human and mouse RNF144B genes have conserved transcription start sites, cap analysis of gene expression data confirmed that the RNF144B promoter directs transcription in human but not mouse macrophages. The human and mouse RNF144B genes are controlled by highly conserved TATA-containing promoters, but subtle differences in transcription factor binding sites may account for differential regulation. Using gene silencing, we showed that RNF144B is necessary for priming of inflammasome responses in primary human macrophages. Specifically, RNF144B promotes lipopolysaccharide-inducible IL-1b mRNA expression but does not regulate expression of several other lipopolysaccharide-inducible cytokines (e.g., interleukin-10, interferon-γ) or affect expression of inflammasome components or substrates (e.g., procaspase-1, pro-interleukin-18). Our findings thus revealed a species-specific regulatory mechanism for selective inflammasome priming in human macrophages.
Collapse
Affiliation(s)
- Juliana K Ariffin
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia; IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia; IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Kolja Schaale
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia; IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Marcela Gatica-Andrades
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia; and The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Antje Blumenthal
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia; and The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia; IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia; IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia; and
| |
Collapse
|
50
|
|