1
|
Schwarzer E, Skorokhod O. Post-Translational Modifications of Proteins of Malaria Parasites during the Life Cycle. Int J Mol Sci 2024; 25:6145. [PMID: 38892332 PMCID: PMC11173270 DOI: 10.3390/ijms25116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Post-translational modifications (PTMs) are essential for regulating protein functions, influencing various fundamental processes in eukaryotes. These include, but are not limited to, cell signaling, protein trafficking, the epigenetic control of gene expression, and control of the cell cycle, as well as cell proliferation, differentiation, and interactions between cells. In this review, we discuss protein PTMs that play a key role in the malaria parasite biology and its pathogenesis. Phosphorylation, acetylation, methylation, lipidation and lipoxidation, glycosylation, ubiquitination and sumoylation, nitrosylation and glutathionylation, all of which occur in malarial parasites, are reviewed. We provide information regarding the biological significance of these modifications along all phases of the complex life cycle of Plasmodium spp. Importantly, not only the parasite, but also the host and vector protein PTMs are often crucial for parasite growth and development. In addition to metabolic regulations, protein PTMs can result in epitopes that are able to elicit both innate and adaptive immune responses of the host or vector. We discuss some existing and prospective results from antimalarial drug discovery trials that target various PTM-related processes in the parasite or host.
Collapse
Affiliation(s)
- Evelin Schwarzer
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126 Turin, Italy;
| | - Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina, 13, 10123 Turin, Italy
| |
Collapse
|
2
|
Chan AW, Broncel M, Yifrach E, Haseley NR, Chakladar S, Andree E, Herneisen AL, Shortt E, Treeck M, Lourido S. Analysis of CDPK1 targets identifies a trafficking adaptor complex that regulates microneme exocytosis in Toxoplasma. eLife 2023; 12:RP85654. [PMID: 37933960 PMCID: PMC10629828 DOI: 10.7554/elife.85654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Apicomplexan parasites use Ca2+-regulated exocytosis to secrete essential virulence factors from specialized organelles called micronemes. Ca2+-dependent protein kinases (CDPKs) are required for microneme exocytosis; however, the molecular events that regulate trafficking and fusion of micronemes with the plasma membrane remain unresolved. Here, we combine sub-minute resolution phosphoproteomics and bio-orthogonal labeling of kinase substrates in Toxoplasma gondii to identify 163 proteins phosphorylated in a CDPK1-dependent manner. In addition to known regulators of secretion, we identify uncharacterized targets with predicted functions across signaling, gene expression, trafficking, metabolism, and ion homeostasis. One of the CDPK1 targets is a putative HOOK activating adaptor. In other eukaryotes, HOOK homologs form the FHF complex with FTS and FHIP to activate dynein-mediated trafficking of endosomes along microtubules. We show the FHF complex is partially conserved in T. gondii, consisting of HOOK, an FTS homolog, and two parasite-specific proteins (TGGT1_306920 and TGGT1_316650). CDPK1 kinase activity and HOOK are required for the rapid apical trafficking of micronemes as parasites initiate motility. Moreover, parasites lacking HOOK or FTS display impaired microneme protein secretion, leading to a block in the invasion of host cells. Taken together, our work provides a comprehensive catalog of CDPK1 targets and reveals how vesicular trafficking has been tuned to support a parasitic lifestyle.
Collapse
Affiliation(s)
- Alex W Chan
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Malgorzata Broncel
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Eden Yifrach
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Nicole R Haseley
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | | | - Elena Andree
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Alice L Herneisen
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Emily Shortt
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Moritz Treeck
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Sebastian Lourido
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
3
|
Chan AW, Broncel M, Yifrach E, Haseley N, Chakladar S, Andree E, Herneisen AL, Shortt E, Treeck M, Lourido S. Analysis of CDPK1 targets identifies a trafficking adaptor complex that regulates microneme exocytosis in Toxoplasma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523553. [PMID: 36712004 PMCID: PMC9882037 DOI: 10.1101/2023.01.11.523553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Apicomplexan parasites use Ca2+-regulated exocytosis to secrete essential virulence factors from specialized organelles called micronemes. Ca2+-dependent protein kinases (CDPKs) are required for microneme exocytosis; however, the molecular events that regulate trafficking and fusion of micronemes with the plasma membrane remain unresolved. Here, we combine sub-minute resolution phosphoproteomics and bio-orthogonal labeling of kinase substrates in Toxoplasma gondii to identify 163 proteins phosphorylated in a CDPK1-dependent manner. In addition to known regulators of secretion, we identify uncharacterized targets with predicted functions across signaling, gene expression, trafficking, metabolism, and ion homeostasis. One of the CDPK1 targets is a putative HOOK activating adaptor. In other eukaryotes, HOOK homologs form the FHF complex with FTS and FHIP to activate dynein-mediated trafficking of endosomes along microtubules. We show the FHF complex is partially conserved in T. gondii, consisting of HOOK, an FTS homolog, and two parasite-specific proteins (TGGT1_306920 and TGGT1_316650). CDPK1 kinase activity and HOOK are required for the rapid apical trafficking of micronemes as parasites initiate motility. Moreover, parasites lacking HOOK or FTS display impaired microneme protein secretion, leading to a block in the invasion of host cells. Taken together, our work provides a comprehensive catalog of CDPK1 targets and reveals how vesicular trafficking has been tuned to support a parasitic lifestyle.
Collapse
Affiliation(s)
- Alex W Chan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Malgorzata Broncel
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Eden Yifrach
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Nicole Haseley
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Elena Andree
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Alice L Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Moritz Treeck
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Bheemanaboina RRY, de Souza ML, Gonzalez ML, Mahmood SU, Eck T, Kreiss T, Aylor SO, Roth A, Lee P, Pybus BS, Colussi DJ, Childers WE, Gordon J, Siekierka JJ, Bhanot P, Rotella DP. Discovery of Imidazole-Based Inhibitors of Plasmodium falciparum cGMP-Dependent Protein Kinase. ACS Med Chem Lett 2021; 12:1962-1967. [PMID: 34917261 DOI: 10.1021/acsmedchemlett.1c00540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
The discovery of new targets for the treatment of malaria, in particular those aimed at the pre-erythrocytic stage in the life cycle, advanced with the demonstration that orally administered inhibitors of Plasmodium falciparum cGMP-dependent protein kinase (PfPKG) could clear infection in a murine model. This enthusiasm was tempered by unsatisfactory safety and/or pharmacokinetic issues found with these chemotypes. To address the urgent need for new scaffolds, this paper presents initial structure-activity relationships in an imidazole scaffold at four positions, representative in vitro ADME, hERG characterization, and cell-based antiparasitic activity. This series of PfPKG inhibitors has good in vitro PfPKG potency, low hERG activity, and cell-based antiparasitic activity against multiple Plasmodium species that appears to be correlated with the in vitro potency.
Collapse
Affiliation(s)
- Rammohan R. Yadav Bheemanaboina
- Department of Chemistry and Biochemistry and Sokol Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| | - Mariana Laureano de Souza
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Mariana Lozano Gonzalez
- Department of Chemistry and Biochemistry and Sokol Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| | - Shams Ul Mahmood
- Department of Chemistry and Biochemistry and Sokol Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| | - Tyler Eck
- Department of Chemistry and Biochemistry and Sokol Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| | - Tamara Kreiss
- Department of Chemistry and Biochemistry and Sokol Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| | - Samantha O. Aylor
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Patricia Lee
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Brandon S. Pybus
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Dennis J. Colussi
- Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Wayne E. Childers
- Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - John Gordon
- Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - John J. Siekierka
- Department of Chemistry and Biochemistry and Sokol Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| | - Purnima Bhanot
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, 225 Warren Street, Newark, New Jersey 07103, United States
| | - David P. Rotella
- Department of Chemistry and Biochemistry and Sokol Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| |
Collapse
|
5
|
Pereira PHS, Borges-Pereira L, Garcia CRS. Evidences of G Coupled-Protein Receptor (GPCR) Signaling in the human Malaria Parasite Plasmodium falciparum for Sensing its Microenvironment and the Role of Purinergic Signaling in Malaria Parasites. Curr Top Med Chem 2021; 21:171-180. [PMID: 32851963 DOI: 10.2174/1568026620666200826122716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
The nucleotides were discovered in the early 19th century and a few years later, the role of such molecules in energy metabolism and cell survival was postulated. In 1972, a pioneer work by Burnstock and colleagues suggested that ATP could also work as a neurotransmitter, which was known as the "purinergic hypothesis". The idea of ATP working as a signaling molecule faced initial resistance until the discovery of the receptors for ATP and other nucleotides, called purinergic receptors. Among the purinergic receptors, the P2Y family is of great importance because it comprises of G proteincoupled receptors (GPCRs). GPCRs are widespread among different organisms. These receptors work in the cells' ability to sense the external environment, which involves: to sense a dangerous situation or detect a pheromone through smell; the taste of food that should not be eaten; response to hormones that alter metabolism according to the body's need; or even transform light into an electrical stimulus to generate vision. Advances in understanding the mechanism of action of GPCRs shed light on increasingly promising treatments for diseases that have hitherto remained incurable, or the possibility of abolishing side effects from therapies widely used today.
Collapse
Affiliation(s)
- Pedro H S Pereira
- Department of Clinical and Toxicological Analyses, University of Sao Paulo, Sao Paulo, Brazil
| | - Lucas Borges-Pereira
- Department of Clinical and Toxicological Analyses, University of Sao Paulo, Sao Paulo, Brazil
| | - Célia R S Garcia
- Department of Clinical and Toxicological Analyses, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
6
|
Huang J, Byun JA, VanSchouwen B, Henning P, Herberg FW, Kim C, Melacini G. Dynamical Basis of Allosteric Activation for the Plasmodium falciparum Protein Kinase G. J Phys Chem B 2021; 125:6532-6542. [PMID: 34115498 DOI: 10.1021/acs.jpcb.1c03622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Plasmodium falciparum cGMP-dependent protein kinase (PfPKG) is required for the progression of the Plasmodium's life cycle and is therefore a promising malaria drug target. PfPKG includes four cGMP-binding domains (CBD-A to CBD-D). CBD-D plays a crucial role in PfPKG regulation as it is the primary determinant for the inhibition and cGMP-dependent activation of the catalytic domain. Hence, it is critical to understand how CBD-D is allosterically regulated by cGMP. Although the apo versus holo conformational changes of CBD-D have been reported, information on the intermediates of the activation pathway is currently lacking. Here, we employed molecular dynamics simulations to model four key states along the thermodynamic cycle for the cGMP-dependent activation of the PfPKG CBD-D domain. The simulations were compared to NMR data, and they revealed that the PfPKG CBD-D activation pathway samples a compact intermediate in which the N- and C-terminal helices approach the central β-barrel. In addition, by comparing the cGMP-bound active and inactive states, the essential binding interactions that differentiate these states were identified. The identification of structural and dynamical features unique to the cGMP-bound inactive state provides a promising basis to design PfPKG-selective allosteric inhibitors as a viable treatment for malaria.
Collapse
Affiliation(s)
- Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Jung Ah Byun
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Philipp Henning
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Friedrich W Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Choel Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, United States.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
7
|
Byun JA, VanSchouwen B, Akimoto M, Melacini G. Allosteric inhibition explained through conformational ensembles sampling distinct "mixed" states. Comput Struct Biotechnol J 2020; 18:3803-3818. [PMID: 33335680 PMCID: PMC7720024 DOI: 10.1016/j.csbj.2020.10.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 11/29/2022] Open
Abstract
Allosteric modulation provides an effective avenue for selective and potent enzyme inhibition. Here, we summarize and critically discuss recent advances on the mechanisms of allosteric partial agonists for three representative signalling enzymes activated by cyclic nucleotides: the cAMP-dependent protein kinase (PKA), the cGMP-dependent protein kinase (PKG), and the exchange protein activated by cAMP (EPAC). The comparative analysis of partial agonism in PKA, PKG and EPAC reveals a common emerging theme, i.e. the sampling of distinct “mixed” conformational states, either within a single domain or between distinct domains. Here, we show how such “mixed” states play a crucial role in explaining the observed functional response, i.e. partial agonism and allosteric pluripotency, as well as in maximizing inhibition while minimizing potency losses. In addition, by combining Nuclear Magnetic Resonance (NMR), Molecular Dynamics (MD) simulations and Ensemble Allosteric Modeling (EAM), we also show how to map the free-energy landscape of conformational ensembles containing “mixed” states. By discussing selected case studies, we illustrate how MD simulations and EAM complement NMR to quantitatively relate protein dynamics to function. The resulting NMR- and MD-based EAMs are anticipated to inform not only the design of new generations of highly selective allosteric inhibitors, but also the choice of multidrug combinations.
Collapse
Affiliation(s)
- Jung Ah Byun
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Ghose R. Keep a lid on it: A troika in kinase allostery. J Biol Chem 2020; 295:8492-8493. [PMID: 32561554 PMCID: PMC7307211 DOI: 10.1074/jbc.h120.014383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The malaria parasite Plasmodium falciparum encodes a cGMP-dependent protein kinase G (PfPKG) that is critical for its life cycle. Specific cGMP analogs are able to act as partial agonists of PfPKG. Using the exquisite diagnostic power of NMR chemical shifts, Byun et al. demonstrate that the extent of agonism by these cGMP derivatives relates to the degree of stabilization of a unique inactive conformation that shares structural features with both the ligand-free, inactive and the cGMP-bound, active states. The observation of this third state helps to generalize a novel paradigm for the allosteric activation of kinase function and may open opportunities for the development of novel therapeutics.
Collapse
Affiliation(s)
- Ranajeet Ghose
- Department of Chemistry and Biochemistry, City College of New York, New York, New York, USA
- Ph.D. Program in Biochemistry, Graduate Center of CUNY, New York, New York, USA
- Ph.D. Program in Chemistry, Graduate Center of CUNY, New York, New York, USA
- Ph.D. Program in Physics, Graduate Center of CUNY, New York, New York, USA
| |
Collapse
|
9
|
Byun JA, Van K, Huang J, Henning P, Franz E, Akimoto M, Herberg FW, Kim C, Melacini G. Mechanism of allosteric inhibition in the Plasmodium falciparum cGMP-dependent protein kinase. J Biol Chem 2020; 295:8480-8491. [PMID: 32317283 DOI: 10.1074/jbc.ra120.013070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/16/2020] [Indexed: 11/06/2022] Open
Abstract
Most malaria deaths are caused by the protozoan parasite Plasmodium falciparum Its life cycle is regulated by a cGMP-dependent protein kinase (PfPKG), whose inhibition is a promising antimalaria strategy. Allosteric kinase inhibitors, such as cGMP analogs, offer enhanced selectivity relative to competitive kinase inhibitors. However, the mechanisms underlying allosteric PfPKG inhibition are incompletely understood. Here, we show that 8-NBD-cGMP is an effective PfPKG antagonist. Using comparative NMR analyses of a key regulatory domain, PfD, in its apo, cGMP-bound, and cGMP analog-bound states, we elucidated its inhibition mechanism of action. Using NMR chemical shift analyses, molecular dynamics simulations, and site-directed mutagenesis, we show that 8-NBD-cGMP inhibits PfPKG not simply by reverting a two-state active versus inactive equilibrium, but by sampling also a distinct inactive "mixed" intermediate. Surface plasmon resonance indicates that the ability to stabilize a mixed intermediate provides a means to effectively inhibit PfPKG, without losing affinity for the cGMP analog. Our proposed model may facilitate the rational design of PfPKG-selective inhibitors for improved management of malaria.
Collapse
Affiliation(s)
- Jung Ah Byun
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Katherine Van
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Philipp Henning
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Eugen Franz
- Biaffin GmbH & Co. KG, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Friedrich W Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Choel Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada .,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
10
|
Dans MG, Weiss GE, Wilson DW, Sleebs BE, Crabb BS, de Koning-Ward TF, Gilson PR. Screening the Medicines for Malaria Venture Pathogen Box for invasion and egress inhibitors of the blood stage of Plasmodium falciparum reveals several inhibitory compounds. Int J Parasitol 2020; 50:235-252. [PMID: 32135179 DOI: 10.1016/j.ijpara.2020.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/30/2019] [Accepted: 01/05/2020] [Indexed: 12/14/2022]
Abstract
With emerging resistance to frontline treatments, it is vital that new drugs are identified to target Plasmodium falciparum. One of the most critical processes during parasites asexual lifecycle is the invasion and subsequent egress of red blood cells (RBCs). Many unique parasite ligands, receptors and enzymes are employed during egress and invasion that are essential for parasite proliferation and survival, therefore making these processes druggable targets. To identify potential inhibitors of egress and invasion, we screened the Medicines for Malaria Venture Pathogen Box, a 400 compound library against neglected tropical diseases, including 125 with antimalarial activity. For this screen, we utilised transgenic parasites expressing a bioluminescent reporter, nanoluciferase (Nluc), to measure inhibition of parasite egress and invasion in the presence of the Pathogen Box compounds. At a concentration of 2 µM, we found 15 compounds that inhibited parasite egress by >40% and 24 invasion-specific compounds that inhibited invasion by >90%. We further characterised 11 of these inhibitors through cell-based assays and live cell microscopy, and found two compounds that inhibited merozoite maturation in schizonts, one compound that inhibited merozoite egress, one compound that directly inhibited parasite invasion and one compound that slowed down invasion and arrested ring formation. The remaining compounds were general growth inhibitors that acted during the egress and invasion phase of the cell cycle. We found the sulfonylpiperazine, MMV020291, to be the most invasion-specific inhibitor, blocking successful merozoite internalisation within human RBCs and having no substantial effect on other stages of the cell cycle. This has significant implications for the possible development of an invasion-specific inhibitor as an antimalarial in a combination based therapy, in addition to being a useful tool for studying the biology of the invading parasite.
Collapse
Affiliation(s)
- Madeline G Dans
- Burnet Institute, Melbourne, Victoria 3004, Australia; School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Greta E Weiss
- Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, South Australia 5005, Australia; Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Brad E Sleebs
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia; The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brendan S Crabb
- Burnet Institute, Melbourne, Victoria 3004, Australia; The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Paul R Gilson
- Burnet Institute, Melbourne, Victoria 3004, Australia.
| |
Collapse
|
11
|
Structures of the cGMP-dependent protein kinase in malaria parasites reveal a unique structural relay mechanism for activation. Proc Natl Acad Sci U S A 2019; 116:14164-14173. [PMID: 31239348 PMCID: PMC6628679 DOI: 10.1073/pnas.1905558116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cyclic guanosine-3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) was identified >25 y ago; however, efforts to obtain a structure of the entire PKG enzyme or catalytic domain from any species have failed. In malaria parasites, cooperative activation of PKG triggers crucial developmental transitions throughout the complex life cycle. We have determined the cGMP-free crystallographic structures of PKG from Plasmodium falciparum and Plasmodium vivax, revealing how key structural components, including an N-terminal autoinhibitory segment (AIS), four predicted cyclic nucleotide-binding domains (CNBs), and a kinase domain (KD), are arranged when the enzyme is inactive. The four CNBs and the KD are in a pentagonal configuration, with the AIS docked in the substrate site of the KD in a swapped-domain dimeric arrangement. We show that although the protein is predominantly a monomer (the dimer is unlikely to be representative of the physiological form), the binding of the AIS is necessary to keep Plasmodium PKG inactive. A major feature is a helix serving the dual role of the N-terminal helix of the KD as well as the capping helix of the neighboring CNB. A network of connecting helices between neighboring CNBs contributes to maintaining the kinase in its inactive conformation. We propose a scheme in which cooperative binding of cGMP, beginning at the CNB closest to the KD, transmits conformational changes around the pentagonal molecule in a structural relay mechanism, enabling PKG to orchestrate rapid, highly regulated developmental switches in response to dynamic modulation of cGMP levels in the parasite.
Collapse
|
12
|
Günay-Esiyok Ö, Scheib U, Noll M, Gupta N. An unusual and vital protein with guanylate cyclase and P4-ATPase domains in a pathogenic protist. Life Sci Alliance 2019; 2:2/3/e201900402. [PMID: 31235476 PMCID: PMC6592433 DOI: 10.26508/lsa.201900402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii harbors an alveolate-specific guanylate cyclase linked to P-type ATPase motifs, which is an essential actuator of cGMP-dependent gliding motility, egress, and invasion during acute infection. cGMP signaling is one of the master regulators of diverse functions in eukaryotes; however, its architecture and functioning in protozoans remain poorly understood. Herein, we report an exclusive guanylate cyclase coupled with N-terminal P4-ATPase in a common parasitic protist, Toxoplasma gondii. This bulky protein (477-kD), termed TgATPaseP-GC to fairly reflect its envisaged multifunctionality, localizes in the plasma membrane at the apical pole of the parasite, whereas the corresponding cGMP-dependent protein kinase (TgPKG) is distributed in the cytomembranes. TgATPaseP-GC is refractory to genetic deletion, and its CRISPR/Cas9–assisted disruption aborts the lytic cycle of T. gondii. Besides, Cre/loxP–mediated knockdown of TgATPaseP-GC reduced the synthesis of cGMP and inhibited the parasite growth due to impairments in the motility-dependent egress and invasion events. Equally, repression of TgPKG by a similar strategy recapitulated phenotypes of the TgATPaseP-GC–depleted mutant. Notably, despite a temporally restricted function, TgATPaseP-GC is expressed constitutively throughout the lytic cycle, entailing a post-translational regulation of cGMP signaling. Not least, the occurrence of TgATPaseP-GC orthologs in several other alveolates implies a divergent functional repurposing of cGMP signaling in protozoans, and offers an excellent drug target against the parasitic protists.
Collapse
Affiliation(s)
- Özlem Günay-Esiyok
- Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Ulrike Scheib
- Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Matthias Noll
- Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Nishith Gupta
- Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| |
Collapse
|
13
|
Franz E, Knape MJ, Herberg FW. cGMP Binding Domain D Mediates a Unique Activation Mechanism in Plasmodium falciparum PKG. ACS Infect Dis 2018; 4:415-423. [PMID: 29251493 DOI: 10.1021/acsinfecdis.7b00222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
cGMP-dependent protein kinase from Plasmodium falciparum ( PfPKG) plays a crucial role in the sexual as well as the asexual proliferation of this human malaria causing parasite. However, function and regulation of PfPKG are largely unknown. Previous studies showed that the domain organization of PfPKG significantly differs from human PKG ( hPKG) and indicated a critical role of the cyclic nucleotide binding domain D (CNB-D). We identified a novel mechanism, where the CNB-D controls activation and regulation of the parasite specific protein kinase. Here, kinase activity is not dependent on a pseudosubstrate autoinhibitory sequence (IS), as reported for human PKG. A construct lacking the putative IS and containing only the CNB-D and the catalytic domain is inactive in the absence of cGMP and can efficiently be activated with cGMP. On the basis of structural evidence, we describe a regulatory mechanism, whereby cGMP binding to CNB-D induces a conformational change involving the αC-helix of the CNB-D. The inactive state is defined by a unique interaction between Asp597 of the catalytic domain and Arg528 of the αC-helix. The same arginine (R528), however, stabilizes cGMP binding by interacting with Tyr480 of the phosphate binding cassette (PBC). This represents the active state of PfPKG. Our results unveil fundamental differences in the activation mechanism between PfPKG and hPKG, building the basis for the development of strategies for targeted drug design in fighting malaria.
Collapse
Affiliation(s)
- Eugen Franz
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Matthias J. Knape
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Friedrich W. Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| |
Collapse
|
14
|
Dwivedi A, Reynes C, Kuehn A, Roche DB, Khim N, Hebrard M, Milanesi S, Rivals E, Frutos R, Menard D, Mamoun CB, Colinge J, Cornillot E. Functional analysis of Plasmodium falciparum subpopulations associated with artemisinin resistance in Cambodia. Malar J 2017; 16:493. [PMID: 29258508 PMCID: PMC5735551 DOI: 10.1186/s12936-017-2140-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022] Open
Abstract
Background Plasmodium falciparum malaria is one of the most widespread parasitic infections in humans and remains a leading global health concern. Malaria elimination efforts are threatened by the emergence and spread of resistance to artemisinin-based combination therapy, the first-line treatment of malaria. Promising molecular markers and pathways associated with artemisinin drug resistance have been identified, but the underlying molecular mechanisms of resistance remains unknown. The genomic data from early period of emergence of artemisinin resistance (2008–2011) was evaluated, with aim to define k13 associated genetic background in Cambodia, the country identified as epicentre of anti-malarial drug resistance, through characterization of 167 parasite isolates using a panel of 21,257 SNPs. Results Eight subpopulations were identified suggesting a process of acquisition of artemisinin resistance consistent with an emergence-selection-diffusion model, supported by the shifting balance theory. Identification of population specific mutations facilitated the characterization of a core set of 57 background genes associated with artemisinin resistance and associated pathways. The analysis indicates that the background of artemisinin resistance was not acquired after drug pressure, rather is the result of fixation followed by selection on the daughter subpopulations derived from the ancestral population. Conclusions Functional analysis of artemisinin resistance subpopulations illustrates the strong interplay between ubiquitination and cell division or differentiation in artemisinin resistant parasites. The relationship of these pathways with the P. falciparum resistant subpopulation and presence of drug resistance markers in addition to k13, highlights the major role of admixed parasite population in the diffusion of artemisinin resistant background. The diffusion of resistant genes in the Cambodian admixed population after selection resulted from mating of gametocytes of sensitive and resistant parasite populations. Electronic supplementary material The online version of this article (10.1186/s12936-017-2140-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ankit Dwivedi
- Institut de Biologie Computationnelle (IBC), 34095, Montpellier, France. .,Institut de Recherche en Cancérologie de Montpellier, Institut régional du Cancer Montpellier & Université de Montpellier, IRCM-INSERM U1194, 34298, Montpellier, France. .,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Christelle Reynes
- Laboratoire de Biostatistiques, Informatique et Physique Pharmaceutique, UFR Pharmacie, Université de Montpellier, 34093, Montpellier, France.,Institut de Génomique Fonctionnelle-CNRS, 34094, Montpellier, France
| | - Axel Kuehn
- Institut de Recherche en Cancérologie de Montpellier, Institut régional du Cancer Montpellier & Université de Montpellier, IRCM-INSERM U1194, 34298, Montpellier, France
| | - Daniel B Roche
- Institut de Biologie Computationnelle (IBC), 34095, Montpellier, France.,Centre de Recherche en Biologie cellulaire de Montpellier, CNRS-UMR 5237, 34293, Montpellier, France
| | - Nimol Khim
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Maxim Hebrard
- Institut de Biologie Computationnelle (IBC), 34095, Montpellier, France.,Laboratoire d'informatique, de robotique et de microélectronique de Montpellier, LIRMM, CNRS, Université de Montpellier, 34095, Montpellier, France.,Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa, Japan
| | - Sylvain Milanesi
- Institut de Biologie Computationnelle (IBC), 34095, Montpellier, France
| | - Eric Rivals
- Institut de Biologie Computationnelle (IBC), 34095, Montpellier, France.,Laboratoire d'informatique, de robotique et de microélectronique de Montpellier, LIRMM, CNRS, Université de Montpellier, 34095, Montpellier, France
| | - Roger Frutos
- CIRAD, UMR Intertryp, 34398, Montpellier, France.,IES, UMR 5214, Université de Montpellier, CNRS, 34095, Montpellier, France
| | - Didier Menard
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Biology of Host-Parasite Interactions Unit, Institut Pasteur, Paris, France
| | - Choukri Ben Mamoun
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Jacques Colinge
- Institut de Recherche en Cancérologie de Montpellier, Institut régional du Cancer Montpellier & Université de Montpellier, IRCM-INSERM U1194, 34298, Montpellier, France
| | - Emmanuel Cornillot
- Institut de Biologie Computationnelle (IBC), 34095, Montpellier, France. .,Institut de Recherche en Cancérologie de Montpellier, Institut régional du Cancer Montpellier & Université de Montpellier, IRCM-INSERM U1194, 34298, Montpellier, France.
| |
Collapse
|
15
|
Miliu A, Lebrun M, Braun-Breton C, Lamarque MH. Shelph2, a bacterial-like phosphatase of the malaria parasite Plasmodium falciparum, is dispensable during asexual blood stage. PLoS One 2017; 12:e0187073. [PMID: 29073264 PMCID: PMC5658161 DOI: 10.1371/journal.pone.0187073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/12/2017] [Indexed: 12/03/2022] Open
Abstract
During the erythrocytic cycle of the malaria parasite Plasmodium falciparum, egress and invasion are essential steps finely controlled by reversible phosphorylation. In contrast to the growing number of kinases identified as key regulators, phosphatases have been poorly studied, and calcineurin is the only one identified so far to play a role in invasion. PfShelph2, a bacterial-like phosphatase, is a promising candidate to participate in the invasion process, as it was reported to be expressed late during the asexual blood stage and to reside within an apical compartment, yet distinct from rhoptry bulb, micronemes, or dense granules. It was also proposed to play a role in the control of the red blood cell membrane deformability at the end of the invasion process. However, genetic studies are still lacking to support this hypothesis. Here, we take advantage of the CRISPR-Cas9 technology to tag shelph2 genomic locus while retaining its endogenous regulatory regions. This new strain allows us to follow the endogenous PfShelph2 protein expression and location during asexual blood stages. We show that PfShelph2 apical location is also distinct from the rhoptry neck or exonemes. We further demonstrate PfShelph2 dispensability during the asexual blood stage by generating PfShelph2-KO parasites using CRISPR-Cas9 machinery. Analyses of the mutant during the course of the erythrocytic development indicate that there are no detectable phenotypic consequences of Pfshelph2 genomic deletion. As this lack of phenotype might be due to functional redundancy, we also explore the likelihood of PfShelph1 (PfShelph2 paralog) being a compensatory phosphatase. We conclude that despite its cyclic expression profile, PfShelph2 is a dispensable phosphatase during the Plasmodium falciparum asexual blood stage, whose function is unlikely substituted by PfShelph1.
Collapse
Affiliation(s)
| | - Maryse Lebrun
- DIMNP, CNRS, Université de Montpellier, Montpellier, France
| | | | - Mauld H. Lamarque
- DIMNP, CNRS, Université de Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
16
|
Chakraborty S, Roy S, Mistry HU, Murthy S, George N, Bhandari V, Sharma P. Potential Sabotage of Host Cell Physiology by Apicomplexan Parasites for Their Survival Benefits. Front Immunol 2017; 8:1261. [PMID: 29081773 PMCID: PMC5645534 DOI: 10.3389/fimmu.2017.01261] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022] Open
Abstract
Plasmodium, Toxoplasma, Cryptosporidium, Babesia, and Theileria are the major apicomplexan parasites affecting humans or animals worldwide. These pathogens represent an excellent example of host manipulators who can overturn host signaling pathways for their survival. They infect different types of host cells and take charge of the host machinery to gain nutrients and prevent itself from host attack. The mechanisms by which these pathogens modulate the host signaling pathways are well studied for Plasmodium, Toxoplasma, Cryptosporidium, and Theileria, except for limited studies on Babesia. Theileria is a unique pathogen taking into account the way it modulates host cell transformation, resulting in its clonal expansion. These parasites majorly modulate similar host signaling pathways, however, the disease outcome and effect is different among them. In this review, we discuss the approaches of these apicomplexan to manipulate the host–parasite clearance pathways during infection, invasion, survival, and egress.
Collapse
Affiliation(s)
| | - Sonti Roy
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| | - Hiral Uday Mistry
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| | - Shweta Murthy
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| | - Neena George
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| | | | - Paresh Sharma
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| |
Collapse
|
17
|
AID-ing Signaling in Toxoplasma gondii. mBio 2017; 8:mBio.01076-17. [PMID: 28743818 PMCID: PMC5527314 DOI: 10.1128/mbio.01076-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cyclic GMP-dependent protein kinase (PKG) of apicomplexan parasites is essential for secretion of micronemes and host cell invasion and egress. Both kinase specificity and localization can determine which substrates are phosphorylated. The functions of plasma membrane and cytosolic PKG isoforms of Toxoplasma gondii were unknown because of difficulties precisely manipulating expression of essential genes. Brown et al. (K. M. Brown, S. Long, and L. D. Sibley, mBio 8:e00375-17, https://doi.org/10.1128/mBio.00375-17) adapted the auxin-inducible degron (AID) system for conditional expression of T. gondii proteins. AID, in combination with clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 gene editing, facilitated creation of a panel of PKG mutants to demonstrate that the membrane association via acylation of PKG is critical for its essential functions in tachyzoites. The cytosolic form of PKG is not sufficient for viability and is dispensable. These studies illuminate a critical role for targeting of kinase complexes for parasite viability. The AID system enables rapid, conditional regulation of protein expression that expands the molecular toolbox of T. gondii.
Collapse
|
18
|
Abstract
Cyclic GMP (cGMP)-dependent protein kinase (protein kinase G [PKG]) is essential for microneme secretion, motility, invasion, and egress in apicomplexan parasites, However, the separate roles of two isoforms of the kinase that are expressed by some apicomplexans remain uncertain. Despite having identical regulatory and catalytic domains, PKGI is plasma membrane associated whereas PKGII is cytosolic in Toxoplasma gondii. To determine whether these isoforms are functionally distinct or redundant, we developed an auxin-inducible degron (AID) tagging system for conditional protein depletion in T. gondii. By combining AID regulation with genome editing strategies, we determined that PKGI is necessary and fully sufficient for PKG-dependent cellular processes. Conversely, PKGII is functionally insufficient and dispensable in the presence of PKGI. The difference in functionality mapped to the first 15 residues of PKGI, containing a myristoylated Gly residue at position 2 that is critical for membrane association and PKG function. Collectively, we have identified a novel requirement for cGMP signaling at the plasma membrane and developed a new system for examining essential proteins in T. gondii. Toxoplasma gondii is an obligate intracellular apicomplexan parasite and important clinical and veterinary pathogen that causes toxoplasmosis. Since apicomplexans can only propagate within host cells, efficient invasion is critically important for their life cycles. Previous studies using chemical genetics demonstrated that cyclic GMP signaling through protein kinase G (PKG)-controlled invasion by apicomplexan parasites. However, these studies did not resolve functional differences between two compartmentalized isoforms of the kinase. Here we developed a conditional protein regulation tool to interrogate PKG isoforms in T. gondii. We found that the cytosolic PKG isoform was largely insufficient and dispensable. In contrast, the plasma membrane-associated isoform was necessary and fully sufficient for PKG function. Our studies identify the plasma membrane as a key location for PKG activity and provide a broadly applicable system for examining essential proteins in T. gondii.
Collapse
|
19
|
Miao J, Chen Z, Wang Z, Shrestha S, Li X, Li R, Cui L. Sex-Specific Biology of the Human Malaria Parasite Revealed from the Proteomes of Mature Male and Female Gametocytes. Mol Cell Proteomics 2017; 16:537-551. [PMID: 28126901 DOI: 10.1074/mcp.m116.061804] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/08/2016] [Indexed: 11/06/2022] Open
Abstract
The gametocytes of the malaria parasites are obligate for perpetuating the parasite's life cycle through mosquitoes, but the sex-specific biology of gametocytes is poorly understood. We generated a transgenic line in the human malaria parasite Plasmodium falciparum, which allowed us to accurately separate male and female gametocytes by flow cytometry. In-depth analysis of the proteomes by liquid chromatography-tandem mass spectrometry identified 1244 and 1387 proteins in mature male and female gametocytes, respectively. GFP-tagging of nine selected proteins confirmed their sex-partitions to be agreeable with the results from the proteomic analysis. The sex-specific proteomes showed significant differences that are consistent with the divergent functions of the two sexes. Although the male-specific proteome (119 proteins) is enriched in proteins associated with the flagella and genome replication, the female-specific proteome (262 proteins) is more abundant in proteins involved in metabolism, translation and organellar functions. Compared with the Plasmodium berghei sex-specific proteomes, this study revealed both extensive conservation and considerable divergence between these two species, which reflect the disparities between the two species in proteins involved in cytoskeleton, lipid metabolism and protein degradation. Comparison with three sex-specific proteomes allowed us to obtain high-confidence lists of 73 and 89 core male- and female-specific/biased proteins conserved in Plasmodium The identification of sex-specific/biased proteomes in Plasmodium lays a solid foundation for understanding the molecular mechanisms underlying the unique sex-specific biology in this early-branching eukaryote.
Collapse
Affiliation(s)
- Jun Miao
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802;
| | - Zhao Chen
- §Department of Statistics, The Pennsylvania State University, 413 Thomas Building, University Park, Pennsylvania 16802
| | - Zenglei Wang
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802
| | - Sony Shrestha
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802
| | - Xiaolian Li
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802
| | - Runze Li
- §Department of Statistics, The Pennsylvania State University, 413 Thomas Building, University Park, Pennsylvania 16802
| | - Liwang Cui
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802;
| |
Collapse
|
20
|
Littler DR, Bullen HE, Harvey KL, Beddoe T, Crabb BS, Rossjohn J, Gilson PR. Disrupting the Allosteric Interaction between the Plasmodium falciparum cAMP-dependent Kinase and Its Regulatory Subunit. J Biol Chem 2016; 291:25375-25386. [PMID: 27738107 DOI: 10.1074/jbc.m116.750174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/27/2016] [Indexed: 11/06/2022] Open
Abstract
The ubiquitous second messenger cAMP mediates signal transduction processes in the malarial parasite that regulate host erythrocyte invasion and the proliferation of merozoites. In Plasmodium falciparum, the central receptor for cAMP is the single regulatory subunit (R) of protein kinase A (PKA). To aid the development of compounds that can selectively dysregulate parasite PKA signaling, we solved the structure of the PKA regulatory subunit in complex with cAMP and a related analogue that displays antimalarial activity, (Sp)-2-Cl-cAMPS. Prior to signaling, PKA-R holds the kinase's catalytic subunit (C) in an inactive state by exerting an allosteric inhibitory effect. When two cAMP molecules bind to PKA-R, they stabilize a structural conformation that facilitates its dissociation, freeing PKA-C to phosphorylate downstream substrates such as apical membrane antigen 1. Although PKA activity was known to be necessary for erythrocytic proliferation, we show that uncontrolled induction of PKA activity using membrane-permeable agonists is equally disruptive to growth.
Collapse
Affiliation(s)
- Dene R Littler
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and
| | | | - Katherine L Harvey
- the Burnet Institute, Melbourne, Victoria 3004, Australia.,the Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Travis Beddoe
- the Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia, and
| | - Brendan S Crabb
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and.,the Burnet Institute, Melbourne, Victoria 3004, Australia.,the Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jamie Rossjohn
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and.,the Institute of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN Wales, United Kingdom.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Paul R Gilson
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and .,the Burnet Institute, Melbourne, Victoria 3004, Australia
| |
Collapse
|
21
|
Carvalho TG, Morahan B, John von Freyend S, Boeuf P, Grau G, Garcia-Bustos J, Doerig C. The ins and outs of phosphosignalling in Plasmodium: Parasite regulation and host cell manipulation. Mol Biochem Parasitol 2016; 208:2-15. [PMID: 27211241 DOI: 10.1016/j.molbiopara.2016.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/15/2022]
Abstract
Signal transduction and kinomics have been rapidly expanding areas of investigation within the malaria research field. Here, we provide an overview of phosphosignalling pathways that operate in all stages of the Plasmodium life cycle. We review signalling pathways in the parasite itself, in the cells it invades, and in other cells of the vertebrate host with which it interacts. We also discuss the potential of these pathways as novel targets for antimalarial intervention.
Collapse
Affiliation(s)
- Teresa Gil Carvalho
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Belinda Morahan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Simona John von Freyend
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Philippe Boeuf
- Burnet Institute, Melbourne, Victoria 3004, Australia; The University of Melbourne, Department of Medicine, Melbourne, Victoria 3010, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Victoria 3010, Australia
| | - Georges Grau
- Vascular Immunology Unit, Department of Pathology, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Jose Garcia-Bustos
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Christian Doerig
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
22
|
Cyclic GMP balance is critical for malaria parasite transmission from the mosquito to the mammalian host. mBio 2015; 6:e02330. [PMID: 25784701 PMCID: PMC4453516 DOI: 10.1128/mbio.02330-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transmission of malaria occurs during Anopheles mosquito vector blood meals, when Plasmodium sporozoites that have invaded the mosquito salivary glands are delivered to the mammalian host. Sporozoites display a unique form of motility that is essential for their movement across cellular host barriers and invasion of hepatocytes. While the molecular machinery powering motility and invasion is increasingly well defined, the signaling events that control these essential parasite activities have not been clearly delineated. Here, we identify a phosphodiesterase (PDEγ) in Plasmodium, a regulator of signaling through cyclic nucleotide second messengers. Reverse transcriptase PCR (RT-PCR) analysis and epitope tagging of endogenous PDEγ detected its expression in blood stages and sporozoites of Plasmodium yoelii. Deletion of PDEγ (pdeγ−) rendered sporozoites nonmotile, and they failed to invade the mosquito salivary glands. Consequently, PDEγ deletion completely blocked parasite transmission by mosquito bite. Strikingly, pdeγ− sporozoites showed dramatically elevated levels of cyclic GMP (cGMP), indicating that a perturbation in cyclic nucleotide balance is involved in the observed phenotypic defects. Transcriptome sequencing (RNA-Seq) analysis of pdeγ− sporozoites revealed reduced transcript abundance of genes that encode key components of the motility and invasion apparatus. Our data reveal a crucial role for PDEγ in maintaining the cyclic nucleotide balance in the malaria parasite sporozoite stage, which in turn is essential for parasite transmission from mosquito to mammal. Malaria is a formidable threat to human health worldwide, and there is an urgent need to identify novel drug targets for this parasitic disease. The parasite is transmitted by mosquito bite, inoculating the host with infectious sporozoite stages. We show that cellular signaling by cyclic nucleotides is critical for transmission of the parasite from the mosquito vector to the mammalian host. Parasite phosphodiesterase γ is essential for maintaining cyclic nucleotide balance, and its deletion blocks transmission of sporozoites. A deeper understanding of the signaling mechanisms involved in transmission might inform the discovery of novel drugs that interrupt this essential step in the parasite life cycle.
Collapse
|
23
|
Kim JJ, Flueck C, Franz E, Sanabria-Figueroa E, Thompson E, Lorenz R, Bertinetti D, Baker DA, Herberg FW, Kim C. Crystal structures of the carboxyl cGMP binding domain of the Plasmodium falciparum cGMP-dependent protein kinase reveal a novel capping triad crucial for merozoite egress. PLoS Pathog 2015; 11:e1004639. [PMID: 25646845 PMCID: PMC4412288 DOI: 10.1371/journal.ppat.1004639] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/20/2014] [Indexed: 01/05/2023] Open
Abstract
The Plasmodium falciparum cGMP-dependent protein kinase (PfPKG) is a key regulator across the malaria parasite life cycle. Little is known about PfPKG’s activation mechanism. Here we report that the carboxyl cyclic nucleotide binding domain functions as a “gatekeeper” for activation by providing the highest cGMP affinity and selectivity. To understand the mechanism, we have solved its crystal structures with and without cGMP at 2.0 and 1.9 Å, respectively. These structures revealed a PfPKG-specific capping triad that forms upon cGMP binding, and disrupting the triad reduces kinase activity by 90%. Furthermore, mutating these residues in the parasite prevents blood stage merozoite egress, confirming the essential nature of the triad in the parasite. We propose a mechanism of activation where cGMP binding allosterically triggers the conformational change at the αC-helix, which bridges the regulatory and catalytic domains, causing the capping triad to form and stabilize the active conformation. Malaria causes up to a million fatalities per year worldwide. Most of these deaths are caused by Plasmodium falciparum, which has a complex life cycle in both humans and mosquitoes. One key regulator of this process is P. falciparum cGMP-dependent protein kinase (PfPKG), the main effector of the cGMP-signaling pathway. Specifically blocking this kinase stops both replication and transmission of the parasites, suggesting that PfPKG is a promising drug target. Here we identified the carboxyl cGMP-binding domain of PfPKG serving as a gatekeeper for activation of the entire kinase by having the highest affinity and selectivity for cGMP. High-resolution crystal structures with and without cGMP allowed us to identify a novel cGMP capping triad that dynamically forms upon binding cGMP and stabilizes the activated conformation. Mutation of the capping triad forming residues not only reduces its kinase activity, but also prevents blood stage merozoite egress, demonstrating its crucial role in PfPKG activation.
Collapse
Affiliation(s)
- Jeong Joo Kim
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry, University of Kassel, Kassel, Hesse, Germany
| | - Christian Flueck
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Eugen Franz
- Department of Biochemistry, University of Kassel, Kassel, Hesse, Germany
| | | | - Eloise Thompson
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Robin Lorenz
- Department of Biochemistry, University of Kassel, Kassel, Hesse, Germany
| | - Daniela Bertinetti
- Department of Biochemistry, University of Kassel, Kassel, Hesse, Germany
| | - David A. Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Choel Kim
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
24
|
Tran PN, Brown SHJ, Mitchell TW, Matuschewski K, McMillan PJ, Kirk K, Dixon MWA, Maier AG. A female gametocyte-specific ABC transporter plays a role in lipid metabolism in the malaria parasite. Nat Commun 2014; 5:4773. [DOI: 10.1038/ncomms5773] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/21/2014] [Indexed: 11/09/2022] Open
|
25
|
Woodring JL, Pollastri MP. Inhibitors of Protozoan Phosphodiesterases as Potential Therapeutic Approaches for Tropical Diseases. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/9783527682348.ch12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Tewari R, Patzewitz EM, Poulin B, Stewart L, Baker DA. Development of a transgenic Plasmodium berghei line (Pb pfpkg) expressing the P. falciparum cGMP-dependent protein kinase, a novel antimalarial drug target. PLoS One 2014; 9:e96923. [PMID: 24805991 PMCID: PMC4013051 DOI: 10.1371/journal.pone.0096923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/12/2014] [Indexed: 11/18/2022] Open
Abstract
With the inevitable selection of resistance to antimalarial drugs in treated populations, there is a need for new medicines to enter the clinic and new targets to progress through the drug discovery pipeline. In this study we set out to develop a transgenic rodent model for testing inhibitors of the Plasmodium falciparum cyclic GMP-dependent kinase in vivo. A model was needed that would allow us to investigate whether differences in amino acid sequence of this enzyme between species influences in vivo efficacy. Here we report the successful development of a transgenic P. berghei line in which the cyclic GMP-dependent protein kinase (PKG) was replaced by the P. falciparum orthologue. We demonstrate that the P. falciparum orthologue was able to functionally complement the endogenous P. berghei pkg gene throughout blood stage development and early sexual development. However, subsequent development in the mosquito was severely compromised. We show that this is due to a defect in the female lineage of the transgenic by using genetic crosses with both male and female deficient P. berghei lines. This defect could be due to expression of a female-specific target in the mosquito stages of P. berghei that cannot be phosphorylated by the P. falciparum kinase. Using a previously reported anti-coccidial inhibitor of the cyclic GMP-dependent protein kinase, we show no difference in in vivo efficacy between the transgenic and control P. berghei lines. This in vivo model will be useful for screening future generations of cyclic GMP-dependent protein kinase inhibitors and allowing us to overcome any species-specific differences in the enzyme primary sequence that would influence in vivo efficacy in the rodent model. The approach will also be applicable to in vivo testing of other antimalarial compounds where the target is known.
Collapse
Affiliation(s)
- Rita Tewari
- Centre for Genetics and Genomics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
- * E-mail: (RT); (DAB)
| | - Eva-Maria Patzewitz
- Centre for Genetics and Genomics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Benoit Poulin
- Centre for Genetics and Genomics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Lindsay Stewart
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - David A. Baker
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail: (RT); (DAB)
| |
Collapse
|
27
|
The apical complex provides a regulated gateway for secretion of invasion factors in Toxoplasma. PLoS Pathog 2014; 10:e1004074. [PMID: 24743791 PMCID: PMC3990729 DOI: 10.1371/journal.ppat.1004074] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 03/04/2014] [Indexed: 11/19/2022] Open
Abstract
The apical complex is the definitive cell structure of phylum Apicomplexa, and is the focus of the events of host cell penetration and the establishment of intracellular parasitism. Despite the importance of this structure, its molecular composition is relatively poorly known and few studies have experimentally tested its functions. We have characterized a novel Toxoplasma gondii protein, RNG2, that is located at the apical polar ring--the common structural element of apical complexes. During cell division, RNG2 is first recruited to centrosomes immediately after their duplication, confirming that assembly of the new apical complex commences as one of the earliest events of cell replication. RNG2 subsequently forms a ring, with the carboxy- and amino-termini anchored to the apical polar ring and mobile conoid, respectively, linking these two structures. Super-resolution microscopy resolves these two termini, and reveals that RNG2 orientation flips during invasion when the conoid is extruded. Inducible knockdown of RNG2 strongly inhibits host cell invasion. Consistent with this, secretion of micronemes is prevented in the absence of RNG2. This block, however, can be fully or partially overcome by exogenous stimulation of calcium or cGMP signaling pathways, respectively, implicating the apical complex directly in these signaling events. RNG2 demonstrates for the first time a role for the apical complex in controlling secretion of invasion factors in this important group of parasites.
Collapse
|
28
|
Rico E, Rojas F, Mony BM, Szoor B, Macgregor P, Matthews KR. Bloodstream form pre-adaptation to the tsetse fly in Trypanosoma brucei. Front Cell Infect Microbiol 2013; 3:78. [PMID: 24294594 PMCID: PMC3827541 DOI: 10.3389/fcimb.2013.00078] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/24/2013] [Indexed: 12/04/2022] Open
Abstract
African trypanosomes are sustained in the bloodstream of their mammalian hosts by their extreme capacity for antigenic variation. However, for life cycle progression, trypanosomes also must generate transmission stages called stumpy forms that are pre-adapted to survive when taken up during the bloodmeal of the disease vector, tsetse flies. These stumpy forms are rather different to the proliferative slender forms that maintain the bloodstream parasitaemia. Firstly, they are non proliferative and morphologically distinct, secondly, they show particular sensitivity to environmental cues that signal entry to the tsetse fly and, thirdly, they are relatively robust such that they survive the changes in temperature, pH and proteolytic environment encountered within the tsetse midgut. These characteristics require regulated changes in gene expression to pre-adapt the parasite and the use of environmental sensing mechanisms, both of which allow the rapid initiation of differentiation to tsetse midgut procyclic forms upon transmission. Interestingly, the generation of stumpy forms is also regulated and periodic in the mammalian blood, this being governed by a density-sensing mechanism whereby a parasite-derived signal drives cell cycle arrest and cellular development both to optimize transmission and to prevent uncontrolled parasite multiplication overwhelming the host. In this review we detail recent developments in our understanding of the molecular mechanisms that underpin the production of stumpy forms in the mammalian bloodstream and their signal perception pathways both in the mammalian bloodstream and upon entry into the tsetse fly. These discoveries are discussed in the context of conserved eukaryotic signaling and differentiation mechanisms. Further, their potential to act as targets for therapeutic strategies that disrupt parasite development either in the mammalian bloodstream or upon their transmission to tsetse flies is also discussed.
Collapse
Affiliation(s)
- Eva Rico
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
29
|
Carter LM, Kafsack BF, Llinás M, Mideo N, Pollitt LC, Reece SE. Stress and sex in malaria parasites. EVOLUTION MEDICINE AND PUBLIC HEALTH 2013; 2013:135-47. [PMID: 24481194 PMCID: PMC3854026 DOI: 10.1093/emph/eot011] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For vector-borne parasites such as malaria, how within- and between-host processes interact to shape transmission is poorly understood. In the host, malaria parasites replicate asexually but for transmission to occur, specialized sexual stages (gametocytes) must be produced. Despite the central role that gametocytes play in disease transmission, explanations of why parasites adjust gametocyte production in response to in-host factors remain controversial. We propose that evolutionary theory developed to explain variation in reproductive effort in multicellular organisms, provides a framework to understand gametocyte investment strategies. We examine why parasites adjust investment in gametocytes according to the impact of changing conditions on their in-host survival. We then outline experiments required to determine whether plasticity in gametocyte investment enables parasites to maintain fitness in a variable environment. Gametocytes are a target for anti-malarial transmission-blocking interventions so understanding plasticity in investment is central to maximizing the success of control measures in the face of parasite evolution.
Collapse
Affiliation(s)
- Lucy M. Carter
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
- *Corresponding author. Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK. Tel: +44 131 650 7706; Fax: +44 131 650 6564; E-mail:
| | - Björn F.C. Kafsack
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Manuel Llinás
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Nicole Mideo
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Laura C. Pollitt
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Sarah E. Reece
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
30
|
Abstract
There is an urgent need for the development of new antimalarial drugs with novel modes of actions. The malarial parasite, Plasmodium falciparum, has a relatively small kinome of <100 kinases, with many members exhibiting a high degree of structural divergence from their host counterparts. A number of Plasmodium kinases have recently been shown by reverse genetics to be essential for various parts of the complex parasitic life cycle, and are thus genetically validated as potential targets. Implementation of mass spectrometry-based phosphoproteomics approaches has informed on key phospho-signalling pathways in the parasite. In addition, global phenotypic screens have revealed a large number of putative protein kinase inhibitors with antimalarial potency. Taken together, these investigations point to the Plasmodium kinome as a rich source of potential new targets. In this review, we highlight recent progress made towards this goal.
Collapse
|
31
|
Jacot D, Soldati-Favre D. Does protein phosphorylation govern host cell entry and egress by the Apicomplexa? Int J Med Microbiol 2012; 302:195-202. [DOI: 10.1016/j.ijmm.2012.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
The kinomes of apicomplexan parasites. Microbes Infect 2012; 14:796-810. [DOI: 10.1016/j.micinf.2012.04.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 11/21/2022]
|
33
|
Haste NM, Talabani H, Doo A, Merckx A, Langsley G, Taylor SS. Exploring the Plasmodium falciparum cyclic-adenosine monophosphate (cAMP)-dependent protein kinase (PfPKA) as a therapeutic target. Microbes Infect 2012; 14:838-50. [PMID: 22626931 PMCID: PMC3967591 DOI: 10.1016/j.micinf.2012.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/01/2012] [Accepted: 05/02/2012] [Indexed: 11/22/2022]
Abstract
One of the prototype mammalian kinases is PKA and various roles have been defined for PKA in malaria pathogenesis. The recently described phospho-proteomes of Plasmodium falciparum introduced a great volume of phospho-peptide data for both basic research and identification of new anti-malaria therapeutic targets. We discuss the importance of phosphorylations detected in vivo at different sites in the parasite R and C subunits of PKA and highlight the inhibitor sites in the parasite R subunit. The N-terminus of the parasite R subunit is predicted to be very flexible and we propose that phosphorylation at multiple sites in this region likely represent docking sites for interactions with other proteins, such as 14-3-3. The most significant observation when the P. falciparum C subunit is compared to mammalian C isoforms is lack of phosphorylation at a key site tail implying that parasite kinase activity is not regulated so tightly as mammalian PKA. Phosphorylation at sites in the activation loop could be mediating a number of processes from regulating parasite kinase activity, to mediating docking of other proteins. The important differences between Plasmodium and mammalian PKA isoforms that indicate the parasite kinase is a valid anti-malaria therapeutic target.
Collapse
Affiliation(s)
- Nina M. Haste
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla, CA 92093-0687, USA
| | - Hana Talabani
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes Cité Sorbonne, Paris, France
| | - Alex Doo
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093-0654, USA
| | - Anais Merckx
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes Cité Sorbonne, Paris, France
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR 216-IRD, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Gordon Langsley
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes Cité Sorbonne, Paris, France
| | - Susan S. Taylor
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093-0654, USA
- Department of Pharmacology, University of California-San Diego, La Jolla, CA 92093-0654, USA
| |
Collapse
|
34
|
Purinoceptor signaling in malaria-infected erythrocytes. Microbes Infect 2012; 14:779-86. [PMID: 22580091 DOI: 10.1016/j.micinf.2012.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 01/25/2023]
Abstract
Human erythrocytes are endowed with ATP release pathways and metabotropic and ionotropic purinoceptors. This review summarizes the pivotal function of purinergic signaling in erythrocyte control of vascular tone, in hemolytic septicemia, and in malaria. In malaria, the intraerythrocytic parasite exploits the purinergic signaling of its host to adapt the erythrocyte to its requirements.
Collapse
|
35
|
Generation of second messengers in Plasmodium. Microbes Infect 2012; 14:787-95. [PMID: 22584103 DOI: 10.1016/j.micinf.2012.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 02/05/2023]
Abstract
Signalling in malaria parasites is a field of growing interest as its components may prove to be valuable drug targets, especially when one considers the burden of a disease that is responsible for up to 500 million infections annually. The scope of this review is to discuss external stimuli in the parasite life cycle and the upstream machinery responsible for translating them into intracellular responses, focussing particularly on the calcium signalling pathway.
Collapse
|