1
|
Oh SY, Château A, Tomatsidou A, Elli D, Gula H, Schneewind O, Missiakas D. Modeling gastrointestinal anthrax disease. Res Microbiol 2023; 174:104026. [PMID: 36646261 PMCID: PMC10338639 DOI: 10.1016/j.resmic.2023.104026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Bacillus anthracis is a spore-forming microbe that persists in soil and causes anthrax disease. The most natural route of infection is ingestion by grazing animals. Gastrointestinal (GI) anthrax also occurs in their monogastric predators, including humans. Exposure of carcasses to oxygen triggers sporulation and contamination of the surrounding soil completing the unusual life cycle of this microbe. The pathogenesis of GI anthrax is poorly characterized. Here, we use B. anthracis carrying the virulence plasmids pXO1 and pXO2, to model gastrointestinal disease in Guinea pigs and mice. We find that spores germinate in the GI tract and precipitate disease in a dose-dependent manner. Inoculation of vegetative bacilli also results in GI anthrax. Virulence is impacted severely by the loss of capsule (pXO2-encoded) but only moderately in absence of toxins (pXO1-encoded). Nonetheless, the lack of toxins leads to reduced bacterial replication in infected hosts. B. cereus Elc4, a strain isolated from a fatal case of inhalational anthrax-like disease, was also found to cause GI anthrax. Because transmission to new hosts depends on the release of large numbers of spores in the environment, we propose that the acquisition of pXO1- and pXO2-like plasmids may promote the successful expansion of members of the Bacillus cereus sensu lato group able to cause anthrax-like disease.
Collapse
Affiliation(s)
- So Young Oh
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL, USA
| | - Alice Château
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL, USA
| | - Anastasia Tomatsidou
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL, USA
| | - Derek Elli
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL, USA
| | - Haley Gula
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL, USA
| | - Olaf Schneewind
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL, USA
| | - Dominique Missiakas
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL, USA.
| |
Collapse
|
2
|
Complexification of In Vitro Models of Intestinal Barriers, A True Challenge for a More Accurate Alternative Approach. Int J Mol Sci 2023; 24:ijms24043595. [PMID: 36835003 PMCID: PMC9958734 DOI: 10.3390/ijms24043595] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
The use of cell models is common to mimic cellular and molecular events in interaction with their environment. In the case of the gut, the existing models are of particular interest to evaluate food, toxicants, or drug effects on the mucosa. To have the most accurate model, cell diversity and the complexity of the interactions must be considered. Existing models range from single-cell cultures of absorptive cells to more complex combinations of two or more cell types. This work describes the existing solutions and the challenges that remain to be solved.
Collapse
|
3
|
Zhang Z, Lu Y, Qi J, Wu W. An update on oral drug delivery via intestinal lymphatic transport. Acta Pharm Sin B 2021; 11:2449-2468. [PMID: 34522594 PMCID: PMC8424224 DOI: 10.1016/j.apsb.2020.12.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/14/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Orally administered drug entities have to survive the harsh gastrointestinal environment, penetrate the enteric epithelia and circumvent hepatic metabolism before reaching the systemic circulation. Whereas the gastrointestinal stability can be well maintained by taking proper measures, hepatic metabolism presents as a formidable barrier to drugs suffering from first-pass metabolism. The pharmaceutical academia and industries are seeking alternative pathways for drug transport to circumvent problems associated with the portal pathway. Intestinal lymphatic transport is emerging as a promising pathway to this end. In this review, we intend to provide an updated overview on the rationale, strategies, factors and applications involved in intestinal lymphatic transport. There are mainly two pathways for peroral lymphatic transport-the chylomicron and the microfold cell pathways. The underlying mechanisms are being unraveled gradually and nowadays witness increasing research input and applications.
Collapse
Key Words
- ACQ, aggregation-caused quenching
- ASRT, apical sodium-dependent bile acid transporter
- AUC, area under curve
- BCS, biopharmaceutics classification system
- CM, chylomicron
- Chylomicron
- DC, dendritic cell
- DDT, dichlorodiphenyltrichloroethane
- DTX, docetaxel
- Drug absorption
- Drug carriers
- Drug delivery
- FA, fatty acid
- FAE, follicle-associated epithelia
- FRET, Föster resonance energy transfer
- GIT, gastrointestinal tract
- HBsAg, hepatitis B surface antigen
- HIV, human immunodeficiency virus
- LDL, low-density lipoprotein
- LDV, Leu-Asp-Val
- LDVp, LDV peptidomimetic
- Lymphatic transport
- M cell, microfold cells
- MG, monoglyceride
- MPA, mycophenolic acid
- MPS, mononuclear phagocyte system
- Microfold cell
- Nanoparticles
- OA, oleate
- Oral
- PCL, polycaprolactone
- PEG-PLA, polyethylene glycol-poly(lactic acid)
- PEI, polyethyleneimine
- PLGA, poly(lactic-co-glycolic acid)
- PVA, poly(vinyl alcohol)
- RGD, Arg-Gly-Asp
- RGDp, RGD peptidomimetic
- SEDDS, self-emulsifying drug delivery system
- SLN, solid lipid nanoparticles
- SNEDDS, self-nanoemulsifying drug delivery system
- TEM, transmission electron microscopy
- TG, triglyceride
- TPGS, D-α-tocopherol polyethylene glycol 1000 succinate
- TU, testosterone undecanoate
- WGA, wheat germ agglutinin
- YCW, yeast cell wall
Collapse
Affiliation(s)
- Zichen Zhang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
4
|
Janik E, Ceremuga M, Niemcewicz M, Bijak M. Dangerous Pathogens as a Potential Problem for Public Health. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E591. [PMID: 33172013 PMCID: PMC7694656 DOI: 10.3390/medicina56110591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022]
Abstract
Pathogens are various organisms, such as viruses, bacteria, fungi, and protozoa, which can cause severe illnesses to their hosts. Throughout history, pathogens have accompanied human populations and caused various epidemics. One of the most significant outbreaks was the Black Death, which occurred in the 14th century and caused the death of one-third of Europe's population. Pathogens have also been studied for their use as biological warfare agents by the former Soviet Union, Japan, and the USA. Among bacteria and viruses, there are high priority agents that have a significant impact on public health. Bacillus anthracis, Francisella tularensis, Yersinia pestis, Variola virus, Filoviruses (Ebola, Marburg), Arenoviruses (Lassa), and influenza viruses are included in this group of agents. Outbreaks and infections caused by them might result in social disruption and panic, which is why special operations are needed for public health preparedness. Antibiotic-resistant bacteria that significantly impede treatment and recovery of patients are also valid threats. Furthermore, recent events related to the massive spread of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are an example of how virus-induced diseases cannot be ignored. The impact of outbreaks, such as SARS-CoV-2, have had far-reaching consequences beyond public health. The economic losses due to lockdowns are difficult to estimate, but it would take years to restore countries to pre-outbreak status. For countries affected by the 2019 coronavirus disease (COVID-19), their health systems have been overwhelmed, resulting in an increase in the mortality rate caused by diseases or injuries. Furthermore, outbreaks, such as SARS-CoV-2, will induce serious, wide-ranging (and possibly long-lasting) psychological problems among, not only health workers, but ordinary citizens (this is due to isolation, quarantine, etc.). The aim of this paper is to present the most dangerous pathogens, as well as general characterizations, mechanisms of action, and treatments.
Collapse
Affiliation(s)
- Edyta Janik
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.)
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland;
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.)
| |
Collapse
|
5
|
Xie T, Rotstein D, Sun C, Fang H, Frucht DM. Gastric pH and Toxin Factors Modulate Infectivity and Disease Progression After Gastrointestinal Exposure to Bacillus anthracis. J Infect Dis 2017; 216:1471-1475. [PMID: 28968672 DOI: 10.1093/infdis/jix487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/12/2017] [Indexed: 11/12/2022] Open
Abstract
Gastrointestinal (GI) anthrax is the most prevalent form of naturally acquired Bacillus anthracis infection, which is associated with exposure to vegetative bacteria in infected meat (carnivores) or to fermented rumen contents (herbivores). We assessed whether key host and pathogen factors modulate infectivity and progression of infection using a mouse model of GI infection. Gastric acid neutralization increases infectivity, but 30%-40% of mice succumb to infection without neutralization. Mice either fed or fasted before exposure showed similar infectivity rates. Finally, the pathogen's anthrax lethal factor is required to establish lethal infection, whereas its edema factor modulates progression and dissemination of infection.
Collapse
Affiliation(s)
- Tao Xie
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research
| | - David Rotstein
- Division of Compliance, Center for Veterinary Medicine, US Food and Drug Administration, Rockville, Maryland
| | - Chen Sun
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research
| | - Hui Fang
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research
| | - David M Frucht
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research
| |
Collapse
|
6
|
Cardona-Correa A, Rios-Velazquez C. Profiling lethal factor interacting proteins from human stomach using T7 phage display screening. Mol Med Rep 2016; 13:3797-804. [PMID: 27035230 PMCID: PMC4838128 DOI: 10.3892/mmr.2016.5031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/22/2016] [Indexed: 12/17/2022] Open
Abstract
The anthrax lethal factor (LF) is a zinc dependent metalloproteinase that cleaves the majority of mitogen-activated protein kinase kinases and a member of NOD-like receptor proteins, inducing cell apoptosis. Despite efforts to fully understand the Bacillus anthracis toxin components, the gastrointestinal (GI) anthrax mechanisms have not been fully elucidated. Previous studies demonstrated gastric ulceration, and a substantial bacterial growth rate in Peyer's patches. However, the complete molecular pathways of the disease that results in tissue damage by LF proteolytic activity remains unclear. In the present study, to identify the profile of the proteins potentially involved in GI anthrax, protein-protein interactions were investigated using human stomach T7 phage display (T7PD) cDNA libraries. T7PD is a high throughput technique that allows the expression of cloned DNA sequences as peptides on the phage surface, enabling the selection and identification of protein ligands. A wild type and mutant LF (E687A) were used to differentiate interaction sites. A total of 124 clones were identified from 194 interacting-phages, at both the DNA and protein level, by in silico analysis. Databases revealed that the selected candidates were proteins from different families including lipase, peptidase-A1 and cation transport families, among others. Furthermore, individual T7PD candidates were tested against LF in order to detect their specificity to the target molecule, resulting in 10 LF-interacting peptides. With a minimum concentration of LF for interaction at 1 μg/ml, the T7PD isolated pepsin A3 pre-protein (PAP) demonstrated affinity to both types of LF. In addition, PAP was isolated in various lengths for the same protein, exhibiting common regions following PRALINE alignment. These findings will help elucidate and improve the understanding of the molecular pathogenesis of GI anthrax, and aid in the development of potential therapeutic agents.
Collapse
Affiliation(s)
- Albin Cardona-Correa
- Department of Biology, College of Arts and Sciences, University of Puerto Rico‑Mayagüez, Mayagüez 00681‑9000, PR, USA
| | - Carlos Rios-Velazquez
- Department of Biology, College of Arts and Sciences, University of Puerto Rico‑Mayagüez, Mayagüez 00681‑9000, PR, USA
| |
Collapse
|
7
|
Sharp NJ, Vandamm JP, Molineux IJ, Schofield DA. Rapid Detection of Bacillus anthracis in Complex Food Matrices Using Phage-Mediated Bioluminescence. J Food Prot 2015; 78:963-8. [PMID: 25951391 DOI: 10.4315/0362-028x.jfp-14-534] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacillus anthracis, the causative agent of anthrax, is considered a high-priority agent that may be used in a food-related terrorist attack because it can be contracted by ingestion and it also forms spores with heat and chemical resistance. Thus, novel surveillance methodologies to detect B. anthracis on adulterated foods are important for bioterrorism preparedness. We describe the development of a phage-based bioluminescence assay for the detection of B. anthracis on deliberately contaminated foods. We previously engineered the B. anthracis phage Wβ with genes encoding bacterial luciferase (luxA and luxB) to create a "light-tagged" reporter (Wβ::luxAB) that is able to rapidly detect B. anthracis by transducing a bioluminescent signal response. Here, we investigate the ability of Wβ::luxAB to detect B. anthracis Sterne, an attenuated select agent strain, in inoculated food (ground beef) and milk (2%, baby formula, and half and half) matrices after incubation with spores for 72 h at 4°C as per AOAC testing guidelines. The majority of B. anthracis bacilli remained in spore form, and thus were potentially infectious, within each of the liquid matrices for 14 days. Detection limits were 80 CFU/ml after 7 h of enrichment; sensitivity of detection increased to 8 CFU/ml when enrichment was extended to 16 h. The limit of detection in ground beef was 3.2 × 10(3) CFU/g after 7 h of enrichment, improving to 3.2 × 10(2) CFU/g after 16 h. Because the time to result is rapid and minimal processing is required, and because gastrointestinal anthrax can be fatal, the reporter technology displays promise for the protection of our food supply following a deliberate release of this priority pathogen.
Collapse
Affiliation(s)
- Natasha J Sharp
- Guild BioSciences, 1313B Ashley River Road, Charleston, South Carolina 29407, USA
| | - Joshua P Vandamm
- Guild BioSciences, 1313B Ashley River Road, Charleston, South Carolina 29407, USA
| | - Ian J Molineux
- Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - David A Schofield
- Guild BioSciences, 1313B Ashley River Road, Charleston, South Carolina 29407, USA.
| |
Collapse
|
8
|
Hernandez MO, Mantis NJ. Phenotypic Analysis of a Population of IgA+ Cells in the Follicle-Associated Epithelium of Mouse Peyer's Patches. PLoS One 2015; 10:e0124111. [PMID: 25894545 PMCID: PMC4404297 DOI: 10.1371/journal.pone.0124111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/25/2015] [Indexed: 01/12/2023] Open
Abstract
The follicle-associated epithelium (FAE) selectively transports prions, viruses, pathogenic bacteria, commensal microflora, and even secretory IgA (SIgA)-immune complexes from the intestinal lumen to underlying gut-associated lymphoid tissues like Peyer’s patches. The FAE consists of a single layer of columnar epithelial cells that includes enterocytes and M (microfold) cells, intermingled with dendritic cells (DCs), macrophages, and naïve and memory B and T lymphocytes. In this report we describe a population of IgA+ cells that reside within and immediately below the FAE in mouse Peyer’s patches. Immunofluorescence microscopy analysis indicated that the FAE-associated IgA+ cells were negative for surface antigen markers specific for B cells (B220), T cells (CD3), DCs (CD11c), and plasma cells (CD138). The IgA+ cells were also negative Ki-67 and IRF4, indicating that they are not mature B cells or plasma cells. The IgA+ cells were, however, often found in close proximity to DCs, leading us to speculate that the population of IgA+ cells in the FAE constitutes an atypical subset of B cells involved in mucosal antigen surveillance and/or immune recall.
Collapse
Affiliation(s)
- Maria Olga Hernandez
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, 12208, United States of America
| | - Nicholas J. Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, 12208, United States of America
- Department of Biomedical Sciences, University at Albany, Albany, New York, 12208, United States of America
- * E-mail:
| |
Collapse
|
9
|
Lightfoot YL, Yang T, Sahay B, Zadeh M, Cheng SX, Wang GP, Owen JL, Mohamadzadeh M. Colonic immune suppression, barrier dysfunction, and dysbiosis by gastrointestinal bacillus anthracis Infection. PLoS One 2014; 9:e100532. [PMID: 24945934 PMCID: PMC4063899 DOI: 10.1371/journal.pone.0100532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 05/24/2014] [Indexed: 11/18/2022] Open
Abstract
Gastrointestinal (GI) anthrax results from the ingestion of Bacillus anthracis. Herein, we investigated the pathogenesis of GI anthrax in animals orally infected with toxigenic non-encapsulated B. anthracis Sterne strain (pXO1+ pXO2−) spores that resulted in rapid animal death. B. anthracis Sterne induced significant breakdown of intestinal barrier function and led to gut dysbiosis, resulting in systemic dissemination of not only B. anthracis, but also of commensals. Disease progression significantly correlated with the deterioration of innate and T cell functions. Our studies provide critical immunologic and physiologic insights into the pathogenesis of GI anthrax infection, whereupon cleavage of mitogen-activated protein kinases (MAPKs) in immune cells may play a central role in promoting dysfunctional immune responses against this deadly pathogen.
Collapse
Affiliation(s)
- Yaíma L. Lightfoot
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Tao Yang
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Bikash Sahay
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mojgan Zadeh
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Sam X. Cheng
- Division of Gastroenterology, Department of Pediatrics, University of Florida, Gainesville, Florida, United States of America
| | - Gary P. Wang
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Jennifer L. Owen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|