1
|
Mata-Santos HA, Sousa Oliveira CV, Feijo DF, Vanzan DF, Vilar-Pereira G, Ramos IP, Carneiro VC, Moreno-Loaiza O, Silverio JC, Lannes-Vieira J, Medei E, Bozza MT, Paiva CN. Heart function enhancement by an Nrf2-activating antioxidant in acute Y-strain Chagas disease, but not in chronic Colombian or Y-strain. PLoS Negl Trop Dis 2024; 18:e0012612. [PMID: 39509468 PMCID: PMC11588235 DOI: 10.1371/journal.pntd.0012612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/25/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Oxidative stress promotes T. cruzi growth and development of chronic Chagas heart dysfunction. However, the literature contains gaps that must be fulfilled, largely due to variations in parasite DTU sources, cell types, mouse strains, and tools to manipulate redox status. We assessed the impact of oxidative environment on parasite burden in cardiomyoblasts and the effects of the Nrf2-inducer COPP on heart function in BALB/c mice infected with either DTU-II Y or DTU-I Colombian T. cruzi strains. Treatment with antioxidants CoPP, apocynin, resveratrol, and tempol reduced parasite burden in cardiomyoblasts H9C2 for both DTUI- and II-strains, while H2O2 increased it. CoPP treatment improved electrical heart function when administered during acute stage of Y-strain infection, coinciding with an overall trend towards increased survival and reduced heart parasite burden. These beneficial effects surpassed those of trypanocidal benznidazole, implying that CoPP directly affects heart physiology. CoPP treatment had beneficial impact on heart systolic function when performed during acute and evaluated during chronic stage. No impact of CoPP on heart parasite burden, electrical, or mechanical function was observed during the chronic stage of Colombian-strain infection, despite previous demonstrations of improvement with other antioxidants. Treatment with CoPP also did not improve heart function of mice chronically infected with Y-strain. Our findings indicate that amastigote growth is responsive to changes in oxidative environment within heart cells regardless of the DTU source, but CoPP influence on heart parasite burden in vivo and heart function is mostly confined to the acute phase. The nature of the antioxidant employed, T. cruzi DTU, and the stage of disease, emerge as crucial factors to consider in heart function studies.
Collapse
Affiliation(s)
| | | | - Daniel F. Feijo
- Instituto de Microbiologia Paulo de Goes, UFRJ, Rio de Janeiro, Brazil
| | | | | | - Isalira P. Ramos
- Centro Nacional de Biologia Estrutural e Bioimagem, UFRJ, Rio de Janeiro, Brazil
| | | | | | | | | | - Emiliano Medei
- Institute of Biophysics Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| | - Marcelo T. Bozza
- Instituto de Microbiologia Paulo de Goes, UFRJ, Rio de Janeiro, Brazil
| | - Claudia N. Paiva
- Instituto de Microbiologia Paulo de Goes, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Rebouças-Silva J, Amorim NA, Jesus-Santos FH, de Lima JA, Lima JB, Berretta AA, Borges VM. Leishmanicidal and immunomodulatory properties of Brazilian green propolis extract (EPP-AF ®) and a gel formulation in a pre-clinical model. Front Pharmacol 2023; 14:1013376. [PMID: 36843932 PMCID: PMC9949379 DOI: 10.3389/fphar.2023.1013376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Leishmaniasis is a widespread group of neglected vector-borne tropical diseases that possess serious therapeutic limitations. Propolis has been extensively used in traditional medical applications due to its range of biological effects, including activity against infectious agents. Here we evaluated the leishmanicidal and immunomodulatory properties of Brazilian green propolis extract (EPP-AF®) and a gel formulation incorporating EPP-AF®, in both in vitro and in vivo models of Leishmania amazonensis infection. Propolis extract, obtained from a standardized blend following hydroalcoholic extraction, showed the characteristic fingerprint of Brazilian green propolis as confirmed by HPLC/DAD. A carbopol 940 gel formulation was obtained containing propolis glycolic extract at 3.6% w/w. The release profile, assessed using the Franz diffusion cell protocol, demonstrated a gradual and prolonged release of p-coumaric acid and artepillin C from the carbomer gel matrix. Quantification of p-coumaric acid and artepillin C in the gel formulation over time revealed that p-coumaric acid followed the Higuchi model, dependent on the disintegration of the pharmaceutical preparation, while artepillin C followed a zero-order profile with sustained release. In vitro analysis revealed the ability of EPP-AF® to reduce the infection index of infected macrophages (p < 0.05), while also modulating the production of inflammatory biomarkers. Decreases in nitric oxide and prostaglandin E2 levels were observed (p < 0.01), suggesting low iNOS and COX-2 activity. Furthermore, EPP-AF® treatment was found to induce heme oxygenase-1 antioxidant enzyme expression in both uninfected and L. amazonensis-infected cells, as well as inhibit IL-1β production in infected cells (p < 0.01). ERK-1/2 phosphorylation was positively correlated with TNF-α production (p < 0.05), yet no impact on parasite load was detected. In vivo analysis indicated the effectiveness of topical treatment with EPP-AF® gel alone (p < 0.05 and p < 0.01), or in combination with pentavalent antimony (p < 0.05 and p < 0.001), in the reduction of lesion size in the ears of L. amazonensis-infected BALB/c mice after seven or 3 weeks of treatment, respectively. Taken together, the present results reinforce the leishmanicidal and immunomodulatory effects of Brazilian green propolis, and demonstrate promising potential for the EPP-AF® propolis gel formulation as a candidate for adjuvant therapy in the treatment of Cutaneous Leishmaniasis.
Collapse
Affiliation(s)
- Jéssica Rebouças-Silva
- Laboratory of Inflammation and Biomarkers, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil,Faculty of Medicine of Bahia, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Nathaly Alcazar Amorim
- Laboratory of Research, Development and Innovation, Apis Flora Industrial e Comercial Ltda, Ribeirão Preto, São Paulo, Brazil
| | - Flávio Henrique Jesus-Santos
- Laboratory of Inflammation and Biomarkers, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil,Faculty of Medicine of Bahia, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Jéssica Aparecida de Lima
- Laboratory of Research, Development and Innovation, Apis Flora Industrial e Comercial Ltda, Ribeirão Preto, São Paulo, Brazil
| | | | - Andresa A. Berretta
- Laboratory of Research, Development and Innovation, Apis Flora Industrial e Comercial Ltda, Ribeirão Preto, São Paulo, Brazil,*Correspondence: Andresa A. Berretta, ; Valéria M. Borges,
| | - Valéria M. Borges
- Laboratory of Inflammation and Biomarkers, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil,Faculty of Medicine of Bahia, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil,*Correspondence: Andresa A. Berretta, ; Valéria M. Borges,
| |
Collapse
|
3
|
Silva RCMC, Vasconcelos LR, Travassos LH. The different facets of heme-oxygenase 1 in innate and adaptive immunity. Cell Biochem Biophys 2022; 80:609-631. [PMID: 36018440 DOI: 10.1007/s12013-022-01087-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
Heme oxygenase (HO) enzymes are responsible for the main oxidative step in heme degradation, generating equimolar amounts of free iron, biliverdin and carbon monoxide. HO-1 is induced as a crucial stress response protein, playing protective roles in physiologic and pathological conditions, due to its antioxidant, anti-apoptotic and anti-inflammatory effects. The mechanisms behind HO-1-mediated protection are being explored by different studies, affecting cell fate through multiple ways, such as reduction in intracellular levels of heme and ROS, transcriptional regulation, and through its byproducts generation. In this review we focus on the interplay between HO-1 and immune-related signaling pathways, which culminate in the activation of transcription factors important in immune responses and inflammation. We also discuss the dual interaction of HO-1 and inflammatory mediators that govern resolution and tissue damage. We highlight the dichotomy of HO-1 in innate and adaptive immune cells development and activation in different disease contexts. Finally, we address different known anti-inflammatory pharmaceuticals that are now being described to modulate HO-1, and the possible contribution of HO-1 in their anti-inflammatory effects.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Ricardo Vasconcelos
- Cellular Signaling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
| | - Leonardo Holanda Travassos
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Costa DL, Amaral EP, Andrade BB, Sher A. Modulation of Inflammation and Immune Responses by Heme Oxygenase-1: Implications for Infection with Intracellular Pathogens. Antioxidants (Basel) 2020; 9:antiox9121205. [PMID: 33266044 PMCID: PMC7761188 DOI: 10.3390/antiox9121205] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase-1 (HO-1) catalyzes the degradation of heme molecules releasing equimolar amounts of biliverdin, iron and carbon monoxide. Its expression is induced in response to stress signals such as reactive oxygen species and inflammatory mediators with antioxidant, anti-inflammatory and immunosuppressive consequences for the host. Interestingly, several intracellular pathogens responsible for major human diseases have been shown to be powerful inducers of HO-1 expression in both host cells and in vivo. Studies have shown that this HO-1 response can be either host detrimental by impairing pathogen control or host beneficial by limiting infection induced inflammation and tissue pathology. These properties make HO-1 an attractive target for host-directed therapy (HDT) of the diseases in question, many of which have been difficult to control using conventional antibiotic approaches. Here we review the mechanisms by which HO-1 expression is induced and how the enzyme regulates inflammatory and immune responses during infection with a number of different intracellular bacterial and protozoan pathogens highlighting mechanistic commonalities and differences with the goal of identifying targets for disease intervention.
Collapse
Affiliation(s)
- Diego L. Costa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil
- Correspondence: ; Tel.: +55-16-3315-3061
| | - Eduardo P. Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (E.P.A.); (A.S.)
| | - Bruno B. Andrade
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa;
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Bahia, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (UniFTC), Salvador 41741-590, Bahia, Brazil
- Curso de Medicina, Universidade Salvador (UNIFACS), Laureate International Universities, Salvador 41770-235, Bahia, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-000, Bahia, Brazil
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (E.P.A.); (A.S.)
| |
Collapse
|
5
|
Silva RCMC, Travassos LH, Paiva CN, Bozza MT. Heme oxygenase-1 in protozoan infections: A tale of resistance and disease tolerance. PLoS Pathog 2020; 16:e1008599. [PMID: 32692767 PMCID: PMC7373268 DOI: 10.1371/journal.ppat.1008599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Heme oxygenase (HO-1) mediates the enzymatic cleavage of heme, a molecule with proinflammatory and prooxidant properties. HO-1 activity deeply impacts host capacity to tolerate infection through reduction of tissue damage or affecting resistance, the ability of the host to control pathogen loads. In this Review, we will discuss the contribution of HO-1 in different and complex protozoan infections, such as malaria, leishmaniasis, Chagas disease, and toxoplasmosis. The complexity of these infections and the pleiotropic effects of HO-1 constitute an interesting area of study and an opportunity for drug development.
Collapse
Affiliation(s)
- Rafael C. M. C. Silva
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Leonardo H. Travassos
- Laboratório de Imunoreceptores e Sinalização, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia N. Paiva
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcelo T. Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- * E-mail:
| |
Collapse
|
6
|
Acosta Rodríguez EV, Araujo Furlan CL, Fiocca Vernengo F, Montes CL, Gruppi A. Understanding CD8 + T Cell Immunity to Trypanosoma cruzi and How to Improve It. Trends Parasitol 2019; 35:899-917. [PMID: 31607632 PMCID: PMC6815727 DOI: 10.1016/j.pt.2019.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022]
Abstract
The protozoan Trypanosoma cruzi is the causative agent of Chagas' disease, endemic in Latin America but present worldwide. Research efforts have focused on the examination of immune mechanisms that mediate host protection as well as immunopathology during this parasitic infection. The study of CD8+ T cell immunity emerges as a key aspect given the critical importance of parasite-specific CD8+ T cells for host resistance throughout the infection. In recent years, new research has shed light on novel pathways that modulate the induction, maintenance, and regulation of CD8+ T cell responses to T. cruzi. This new knowledge is setting the ground for future vaccines and/or immunotherapies. Herein, we critically review and analyze the latest results published in the field.
Collapse
Affiliation(s)
- Eva V Acosta Rodríguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina.
| | - Cintia L Araujo Furlan
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Facundo Fiocca Vernengo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Carolina L Montes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| |
Collapse
|
7
|
Campbell NK, Williams DG, Fitzgerald HK, Barry PJ, Cunningham CC, Nolan DP, Dunne A. Trypanosoma brucei Secreted Aromatic Ketoacids Activate the Nrf2/HO-1 Pathway and Suppress Pro-inflammatory Responses in Primary Murine Glia and Macrophages. Front Immunol 2019; 10:2137. [PMID: 31572363 PMCID: PMC6749089 DOI: 10.3389/fimmu.2019.02137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/27/2019] [Indexed: 11/23/2022] Open
Abstract
African trypanosomes, such as Trypanosoma brucei (T. brucei), are protozoan parasites of the mammalian vasculature and central nervous system that are best known for causing fatal human sleeping sickness. As exclusively extracellular parasites, trypanosomes are subject to constant challenge from host immune defenses but they have developed very effective strategies to evade and modulate these responses to maintain an infection while simultaneously prolonging host survival. Here we investigate host parasite interactions, especially within the CNS context, which are not well-understood. We demonstrate that T. brucei strongly upregulates the stress response protein, Heme Oxygenase 1 (HO-1), in primary murine glia and macrophages in vitro. Furthermore, using a novel AHADHinT. brucei cell line, we demonstrate that specific aromatic ketoacids secreted by bloodstream forms of T. brucei are potent drivers of HO-1 expression and are capable of inhibiting pro-IL1β induction in both glia and macrophages. Additionally, we found that these ketoacids significantly reduced IL-6 and TNFα production by glia, but not macrophages. Finally, we present data to support Nrf2 activation as the mechanism of action by which these ketoacids upregulate HO-1 expression and mediate their anti-inflammatory activity. This study therefore reports a novel immune evasion mechanism, whereby T. brucei secretes amino-acid derived metabolites for the purpose of suppressing both the host CNS and peripheral immune response, potentially via induction of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Nicole K Campbell
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - David G Williams
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Hannah K Fitzgerald
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Paul J Barry
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Clare C Cunningham
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Derek P Nolan
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland.,School of Medicine, Trinity Biomedical Biosciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Lechuga GC, Pereira MCS, Bourguignon SC. Heme metabolism as a therapeutic target against protozoan parasites. J Drug Target 2018; 27:767-779. [DOI: 10.1080/1061186x.2018.1536982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Guilherme Curty Lechuga
- Laboratório de Interação celular e molecular, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Rua Outeiro São João Batista, Rio de Janeiro, Brazil
- Fundação Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, Brazil
- Instituto de Biologia, Programa de Pós-graduação em Ciências e Biotecnologia (PPBI), Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Mirian C. S. Pereira
- Fundação Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, Brazil
| | - Saulo C. Bourguignon
- Laboratório de Interação celular e molecular, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Rua Outeiro São João Batista, Rio de Janeiro, Brazil
- Instituto de Biologia, Programa de Pós-graduação em Ciências e Biotecnologia (PPBI), Universidade Federal Fluminense, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Lechuga GC, Borges JC, Calvet CM, de Araújo HP, Zuma AA, do Nascimento SB, Motta MCM, Bernardino AMR, Pereira MCDS, Bourguignon SC. Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi. Int J Parasitol Drugs Drug Resist 2016; 6:154-164. [PMID: 27490082 PMCID: PMC4971285 DOI: 10.1016/j.ijpddr.2016.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 06/25/2016] [Accepted: 07/12/2016] [Indexed: 02/07/2023]
Abstract
Chagas disease is a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. The current drugs used to treat this disease have limited efficacy and produce severe side effects. Quinolines, nitrogen heterocycle compounds that form complexes with heme, have a broad spectrum of antiprotozoal activity and are a promising class of new compounds for Chagas disease chemotherapy. In this study, we evaluated the activity of a series of 4-arylaminoquinoline-3-carbonitrile derivatives against all forms of Trypanosoma cruzi in vitro. Compound 1g showed promising activity against epimastigote forms when combined with hemin (IC50<1 μM), with better performance than benznidazole, the reference drug. This compound also inhibited the viability of trypomastigotes and intracellular amastigotes. The potency of 1g in combination with heme was enhanced against epimastigotes and trypomastigotes, suggesting a similar mechanism of action that occurs in Plasmodium spp. The addition of hemin to the culture medium increased trypanocidal activity of analog 1g without changing the cytotoxicity of the host cell, reaching an IC50 of 11.7 μM for trypomastigotes. The mechanism of action was demonstrated by the interaction of compound 1g with hemin in solution and prevention of heme peroxidation. Compound 1g and heme treatment induced alterations of the mitochondrion-kinetoplast complex in epimastigotes and trypomastigotes and also, accumulation of electron-dense deposits in amastigotes as visualized by transmission electron microscopy. The trypanocidal activity of 4-aminoquinolines and the elucidation of the mechanism involving interaction with heme is a neglected field of research, given the parasite's lack of heme biosynthetic pathway and the importance of this cofactor for parasite survival and growth. The results of this study can improve and guide rational drug development and combination treatment strategies.
Collapse
Affiliation(s)
- Guilherme Curty Lechuga
- Laboratório de Interação celular e molecular, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Rua Outeiro São João Batista, 24020-141, Niterói, Rio de Janeiro, Brazil
| | - Júlio Cesar Borges
- Departamento de Química Orgânica, Universidade Federal Fluminense, Rua Outeiro São João Batista, 24020-141, Niterói, Rio de Janeiro, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Campus Nilópolis, 26530-060, RJ, Brazil
| | - Claudia Magalhães Calvet
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, 21040-360, Rio de Janeiro, RJ, Brazil
| | - Humberto Pinheiro de Araújo
- Departamento de Imunologia, Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz, Avenida Brasil 4365, 21040-360, Rio de Janeiro, RJ, Brazil
| | - Aline Araujo Zuma
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373-bloco G. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Samara Braga do Nascimento
- Laboratório de Interação celular e molecular, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Rua Outeiro São João Batista, 24020-141, Niterói, Rio de Janeiro, Brazil
| | - Maria Cristina Machado Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373-bloco G. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | | | - Mirian Claudia de Souza Pereira
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, 21040-360, Rio de Janeiro, RJ, Brazil.
| | - Saulo Cabral Bourguignon
- Laboratório de Interação celular e molecular, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Rua Outeiro São João Batista, 24020-141, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Inhibition of ceramide de novo synthesis as a postischemic strategy to reduce myocardial reperfusion injury. Basic Res Cardiol 2016; 111:12. [PMID: 26786259 DOI: 10.1007/s00395-016-0533-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/11/2016] [Indexed: 12/17/2022]
Abstract
The injury caused by myocardial reperfusion after ischemia can be contained by interventions aimed at reducing the inflammation and the oxidative stress that underlie exacerbation of tissue damage. Sphingolipids are a class of structural and signaling lipid molecules; among them, the inflammation mediator ceramide accumulates in the myocardium upon ischemia/reperfusion. Here, we show that, after transient coronary occlusion in mice, an increased de novo ceramide synthesis takes place at reperfusion in the ischemic area surrounding necrosis (area at risk). This correlates with the enhanced expression of the first and rate-limiting enzyme of the de novo pathway, serine palmitoyltransferase (SPT). The intraventricular administration at reperfusion of myriocin, an inhibitor of SPT, significantly protected the area at risk from damage, reducing the infarcted area by 40.9 % relative to controls not treated with the drug. In the area at risk, myriocin downregulated ceramide, reduced the content in other mediators of inflammation and reactive oxygen species, and activated the Nrf2-HO1 cytoprotective response. We conclude that an enhanced ceramide synthesis takes part in ischemia/reperfusion injury and that myriocin treatment can be proposed as a strategy for myocardial pharmacological postconditioning.
Collapse
|
11
|
González FB, Calmon-Hamaty F, Nô Seara Cordeiro S, Fernández Bussy R, Spinelli SV, D'Attilio L, Bottasso O, Savino W, Cotta-de-Almeida V, Villar SR, Pérez AR. Trypanosoma cruzi Experimental Infection Impacts on the Thymic Regulatory T Cell Compartment. PLoS Negl Trop Dis 2016; 10:e0004285. [PMID: 26745276 PMCID: PMC4706328 DOI: 10.1371/journal.pntd.0004285] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/16/2015] [Indexed: 11/18/2022] Open
Abstract
The dynamics of regulatory T cells in the course of Trypanosoma cruzi infection is still debated. We previously demonstrated that acute murine T. cruzi infection results in an impaired peripheral CD4+Foxp3+ T cell differentiation due to the acquisition of an abnormal Th1-like phenotype and altered functional features, negatively impacting on the course of infection. Moreover, T. cruzi infection induces an intense thymic atrophy. As known, the thymus is the primary lymphoid organ in which thymic-derived regulatory T cells, known as tTregs, differentiate. Considering the lack of available data about the effect of T. cruzi infection upon tTregs, we examined tTreg dynamics during the course of disease. We confirmed that T. cruzi infection induces a marked loss of tTreg cell number associated to cell precursor exhaustion, partially avoided by glucocorticoid ablation- and IL-2 survival factor depletion. At the same time, tTregs accumulate within the CD4 single-positive compartment, exhibiting an increased Ki-67/Annexin V ratio compared to controls. Moreover, tTregs enhance after the infection the expression of signature markers (CD25, CD62L and GITR) and they also display alterations in the expression of migration-associated molecules (α chains of VLAs and chemokine receptors) such as functional fibronectin-driven migratory disturbance. Taken together, we provide data demonstrating profound alterations in tTreg compartment during acute murine T. cruzi infection, denoting that their homeostasis is significantly affected. The evident loss of tTreg cell number may compromise the composition of tTreg peripheral pool, and such sustained alteration over time may be partially related to the immune dysregulation observed in the chronic phase of the disease.
Collapse
Affiliation(s)
- Florencia Belén González
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET-UNR), Rosario, Argentina
| | - Flavia Calmon-Hamaty
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Synara Nô Seara Cordeiro
- Laboratory of Innovations in Therapy, Teaching and Bioproducts, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rodrigo Fernández Bussy
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET-UNR), Rosario, Argentina
| | - Silvana Virginia Spinelli
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET-UNR), Rosario, Argentina
| | - Luciano D'Attilio
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET-UNR), Rosario, Argentina
| | - Oscar Bottasso
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET-UNR), Rosario, Argentina
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vinícius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Silvina Raquel Villar
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET-UNR), Rosario, Argentina
| | - Ana Rosa Pérez
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET-UNR), Rosario, Argentina
- * E-mail: ,
| |
Collapse
|