1
|
Pal N, Sharma P, Kumawat M, Singh S, Verma V, Tiwari RR, Sarma DK, Nagpal R, Kumar M. Phage therapy: an alternative treatment modality for MDR bacterial infections. Infect Dis (Lond) 2024; 56:785-817. [PMID: 39017931 DOI: 10.1080/23744235.2024.2379492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
The increasing global incidence of multidrug-resistant (MDR) bacterial infections threatens public health and compromises various aspects of modern medicine. Recognising the urgency of this issue, the World Health Organisation has prioritised the development of novel antimicrobials to combat ESKAPEE pathogens. Comprising Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli, such pathogens represent a spectrum of high to critical drug resistance, accounting for a significant proportion of hospital-acquired infections worldwide. In response to the waning efficacy of antibiotics against these resilient pathogens, phage therapy (PT) has emerged as a promising therapeutic strategy. This review provides a comprehensive summary of clinical research on PT and explores the translational journey of phages from laboratory settings to clinical applications. It examines recent advancements in pre-clinical and clinical developments, highlighting the potential of phages and their proteins, alone or in combination with antibiotics. Furthermore, this review underlines the importance of establishing safe and approved routes of phage administration to patients. In conclusion, the evolving landscape of phage therapy offers a beacon of hope in the fight against MDR bacterial infections, emphasising the imperative for continued research, innovation and regulatory diligence to realise its full potential in clinical practice.
Collapse
Affiliation(s)
- Namrata Pal
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
- Department of Microbiology, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Poonam Sharma
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Manoj Kumawat
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Samradhi Singh
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Rajnarayan R Tiwari
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Manoj Kumar
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| |
Collapse
|
2
|
Dokuz S, Tasdurmazli S, Acar T, Duran GN, Ozdemir C, Ozbey U, Ozbil M, Karadayi S, Bayrak OF, Derman S, Chen JYS, Ozbek T. Evaluation of bacteriophage ϕ11 host recognition protein and its host-binding peptides for diagnosing/targeting Staphylococcus aureus infections. Int J Antimicrob Agents 2024; 64:107230. [PMID: 38824973 DOI: 10.1016/j.ijantimicag.2024.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Evaluating the potential of using both synthetic and biological products as targeting agents for the diagnosis, imaging, and treatment of infections due to particularly antibiotic-resistant pathogens is important for controlling infections. This study examined the interaction between Gp45, a receptor-binding protein of the ϕ11 lysogenic phage, and its host Staphylococcus aureus (S. aureus), a common cause of nosocomial infections. METHODS Using molecular dynamics and docking simulations, this study identified the peptides that bind to S. aureus wall teichoic acids via Gp45. It compared the binding affinity of Gp45 and the two highest-scoring peptide sequences (P1 and P3) and their scrambled forms using microscopy, spectroscopy, and ELISA. RESULTS It was found that rGp45 (recombinant Gp45) and chemically synthesised P1 had a higher binding affinity for S. aureus compared with all other peptides, except for Escherichia coli. Furthermore, rGp45 had a capture efficiency of > 86%; P1 had a capture efficiency of > 64%. CONCLUSION These findings suggest that receptor-binding proteins such as rGp45, which provide a critical initiation of the phage life cycle for host adsorption, might play an important role in the diagnosis, imaging, and targeting of bacterial infections. Studying such proteins could accordingly enable the development of effective strategies for controlling infections.
Collapse
Affiliation(s)
- Senanur Dokuz
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey
| | - Semra Tasdurmazli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey
| | - Tayfun Acar
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Gizem Nur Duran
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| | - Cilem Ozdemir
- Department of Medical Biology, Health Sciences Institution, Mugla Sitki Kocman University, Mugla, Turkey
| | - Utku Ozbey
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Mehmet Ozbil
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| | - Sukriye Karadayi
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Altınbas University, Istanbul, Turkey
| | - Omer Faruk Bayrak
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Serap Derman
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - John Yu-Shen Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tulin Ozbek
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey.
| |
Collapse
|
3
|
Karn SL, Gangwar M, Kumar R, Bhartiya SK, Nath G. Phage therapy: a revolutionary shift in the management of bacterial infections, pioneering new horizons in clinical practice, and reimagining the arsenal against microbial pathogens. Front Med (Lausanne) 2023; 10:1209782. [PMID: 37928478 PMCID: PMC10620811 DOI: 10.3389/fmed.2023.1209782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
The recent approval of experimental phage therapies by the FDA and other regulatory bodies with expanded access in cases in the United States and other nations caught the attention of the media and the general public, generating enthusiasm for phage therapy. It started to alter the situation so that more medical professionals are willing to use phage therapies with conventional antibiotics. However, more study is required to fully comprehend phage therapy's potential advantages and restrictions, which is still a relatively new field in medicine. It shows promise, nevertheless, as a secure and prosperous substitute for antibiotics when treating bacterial illnesses in animals and humans. Because of their uniqueness, phage disinfection is excellent for ready-to-eat (RTE) foods like milk, vegetables, and meat products. The traditional farm-to-fork method can be used throughout the food chain to employ bacteriophages to prevent food infections at all production stages. Phage therapy improves clinical outcomes in animal models and lowers bacterial burdens in numerous preclinical investigations. The potential of phage resistance and the need to make sure that enough phages are delivered to the infection site are obstacles to employing phages in vivo. However, according to preclinical studies, phages appear to be a promising alternative to antibiotics for treating bacterial infections in vivo. Phage therapy used with compassion (a profound understanding of and empathy for another's suffering) has recently grown with many case reports of supposedly treated patients and clinical trials. This review summarizes the knowledge on the uses of phages in various fields, such as the food industry, preclinical research, and clinical settings. It also includes a list of FDA-approved bacteriophage-based products, commercial phage products, and a global list of companies that use phages for therapeutic purposes.
Collapse
Affiliation(s)
- Subhash Lal Karn
- Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mayank Gangwar
- Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajesh Kumar
- Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Satyanam Kumar Bhartiya
- Department of General Surgery, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Gopal Nath
- Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
Piranaghl H, Golmohammadzadeh S, Soheili V, Noghabi ZS, Memar B, Jalali SM, Taherzadeh Z, Fazly Bazzaz BS. The potential therapeutic impact of a topical bacteriophage preparation in treating Pseudomonas aeruginosa-infected burn wounds in mice. Heliyon 2023; 9:e18246. [PMID: 37539104 PMCID: PMC10393627 DOI: 10.1016/j.heliyon.2023.e18246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Aim This study compared a topical formulation containing lytic phages with a routine antibiotic in the murine model of burn/Pseudomonas aeruginosa infected wound healing. Methods & Materials Isolated and purified lytic bacteriophages from hospital sewage were added to the polyethylene glycol (PEG) based ointment. A second-degree burned wound on the back of twenty-four adult female mice was created. The wounds were infected subcutaneously with 100 μL of 1 × 102-3 CFU/mL P. aeruginosa. After 24 h, mice were randomly assigned to one of four groups: mice received a standard antibiotic (antibiotic-treated group), mice received an ointment without bacteriophage (PEG-based group), mice received a PEG-ointment with bacteriophage (bacteriophage-treated group), or mice received no treatment (untreated-control group). Every two days, the contraction of burned wounds, physical activity, and rectal body temperature were recorded. On day 10, mice were sacrificed, and the wounds were cut off and evaluated histopathologically. Results In ointments containing PEG, bacteriophages were active and stable. The mice receiving bacteriophage and PEG-based ointment had substantially different wound contraction in primary wound healing (P = 0.001). When compared to the control group, the bacteriophage-treated group showed significant variations in wound contraction (P = 0.001). The wound contraction changed significantly between the antibiotic and PEG-based groups (P = 0.002). In all groups, physical activity in mice improved over time, with significant differences (P = 0.001). When the 8th day was compared to the days 2, 4, and 6, significant changes were found (P = 0.001, P = 0.02, and P = 0.02, respectively). Both the positive control and bacteriophage-treated groups showed perfect wound healing histopathologically. However, no significant variations in microscopic histopathological criteria were found between the groups. Conclusion Formulated phage ointment could be a promising approach for treating infected burn wounds infected by P. aeruginosa in mice with no allergic reactions.
Collapse
Affiliation(s)
- Hanieh Piranaghl
- Pharmaceutical Control Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Golmohammadzadeh
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Pharmaceutical Control Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Sabeti Noghabi
- Pharmaceutical Control Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biopathology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Bahram Memar
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyede Melika Jalali
- Pharmaceutical Control Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zhila Taherzadeh
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Pharmaceutical Control Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Brouillette E, Millette G, Chamberland S, Roy JP, Ster C, Kiros T, Hickey S, Hittle L, Woolston J, Malouin F. Effective Treatment of Staphylococcus aureus Intramammary Infection in a Murine Model Using the Bacteriophage Cocktail StaphLyse™. Viruses 2023; 15:v15040887. [PMID: 37112867 PMCID: PMC10145274 DOI: 10.3390/v15040887] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Staphylococcus aureus causes intramammary infections (IMIs), which are refractory to antibiotic treatment and frequently result in chronic mastitis. IMIs are the leading cause of conventional antibiotic use in dairy farms. Phage therapy represents an alternative to antibiotics to help better manage mastitis in cows, reducing the global spread of resistance. A mouse mastitis model of S. aureus IMI was used to study the efficacy of a new cocktail of five lytic S. aureus-specific phages (StaphLyse™), administered either via the intramammary (IMAM) route or intravenously (IV). The StaphLyse™ phage cocktail was stable in milk for up to one day at 37 °C and up to one week at 4 °C. The phage cocktail was bactericidal in vitro against S. aureus in a dose-dependent manner. A single IMAM injection of this cocktail given 8 h after infection reduced the bacterial load in the mammary glands of lactating mice infected with S. aureus, and as expected, a two-dose regimen was more effective. Prophylactic use (4 h pre-challenge) of the phage cocktail was also effective, reducing S. aureus levels by 4 log10 CFU per gram of mammary gland. These results suggest that phage therapy may be a viable alternative to traditional antibiotics for the control of S. aureus IMIs.
Collapse
Affiliation(s)
- Eric Brouillette
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Guillaume Millette
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Suzanne Chamberland
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Jean-Pierre Roy
- Techniques de Santé Animale, Cégep de Sherbrooke, Sherbrooke, QC J1E 4K1, Canada
| | - Céline Ster
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada
| | - Tadele Kiros
- Phileo by Lesaffre North America Office, 7475 West Main Street, Milwaukee, WI 53214, USA
| | | | | | | | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
6
|
Mehmood Khan F, Manohar P, Singh Gondil V, Mehra N, Kayode Oyejobi G, Odiwuor N, Ahmad T, Huang G. The applications of animal models in phage therapy: An update. Hum Vaccin Immunother 2023; 19:2175519. [PMID: 36935353 PMCID: PMC10072079 DOI: 10.1080/21645515.2023.2175519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
The rapid increase in antibiotic resistance presents a dire situation necessitating the need for alternative therapeutic agents. Among the current alternative therapies, phage therapy (PT) is promising. This review extensively summarizes preclinical PT approaches in various in-vivo models. PT has been evaluated in several recent clinical trials. However, there are still several unanswered concerns due to a lack of appropriate regulation and pharmacokinetic data regarding the application of phages in human therapeutic procedures. In this review, we also presented the current state of PT and considered how animal models can be used to adapt these therapies for humans. The development of realistic solutions to circumvent these constraints is critical for advancing this technology.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China.,Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Prasanth Manohar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Vijay Singh Gondil
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Nancy Mehra
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Greater Kayode Oyejobi
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,Department of Microbiology, Osun State University, Osogbo, Nigeria.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Nelson Odiwuor
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,International College, University of Chinese Academy of Sciences, Beijing, China.,Microbiology, Sino-Africa Joint Research Centre, Nairobi, Kenya
| | - Tauseef Ahmad
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Guangtao Huang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Gómez-Ochoa SA, Pitton M, Valente LG, Sosa Vesga CD, Largo J, Quiroga-Centeno AC, Hernández Vargas JA, Trujillo-Cáceres SJ, Muka T, Cameron DR, Que YA. Efficacy of phage therapy in preclinical models of bacterial infection: a systematic review and meta-analysis. THE LANCET. MICROBE 2022; 3:e956-e968. [PMID: 36370748 DOI: 10.1016/s2666-5247(22)00288-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Antimicrobial resistance of bacterial pathogens is an increasing clinical problem and alternative approaches to antibiotic chemotherapy are needed. One of these approaches is the use of lytic bacterial viruses known as phage therapy. We aimed to assess the efficacy of phage therapy in preclinical animal models of bacterial infection. METHODS In this systematic review and meta-analysis, MEDLINE/Ovid, Embase/Ovid, CINAHL/EbscoHOST, Web of Science/Wiley, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and Google Scholar were searched from inception to Sept 30, 2021. Studies assessing phage efficacy in animal models were included. Only studies that assessed the efficacy of phage therapy in treating established bacterial infections in terms of survival and bacterial abundance or density were included. Studies reporting only in-vitro or ex-vivo results and those with incomplete information were excluded. Risk-of-bias assessment was performed using the Systematic Review Centre for Laboratory Animal Experimentation tool. The main endpoints were animal survival and tissue bacterial burden, which were reported using pooled odds ratios (ORs) and mean differences with random-effects models. The I2 measure and its 95% CI were also calculated. This study is registered with PROSPERO, CRD42022311309. FINDINGS Of the 5084 references screened, 124 studies fulfilled the selection criteria. Risk of bias was high for 70 (56%) of the 124 included studies; therefore, only studies classified as having a low-to-moderate risk of bias were considered for quantitative data synthesis (n=32). Phage therapy was associated with significantly improved survival at 24 h in systemic infection models (OR 0·08 [95% CI 0·03 to 0·20]; I2=55% [95% CI 8 to 77]), skin infection (OR 0·08 [0·04 to 0·19]; I2 = 0% [0 to 79]), and pneumonia models (OR 0·13 [0·06 to 0·31]; I2=0% [0 to 68]) when compared with placebo. Animals with skin infections (mean difference -2·66 [95% CI -3·17 to -2·16]; I2 = 95% [90 to 96]) and those with pneumonia (mean difference -3·35 [-6·00 to -0·69]; I2 = 99% [98 to 99]) treated with phage therapy had significantly lower tissue bacterial loads at 5 ± 2 days of follow-up compared with placebo. INTERPRETATION Phage therapy significantly improved animal survival and reduced organ bacterial loads compared with placebo in preclinical animal models. However, high heterogeneity was observed in some comparisons. More evidence is needed to identify the factors influencing phage therapy performance to improve future clinical application. FUNDING Swiss National Foundation and Swiss Heart Foundation.
Collapse
Affiliation(s)
- Sergio Alejandro Gómez-Ochoa
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Research Center, Fundación Cardiovascular de Colombia, Bucaramanga, Colombia.
| | - Melissa Pitton
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luca G Valente
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Jorge Largo
- Internal Medicine Department, Universidad Militar Nueva Granada, Bogotá, Colombia
| | | | | | | | - Taulant Muka
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Epistudia, Bern, Switzerland
| | - David R Cameron
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
8
|
Plumet L, Ahmad-Mansour N, Dunyach-Remy C, Kissa K, Sotto A, Lavigne JP, Costechareyre D, Molle V. Bacteriophage Therapy for Staphylococcus Aureus Infections: A Review of Animal Models, Treatments, and Clinical Trials. Front Cell Infect Microbiol 2022; 12:907314. [PMID: 35782148 PMCID: PMC9247187 DOI: 10.3389/fcimb.2022.907314] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a common and virulent human pathogen causing several serious illnesses including skin abscesses, wound infections, endocarditis, osteomyelitis, pneumonia, and toxic shock syndrome. Antibiotics were first introduced in the 1940s, leading to the belief that bacterial illnesses would be eradicated. However, microorganisms, including S. aureus, began to develop antibiotic resistance from the increased use and abuse of antibiotics. Antibiotic resistance is now one of the most serious threats to global public health. Bacteria like methicillin-resistant Staphylococcus aureus (MRSA) remain a major problem despite several efforts to find new antibiotics. New treatment approaches are required, with bacteriophage treatment, a non-antibiotic strategy to treat bacterial infections, showing particular promise. The ability of S. aureus to resist a wide range of antibiotics makes it an ideal candidate for phage therapy studies. Bacteriophages have a relatively restricted range of action, enabling them to target pathogenic bacteria. Their usage, usually in the form of a cocktail of bacteriophages, allows for more focused treatment while also overcoming the emergence of resistance. However, many obstacles remain, particularly in terms of their effects in vivo, necessitating the development of animal models to assess the bacteriophage efficiency. Here, we provide a review of the animal models, the various clinical case treatments, and clinical trials for S. aureus phage therapy.
Collapse
Affiliation(s)
- Lucile Plumet
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, Montpellier, France
| | - Nour Ahmad-Mansour
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, Montpellier, France
| | - Catherine Dunyach-Remy
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Univ Montpellier, Nîmes, France
| | - Karima Kissa
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, Montpellier, France
| | - Albert Sotto
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Department of Infectious and Tropical Diseases, CHU Nîmes, Univ Montpellier, Nîmes, France
| | - Jean-Philippe Lavigne
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Univ Montpellier, Nîmes, France
| | - Denis Costechareyre
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, Montpellier, France
- Greenphage, Cap Alpha, Clapiers, France
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, Montpellier, France
- *Correspondence: Virginie Molle,
| |
Collapse
|
9
|
Shahin K, Zhang L, Mehraban MH, Collard JM, Hedayatkhah A, Mansoorianfar M, Soleimani-Delfan A, Wang R. Clinical and experimental bacteriophage studies: Recommendations for possible approaches for standing against SARS-CoV-2. Microb Pathog 2022; 164:105442. [PMID: 35151823 PMCID: PMC8830156 DOI: 10.1016/j.micpath.2022.105442] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022]
Abstract
In 2019, the world faced a serious health challenge, the rapid spreading of a life-threatening viral pneumonia, coronavirus disease 2019 (COVID-19) caused by a betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of January 2022 WHO statistics shows more than 5.6 million death and about 350 million infection by SARS-CoV-2. One of the life threatening aspects of COVID-19 is secondary infections and reduced efficacy of antibiotics against them. Since the beginning of COVID-19 many researches have been done on identification, treatment, and vaccine development. Bacterial viruses (bacteriophages) could offer novel approaches to detect, treat and control COVID-19. Phage therapy and in particular using phage cocktails can be used to control or eliminate the bacterial pathogen as an alternative or complementary therapeutic agent. At the same time, phage interaction with the host immune system can regulate the inflammatory response. In addition, phage display and engineered synthetic phages can be utilized to develop new vaccines and antibodies, stimulate the immune system, and elicit a rapid and well-appropriate defense response. The emergence of SARS-CoV-2 new variants like delta and omicron has proved the urgent need for precise, efficient and novel approaches for vaccine development and virus detection techniques in which bacteriophages may be one of the plausible solutions. Therefore, phages with similar morphology and/or genetic content to that of coronaviruses can be used for ecological and epidemiological modeling of SARS-CoV-2 behavior and future generations of coronavirus, and in general new viral pathogens. This article is a comprehensive review/perspective of potential applications of bacteriophages in the fight against the present pandemic and the post-COVID era.
Collapse
Affiliation(s)
- Khashayar Shahin
- Center for Microbes, Development, and Health (CMDH), Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200025, China; Key Laboratory of Phage Research, International Phage Research Center, Jiangsu Academy of Agricultural, China; Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Lili Zhang
- Key Laboratory of Phage Research, International Phage Research Center, Jiangsu Academy of Agricultural, China; Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Mohammad Hossein Mehraban
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jean-Marc Collard
- Center for Microbes, Development, and Health (CMDH), Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200025, China
| | | | | | - Abbas Soleimani-Delfan
- Key Laboratory of Phage Research, International Phage Research Center, Jiangsu Academy of Agricultural, China; Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ran Wang
- Key Laboratory of Phage Research, International Phage Research Center, Jiangsu Academy of Agricultural, China; Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
10
|
Gurov AV, Lapenko EG, Kryukov AI. [Phage therapy of purulent-inflammatory pathology of the outer and middle ear]. Vestn Otorinolaringol 2022; 87:56-62. [PMID: 36107182 DOI: 10.17116/otorino20228704156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The steady growth of antibiotic resistance of bacteria and, as a result, difficulties in selecting effective drugs determine the search for an alternative strategy for the use of antimicrobials, and therapy based on the use of bacteriophages is such. Phage therapy in otorhinolaryngology is actively used for the treatment of rhinosinusitis, diseases of the pharynx and larynx. However, it should be noted that the use of this group of drugs in the treatment of ear diseases is not sufficiently covered. Currently, institutes and clinics around the world are undergoing many large multicenter studies aimed not only at finding effective bacteriophages against antibiotic-resistant bacteria, but also at isolating their enzymes (lysines), expression of transport proteins, genetic modifications that lead to the restoration of the sensitivity of bacteria to antimicrobial drugs. In this review, we sought to highlight modern works concerning the treatment of inflammatory ear diseases with bacteriophage preparations, the results of microbiological studies conducted in vitro, the main purpose of which was to combat multi-resistant strains of microorganisms - pathogens of purulent-inflammatory diseases of the outer and middle ear.
Collapse
Affiliation(s)
- A V Gurov
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - E G Lapenko
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - A I Kryukov
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| |
Collapse
|
11
|
Kaur S, Kumari A, Kumari Negi A, Galav V, Thakur S, Agrawal M, Sharma V. Nanotechnology Based Approaches in Phage Therapy: Overcoming the Pharmacological Barriers. Front Pharmacol 2021; 12:699054. [PMID: 34675801 PMCID: PMC8524003 DOI: 10.3389/fphar.2021.699054] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
With the emergence and spread of global antibiotic resistance and the need for searching safer alternatives, there has been resurgence in exploring the use of bacteriophages in the treatment of bacterial infections referred as phage therapy. Although modern phage therapy has come a long way as demonstrated by numerous efficacy studies but the fact remains that till date, phage therapy has not received regulatory approval for human use (except for compassionate use).Thus, to hit the clinical market, the roadblocks need to be seriously addressed and gaps mended with modern solution based technologies. Nanotechnology represents one such ideal and powerful tool for overcoming the pharmacological barriers (low stability, poor in-vivo retention, targeted delivery, neutralisation by immune system etc.) of administered phage preparations.In literature, there are many review articles on nanotechnology and bacteriophages but these are primarily focussed on highlighting the use of lytic and temperate phages in different fields of nano-medicine such as nanoprobes, nanosensors, cancer diagnostics, cancer cell targeting, drug delivery through phage receptors, phage display etc. Reviews specifically focused on the use of nanotechnology driven techniques strictly to improve phage therapy are however limited. Moreover, these review if present have primarily focussed on discussing encapsulation as a primary method for improving the stability and retention of phage(s) in the body.With new advances made in the field of nanotechnology, approaches extend from mere encapsulation to recently adopted newer strategies. The present review gives a detailed insight into the more recent strategies which include 1) use of lipid based nano-carriers (liposomes, transfersomes etc.) 2) adopting microfluidic based approach, surface modification methods to further enhance the efficiency and stability of phage loaded liposomes 3) Nano- emulsification approach with integration of microfluidics for producing multiple emulsions (suitable for phage cocktails) with unique control over size, shape and drop morphology 4) Phage loaded nanofibers produced by electro-spinning and advanced core shell nanofibers for immediate, biphasic and delayed release systems and 5) Smart release drug delivery platforms that allow superior control over dosing and phage release as and when required. All these new advances are aimed at creating a suitable housing system for therapeutic bacteriophage preparations while targeting the multiple issues of phage therapy i.e., improving phage stability and titers, improving in-vivo retention times, acting as suitable delivery systems for sustained release at target site of infection, improved penetration into biofilms and protection from immune cell attack. The present review thus aims at giving a complete insight into the recent advances (2010 onwards) related to various nanotechnology based approaches to address the issues pertaining to phage therapy. This is essential for improving the overall therapeutic index and success of phage therapy for future clinical approval.
Collapse
Affiliation(s)
- Sandeep Kaur
- Department of Food Science, Mehr Chand Mahajan DAV College for Women, Chandigarh, India
| | - Anila Kumari
- Department of Food Science, Mehr Chand Mahajan DAV College for Women, Chandigarh, India
| | - Anjana Kumari Negi
- Department of Biochemistry, Dr. Rajendra Prasad Government Medical College, Himachal Pradesh, India
| | - Vikas Galav
- Department of Veterinary Pathology, Post Graduate Institute of Veterinary Education and Research (RAJUVAS), Jaipur, India
| | - Shikha Thakur
- Department of Biotechnology, Kumaun University, Uttarakhand, India
| | - Manish Agrawal
- Department of Veterinary Pathology, Post Graduate Institute of Veterinary Education and Research (RAJUVAS), Jaipur, India
| | - Vandana Sharma
- Department of Food Science, Mehr Chand Mahajan DAV College for Women, Chandigarh, India
| |
Collapse
|
12
|
Obořilová R, Šimečková H, Pastucha M, Klimovič Š, Víšová I, Přibyl J, Vaisocherová-Lísalová H, Pantůček R, Skládal P, Mašlaňová I, Farka Z. Atomic force microscopy and surface plasmon resonance for real-time single-cell monitoring of bacteriophage-mediated lysis of bacteria. NANOSCALE 2021; 13:13538-13549. [PMID: 34477758 DOI: 10.1039/d1nr02921e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents with enzymatic activity (enzybiotics) and phage therapy represent promising and effective alternatives to classic antibiotics. However, new tools are needed to study phage-bacteria interactions and bacterial lysis with high resolution and in real-time. Here, we introduce a method for studying the lysis of S. aureus at the single-cell level in real-time using atomic force microscopy (AFM) in liquid. We demonstrate the ability of the method to monitor the effect of the enzyme lysostaphin on S. aureus and the lytic action of the Podoviridae phage P68. AFM allowed the topographic and biomechanical properties of individual bacterial cells to be monitored at high resolution over the course of their lysis, under near-physiological conditions. Changes in the stiffness of S. aureus cells during lysis were studied by analyzing force-distance curves to determine Young's modulus. This allowed observing a progressive decline in cellular stiffness corresponding to the disintegration of the cell envelope. The AFM experiments were complemented by surface plasmon resonance (SPR) experiments that provided information on the kinetics of phage-bacterium binding and the subsequent lytic processes. This approach forms the foundation of an innovative framework for studying the lysis of individual bacteria that may facilitate the further development of phage therapy.
Collapse
Affiliation(s)
- Radka Obořilová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pirnay JP, Ferry T, Resch G. Recent progress towards the implementation of phage therapy in Western medicine. FEMS Microbiol Rev 2021; 46:6325169. [PMID: 34289033 DOI: 10.1093/femsre/fuab040] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
Like the sword of Damocles, the threat of a post-antibiotic era is hanging over humanity's head. The scientific and medical community is thus reconsidering bacteriophage therapy (BT) as a partial but realistic solution for treatment of difficult to eradicate bacterial infections. Here, we summarize the latest developments in clinical BT applications, with a focus on developments in the following areas: i) pharmacology of bacteriophages of major clinical importance and their synergy with antibiotics; ii) production of therapeutic phages; and iii) clinical trials, case studies, and case reports in the field. We address regulatory concerns, which are of paramount importance insofar as they dictate the conduct of clinical trials, which are needed for broader BT application. The increasing amount of new available data confirm the particularities of BT as being innovative and highly personalized. The current circumstances suggest that the immediate future of BT may be advanced within the framework of national BT centers in collaboration with competent authorities, which are urged to adopt incisive initiatives originally launched by some national regulatory authorities.
Collapse
Affiliation(s)
- Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Tristan Ferry
- Department of Infectious Diseases, Hospices Civils de Lyon, Lyon, France.,CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Grégory Resch
- Centre of Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
14
|
Liu D, Van Belleghem JD, de Vries CR, Burgener E, Chen Q, Manasherob R, Aronson JR, Amanatullah DF, Tamma PD, Suh GA. The Safety and Toxicity of Phage Therapy: A Review of Animal and Clinical Studies. Viruses 2021; 13:1268. [PMID: 34209836 PMCID: PMC8310247 DOI: 10.3390/v13071268] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Increasing rates of infection by antibiotic resistant bacteria have led to a resurgence of interest in bacteriophage (phage) therapy. Several phage therapy studies in animals and humans have been completed over the last two decades. We conducted a systematic review of safety and toxicity data associated with phage therapy in both animals and humans reported in English language publications from 2008-2021. Overall, 69 publications met our eligibility criteria including 20 animal studies, 35 clinical case reports or case series, and 14 clinical trials. After summarizing safety and toxicity data from these publications, we discuss potential approaches to optimize safety and toxicity monitoring with the therapeutic use of phage moving forward. In our systematic review of the literature, we found some adverse events associated with phage therapy, but serious events were extremely rare. Comprehensive and standardized reporting of potential toxicities associated with phage therapy has generally been lacking in the published literature. Structured safety and tolerability endpoints are necessary when phages are administered as anti-infective therapeutics.
Collapse
Affiliation(s)
- Dan Liu
- Department of Burn, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; (J.D.V.B.); (C.R.d.V.); (Q.C.); (J.R.A.)
| | - Jonas D. Van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; (J.D.V.B.); (C.R.d.V.); (Q.C.); (J.R.A.)
| | - Christiaan R. de Vries
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; (J.D.V.B.); (C.R.d.V.); (Q.C.); (J.R.A.)
| | - Elizabeth Burgener
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA;
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; (J.D.V.B.); (C.R.d.V.); (Q.C.); (J.R.A.)
| | - Robert Manasherob
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.M.); (D.F.A.)
| | - Jenny R. Aronson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; (J.D.V.B.); (C.R.d.V.); (Q.C.); (J.R.A.)
| | - Derek F. Amanatullah
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.M.); (D.F.A.)
| | - Pranita D. Tamma
- Division of Pediatric Infectious Diseases, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Gina A. Suh
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Ferriol-González C, Domingo-Calap P. Phage Therapy in Livestock and Companion Animals. Antibiotics (Basel) 2021; 10:559. [PMID: 34064754 PMCID: PMC8150778 DOI: 10.3390/antibiotics10050559] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/16/2022] Open
Abstract
The irrational use of antibiotics has led to a high emergence of multi-drug resistant (MDR) bacteria. The traditional overuse of antibiotics in the animal feed industry plays a crucial role in the emergence of these pathogens that pose both economic and health problems. In addition, antibiotics have also recently experienced an increase to treat companion animal infections, promoting the emergence of MDR bacteria in pets, which can reach humans. Phages have been proposed as an alternative for antibiotics for the treatment of livestock and companion animal infections due to their multiple advantages as adaptative drugs, such as their ability to evolve, to multiply at the site of infections, and their high specificity. Moreover, phage-derived enzymes may also be an interesting approach. However, the lack of regulation for this type of pharmaceutical hinders its potential commercialization. In this review, we summarize the main recent studies on phage therapy in livestock and companion animals, providing an insight into current advances in this area and the future of treatments for bacterial infections.
Collapse
Affiliation(s)
| | - Pilar Domingo-Calap
- Department of Genetics, Universitat de València, 46100 Valencia, Spain;
- Institute for Integrative Systems Biology, I2SysBio, Universitat de València-CSIC, 46980 Valencia, Spain
| |
Collapse
|
16
|
Schmalstig AA, Freidy S, Hanafin PO, Braunstein M, Rao GG. Reapproaching Old Treatments: Considerations for PK/PD Studies on Phage Therapy for Bacterial Respiratory Infections. Clin Pharmacol Ther 2021; 109:1443-1456. [PMID: 33615463 DOI: 10.1002/cpt.2214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Antibiotic resistant bacterial respiratory infections are a significant global health burden, and new therapeutic strategies are needed to control the problem. For bacterial respiratory infections, this need is emphasized by the rise in antibiotic resistance and a lean drug development pipeline. Bacteriophage (phage) therapy is a promising alternative to antibiotics. Phage are viruses that infect and kill bacteria. Because phage and antibiotics differ in their bactericidal mechanisms, phage are a treatment option for antibiotic-resistant bacteria. Here, we review the history of phage therapy and highlight recent preclinical and clinical case reports of its use for treating antibiotic-resistant respiratory infections. The ability of phage to replicate while killing the bacteria is both a benefit for treatment and a challenge for pharmacokinetic (PK) and pharmacodynamic (PD) studies. In this review, we will discuss how the phage lifecycle and associated bidirectional interactions between phage and bacteria can impact treatment. We will also highlight PK/PD considerations for designing studies of phage therapy to optimize the efficacy and feasibility of the approach.
Collapse
Affiliation(s)
- Alan A Schmalstig
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Soha Freidy
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Patrick O Hanafin
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Miriam Braunstein
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gauri G Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
17
|
Penziner S, Schooley RT, Pride DT. Animal Models of Phage Therapy. Front Microbiol 2021; 12:631794. [PMID: 33584632 PMCID: PMC7876411 DOI: 10.3389/fmicb.2021.631794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/11/2021] [Indexed: 01/21/2023] Open
Abstract
Amidst the rising tide of antibiotic resistance, phage therapy holds promise as an alternative to antibiotics. Most well-designed studies on phage therapy exist in animal models. In order to progress to human clinical trials, it is important to understand what these models have accomplished and determine how to improve upon them. Here we provide a review of the animal models of phage therapy in Western literature and outline what can be learned from them in order to bring phage therapy closer to becoming a feasible alternative to antibiotics in clinical practice.
Collapse
Affiliation(s)
- Samuel Penziner
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Robert T Schooley
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - David T Pride
- Department of Medicine, University of California, San Diego, San Diego, CA, United States.,Department of Pathology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
18
|
In Vitro and In Vivo Evaluation of Three Newly Isolated Bacteriophage Candidates, phiEF7H, phiEF14H1, phiEF19G, for Treatment of Enterococcus faecalis Endophthalmitis. Microorganisms 2021; 9:microorganisms9020212. [PMID: 33498561 PMCID: PMC7909552 DOI: 10.3390/microorganisms9020212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 01/21/2023] Open
Abstract
Post-operative endophthalmitis caused by Enterococcus spp. progresses rapidly and often results in substantial and irreversible vision loss. Therefore, novel alternative treatments that are effective against enterococcal endophthalmitis are required. Bacteriophage therapy has the potential to be an optional therapy for infectious diseases. Therefore, we investigated the therapeutic potential of three newly isolated enterococcal phages, phiEF7H, phiEF14H1, and phiEF19G, in E. faecalis-induced endophthalmitis. These phages could lyse the broad-range E. faecalis, including strains derived from endophthalmitis and vancomycin-resistant E. faecalis in vitro, as determined by the streak test. Morphological and genomic analyses revealed that these phages were classified into the Herelleviridae genus Kochikohdavirus. The whole genomes of these phages contained 143,399, 143,280, and 143,400 bp, respectively. Endophthalmitis was induced in mice by injection of three strains of E. faecalis derived from post-operative endophthalmitis or vancomycin-resistant strains into the vitreous body. The number of viable bacteria and infiltration of neutrophils in the eye were both decreased by intravitreous injection of phiEF7H, phiEF14H1, and phiEF19G 6 h after injection of all E. faecalis strains. Thus, these results suggest that these newly isolated phages may serve as promising candidates for phage therapy against endophthalmitis.
Collapse
|
19
|
Vlaeminck J, Raafat D, Surmann K, Timbermont L, Normann N, Sellman B, van Wamel WJB, Malhotra-Kumar S. Exploring Virulence Factors and Alternative Therapies against Staphylococcus aureus Pneumonia. Toxins (Basel) 2020; 12:toxins12110721. [PMID: 33218049 PMCID: PMC7698915 DOI: 10.3390/toxins12110721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/13/2022] Open
Abstract
Pneumonia is an acute pulmonary infection associated with high mortality and an immense financial burden on healthcare systems. Staphylococcus aureus is an opportunistic pathogen capable of inducing S. aureus pneumonia (SAP), with some lineages also showing multidrug resistance. Given the high level of antibiotic resistance, much research has been focused on targeting S. aureus virulence factors, including toxins and biofilm-associated proteins, in an attempt to develop effective SAP therapeutics. Despite several promising leads, many hurdles still remain for S. aureus vaccine research. Here, we review the state-of-the-art SAP therapeutics, highlight their pitfalls, and discuss alternative approaches of potential significance and future perspectives.
Collapse
Affiliation(s)
- Jelle Vlaeminck
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, 2610 Antwerp, Belgium; (J.V.); (L.T.)
| | - Dina Raafat
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (D.R.); (N.N.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Leen Timbermont
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, 2610 Antwerp, Belgium; (J.V.); (L.T.)
| | - Nicole Normann
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (D.R.); (N.N.)
| | - Bret Sellman
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Willem J. B. van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, 3015 Rotterdam, The Netherlands;
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, 2610 Antwerp, Belgium; (J.V.); (L.T.)
- Correspondence: ; Tel.: +32-3-265-27-52
| |
Collapse
|
20
|
Federici S, Nobs SP, Elinav E. Phages and their potential to modulate the microbiome and immunity. Cell Mol Immunol 2020; 18:889-904. [PMID: 32901128 DOI: 10.1038/s41423-020-00532-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages (hence termed phages) are viruses that target bacteria and have long been considered as potential future treatments against antibiotic-resistant bacterial infection. However, the molecular nature of phage interactions with bacteria and the human host has remained elusive for decades, limiting their therapeutic application. While many phages and their functional repertoires remain unknown, the advent of next-generation sequencing has increasingly enabled researchers to decode new lytic and lysogenic mechanisms by which they attack and destroy bacteria. Furthermore, the last decade has witnessed a renewed interest in the utilization of phages as therapeutic vectors and as a means of targeting pathogenic or commensal bacteria or inducing immunomodulation. Importantly, the narrow host range, immense antibacterial repertoire, and ease of manipulating phages may potentially allow for their use as targeted modulators of pathogenic, commensal and pathobiont members of the microbiome, thereby impacting mammalian physiology and immunity along mucosal surfaces in health and in microbiome-associated diseases. In this review, we aim to highlight recent advances in phage biology and how a mechanistic understanding of phage-bacteria-host interactions may facilitate the development of novel phage-based therapeutics. We provide an overview of the challenges of the therapeutic use of phages and how these could be addressed for future use of phages as specific modulators of the human microbiome in a variety of infectious and noncommunicable human diseases.
Collapse
Affiliation(s)
- Sara Federici
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Samuel P Nobs
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel. .,Cancer-Microbiome Division Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
21
|
Characterization of Clinical MRSA Isolates from Northern Spain and Assessment of Their Susceptibility to Phage-Derived Antimicrobials. Antibiotics (Basel) 2020; 9:antibiotics9080447. [PMID: 32722499 PMCID: PMC7460284 DOI: 10.3390/antibiotics9080447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a prevalent nosocomial pathogen, causing a wide range of diseases. The increased frequency of MRSA isolates in hospitals and the emergence of vancomycin resistance have sparked the search for new control strategies. This study aimed to characterize sixty-seven MRSA isolates collected from both infected patients and asymptomatic carriers in a Spanish hospital. RAPD-PCR allowed the identification of six genetic patterns. We also investigated the presence of genes involved in producing adhesins, toxins and the capsule; the biofilm; and antimicrobial resistance. A notable percentage of the isolates carried virulence genes and showed medium-high ability to form biofilms. Next, we assessed the strains' susceptibility to two phages (phiIPLA-C1C and phiIPLA-RODI) and one endolysin (LysRODI). All strains were resistant to phiIPLA-C1C, and most (70.2%) were susceptible to phiIPLA-RODI. Regarding LysRODI, all strains displayed susceptibility, although to varying degrees. There was a correlation between endolysin susceptibility and the random amplification of polymorphic DNA (RAPD) profile or the presence of some virulence genes (fnbA, eta, etb, PVL and czr), but that was not observed with biofilm-forming ability, strain origin or phage sensitivity. Taken together, these findings can help to explain the factors influencing endolysin effectiveness, which will contribute to the development of efficient therapies targeting MRSA infections.
Collapse
|
22
|
Taati Moghadam M, Khoshbayan A, Chegini Z, Farahani I, Shariati A. Bacteriophages, a New Therapeutic Solution for Inhibiting Multidrug-Resistant Bacteria Causing Wound Infection: Lesson from Animal Models and Clinical Trials. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1867-1883. [PMID: 32523333 PMCID: PMC7237115 DOI: 10.2147/dddt.s251171] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
Wound infection kills a large number of patients worldwide each year. Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the most important colonizing pathogens of wounds that, with various virulence factors and impaired immune system, causes extensive tissue damage and nonhealing wounds. Furthermore, the septicemia caused by these pathogens increases the mortality rate due to wound infections. Because of the prevalence of antibiotic resistance in recent years, the use of antibiotics to inhibit these pathogens has been restricted, and the topical application of antibiotics in wound infections increases antibiotic resistance. Therefore, finding a new therapeutic strategy against wound infections is so essential since these infections have a destructive effect on the patient’s mental health and high medical costs. In this review, we discussed the use of phages for the prevention of multidrug-resistant (MDR) bacteria, causing wound infection and their role in wound healing in animal models and clinical trials. The results showed that phages have a high ability to inhibit different wound infections caused by MDR bacteria, heal the wound faster, have lower side effects and toxicity, destroy bacterial biofilm, and they are useful in controlling immune responses. Many studies have used animal models to evaluate the function of phages, and this study appears to have a positive impact on the use of phages in clinical practice and the development of a new therapeutic approach to control wound infections, although there are still many limitations.
Collapse
Affiliation(s)
- Majid Taati Moghadam
- Jiroft University of Medical Sciences, Jiroft, Iran.,Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Chegini
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Iman Farahani
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Titze I, Krömker V. Antimicrobial Activity of a Phage Mixture and a Lactic Acid Bacterium against Staphylococcus aureus from Bovine Mastitis. Vet Sci 2020; 7:E31. [PMID: 32155751 PMCID: PMC7157551 DOI: 10.3390/vetsci7010031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
The antimicrobial activity of a phage mixture and a lactic acid bacterium against Staphylococcus aureus isolates from bovine origin was investigated in vitro with regard to possible applications in the therapy of udder inflammation (mastitis) caused by bacterial infections. The S. aureus isolates used for inoculation derived from quarter foremilk samples of mastitis cases. For the examination of the antimicrobial activity, the reduction of the S. aureus germ density was determined [log10 cfu/mL]. The phage mixture consisted of the three obligatory lytic and S. aureus-specific phages STA1.ST29, EB1.ST11 and EB1.ST27 (1:1:1). The selected Lactobacillus plantarum strain with proven antimicrobial properties and the phage mixture were tested against S. aureus in milk, both alone and in combination. The application of the lactic acid bacterium showed only a low reduction ability for a 24 h incubation period. The bacteriophage mixture as well as its combination with the lactic acid bacterium showed high antimicrobial activity against S. aureus for a 24 h incubation period at 37 °C, with only the phage mixture showing significance.
Collapse
Affiliation(s)
- Isabel Titze
- Department of Bioprocess Engineering and Microbiology, Hannover University of Applied Sciences and Arts, D-30453 Hannover, Germany
| | - Volker Krömker
- Department of Bioprocess Engineering and Microbiology, Hannover University of Applied Sciences and Arts, D-30453 Hannover, Germany
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Section for Production, Nutrition and Health, Gronnegardsvej 2, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
24
|
Melo LDR, Oliveira H, Pires DP, Dabrowska K, Azeredo J. Phage therapy efficacy: a review of the last 10 years of preclinical studies. Crit Rev Microbiol 2020; 46:78-99. [DOI: 10.1080/1040841x.2020.1729695] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Luís D. R. Melo
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Hugo Oliveira
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Diana P. Pires
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Krystyna Dabrowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Joana Azeredo
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
25
|
Caflisch KM, Suh GA, Patel R. Biological challenges of phage therapy and proposed solutions: a literature review. Expert Rev Anti Infect Ther 2019; 17:1011-1041. [PMID: 31735090 DOI: 10.1080/14787210.2019.1694905] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: In light of the emergence of antibiotic-resistant bacteria, phage (bacteriophage) therapy has been recognized as a potential alternative or addition to antibiotics in Western medicine for use in humans.Areas covered: This review assessed the scientific literature on phage therapy published between 1 January 2007 and 21 October 2019, with a focus on the successes and challenges of this prospective therapeutic.Expert opinion: Efficacy has been shown in animal models and experimental findings suggest promise for the safety of human phagotherapy. Significant challenges remain to be addressed prior to the standardization of phage therapy in the West, including the development of phage-resistant bacteria; the pharmacokinetic complexities of phage; and any potential human immune response incited by phagotherapy.
Collapse
Affiliation(s)
- Katherine M Caflisch
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Gina A Suh
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Robin Patel
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
26
|
Dąbrowska K, Abedon ST. Pharmacologically Aware Phage Therapy: Pharmacodynamic and Pharmacokinetic Obstacles to Phage Antibacterial Action in Animal and Human Bodies. Microbiol Mol Biol Rev 2019; 83:e00012-19. [PMID: 31666296 PMCID: PMC6822990 DOI: 10.1128/mmbr.00012-19] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite that long history, the growing international crisis of resistance to standard antibiotics, abundant anecdotal evidence of efficacy, and one successful modern clinical trial of efficacy, this phage therapy is not yet a mainstream approach in medicine. One explanation for why phage therapy has not been subject to more widespread implementation is that phage therapy research, both preclinical and clinical, can be insufficiently pharmacologically aware. Consequently, here we consider the pharmacological obstacles to phage therapy effectiveness, with phages in phage therapy explicitly being considered to serve as drug equivalents. The study of pharmacology has traditionally been differentiated into pharmacokinetic and pharmacodynamic aspects. We therefore separately consider the difficulties that phages as virions can have in traveling through body compartments toward reaching their target bacteria (pharmacokinetics) and the difficulties that phages can have in exerting antibacterial activity once they have reached those bacteria (pharmacodynamics). The latter difficulties, at least in part, are functions of phage host range and bacterial resistance to phages. Given the apparently low toxicity of phages and the minimal side effects of phage therapy as practiced, phage therapy should be successful so long as phages can reach the targeted bacteria in sufficiently high numbers, adsorb, and then kill those bacteria. Greater awareness of what obstacles to this success generally or specifically can exist, as documented in this review, should aid in the further development of phage therapy toward wider use.
Collapse
Affiliation(s)
- Krystyna Dąbrowska
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, Ohio, USA
| |
Collapse
|
27
|
Yang Z, Shi Y, Zhang C, Luo X, Chen Y, Peng Y, Gong Y. Lytic Bacteriophage Screening Strategies for Multidrug-Resistant Bloodstream Infections in a Burn Intensive Care Unit. Med Sci Monit 2019; 25:8352-8362. [PMID: 31693655 PMCID: PMC6858784 DOI: 10.12659/msm.917706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/12/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Increasing antibiotic resistance and multidrug resistance (MDR) in patients with bloodstream infection (BSI) has resulted in treatment using bacteriophage. This study aimed to identify Gram-negative bacilli and Gram-positive cocci and antibiotic resistance in patients with BSI in a burn intensive care unit (BICU). The environment, including sewage systems, were investigated for the presence of lytic bacteriophage. MATERIAL AND METHODS Between January 2011 to December 2017, 486 patients with BSI were admitted to the BICU. Blood culture identified the main infectious organisms. Bacterial screening tests for antibiotic resistance included the D test and the modified Hodge test (MHT). Lytic bacteriophage was isolated from the environment. RESULTS In 486 patients with BSI, the main causative organisms were Gram-negative bacilli (64.6%), Gram-positive cocci (27.7%), and fungi (7.7%). The main pathogenic organisms that showed multidrug resistance (MDR) were Acinetobacter baumannii (26.0%), Staphylococcus aureus (16.8%), and Pseudomonas aeruginosa (14.2%). Bacteriophage was mainly isolated from Gram-negative bacilli. Screening of hospital and residential sewage systems identified increased levels of bacteriophage in hospital sewage. CONCLUSIONS The causative organisms of BSI and the presence of MDR in a hospital BICU were not typical, which supports the need for routine bacterial monitoring. Hospital sewage provides a potential source of bacteriophage for the treatment of MDR pathogenic bacteria.
Collapse
|
28
|
Correlation of Host Range Expansion of Therapeutic Bacteriophage Sb-1 with Allele State at a Hypervariable Repeat Locus. Appl Environ Microbiol 2019; 85:AEM.01209-19. [PMID: 31492663 DOI: 10.1128/aem.01209-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/30/2019] [Indexed: 01/21/2023] Open
Abstract
Staphylococci are frequent agents of health care-associated infections and include methicillin-resistant Staphylococcus aureus (MRSA), which is resistant to first-line antibiotic treatments. Bacteriophage (phage) therapy is a promising alternative antibacterial option to treat MRSA infections. S. aureus-specific phage Sb-1 has been widely used in Georgia to treat a variety of human S. aureus infections. Sb-1 has a broad host range within S. aureus, including MRSA strains, and its host range can be further expanded by adaptation to previously resistant clinical isolates. The susceptibilities of a panel of 25 genetically diverse clinical MRSA isolates to Sb-1 phage were tested, and the phage had lytic activity against 23 strains (92%). The adapted phage stock (designated Sb-1A) was tested in comparison with the parental phage (designated Sb-1P). Sb-1P had lytic activity against 78/90 strains (87%) in an expanded panel of diverse global S. aureus isolates, while eight additional strains in this panel were susceptible to Sb-1A (lytic against 86/90 strains [96%]). The Sb-1A stock was shown to be a mixed population of phage clones, including approximately 4% expanded host range mutants, designated Sb-1M. In an effort to better understand the genetic basis for this host range expansion, we sequenced the complete genomes of the parental Sb-1P and two Sb-1M mutants. Comparative genomic analysis revealed a hypervariable complex repeat structure in the Sb-1 genome that had a distinct allele that correlated with the host range expansion. This hypervariable region was previously uncharacterized in Twort-like phages and represents a novel putative host range determinant.IMPORTANCE Because of limited therapeutic options, infections caused by methicillin-resistant Staphylococcus aureus represent a serious problem in both civilian and military health care settings. Phages have potential as alternative antibacterial agents that can be used in combination with antibiotic drugs. For decades, phage Sb-1 has been used in former Soviet Union countries for antistaphylococcal treatment in humans. The therapeutic spectrum of activity of Sb-1 can be increased by selecting mutants of the phage with expanded host ranges. In this work, the host range of phage Sb-1 was expanded in the laboratory, and a hypervariable region in its genome was identified with a distinct allele state that correlated with this host range expansion. These results provide a genetic basis for better understanding the mechanisms of phage host range expansion.
Collapse
|
29
|
Therapeutic Effects of Intravitreously Administered Bacteriophage in a Mouse Model of Endophthalmitis Caused by Vancomycin-Sensitive or -Resistant Enterococcus faecalis. Antimicrob Agents Chemother 2019; 63:AAC.01088-19. [PMID: 31451497 DOI: 10.1128/aac.01088-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/16/2019] [Indexed: 01/21/2023] Open
Abstract
Endophthalmitis due to infection with Enterococcus spp. progresses rapidly and often results in substantial and irreversible vision loss. Given that the frequency of this condition caused by vancomycin-resistant Enterococcus faecalis has been increasing, the development of novel therapeutics is urgently required. We have demonstrated the therapeutic potential of bacteriophage ΦEF24C-P2 in a mouse model of endophthalmitis caused by vancomycin-sensitive (EF24) or vancomycin-resistant (VRE2) strains of E. faecalis Phage ΦEF24C-P2 induced rapid and pronounced bacterial lysis in turbidity reduction assays with EF24, VRE2, and clinical isolates derived from patients with E. faecalis-related postoperative endophthalmitis. Endophthalmitis was induced in mice by injection of EF24 or VRE2 (1 × 104 cells) into the vitreous. The number of viable bacteria in the eye increased to >1 × 107 CFU, and neutrophil infiltration into the eye was detected as an increase in myeloperoxidase activity at 24 h after infection. A clinical score based on loss of visibility of the fundus as well as the number of viable bacteria and the level of myeloperoxidase activity in the eye were all significantly decreased by intravitreous injection of ΦEF24C-P2 6 h after injection of EF24 or VRE2. Whereas histopathologic analysis revealed massive infiltration of inflammatory cells and retinal detachment in vehicle-treated eyes, the number of these cells was greatly reduced and retinal structural integrity was preserved in phage-treated eyes. Our results thus suggest that intravitreous phage therapy is a potential treatment for endophthalmitis caused by vancomycin-sensitive or -resistant strains of E. faecalis.
Collapse
|
30
|
Kaabi SAG, Musafer HK. An experimental mouse model for phage therapy of bacterial pathogens causing bacteremia. Microb Pathog 2019; 137:103770. [PMID: 31586662 DOI: 10.1016/j.micpath.2019.103770] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 01/17/2023]
Abstract
A minimum lethal dose on mice for five bacterial pathogens were identified with PCR of neonatal septicemia of Escherichia coli, Klebsiella pneumoniae, Haemophilus influenzae, Pseudomonas aeruginosa, Citrobacter freundii and Moraxella catarrhalis were studied. Bacteriophage preparations active against 10 isolates of E. coli, 10 isolates of K. pneumoniae, 4 isolates of H. influenzae, 3 isolates of P. aeruginosa, 1 isolate of C. freundii and 1 isolate of M. catarrhalis were tested for their efficacy in treatment of experimental mouse bacteremia of those isolates through dose-ranging and delayed-treatment studies. Efficacy of polyvalent phage preparations of different phages belonging to same species against pathogens of the same species was studied. Results showed that monovalent and polyvalent phage preparations were active in treatment of mice bacteremia after 45 min of injection of bacterial pathogens and on intervals of 5 h, 8 h, 14 h, 18 h and 24 h after bacterial pathogen injection.
Collapse
Affiliation(s)
| | - Hadeel Kareem Musafer
- Department of Biology, College of Science, Mustansiriyah University, Box 14022, Baghdad, Iraq.
| |
Collapse
|
31
|
Hrebík D, Štveráková D, Škubník K, Füzik T, Pantůček R, Plevka P. Structure and genome ejection mechanism of Staphylococcus aureus phage P68. SCIENCE ADVANCES 2019; 5:eaaw7414. [PMID: 31663016 PMCID: PMC6795507 DOI: 10.1126/sciadv.aaw7414] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/23/2019] [Indexed: 06/01/2023]
Abstract
Phages infecting Staphylococcus aureus can be used as therapeutics against antibiotic-resistant bacterial infections. However, there is limited information about the mechanism of genome delivery of phages that infect Gram-positive bacteria. Here, we present the structures of native S. aureus phage P68, genome ejection intermediate, and empty particle. The P68 head contains 72 subunits of inner core protein, 15 of which bind to and alter the structure of adjacent major capsid proteins and thus specify attachment sites for head fibers. Unlike in the previously studied phages, the head fibers of P68 enable its virion to position itself at the cell surface for genome delivery. The unique interaction of one end of P68 DNA with one of the 12 portal protein subunits is disrupted before the genome ejection. The inner core proteins are released together with the DNA and enable the translocation of phage genome across the bacterial membrane into the cytoplasm.
Collapse
Affiliation(s)
- Dominik Hrebík
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Dana Štveráková
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Karel Škubník
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Roman Pantůček
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
32
|
Batinovic S, Wassef F, Knowler SA, Rice DTF, Stanton CR, Rose J, Tucci J, Nittami T, Vinh A, Drummond GR, Sobey CG, Chan HT, Seviour RJ, Petrovski S, Franks AE. Bacteriophages in Natural and Artificial Environments. Pathogens 2019; 8:pathogens8030100. [PMID: 31336985 PMCID: PMC6789717 DOI: 10.3390/pathogens8030100] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages (phages) are biological entities that have attracted a great deal of attention in recent years. They have been reported as the most abundant biological entities on the planet and their ability to impact the composition of bacterial communities is of great interest. In this review, we aim to explore where phages exist in natural and artificial environments and how they impact communities. The natural environment in this review will focus on the human body, soils, and the marine environment. In these naturally occurring environments there is an abundance of phages suggesting a role in the maintenance of bacterial community homeostasis. The artificial environment focuses on wastewater treatment plants, industrial processes, followed by pharmaceutical formulations. As in natural environments, the existence of bacteria in manmade wastewater treatment plants and industrial processes inevitably attracts phages. The presence of phages in these environments can inhibit the bacteria required for efficient water treatment or food production. Alternatively, they can have a positive impact by eliminating recalcitrant organisms. Finally, we conclude by describing how phages can be manipulated or formulated into pharmaceutical products in the laboratory for use in natural or artificial environments.
Collapse
Affiliation(s)
- Steven Batinovic
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Flavia Wassef
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Sarah A Knowler
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Daniel T F Rice
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Cassandra R Stanton
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jayson Rose
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Joseph Tucci
- Department of Pharmacy & Biomedical Sciences, La Trobe University, Bendigo, VIC 3550, Australia
| | - Tadashi Nittami
- Division of Materials Science and Chemical Engineering, Yokohama National University, Yokohama 240-8501, Japan
| | - Antony Vinh
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Hiu Tat Chan
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Robert J Seviour
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Ashley E Franks
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
33
|
Huh H, Wong S, St Jean J, Slavcev R. Bacteriophage interactions with mammalian tissue: Therapeutic applications. Adv Drug Deliv Rev 2019; 145:4-17. [PMID: 30659855 DOI: 10.1016/j.addr.2019.01.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 11/30/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
The human body is a large reservoir for bacterial viruses known as bacteriophages (phages), which participate in dynamic interactions with their bacterial and human hosts that ultimately affect human health. The current growing interest in human resident phages is paralleled by new uses of phages, including the design of engineered phages for therapeutic applications. Despite the increasing number of clinical trials being conducted, the understanding of the interaction of phages and mammalian cells and tissues is still largely unknown. The presence of phages in compartments within the body previously considered purely sterile, suggests that phages possess a unique capability of bypassing anatomical and physiological barriers characterized by varying degrees of selectivity and permeability. This review will discuss the direct evidence of the accumulation of bacteriophages in various tissues, focusing on the unique capability of phages to traverse relatively impermeable barriers in mammals and its relevance to its current applications in therapy.
Collapse
Affiliation(s)
- Haein Huh
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Shirley Wong
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Jesse St Jean
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Roderick Slavcev
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada.
| |
Collapse
|
34
|
Azam AH, Tanji Y. Peculiarities of Staphylococcus aureus phages and their possible application in phage therapy. Appl Microbiol Biotechnol 2019; 103:4279-4289. [PMID: 30997551 DOI: 10.1007/s00253-019-09810-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/07/2019] [Accepted: 03/31/2019] [Indexed: 12/21/2022]
Abstract
Bacteriophage has become an attractive alternative for the treatment of antibiotic-resistant Staphylococcus aureus. For the success of phage therapy, phage host range is an important criterion when considering a candidate phage. Most reviews of S. aureus (SA) phages have focused on their impact on host evolution, especially their contribution to the spread of virulence genes and pathogenesis factors. The potential therapeutic use of SA phages, especially detailed characterizations of host recognition mechanisms, has not been extensively reviewed so far. In this report, we provide updates on the study of SA phages, focusing on host recognition mechanisms with the recent discovery of phage receptor-binding proteins (RBPs) and the possible applications of SA phages in phage therapy.
Collapse
Affiliation(s)
- Aa Haeruman Azam
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Yasunori Tanji
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
35
|
Wienhold SM, Lienau J, Witzenrath M. Towards Inhaled Phage Therapy in Western Europe. Viruses 2019; 11:v11030295. [PMID: 30909579 PMCID: PMC6466303 DOI: 10.3390/v11030295] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 12/15/2022] Open
Abstract
The emergence of multidrug-resistant bacteria constitutes a great challenge for modern medicine, recognized by leading medical experts and politicians worldwide. Rediscovery and implementation of bacteriophage therapy by Western medicine might be one solution to the problem of increasing antibiotic failure. In some Eastern European countries phage therapy is used for treating infectious diseases. However, while the European Medicines Agency (EMA) advised that the development of bacteriophage-based therapies should be expedited due to its significant potential, EMA emphasized that phages cannot be recommended for approval before efficacy and safety have been proven by appropriately designed preclinical and clinical trials. More evidence-based data is required, particularly in the areas of pharmacokinetics, repeat applications, immunological reactions to the application of phages as well as the interactions and effects on bacterial biofilms and organ-specific environments. In this brief review we summarize advantages and disadvantages of phage therapy and discuss challenges to the establishment of phage therapy as approved treatment for multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Sandra-Maria Wienhold
- Division of Pulmonary Inflammation, Charité⁻Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| | - Jasmin Lienau
- Division of Pulmonary Inflammation, Charité⁻Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| | - Martin Witzenrath
- Division of Pulmonary Inflammation, Charité⁻Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
- Department of Infectious Diseases and Respiratory Medicine, Charité⁻Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| |
Collapse
|
36
|
Dąbrowska K. Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med Res Rev 2019; 39:2000-2025. [PMID: 30887551 PMCID: PMC6767042 DOI: 10.1002/med.21572] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/23/2019] [Accepted: 02/26/2019] [Indexed: 12/18/2022]
Abstract
Bacteriophages are not forgotten viruses anymore: scientists and practitioners seek to understand phage pharmacokinetics in animals and humans, investigating bacteriophages as therapeutics, nanocarriers or microbiome components. This review provides a comprehensive overview of factors that determine phage circulation, penetration, and clearance, and that in consequence determine phage applicability for medicine. It makes use of experimental data collected by the phage community so far (PubMed 1924‐2016, including non‐English reports), combining elements of critical and systematic review. This study covers phage ability to enter a system by various routes of administration, how (and if) the phage may access various tissues and organs, and finally what mechanisms determine the courses of phage clearance. The systematic review method was applied to analyze (i) phage survival in the gut (gut transit) and (ii) phage ability to enter the mammalian system by many administration routes. Aspects that have not yet been covered by a sufficient number of reports for mathematical analysis, as well as mechanisms underlying trends, are discussed in the form of a critical review. In spite of the extraordinary diversity of bacteriophages and possible phage applications, the analysis revealed that phage morphology, phage specificity, phage dose, presence of sensitive bacteria or the characteristics of treated individuals (age, taxonomy) may affect phage bioavailability in animals and humans. However, once phages successfully enter the body, they reach most organs, including the central nervous system. Bacteriophages are cleared mainly by the immune system: innate immunity removes phages even when no specific response to bacteriophages has yet developed.
Collapse
Affiliation(s)
- Krystyna Dąbrowska
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Research and Development Center, Regional Specialized Hospital, Wrocław, Poland
| |
Collapse
|
37
|
Abstract
Staphylococcus aureus is one of the most important human pathogens that is responsible for a variety of diseases ranging from skin and soft tissue infections to endocarditis and sepsis. In recent decades, the treatment of staphylococcal infections has become increasingly difficult as the prevalence of multi-drug resistant strains continues to rise. With increasing mortality rates and medical costs associated with drug resistant strains, there is an urgent need for alternative therapeutic options. Many innovative strategies for alternative drug development are being pursued, including disruption of biofilms, inhibition of virulence factor production, bacteriophage-derived antimicrobials, anti-staphylococcal vaccines, and light-based therapies. While many compounds and methods still need further study to determine their feasibility, some are quickly approaching clinical application and may be available in the near future.
Collapse
|
38
|
Głowacka-Rutkowska A, Gozdek A, Empel J, Gawor J, Żuchniewicz K, Kozińska A, Dębski J, Gromadka R, Łobocka M. The Ability of Lytic Staphylococcal Podovirus vB_SauP_phiAGO1.3 to Coexist in Equilibrium With Its Host Facilitates the Selection of Host Mutants of Attenuated Virulence but Does Not Preclude the Phage Antistaphylococcal Activity in a Nematode Infection Model. Front Microbiol 2019; 9:3227. [PMID: 30713528 PMCID: PMC6346686 DOI: 10.3389/fmicb.2018.03227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022] Open
Abstract
Phage vB_SauP_phiAGO1.3 (phiAGO1.3) is a polyvalent Staphylococcus lytic podovirus with a 17.6-kb genome (Gozdek et al., 2018). It can infect most of the Staphylococcus aureus human isolates of dominant clonal complexes. We show that a major factor contributing to the wide host range of phiAGO1.3 is a lack or sparcity of target sites for certain restriction-modification systems of types I and II in its genome. Phage phiAGO1.3 requires for adsorption β-O-GlcNAcylated cell wall teichoic acid, which is also essential for the expression of methicillin resistance. Under certain conditions an exposure of S. aureus to phiAGO1.3 can lead to the establishment of a mixed population in which the bacteria and phages remain in equilibrium over multiple generations. This is reminiscent of the so called phage carrier state enabling the co-existence of phage-resistant and phage-sensitive cells supporting a continuous growth of the bacterial and phage populations. The stable co-existence of bacteria and phage favors the emergence of phage-resistant variants of the bacterium. All phiAGO1.3-resistant cells isolated from the phage-carrier-state cultures contained a mutation inactivating the two-component regulatory system ArlRS, essential for efficient expression of numerous S. aureus virulence-associated traits. Moreover, the mutants were unaffected in their susceptibility to infection with an unrelated, polyvalent S. aureus phage of the genus Kayvirus. The ability of phiAGO1.3 to establish phage-carrier-state cultures did not preclude its antistaphylococcal activity in vivo in an S. aureus nematode infection model. Taken together our results suggest that phiAGO1.3 could be suitable for the therapeutic application in humans and animals, alone or in cocktails with Kayvirus phages. It might be especially useful in the treatment of infections with the majority of methicillin-resistant S. aureus strains.
Collapse
Affiliation(s)
- Aleksandra Głowacka-Rutkowska
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Gozdek
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Empel
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Jan Gawor
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Żuchniewicz
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Kozińska
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Janusz Dębski
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Robert Gromadka
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Łobocka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
39
|
Wu M, Hu K, Xie Y, Liu Y, Mu D, Guo H, Zhang Z, Zhang Y, Chang D, Shi Y. A Novel Phage PD-6A3, and Its Endolysin Ply6A3, With Extended Lytic Activity Against Acinetobacter baumannii. Front Microbiol 2019; 9:3302. [PMID: 30687281 PMCID: PMC6333635 DOI: 10.3389/fmicb.2018.03302] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/18/2018] [Indexed: 01/21/2023] Open
Abstract
With widespread abuse of antibiotics, bacterial resistance has increasingly become a serious threat. Acinetobacter baumannii has emerged as one of the most important hospital-acquired pathogens worldwide. Bacteriophages (also called “phages”) could be used as a potential alternative therapy to meet the challenges posed by such pathogens. Endolysins from phages have also been attracting increasing interest as potential antimicrobial agents. Here, we isolated 14 phages against A. baumannii, determined the lytic spectrum of each phage, and selected one with a relatively broad host range, named vB_AbaP_PD-6A3 (PD-6A3 for short), for its biological characteristics. We over-expressed and purified the endolysin (Ply6A3) from this phage and tested its biological characteristics. The PD-6A3 is a novel phage, which can kill 32.4% (179/552) of clinical multidrug resistant A. baumannii (MDRAB) isolates. Interestingly, in vitro, this endolysin could not only inhibit A. baumannii, but also that of other strains, such as Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). We found that lethal A. baumannii sepsis mice could be effectively rescued in vivo by phage PD-6A3 and endolysin Ply6A3 intraperitoneal injection. These characteristics reveal the promising potential of phage PD-6A3 and endolysin Ply6A3 as attractive candidates for the control of A. baumannii-associated nosocomial infections.
Collapse
Affiliation(s)
- Minle Wu
- Department of Clinical Laboratory, Pudong Hosipital Affiliated to Fudan University, Shanghai, China
| | - Kongying Hu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yili Liu
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Shanghai, China
| | - Di Mu
- Department of Clinical Laboratory, The Fourth People's Hospital of Shanghai, Shanghai, China
| | - Huimin Guo
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhifan Zhang
- Department of Clinical Laboratory, The Fourth People's Hospital of Shanghai, Shanghai, China
| | - Yingcong Zhang
- Department of Clinical Laboratory, Pudong Hosipital Affiliated to Fudan University, Shanghai, China
| | - Dong Chang
- Department of Clinical Laboratory, Pudong Hosipital Affiliated to Fudan University, Shanghai, China
| | - Yi Shi
- Department of Clinical Laboratory, The Fourth People's Hospital of Shanghai, Shanghai, China
| |
Collapse
|
40
|
Ji Y, Cheng M, Zhai S, Xi H, Cai R, Wang Z, Zhang H, Wang X, Xue Y, Li X, Sun C, Feng X, Lei L, Ur Rahman S, Han W, Gu J. Preventive effect of the phage VB-SavM-JYL01 on rabbit necrotizing pneumonia caused by Staphylococcus aureus. Vet Microbiol 2018; 229:72-80. [PMID: 30642601 DOI: 10.1016/j.vetmic.2018.12.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
Staphylococcus aureus is one of the most important pathogens causing rabbit necrotizing pneumonia and brings huge economic losses to rabbit production. This study investigated the preventive effect of a phage on rabbit necrotizing pneumonia caused by S. aureus. S. aureus S6 was isolated from the lungs of rabbits suffering necrotizing pneumonia and identified. A novel phage named VB-SavM-JYL01 was isolated by using S. aureus S6 as a host and showed a broader host range than the phages GH15 and K. The genome of VB-SavM-JYL01 lacked bacterial virulence-, antibiotic resistance- and lysogenesis-related genes. A single intranasal administration of VB-SavM-JYL01 (3 × 109 PFU) could effectively improve the survival rate at 48 h to 90% (9/10) compared with the survival rate of 10% and 80% observed with the PBS or linezolid treatment, respectively. The bacterial count in the lungs of rabbits treated with the phage VB-SavM-JYL01 was 4.18 × 104 CFU/g at 24 h, which was significantly decreased compared to that of rabbits treated with PBS (7.38 × 107 CFU/g) or linezolid (3.12 × 105 CFU/g). The phage treatment significantly alleviated lung tissue damage. The levels of total proteins, Panton-Valentine leukocidin (PVL), alpha-toxin (Hla) and cytokines in the lungs of the rabbits treated with the phage were significantly lower than those of the rabbits treated with PBS and similar to those of the rabbits treated with linezolid. These data demonstrate the potential utility of phage as an alternative for preventing rabbit necrotizing pneumonia caused by S. aureus.
Collapse
Affiliation(s)
- Yalu Ji
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Mengjun Cheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Shengjie Zhai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Hengyu Xi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Ruopeng Cai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Zijing Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Hao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xinwu Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Yibing Xue
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xinwei Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Changjiang Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xin Feng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Liancheng Lei
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Sadeeq Ur Rahman
- College of Veterinary Sciences & Animal Husbandry, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Wenyu Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, PR China.
| | - Jingmin Gu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
41
|
Wang JL, Kuo CF, Yeh CM, Chen JR, Cheng MF, Hung CH. Efficacy of φkm18p phage therapy in a murine model of extensively drug-resistant Acinetobacter baumannii infection. Infect Drug Resist 2018; 11:2301-2310. [PMID: 30532563 PMCID: PMC6245353 DOI: 10.2147/idr.s179701] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Few effective antibiotics are available for treating extensively drug-resistant Acinetobacter baumannii (XDRAB) sepsis. Phage therapy may show potential in treating XDRAB infections. Materials and methods We studied φkm18p phage therapy in BALB/c and C57BL/6 mice models of XDRAB bacteremia. Results We observed survival rates of nearly 100% in groups given phage therapy concurrent with XDRAB at different multiplicities of infection. In mice that received phage therapy after a 1-hour delay, the survival rate decreased to about 50%. The bacterial load in the blood decreased from 108 to 102 and 103 colony-forming units (CFU)/mL in the concurrent treatment group. In the phage therapy group, the levels of the cytokines, such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), were low at 3 hours after infection. Although some phage-resistant mutants were isolated after phage therapy, a cytotoxicity study showed that they had reduced fitness. Conclusion Phage therapy in XDRAB bacteremia increased the animal survival rates, decreased the bacteremia loads, and decreased the levels of inflammatory markers TNF-α and IL-6. However, the reduced therapeutic effect with delayed administrations may be a concern in developing a successful phage therapy for treating acute infections of multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Jiun-Ling Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chih-Feng Kuo
- Department of Nursing, I-Shou University, Kaohsiung, Taiwan, ROC
| | - Che-Ming Yeh
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan, ROC,
| | - Jung-Ren Chen
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan, ROC
| | - Ming-Fang Cheng
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC.,School of Medicine, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.,Department of Nursing, Fooyin University, Kaohsiung, Taiwan, ROC
| | - Chih-Hsin Hung
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan, ROC,
| |
Collapse
|
42
|
González-Menéndez E, Fernández L, Gutiérrez D, Rodríguez A, Martínez B, García P. Comparative analysis of different preservation techniques for the storage of Staphylococcus phages aimed for the industrial development of phage-based antimicrobial products. PLoS One 2018; 13:e0205728. [PMID: 30308048 PMCID: PMC6181408 DOI: 10.1371/journal.pone.0205728] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/01/2018] [Indexed: 11/19/2022] Open
Abstract
Bacteriophages have been proven as effective antimicrobial agents in the treatment of infectious diseases and in other biocontrol applications including food preservation and disinfection. The extensive use of bacteriophages requires improved methodologies for medium- and long-term storage as well as for easy shipping. To this aim, we have determined the stability of four Staphylococcus phages (phiIPLA88, phiIPLA35, phiIPLA-RODI and phiIPLA-C1C) with antimicrobial potential at different temperatures (20°C/25°C, 4°C, -20°C, -80°C, -196°C) and during lyophilization (freeze drying) using several stabilizing additives (disaccharides, glycerol, sorbitol and skim milk). Differences between phages were observed at different temperatures (20°C/25°C, 4°C and -20°C), where phages were less stable. At lower temperatures (-80°C and -196°C), all phages showed good viability after 24 months regardless of the stabilizer. Differences between phages were also observed after lyophilization although the addition of skim milk yielded a dry powder with a stable titer after 24 months. As an alternative to facilitate storage and transportation, phage encapsulation has been also explored. Phage phiIPLA-RODI encapsulated in alginate capsules retained high viability when stored at 4°C for 6 months and at 20°C for 1 month. Moreover, the spray-dryer technique allowed obtaining dry powders containing viable encapsulated phages (phiIPLA-RODI and phiIPLA88) in both skim milk and trehalose for 12 months at 4°C. Storage of phages at 20°C was less effective; in fact, phiIPLA88 was stable for at least 12 months in trehalose but not in skim milk, while phiIPLA-RODI was stable only for 6 months in either stabilizer. These results suggest that encapsulated phages might be a suitable way for shipping phages.
Collapse
Affiliation(s)
- Eva González-Menéndez
- Departamento de Tecnología y Biotecnología de Productos Lácteos, Instituto de Productos Lácteos de Asturias–Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Lucía Fernández
- Departamento de Tecnología y Biotecnología de Productos Lácteos, Instituto de Productos Lácteos de Asturias–Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Diana Gutiérrez
- Departamento de Tecnología y Biotecnología de Productos Lácteos, Instituto de Productos Lácteos de Asturias–Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Ana Rodríguez
- Departamento de Tecnología y Biotecnología de Productos Lácteos, Instituto de Productos Lácteos de Asturias–Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Beatriz Martínez
- Departamento de Tecnología y Biotecnología de Productos Lácteos, Instituto de Productos Lácteos de Asturias–Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Pilar García
- Departamento de Tecnología y Biotecnología de Productos Lácteos, Instituto de Productos Lácteos de Asturias–Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
- * E-mail:
| |
Collapse
|
43
|
Kinetics of Targeted Phage Rescue in a Mouse Model of Systemic Escherichia coli K1. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7569645. [PMID: 30105246 PMCID: PMC6076946 DOI: 10.1155/2018/7569645] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/03/2018] [Indexed: 11/18/2022]
Abstract
Escherichia (E.) coli K1 strains remain common causative agents of neonatal sepsis and meningitis. We have isolated a lytic bacteriophage (ΦIK1) against E. coli strain IHE3034 and tested its specificity in vitro, as well as distribution and protective efficacy in vivo. The phage was shown to be specific to the K1 capsular polysaccharide. In the lethal murine model, a high level of protection was afforded by the phage with strict kinetics. A single dose of 1 x 108 phage particles administered 10 and 60 minutes following the bacterial challenge elicited 100 % and 95 % survival, respectively. No mice could be rescued if phage administration occurred 3 hours postinfection. Tissue distribution surveys in the surviving mice revealed that the spleen was the primary organ in which accumulation of active ΦIK1 phages could be detected two weeks after phage administration. These results suggest that bacteriophages have potential as therapeutic agents in the control of systemic infections.
Collapse
|
44
|
Pimchan T, Cooper C, Eumkeb G, Nilsson A. In vitroactivity of a combination of bacteriophages and antimicrobial plant extracts. Lett Appl Microbiol 2018; 66:182-187. [DOI: 10.1111/lam.12838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022]
Affiliation(s)
- T. Pimchan
- Institute of Science; Suranaree University of Technology; Nakhon-Ratchasima Thailand
| | - C.J. Cooper
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| | - G. Eumkeb
- Institute of Science; Suranaree University of Technology; Nakhon-Ratchasima Thailand
| | - A.S. Nilsson
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| |
Collapse
|
45
|
Hua Y, Luo T, Yang Y, Dong D, Wang R, Wang Y, Xu M, Guo X, Hu F, He P. Phage Therapy as a Promising New Treatment for Lung Infection Caused by Carbapenem-Resistant Acinetobacter baumannii in Mice. Front Microbiol 2018; 8:2659. [PMID: 29375524 PMCID: PMC5767256 DOI: 10.3389/fmicb.2017.02659] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) which is noted as a major pathogen associated with healthcare-associated infections has steadily developed beyond antibiotic control. Lytic bacteriophages with the characteristics of infecting and lysing specific bacteria have been used as a potential alternative to traditional antibiotics to solve multidrug-resistant bacterial infections. Here, we isolated A. baumannii-specific lytic phages and evaluated their potential therapeutic effect against lung infection caused by CRAB clinical strains. The combined lysis spectrum of four lytic phages' ranges was 87.5% (42 of 48) against CRAB clinical isolates. Genome sequence and analysis indicated that phage SH-Ab15519 is a novel phage which does not contain the virulence or antibiotic resistance genes. In vivo study indicated that phage SH-Ab15519 administered intranasally can effectively rescue mice from lethal A. baumannii lung infection without deleterious side effects. Our work explores the potential use of phages as an alternative therapeutic agent against the lung infection caused by CRAB strains.
Collapse
Affiliation(s)
- Yunfen Hua
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Luo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiqi Yang
- Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dong Dong
- Institute of Antibiotics, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Wang
- Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjun Wang
- Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengsha Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaokui Guo
- Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ping He
- Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
46
|
Górski A, Jończyk-Matysiak E, Łusiak-Szelachowska M, Międzybrodzki R, Weber-Dąbrowska B, Borysowski J. The Potential of Phage Therapy in Sepsis. Front Immunol 2017; 8:1783. [PMID: 29312312 PMCID: PMC5732260 DOI: 10.3389/fimmu.2017.01783] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/29/2017] [Indexed: 01/21/2023] Open
Abstract
Sepsis remains a difficult clinical challenge, since our understanding of its immunopathology is incomplete and no efficacious treatment currently exists. Its earlier stage results from an uncontrolled inflammatory response to bacteria while in the later stage disturbed immune response with immunodeficiency syndrome develops. More than a hundred of clinical trials have not provided an efficient therapy which could ascertain an improvement or cure. Recent advancements in immunobiology of bacterial viruses (phages) indicate that in addition to their well-known antibacterial action phages have potent immunomodulating properties. Those data along with preliminary observations in experimental animals and the clinic strongly suggest that clinical trials on the efficacy of phages in sepsis are urgently needed.
Collapse
Affiliation(s)
- Andrzej Górski
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
| | - Marzanna Łusiak-Szelachowska
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
| | - Ryszard Międzybrodzki
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Beata Weber-Dąbrowska
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
47
|
Uchiyama J, Taniguchi M, Kurokawa K, Takemura-Uchiyama I, Ujihara T, Shimakura H, Sakaguchi Y, Murakami H, Sakaguchi M, Matsuzaki S. Adsorption of Staphylococcus viruses S13′ and S24-1 on Staphylococcus aureus strains with different glycosidic linkage patterns of wall teichoic acids. J Gen Virol 2017; 98:2171-2180. [DOI: 10.1099/jgv.0.000865] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jumpei Uchiyama
- School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Maya Taniguchi
- School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Kenji Kurokawa
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
A Review of Phage Therapy against Bacterial Pathogens of Aquatic and Terrestrial Organisms. Viruses 2017; 9:v9030050. [PMID: 28335451 PMCID: PMC5371805 DOI: 10.3390/v9030050] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 01/21/2023] Open
Abstract
Since the discovery of bacteriophage in the early 1900s, there have been numerous attempts to exploit their innate ability to kill bacteria. The purpose of this report is to review current findings and new developments in phage therapy with an emphasis on bacterial diseases of marine organisms, humans, and plants. The body of evidence includes data from studies investigating bacteriophage in marine and land environments as modern antimicrobial agents against harmful bacteria. The goal of this paper is to present an overview of the topic of phage therapy, the use of phage-derived protein therapy, and the hosts that bacteriophage are currently being used against, with an emphasis on the uses of bacteriophage against marine, human, animal and plant pathogens.
Collapse
|
49
|
Melo LDR, Oliveira H, Santos SB, Sillankorva S, Azeredo J. Phages Against Infectious Diseases. BIOPROSPECTING 2017. [DOI: 10.1007/978-3-319-47935-4_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
50
|
Bodier-Montagutelli E, Morello E, L’Hostis G, Guillon A, Dalloneau E, Respaud R, Pallaoro N, Blois H, Vecellio L, Gabard J, Heuzé-Vourc’h N. Inhaled phage therapy: a promising and challenging approach to treat bacterial respiratory infections. Expert Opin Drug Deliv 2016; 14:959-972. [DOI: 10.1080/17425247.2017.1252329] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Elsa Bodier-Montagutelli
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
- CHRU de Tours, Service de Pharmacie, Tours, France
| | - Eric Morello
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
| | | | - Antoine Guillon
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
- CHRU de Tours, Service de Réanimation Polyvalente, Tours, France
| | - Emilie Dalloneau
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
| | - Renaud Respaud
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
- CHRU de Tours, Service de Pharmacie, Tours, France
| | - Nikita Pallaoro
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
| | - Hélène Blois
- CHRU de Tours, Service de Pharmacie, Tours, France
| | - Laurent Vecellio
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
- DTF-Aerodrug, St Etienne, France
| | | | - Nathalie Heuzé-Vourc’h
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
| |
Collapse
|