1
|
Liu H, Fan W, Fan B. Necroptosis in apical periodontitis: A programmed cell death with multiple roles. J Cell Physiol 2023; 238:1964-1981. [PMID: 37431828 DOI: 10.1002/jcp.31073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Programmed cell death (PCD) has been a research focus for decades and different mechanisms of cell death, such as necroptosis, pyroptosis, ferroptosis, and cuproptosis have been discovered. Necroptosis, a form of inflammatory PCD, has gained increasing attention in recent years due to its critical role in disease progression and development. Unlike apoptosis, which is mediated by caspases and characterized by cell shrinkage and membrane blebbing, necroptosis is mediated by mixed lineage kinase domain-like protein (MLKL) and characterized by cell enlargement and plasma membrane rupture. Necroptosis can be triggered by bacterial infection, which on the one hand represents a host defense mechanism against the infection, but on the other hand can facilitate bacterial escape and worsen inflammation. Despite its importance in various diseases, a comprehensive review on the involvement and roles of necroptosis in apical periodontitis is still lacking. In this review, we tried to provide an overview of recent progresses in necroptosis research, summarized the pathways involved in apical periodontitis (AP) activation, and discussed how bacterial pathogens induce and regulated necroptosis and how necroptosis would inhibit bacteria. Furthermore, the interplay between various types of cell death in AP and the potential treatment strategy for AP by targeting necroptosis were also discussed.
Collapse
Affiliation(s)
- Hui Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bing Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
García-Bengoa M, Meurer M, Goethe R, Singh M, Reljic R, von Köckritz-Blickwede M. Role of phagocyte extracellular traps during Mycobacterium tuberculosis infections and tuberculosis disease processes. Front Microbiol 2023; 14:983299. [PMID: 37492257 PMCID: PMC10365110 DOI: 10.3389/fmicb.2023.983299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) infections remain one of the most significant causes of mortality worldwide. The current situation shows an emergence of new antibiotic-resistant strains making it difficult to control the tuberculosis (TB) disease. A large part of its success as a pathogen is due to its ability to persist for years or even decades without causing evident clinical manifestations. M.tb is highly successful in evading the host-defense by manipulating host-signalling pathways. Although macrophages are generally viewed as the key cell type involved in harboring M.tb, growing evidence shows that neutrophils also play a fundamental role. Both cells are known to act in multiple ways when encountering an invading pathogen, including phagocytosis, release of cytokines and chemokines, and oxidative burst. In addition, the formation of neutrophil extracellular traps (NETs) and macrophage extracellular traps (METs) has been described to contribute to M.tb infections. NETs/METs are extracellular DNA fibers with associated granule components, which are released upon activation of the cells by the pathogen or by pro-inflammatory mediators. On one hand, they can lead to a protective immune response by entrapment and killing of pathogens. However, on the other hand, they can also play a severe pathological role by inducing tissue damage. Extracellular traps (ETs) produced in the pulmonary alveoli can expand easily and expose tissue-damaging factors with detrimental effects. Since host-directed therapies offer a complementary strategy in TB, the knowledge of NET/MET formation is important for understanding potential protective versus detrimental pathways during innate immune signaling. In this review, we summarize the progress made in understanding the role of NETs/METs in the pathogenesis of TB.
Collapse
Affiliation(s)
- María García-Bengoa
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Marita Meurer
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Rajko Reljic
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Maren von Köckritz-Blickwede
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
3
|
Carabalí-Isajar ML, Rodríguez-Bejarano OH, Amado T, Patarroyo MA, Izquierdo MA, Lutz JR, Ocampo M. Clinical manifestations and immune response to tuberculosis. World J Microbiol Biotechnol 2023; 39:206. [PMID: 37221438 DOI: 10.1007/s11274-023-03636-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/29/2023] [Indexed: 05/25/2023]
Abstract
Tuberculosis is a far-reaching, high-impact disease. It is among the top ten causes of death worldwide caused by a single infectious agent; 1.6 million tuberculosis-related deaths were reported in 2021 and it has been estimated that a third of the world's population are carriers of the tuberculosis bacillus but do not develop active disease. Several authors have attributed this to hosts' differential immune response in which cellular and humoral components are involved, along with cytokines and chemokines. Ascertaining the relationship between TB development's clinical manifestations and an immune response should increase understanding of tuberculosis pathophysiological and immunological mechanisms and correlating such material with protection against Mycobacterium tuberculosis. Tuberculosis continues to be a major public health problem globally. Mortality rates have not decreased significantly; rather, they are increasing. This review has thus been aimed at deepening knowledge regarding tuberculosis by examining published material related to an immune response against Mycobacterium tuberculosis, mycobacterial evasion mechanisms regarding such response and the relationship between pulmonary and extrapulmonary clinical manifestations induced by this bacterium which are related to inflammation associated with tuberculosis dissemination through different routes.
Collapse
Grants
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- b PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá 111221, Colombia
- c Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (UDCA), Calle 222#55-37, Bogotá 111166, Colombia
- d Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
- e Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, Bogotá 111411. Colombia
- e Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, Bogotá 111411. Colombia
- f Universidad Distrital Francisco José de Caldas, Carrera 3#26A-40, Bogotá 110311, Colombia
Collapse
Affiliation(s)
- Mary Lilián Carabalí-Isajar
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia
- Biomedical and Biological Sciences Programme, Universidad del Rosario, Carrera 24#63C-69, 111221, Bogotá, Colombia
| | | | - Tatiana Amado
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, 111321, Bogotá, Colombia
| | - María Alejandra Izquierdo
- Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, 111411, Bogotá, Colombia
| | - Juan Ricardo Lutz
- Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, 111411, Bogotá, Colombia.
| | - Marisol Ocampo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia.
- Universidad Distrital Francisco José de Caldas, Carrera 3#26A-40, 110311, Bogotá, Colombia.
| |
Collapse
|
4
|
Golovkine GR, Roberts AW, Morrison HM, Rivera-Lugo R, McCall RM, Nilsson H, Garelis NE, Repasy T, Cronce M, Budzik J, Van Dis E, Popov LM, Mitchell G, Zalpuri R, Jorgens D, Cox JS. Autophagy restricts Mycobacterium tuberculosis during acute infection in mice. Nat Microbiol 2023; 8:819-832. [PMID: 37037941 PMCID: PMC11027733 DOI: 10.1038/s41564-023-01354-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/03/2023] [Indexed: 04/12/2023]
Abstract
Whether or not autophagy has a role in defence against Mycobacterium tuberculosis infection remains unresolved. Previously, conditional knockdown of the core autophagy component ATG5 in myeloid cells was reported to confer extreme susceptibility to M. tuberculosis in mice, whereas depletion of other autophagy factors had no effect on infection. We show that doubling cre gene dosage to more robustly deplete ATG16L1 or ATG7 resulted in increased M. tuberculosis growth and host susceptibility in mice, although ATG5-depleted mice are more sensitive than ATG16L1- or ATG7-depleted mice. We imaged individual macrophages infected with M. tuberculosis and identified a shift from apoptosis to rapid necrosis in autophagy-depleted cells. This effect was dependent on phagosome permeabilization by M. tuberculosis. We monitored infected cells by electron microscopy, showing that autophagy protects the host macrophage by partially reducing mycobacterial access to the cytosol. We conclude that autophagy has an important role in defence against M. tuberculosis in mammals.
Collapse
Affiliation(s)
- Guillaume R Golovkine
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Evotec, Toulouse, France
| | - Allison W Roberts
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Huntly M Morrison
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Rita M McCall
- Department of Plant & Microbial Biology, University of California, Berkeley, CA, USA
| | - Hannah Nilsson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Nicholas E Garelis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Teresa Repasy
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Bio-Rad Laboratories, Seattle, WA, USA
| | - Michael Cronce
- Department of Bioengineering, University of California, Berkeley, CA, USA
- UC Berkeley-UCSF Graduate program in Bioengineering, Berkeley, CA, USA
| | - Jonathan Budzik
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Erik Van Dis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Lauren M Popov
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Novome Biotechnologies, San Francisco, CA, USA
| | - Gabriel Mitchell
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Open Innovation @ NITD, Novartis Institute for Tropical Diseases, Emeryville, CA, USA
| | - Reena Zalpuri
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Danielle Jorgens
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Jeffery S Cox
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
5
|
Toniolo C, Dhar N, McKinney JD. Uptake-independent killing of macrophages by extracellular Mycobacterium tuberculosis aggregates. EMBO J 2023; 42:e113490. [PMID: 36920246 PMCID: PMC10152147 DOI: 10.15252/embj.2023113490] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection is initiated by inhalation of bacteria into lung alveoli, where they are phagocytosed by resident macrophages. Intracellular Mtb replication induces the death of the infected macrophages and the release of bacterial aggregates. Here, we show that these aggregates can evade phagocytosis by killing macrophages in a contact-dependent but uptake-independent manner. We use time-lapse fluorescence microscopy to show that contact with extracellular Mtb aggregates triggers macrophage plasma membrane perturbation, cytosolic calcium accumulation, and pyroptotic cell death. These effects depend on the Mtb ESX-1 secretion system, however, this system alone cannot induce calcium accumulation and macrophage death in the absence of the Mtb surface-exposed lipid phthiocerol dimycocerosate. Unexpectedly, we found that blocking ESX-1-mediated secretion of the EsxA/EsxB virulence factors does not eliminate the uptake-independent killing of macrophages and that the 50-kDa isoform of the ESX-1-secreted protein EspB can mediate killing in the absence of EsxA/EsxB secretion. Treatment with an ESX-1 inhibitor reduces uptake-independent killing of macrophages by Mtb aggregates, suggesting that novel therapies targeting this anti-phagocytic mechanism could prevent the propagation of extracellular bacteria within the lung.
Collapse
Affiliation(s)
- Chiara Toniolo
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Neeraj Dhar
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.,Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - John D McKinney
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
6
|
Chandra P, Grigsby SJ, Philips JA. Immune evasion and provocation by Mycobacterium tuberculosis. Nat Rev Microbiol 2022; 20:750-766. [PMID: 35879556 PMCID: PMC9310001 DOI: 10.1038/s41579-022-00763-4] [Citation(s) in RCA: 156] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, has infected humans for millennia. M. tuberculosis is well adapted to establish infection, persist in the face of the host immune response and be transmitted to uninfected individuals. Its ability to complete this infection cycle depends on it both evading and taking advantage of host immune responses. The outcome of M. tuberculosis infection is often a state of equilibrium characterized by immunological control and bacterial persistence. Recent data have highlighted the diverse cell populations that respond to M. tuberculosis infection and the dynamic changes in the cellular and intracellular niches of M. tuberculosis during the course of infection. M. tuberculosis possesses an arsenal of protein and lipid effectors that influence macrophage functions and inflammatory responses; however, our understanding of the role that specific bacterial virulence factors play in the context of diverse cellular reservoirs and distinct infection stages is limited. In this Review, we discuss immune evasion and provocation by M. tuberculosis during its infection cycle and describe how a more detailed molecular understanding is crucial to enable the development of novel host-directed therapies, disease biomarkers and effective vaccines.
Collapse
Affiliation(s)
- Pallavi Chandra
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Steven J Grigsby
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
7
|
Ultramicronized Palmitoylethanolamide Inhibits NLRP3 Inflammasome Expression and Pro-Inflammatory Response Activated by SARS-CoV-2 Spike Protein in Cultured Murine Alveolar Macrophages. Metabolites 2021; 11:metabo11090592. [PMID: 34564408 PMCID: PMC8472716 DOI: 10.3390/metabo11090592] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
Despite its possible therapeutic potential against COVID-19, the exact mechanism(s) by which palmitoylethanolamide (PEA) exerts its beneficial activity is still unclear. PEA has demonstrated analgesic, anti-allergic, and anti-inflammatory activities. Most of the anti-inflammatory properties of PEA arise from its ability to antagonize nuclear factor-κB (NF-κB) signalling pathway via the selective activation of the PPARα receptors. Acting at this site, PEA can downstream several genes involved in the inflammatory response, including cytokines (TNF-α, Il-1β) and other signal mediators, such as inducible nitric oxide synthase (iNOS) and COX2. To shed light on this, we tested the anti-inflammatory and immunomodulatory activity of ultramicronized(um)-PEA, both alone and in the presence of specific peroxisome proliferator-activated receptor alpha (PPAR-α) antagonist MK886, in primary cultures of murine alveolar macrophages exposed to SARS-CoV-2 spike glycoprotein (SP). SP challenge caused a significant concentration-dependent increase in proinflammatory markers (TLR4, p-p38 MAPK, NF-κB) paralleled to a marked upregulation of inflammasome-dependent inflammatory pathways (NLRP3, Caspase-1) with IL-6, IL-1β, TNF-α over-release, compared to vehicle group. We also observed a significant concentration-dependent increase in angiotensin-converting enzyme-2 (ACE-2) following SP challenge. um-PEA concentration-dependently reduced all the analyzed proinflammatory markers fostering a parallel downregulation of ACE-2. Our data show for the first time that um-PEA, via PPAR-α, markedly inhibits the SP induced NLRP3 signalling pathway outlining a novel mechanism of action of this lipid against COVID-19.
Collapse
|
8
|
Stutz MD, Allison CC, Ojaimi S, Preston SP, Doerflinger M, Arandjelovic P, Whitehead L, Bader SM, Batey D, Asselin-Labat ML, Herold MJ, Strasser A, West NP, Pellegrini M. Macrophage and neutrophil death programs differentially confer resistance to tuberculosis. Immunity 2021; 54:1758-1771.e7. [DOI: 10.1016/j.immuni.2021.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/22/2020] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
|
9
|
Neutrophils in Tuberculosis: Cell Biology, Cellular Networking and Multitasking in Host Defense. Int J Mol Sci 2021; 22:ijms22094801. [PMID: 33946542 PMCID: PMC8125784 DOI: 10.3390/ijms22094801] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
Neutrophils readily infiltrate infection foci, phagocytose and usually destroy microbes. In tuberculosis (TB), a chronic pulmonary infection caused by Mycobacterium tuberculosis (Mtb), neutrophils harbor bacilli, are abundant in tissue lesions, and their abundances in blood correlate with poor disease outcomes in patients. The biology of these innate immune cells in TB is complex. Neutrophils have been assigned host-beneficial as well as deleterious roles. The short lifespan of neutrophils purified from blood poses challenges to cell biology studies, leaving intracellular biological processes and the precise consequences of Mtb–neutrophil interactions ill-defined. The phenotypic heterogeneity of neutrophils, and their propensity to engage in cellular cross-talk and to exert various functions during homeostasis and disease, have recently been reported, and such observations are newly emerging in TB. Here, we review the interactions of neutrophils with Mtb, including subcellular events and cell fate upon infection, and summarize the cross-talks between neutrophils and lung-residing and -recruited cells. We highlight the roles of neutrophils in TB pathophysiology, discussing recent findings from distinct models of pulmonary TB, and emphasize technical advances that could facilitate the discovery of novel neutrophil-related disease mechanisms and enrich our knowledge of TB pathogenesis.
Collapse
|
10
|
Song X, Wang X, Liu Z, Yu Z. Role of GPX4-Mediated Ferroptosis in the Sensitivity of Triple Negative Breast Cancer Cells to Gefitinib. Front Oncol 2020; 10:597434. [PMID: 33425751 PMCID: PMC7785974 DOI: 10.3389/fonc.2020.597434] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Gefitinib resistance in triple negative breast cancer (TNBC) is a growing important concern. Glutathione peroxidase 4 (GPX4) is a main regulator of ferroptosis, which is pivotal for TNBC cell growth. We investigated GPX4-mediated ferroptosis in gefitinib sensitivity in TNBC. Gefitinib resistant TNBC cells MDA-MB-231/Gef and HS578T/Gef were constructed and treated with lentivirus sh-GPX4 and ferroptosis inhibitor ferrostatin-1. GPX4 expression, cell viability and apoptosis were detected. Malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS) levels were evaluated. The levels of ferroptosis-related proteins were detected. Subcutaneous tumor model was established in nude mice, and gefitinib was intraperitoneally injected to evaluate tumor growth, apoptosis, and Ki-67 expression. GPX4 was increased in gefitinib-resistant cells. After silencing GPX4, the inhibition rate of cell viability was increased, the limitation of colony formation ability was reduced, apoptosis rate was increased, and the sensitivity of cells to gefitinib was improved. After silencing GPX4, MDA and ROS production were increased, while GSH was decreased. Silencing GPX4 promoted ferroptosis. Inhibition of GPX4 promoted gefitinib sensitivity by promoting cell ferroptosis. In vivo experiments also revealed that inhibition of GPX4 enhanced the anticancer effect of gefitinib through promoting ferroptosis. Overall, inhibition of GPX4 stimulated ferroptosis and enhanced TNBC cell sensitivity to gefitinib.
Collapse
Affiliation(s)
| | | | | | - Zhiyong Yu
- Department of Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
11
|
Aswal M, Garg A, Singhal N, Kumar M. Comparative in-silico proteomic analysis discerns potential granuloma proteins of Yersinia pseudotuberculosis. Sci Rep 2020; 10:3036. [PMID: 32080254 PMCID: PMC7033130 DOI: 10.1038/s41598-020-59924-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/03/2020] [Indexed: 11/29/2022] Open
Abstract
Yersinia pseudotuberculosis is one of the three pathogenic species of the genus Yersinia. Most studies regarding pathogenesis of Y. pseudotuberculosis are based on the proteins related to Type III secretion system, which is a well-known primary virulence factor in pathogenic Gram-negative bacteria, including Y. pseudotuberculosis. Information related to the factors involved in Y. pseudotuberculosis granuloma formation is scarce. In the present study we have used a computational approach to identify proteins that might be potentially involved in formation of Y. pseudotuberculosis granuloma. A comparative proteome analysis and conserved orthologous protein identification was performed between two different genera of bacteria - Mycobacterium and Yersinia, their only common pathogenic trait being ability to form necrotizing granuloma. Comprehensive analysis of orthologous proteins was performed in proteomes of seven bacterial species. This included M. tuberculosis, M. bovis and M. avium paratuberculosis - the known granuloma forming Mycobacterium species, Y. pestis and Y. frederiksenii - the non-granuloma forming Yersinia species and, Y. enterocolitica - that forms micro-granuloma and, Y. pseudotuberculosis - a prominent granuloma forming Yersinia species. In silico proteome analysis indicated that seven proteins (UniProt id A0A0U1QT64, A0A0U1QTE0, A0A0U1QWK3, A0A0U1R1R0, A0A0U1R1Z2, A0A0U1R2S7, A7FMD4) might play some role in Y. pseudotuberculosis granuloma. Validation of the probable involvement of the seven proposed Y. pseudotuberculosis granuloma proteins was done using transcriptome data analysis and, by mapping on a composite protein-protein interaction map of experimentally proved M. tuberculosis granuloma proteins (RD1 locus proteins, ESAT-6 secretion system proteins and intra-macrophage secreted proteins). Though, additional experiments involving knocking out of each of these seven proteins are required to confirm their role in Y. pseudotuberculosis granuloma our study can serve as a basis for further studies on Y. pseudotuberculosis granuloma.
Collapse
Affiliation(s)
- Manisha Aswal
- Department of Biophysics, University of Delhi South Campus, New Delhi, 110021, India
| | - Anjali Garg
- Department of Biophysics, University of Delhi South Campus, New Delhi, 110021, India
| | - Neelja Singhal
- Department of Biophysics, University of Delhi South Campus, New Delhi, 110021, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
12
|
Kus P, Gurcan MN, Beamer G. Automatic Detection of Granuloma Necrosis in Pulmonary Tuberculosis Using a Two-Phase Algorithm: 2D-TB. Microorganisms 2019; 7:E661. [PMID: 31817882 PMCID: PMC6956251 DOI: 10.3390/microorganisms7120661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 01/10/2023] Open
Abstract
Granuloma necrosis occurs in hosts susceptible to pathogenic mycobacteria and is a diagnostic visual feature of pulmonary tuberculosis (TB) in humans and in super-susceptible Diversity Outbred (DO) mice infected with Mycobacterium tuberculosis. Currently, no published automated algorithms can detect granuloma necrosis in pulmonary TB. However, such a method could reduce variability, and transform visual patterns into quantitative data for statistical and machine learning analyses. Here, we used histopathological images from super-susceptible DO mice to train, validate, and performance test an algorithm to detect regions of cell-poor necrosis. The algorithm, named 2D-TB, works on 2-dimensional histopathological images in 2 phases. In phase 1, granulomas are detected following background elimination. In phase 2, 2D-TB searches within granulomas for regions of cell-poor necrosis. We used 8 lung sections from 8 different super-susceptible DO mice for training and 10-fold cross validation. We used 13 new lung sections from 10 different super-susceptible DO mice for performance testing. 2D-TB reached 100.0% sensitivity and 91.8% positive prediction value. Compared to an expert pathologist, agreement was 95.5% and there was a statistically significant positive correlation for area detected by 2D-TB and the pathologist. These results show the development, validation, and accurate performance of 2D-TB to detect granuloma necrosis.
Collapse
Affiliation(s)
- Pelin Kus
- Department of Research, Development and Technology, Republic of Turkey Ministry of National Defence, 06100 Ankara, Turkey;
| | - Metin N. Gurcan
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC 27109, USA;
| | - Gillian Beamer
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
13
|
Dheda K, Lenders L, Srivastava S, Magombedze G, Wainwright H, Raj P, Bush SJ, Pollara G, Steyn R, Davids M, Pooran A, Pennel T, Linegar A, McNerney R, Moodley L, Pasipanodya JG, Turner CT, Noursadeghi M, Warren RM, Wakeland E, Gumbo T. Spatial Network Mapping of Pulmonary Multidrug-Resistant Tuberculosis Cavities Using RNA Sequencing. Am J Respir Crit Care Med 2019; 200:370-380. [PMID: 30694692 PMCID: PMC6680310 DOI: 10.1164/rccm.201807-1361oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/24/2019] [Indexed: 01/09/2023] Open
Abstract
Rationale: There is poor understanding about protective immunity and the pathogenesis of cavitation in patients with tuberculosis.Objectives: To map pathophysiological pathways at anatomically distinct positions within the human tuberculosis cavity.Methods: Biopsies were obtained from eight predetermined locations within lung cavities of patients with multidrug-resistant tuberculosis undergoing therapeutic surgical resection (n = 14) and healthy lung tissue from control subjects without tuberculosis (n = 10). RNA sequencing, immunohistochemistry, and bacterial load determination were performed at each cavity position. Differentially expressed genes were normalized to control subjects without tuberculosis, and ontologically mapped to identify a spatially compartmentalized pathophysiological map of the cavity. In silico perturbation using a novel distance-dependent dynamical sink model was used to investigate interactions between immune networks and bacterial burden, and to integrate these identified pathways.Measurements and Main Results: The median (range) lung cavity volume on positron emission tomography/computed tomography scans was 50 cm3 (15-389 cm3). RNA sequence reads (31% splice variants) mapped to 19,049 annotated human genes. Multiple proinflammatory pathways were upregulated in the cavity wall, whereas a downregulation "sink" in the central caseum-fluid interface characterized 53% of pathways including neuroendocrine signaling, calcium signaling, triggering receptor expressed on myeloid cells-1, reactive oxygen and nitrogen species production, retinoic acid-mediated apoptosis, and RIG-I-like receptor signaling. The mathematical model demonstrated that neuroendocrine, protein kinase C-θ, and triggering receptor expressed on myeloid cells-1 pathways, and macrophage and neutrophil numbers, had the highest correlation with bacterial burden (r > 0.6), whereas T-helper effector systems did not.Conclusions: These data provide novel insights into host immunity to Mycobacterium tuberculosis-related cavitation. The pathways defined may serve as useful targets for the design of host-directed therapies, and transmission prevention interventions.
Collapse
Affiliation(s)
- Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute and South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Laura Lenders
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute and South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Shashikant Srivastava
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gesham Magombedze
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | | | - Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stephen J. Bush
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Gabriele Pollara
- Division of Infection and Immunity, University College London, London, United Kingdom; and
| | | | - Malika Davids
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute and South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Anil Pooran
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute and South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Timothy Pennel
- Chris Barnard Division of Cardiothoracic Surgery, Department of Surgery, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Anthony Linegar
- Chris Barnard Division of Cardiothoracic Surgery, Department of Surgery, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Ruth McNerney
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute and South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Loven Moodley
- Chris Barnard Division of Cardiothoracic Surgery, Department of Surgery, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Jotam G. Pasipanodya
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Carolin T. Turner
- Division of Infection and Immunity, University College London, London, United Kingdom; and
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom; and
| | - Robin M. Warren
- South African Medical Research Council Centre for Tuberculosis Research/Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Edward Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tawanda Gumbo
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute and South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| |
Collapse
|
14
|
Mononuclear cell dynamics in M. tuberculosis infection provide opportunities for therapeutic intervention. PLoS Pathog 2018; 14:e1007154. [PMID: 30365557 PMCID: PMC6221360 DOI: 10.1371/journal.ppat.1007154] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/07/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium tuberculosis causes chronic infection of mononuclear phagocytes, especially resident (alveolar) macrophages, recruited macrophages, and dendritic cells. Despite the importance of these cells in tuberculosis (TB) pathogenesis and immunity, little is known about the population dynamics of these cells at the sites of infection. We used a combination of congenic monocyte adoptive transfer, and pulse-chase labeling of DNA, to determine the kinetics and characteristics of trafficking, differentiation, and infection of mononuclear phagocytes during the chronic, adaptive immune phase of M. tuberculosis infection in mice. We found that Ly6Chi monocytes traffic rapidly to the lungs, where a subpopulation become Ly6Clo and remain in the lung vascular space, while the remainder migrate into the lung parenchyma and differentiate into Ly6Chi dendritic cells, CD11b+ dendritic cells, and recruited macrophages. As in humans with TB, M. tuberculosis-infected mice have increased numbers of blood monocytes; this is due to increased egress from the bone marrow, and not delayed egress from the blood. Pulse-chase labeling of dividing cells and flow cytometry analysis revealed a T1/2 of ~15 hrs for Ly6Chi monocytes, indicating that they differentiate rapidly upon entry to the parenchyma of infected lungs; in contrast, cells that differentiate from Ly6Chi monocytes turn over more slowly, but diminish in frequency in less than one week. New cells (identified by pulse-chase labeling) acquire bacteria within 1–3 days of appearance in the lungs, indicating that bacteria regularly encounter new cellular niches, even during the chronic stage of infection. Our findings that mononuclear phagocyte populations at the site of M. tuberculosis infection are highly dynamic provide support for specific approaches for host-directed therapies directed at monocytes, including trained immunity, as potential interventions in TB, by replacing cells with limited antimycobacterial capabilities with newly-recruited cells better able to restrict and kill M. tuberculosis. During certain chronic infections such as tuberculosis, inflammatory cells, including macrophages and dendritic cells, are recruited to infected tissues where they aggregate to form tissue lesions known as granulomas. Although granulomas can persist long term, the dynamics of the cell populations that comprise granulomas are not well understood. We used a combination of methods to discover that, during chronic infection of mice with Mycobacterium tuberculosis, the monocyte, macrophage, and dendritic cell populations are highly dynamic: recently-proliferated cells traffic rapidly to infected lung tissues, yet they persist with a half-life of less than one week. We also found that recently-proliferated cells become infected with M. tuberculosis as soon as one day after their arrival in the lungs, indicating that the bacteria are regularly moving to new cellular niches, even during the chronic stage of infection. The dynamic nature of the cell populations that encounter M. tuberculosis suggests that interventions such as trained immunity have potential therapeutic roles, by replacing cells that have poor antimycobacterial activity with cells with enhanced antimycobacterial activity. These interventions could improve the outcomes of treatment of drug resistant tuberculosis.
Collapse
|
15
|
Ravimohan S, Kornfeld H, Weissman D, Bisson GP. Tuberculosis and lung damage: from epidemiology to pathophysiology. Eur Respir Rev 2018; 27:27/147/170077. [PMID: 29491034 PMCID: PMC6019552 DOI: 10.1183/16000617.0077-2017] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/28/2017] [Indexed: 12/12/2022] Open
Abstract
A past history of pulmonary tuberculosis (TB) is a risk factor for long-term respiratory impairment. Post-TB lung dysfunction often goes unrecognised, despite its relatively high prevalence and its association with reduced quality of life. Importantly, specific host and pathogen factors causing lung impairment remain unclear. Host immune responses probably play a dominant role in lung damage, as excessive inflammation and elevated expression of lung matrix-degrading proteases are common during TB. Variability in host genes that modulate these immune responses may determine the severity of lung impairment, but this hypothesis remains largely untested. In this review, we provide an overview of the epidemiological literature on post-TB lung impairment and link it to data on the pathogenesis of lung injury from the perspective of dysregulated immune responses and immunogenetics. Host factors driving lung injury in TB likely contribute to variable patterns of pulmonary impairment after TBhttp://ow.ly/a3of30hBsxB
Collapse
Affiliation(s)
- Shruthi Ravimohan
- Dept of Medicine, Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Hardy Kornfeld
- Dept of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Drew Weissman
- Dept of Medicine, Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory P Bisson
- Dept of Medicine, Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Dept of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Locke LW, Kothandaraman S, Tweedle M, Chaney S, Wozniak DJ, Schlesinger LS. Use of a leukocyte-targeted peptide probe as a potential tracer for imaging the tuberculosis granuloma. Tuberculosis (Edinb) 2018; 108:201-210. [PMID: 29623875 DOI: 10.1016/j.tube.2018.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/19/2017] [Accepted: 01/04/2018] [Indexed: 12/25/2022]
Abstract
Granulomas are the histopathologic hallmark of tuberculosis (TB), both in latency and active disease. Diagnostic and therapeutic strategies that specifically target granulomas have not been developed. Our objective is to develop a probe for imaging relevant immune cell populations infiltrating the granuloma. We report the binding specificity of Cyanine 3 (Cy3)-labeled cFLFLFK-PEG12 to human leukocytes and cellular constituents within a human in vitro granuloma model. We also report use of the probe in in vivo studies using a mouse model of lung granulomatous inflammation. We found that the probe preferentially binds human neutrophils and macrophages in human granuloma structures. Inhibition studies showed that peptide binding to human neutrophils is mediated by the receptor formyl peptide receptor 1 (FPR1). Imaging the distribution of intravenously administered cFLFLFK-PEG12-Cy3 in the mouse model revealed probe accumulation within granulomatous inflammatory responses in the lung. Further characterization revealed that the probe preferentially associated with neutrophils and cells of the monocyte/macrophage lineage. As there is no current clinical diagnostic imaging tool that specifically targets granulomas, the use of this probe in the context of latent and active TB may provide a unique advantage over current clinical imaging probes. We anticipate that utilizing a FPR1-targeted radiopharmaceutical analog of cFLFLFK in preclinical imaging studies may greatly contribute to our understanding of granuloma influx patterns and the biological roles and consequences of FPR1-expressing cells in contributing to disease pathogenesis.
Collapse
Affiliation(s)
- Landon W Locke
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, 793 Biomedical Research Tower, 460 W. 12th Avenue, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Shankaran Kothandaraman
- Department of Radiology, The Wright Center for Innovation in Biomedical Imaging, Martha Morehouse Medical Plaza, 2050 Kenny Road, The Ohio State University, Columbus, OH 43221, USA.
| | - Michael Tweedle
- Department of Radiology, The Wright Center for Innovation in Biomedical Imaging, Martha Morehouse Medical Plaza, 2050 Kenny Road, The Ohio State University, Columbus, OH 43221, USA.
| | - Sarah Chaney
- Department of Veterinary Biosciences, College of Veterinary Medicine, Ohio State University, Columbus, OH, USA
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, 793 Biomedical Research Tower, 460 W. 12th Avenue, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Larry S Schlesinger
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, 793 Biomedical Research Tower, 460 W. 12th Avenue, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| |
Collapse
|
17
|
Dallenga T, Repnik U, Corleis B, Eich J, Reimer R, Griffiths GW, Schaible UE. M. tuberculosis-Induced Necrosis of Infected Neutrophils Promotes Bacterial Growth Following Phagocytosis by Macrophages. Cell Host Microbe 2017; 22:519-530.e3. [DOI: 10.1016/j.chom.2017.09.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/27/2017] [Accepted: 09/01/2017] [Indexed: 01/05/2023]
|
18
|
Clemmensen HS, Knudsen NPH, Rasmussen EM, Winkler J, Rosenkrands I, Ahmad A, Lillebaek T, Sherman DR, Andersen PL, Aagaard C. An attenuated Mycobacterium tuberculosis clinical strain with a defect in ESX-1 secretion induces minimal host immune responses and pathology. Sci Rep 2017; 7:46666. [PMID: 28436493 PMCID: PMC5402389 DOI: 10.1038/srep46666] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/22/2017] [Indexed: 12/24/2022] Open
Abstract
Although Mycobacterium tuberculosis (M.tb) DK9897 is an attenuated strain, it was isolated from a patient with extrapulmonary tuberculosis and vaccination with a subunit vaccine (H56) induced poor protection against it. Both attenuation and lack of protection are because M.tb DK9897 cannot secrete the EsxA virulence factor nor induce a host response against it. Genome sequencing identified a frameshift mutation in the eccCa1 gene. Since the encoded EccCa1 protein provides energy for ESX-1 secretion, it suggested a defect in the ESX-1 type VII secretion system. Genetic complementation with a plasmid carrying the M.tb H37Rv sequence of eccCa1-eccCb1-pe35 re-established EsxA secretion, host specific EsxA T-cell responses, and increased strain virulence. The ESX-1 secretion defect prevents several virulence factors from being functional during infection and therefore attenuates M.tb. It precludes specific T-cell responses against strong antigens and we found very little in vivo cytokine production, gross pathology or granuloma formation in lungs from M.tb DK9897 infected animals. This coincides with M.tb DK9897 being unable to disrupt the phagosome membrane and make contact to the cytosol.
Collapse
Affiliation(s)
- Helena Strand Clemmensen
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300, Copenhagen, Denmark
| | - Niels Peter Hell Knudsen
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300, Copenhagen, Denmark
| | - Erik Michael Rasmussen
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, DK-2300, Copenhagen, Denmark
| | - Jessica Winkler
- Center for Infectious Disease Research, Seattle, Washington, 98109, USA
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300, Copenhagen, Denmark
| | - Ahmad Ahmad
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300, Copenhagen, Denmark
| | - Troels Lillebaek
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, DK-2300, Copenhagen, Denmark
| | - David R Sherman
- Center for Infectious Disease Research, Seattle, Washington, 98109, USA
| | - Peter Lawætz Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300, Copenhagen, Denmark
| | - Claus Aagaard
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300, Copenhagen, Denmark
| |
Collapse
|
19
|
The Cell Wall Lipid PDIM Contributes to Phagosomal Escape and Host Cell Exit of Mycobacterium tuberculosis. mBio 2017; 8:mBio.00148-17. [PMID: 28270579 PMCID: PMC5340868 DOI: 10.1128/mbio.00148-17] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cell wall of Mycobacterium tuberculosis is composed of unique lipids that are important for pathogenesis. Indeed, the first-ever genetic screen in M. tuberculosis identified genes involved in the biosynthesis and transport of the cell wall lipid PDIM (phthiocerol dimycocerosates) as crucial for the survival of M. tuberculosis in mice. Here we show evidence for a novel molecular mechanism of the PDIM-mediated virulence in M. tuberculosis We characterized the DNA interaction and the regulon of Rv3167c, a transcriptional repressor that is involved in virulence regulation of M. tuberculosis, and discovered that it controls the PDIM operon. A loss-of-function genetic approach showed that PDIM levels directly correlate with the capacity of M. tuberculosis to escape the phagosome and induce host cell necrosis and macroautophagy. In conclusion, our study attributes a novel role of the cell wall lipid PDIM in intracellular host cell modulation, which is important for host cell exit and dissemination of M. tuberculosisIMPORTANCEMycobacterium tuberculosis is a major human pathogen that has coevolved with its host for thousands of years. The complex and unique cell wall of M. tuberculosis contains the lipid PDIM (phthiocerol dimycocerosates), which is crucial for virulence of the bacterium, but its function is not well understood. Here we show that PDIM expression by M. tuberculosis is negatively regulated by a novel transcriptional repressor, Rv3167c. In addition, we discovered that the escape of M. tuberculosis from its intracellular vacuole was greatly augmented by the presence of PDIM. The increased release of M. tuberculosis into the cytosol led to increased host cell necrosis. The discovery of a link between the cell wall lipid PDIM and a major pathogenesis pathway of M. tuberculosis provides important insights into the molecular mechanisms of host cell manipulation by M. tuberculosis.
Collapse
|
20
|
Lerner TR, Borel S, Greenwood DJ, Repnik U, Russell MRG, Herbst S, Jones ML, Collinson LM, Griffiths G, Gutierrez MG. Mycobacterium tuberculosis replicates within necrotic human macrophages. J Cell Biol 2017; 216:583-594. [PMID: 28242744 PMCID: PMC5350509 DOI: 10.1083/jcb.201603040] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/27/2016] [Accepted: 01/23/2017] [Indexed: 12/29/2022] Open
Abstract
Mycobacterium tuberculosis triggers macrophage cell death by necrosis, but it is unclear how this affects bacterial replication. Lerner et al. show that this pathogen replicates within necrotic human macrophages before disseminating to other cells upon loss of plasma membrane integrity. Mycobacterium tuberculosis modulation of macrophage cell death is a well-documented phenomenon, but its role during bacterial replication is less characterized. In this study, we investigate the impact of plasma membrane (PM) integrity on bacterial replication in different functional populations of human primary macrophages. We discovered that IFN-γ enhanced bacterial replication in macrophage colony-stimulating factor–differentiated macrophages more than in granulocyte–macrophage colony-stimulating factor–differentiated macrophages. We show that permissiveness in the different populations of macrophages to bacterial growth is the result of a differential ability to preserve PM integrity. By combining live-cell imaging, correlative light electron microscopy, and single-cell analysis, we found that after infection, a population of macrophages became necrotic, providing a niche for M. tuberculosis replication before escaping into the extracellular milieu. Thus, in addition to bacterial dissemination, necrotic cells provide first a niche for bacterial replication. Our results are relevant to understanding the environment of M. tuberculosis replication in the host.
Collapse
Affiliation(s)
- Thomas R Lerner
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London NW1 1AT, England, UK
| | - Sophie Borel
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London NW1 1AT, England, UK
| | - Daniel J Greenwood
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London NW1 1AT, England, UK
| | - Urska Repnik
- Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Matthew R G Russell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, England, UK
| | - Susanne Herbst
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London NW1 1AT, England, UK
| | - Martin L Jones
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, England, UK
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, England, UK
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London NW1 1AT, England, UK
| |
Collapse
|
21
|
Martinez N, Ketheesan N, West K, Vallerskog T, Kornfeld H. Impaired Recognition of Mycobacterium tuberculosis by Alveolar Macrophages From Diabetic Mice. J Infect Dis 2016; 214:1629-1637. [PMID: 27630197 DOI: 10.1093/infdis/jiw436] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/01/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Diabetes mellitus is associated with increased tuberculosis risk and severity. We previously reported that tuberculosis susceptibility in diabetic mice results from a delay in innate immune response to inhaled Mycobacterium tuberculosis, leading to delayed adaptive immune priming and, consequently, a higher plateau lung bacterial burden and greater immune pathology. METHODS We tested the capacity of alveolar macrophages from diabetic mice to phagocytose M. tuberculosis ex vivo and promote T-cell activation in vivo. RESULTS Alveolar macrophages from diabetic mice had reduced expression of CD14 and macrophage receptor with collagenous structure (MARCO), which recognize the bacterial cell wall component trehalose 6,6'-dimycolate (TDM). Diabetic alveolar macrophages exhibited reduced phagocytosis of M. tuberculosis or TDM-coated latex beads. This alveolar macrophage phenotype was absent in peritoneal and bone marrow-derived macrophages. Transfer of infected alveolar macrophages from diabetic mice into nondiabetic recipients confirmed an intrinsic alveolar macrophage defect that hindered T-cell priming. The diabetic alveolar macrophage phenotype depended in part on expression of the receptor for advanced glycation end products. CONCLUSIONS Reduced MARCO and CD14 expression contributes to defective sentinel function of alveolar macrophages, promoting tuberculosis susceptibility in diabetic hosts at a critical early step in the immune response to aerosol infection.
Collapse
Affiliation(s)
- Nuria Martinez
- Department of Medicine, University of Massachusetts Medical School, Worcester
| | - Natkunam Ketheesan
- Australian Institute of Tropical Health and Medicine, James Cook University, Queensland, Australia
| | - Kim West
- Department of Medicine, University of Massachusetts Medical School, Worcester
| | - Therese Vallerskog
- Department of Medicine, University of Massachusetts Medical School, Worcester
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Medical School, Worcester
| |
Collapse
|
22
|
Russell DG. The ins and outs of the Mycobacterium tuberculosis-containing vacuole. Cell Microbiol 2016; 18:1065-9. [PMID: 27247149 DOI: 10.1111/cmi.12623] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/17/2016] [Accepted: 05/25/2016] [Indexed: 12/16/2022]
Abstract
The past few years have seen publication of reports from several groups documenting the escape of Mycobacterium tuberculosis (Mtb) from its intracellular vacuole to access the cytosol. The major questions addressed in these publications are the mechanism(s) underlying this process, the frequency of its occurrence and, most importantly, the biological significance of this phenomenon to bacterial survival, growth and virulence. I believe that the first two questions are moving towards resolution, but questions relating to biological context have yet to be answered fully. In this viewpoint article, I will try to convince the readers why escape from the vacuole in no way diminishes the significance of Mtb's intravacuolar survival mechanisms and why, as a lab, we continue to focus the majority of our efforts on the 'bug in the bag'.
Collapse
Affiliation(s)
- David G Russell
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
23
|
Khan SR, Morgan AGM, Michail K, Srivastava N, Whittal RM, Aljuhani N, Siraki AG. Metabolism of isoniazid by neutrophil myeloperoxidase leads to isoniazid-NAD(+) adduct formation: A comparison of the reactivity of isoniazid with its known human metabolites. Biochem Pharmacol 2016; 106:46-55. [PMID: 26867495 DOI: 10.1016/j.bcp.2016.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/04/2016] [Indexed: 01/02/2023]
Abstract
The formation of isonicotinyl-nicotinamide adenine dinucleotide (INH-NAD(+)) via the mycobacterial catalase-peroxidase enzyme, KatG, has been described as the major component of the mode of action of isoniazid (INH). However, there are numerous human peroxidases that may catalyze this reaction. The role of neutrophil myeloperoxidase (MPO) in INH-NAD(+) adduct formation has never been explored; this is important, as neutrophils are recruited at the site of tuberculosis infection (granuloma) through infected macrophages' cell death signals. In our studies, we showed that neutrophil MPO is capable of INH metabolism using electron paramagnetic resonance (EPR) spin-trapping and UV-Vis spectroscopy. MPO or activated human neutrophils (by phorbol myristate acetate) catalyzed the oxidation of INH and formed several free radical intermediates; the inclusion of superoxide dismutase revealed a carbon-centered radical which is considered to be the reactive metabolite that binds with NAD(+). Other human metabolites, including N-acetyl-INH, N-acetylhydrazine, and hydrazine did not show formation of carbon-centered radicals, and either produced no detectable free radicals, N-centered free radicals, or superoxide, respectively. A comparison of these free radical products indicated that only the carbon-centered radical from INH is reducing in nature, based on UV-Vis measurement of nitroblue tetrazolium reduction. Furthermore, only INH oxidation by MPO led to a new product (λmax=326nm) in the presence of NAD(+). This adduct was confirmed to be isonicotinyl-NAD(+) using LC-MS analysis where the intact adduct was detected (m/z=769). The findings of this study suggest that neutrophil MPO may also play a role in INH pharmacological activity.
Collapse
Affiliation(s)
- Saifur R Khan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Andrew G M Morgan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Karim Michail
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Nutan Srivastava
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Randy M Whittal
- Department of Chemistry, Faculty of Sciences, University of Alberta, Edmonton, Canada
| | - Naif Aljuhani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada; Pharmacology and Toxicology Department, Faculty of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Arno G Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
| |
Collapse
|
24
|
Mouse models of human TB pathology: roles in the analysis of necrosis and the development of host-directed therapies. Semin Immunopathol 2015; 38:221-37. [PMID: 26542392 PMCID: PMC4779126 DOI: 10.1007/s00281-015-0538-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/22/2015] [Indexed: 12/28/2022]
Abstract
A key aspect of TB pathogenesis that maintains Mycobacterium tuberculosis in the human population is the ability to cause necrosis in pulmonary lesions. As co-evolution shaped M. tuberculosis (M.tb) and human responses, the complete TB disease profile and lesion manifestation are not fully reproduced by any animal model. However, animal models are absolutely critical to understand how infection with virulent M.tb generates outcomes necessary for the pathogen transmission and evolutionary success. In humans, a wide spectrum of TB outcomes has been recognized based on clinical and epidemiological data. In mice, there is clear genetic basis for susceptibility. Although the spectra of human and mouse TB do not completely overlap, comparison of human TB with mouse lesions across genetically diverse strains firmly establishes points of convergence. By embracing the genetic heterogeneity of the mouse population, we gain tremendous advantage in the quest for suitable in vivo models. Below, we review genetically defined mouse models that recapitulate a key element of M.tb pathogenesis—induction of necrotic TB lesions in the lungs—and discuss how these models may reflect TB stratification and pathogenesis in humans. The approach ensures that roles that mouse models play in basic and translational TB research will continue to increase allowing researchers to address fundamental questions of TB pathogenesis and bacterial physiology in vivo using this well-defined, reproducible, and cost-efficient system. Combination of the new generation mouse models with advanced imaging technologies will also allow rapid and inexpensive assessment of experimental vaccines and therapies prior to testing in larger animals and clinical trials.
Collapse
|
25
|
Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis. Semin Immunopathol 2015; 38:153-66. [PMID: 26438324 DOI: 10.1007/s00281-015-0531-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/13/2015] [Indexed: 12/19/2022]
Abstract
Heightened morbidity and mortality in pulmonary tuberculosis (TB) are consequences of complex disease processes triggered by the causative agent, Mycobacterium tuberculosis (Mtb). Mtb modulates inflammation at distinct stages of its intracellular life. Recognition and phagocytosis, replication in phagosomes and cytosol escape induce tightly regulated release of cytokines [including interleukin (IL)-1, tumor necrosis factor (TNF), IL-10], chemokines, lipid mediators, and type I interferons (IFN-I). Mtb occupies various lung lesions at sites of pathology. Bacteria are barely detectable at foci of lipid pneumonia or in perivascular/bronchiolar cuffs. However, abundant organisms are evident in caseating granulomas and at the cavity wall. Such lesions follow polar trajectories towards fibrosis, encapsulation and mineralization or liquefaction, extensive matrix destruction, and tissue injury. The outcome is determined by immune factors acting in concert. Gradients of cytokines and chemokines (CCR2, CXCR2, CXCR3/CXCR5 agonists; TNF/IL-10, IL-1/IFN-I), expression of activation/death markers on immune cells (TNF receptor 1, PD-1, IL-27 receptor) or abundance of enzymes [arginase-1, matrix metalloprotease (MMP)-1, MMP-8, MMP-9] drive genesis and progression of lesions. Distinct lesions coexist such that inflammation in TB encompasses a spectrum of tissue changes. A better understanding of the multidimensionality of immunopathology in TB will inform novel therapies against this pulmonary disease.
Collapse
|