1
|
Taylor-Robinson AW. Complex transmission epidemiology of neglected Australian arboviruses: diverse non-human vertebrate hosts and competent arthropod invertebrate vectors. Front Microbiol 2024; 15:1469710. [PMID: 39296304 PMCID: PMC11408357 DOI: 10.3389/fmicb.2024.1469710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
More than 75 arboviruses are indigenous to Australia, of which at least 13 are known to cause disease in humans. Alphaviruses are the most common arboviruses, notably including Ross River and Barmah Forest viruses, which contribute a significant public health and economic burden in Australia. Both can cause febrile illness with arthritic symptoms. Each circulates nationally across diverse climates and environments, and has multi-host, multi-vector dynamics. Several medically important flaviviruses also circulate in Australia. Infection with Murray Valley encephalitis or Kunjin viruses is less common but is associated with brain inflammation. Key research priorities for Australian arboviruses aim to understand clinical manifestations, develop timely diagnostics, and identify transmission cycles that permit the maintenance of arboviruses. While these can now be answered for a handful of notifiable alpha- and flaviviruses there are others for which non-human vertebrate hosts and competent arthropod invertebrate vectors are still to be identified and/or whose role in transmission is not well understood. One or more of these 'neglected' arboviruses may be the causative agent of a proportion of the many thousands of fever-related illnesses reported annually in Australia that at present remain undiagnosed. Here, what is known about enzootic cycling of viruses between arthropod vectors and mammalian and avian reservoir hosts is summarised. How and to what extent these interactions influence the epidemiology of arbovirus transmission and infection is discussed.
Collapse
Affiliation(s)
- Andrew W Taylor-Robinson
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- College of Health and Human Sciences, Charles Darwin University, Casuarina, NT, Australia
| |
Collapse
|
2
|
Taylor-Robinson AW. Harnessing artificial intelligence to enhance key surveillance and response measures for arbovirus disease outbreaks: the exemplar of Australia. Front Microbiol 2023; 14:1284838. [PMID: 37954250 PMCID: PMC10634219 DOI: 10.3389/fmicb.2023.1284838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Affiliation(s)
- Andrew W. Taylor-Robinson
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
- VinUniversity-University of Illinois Smart Health Center, VinUniversity, Hanoi, Vietnam
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- College of Health and Human Sciences, Charles Darwin University, Casuarina, NT, Australia
| |
Collapse
|
3
|
Zaid A, Burt FJ, Liu X, Poo YS, Zandi K, Suhrbier A, Weaver SC, Texeira MM, Mahalingam S. Arthritogenic alphaviruses: epidemiological and clinical perspective on emerging arboviruses. THE LANCET. INFECTIOUS DISEASES 2020; 21:e123-e133. [PMID: 33160445 DOI: 10.1016/s1473-3099(20)30491-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
Mosquito-borne viruses, or arboviruses, have been part of the infectious disease landscape for centuries, and are often, but not exclusively, endemic to equatorial and subtropical regions of the world. The past two decades saw the re-emergence of arthritogenic alphaviruses, a genus of arboviruses that includes several members that cause severe arthritic disease. Recent outbreaks further highlight the substantial public health burden caused by these viruses. Arthritogenic alphaviruses are often reported in the context of focused outbreaks in specific regions (eg, Caribbean, southeast Asia, and Indian Ocean) and cause debilitating acute disease that can extend to chronic manifestations for years after infection. These viruses are classified among several antigenic complexes, span a range of hosts and mosquito vectors, and can be distributed along specific geographical locations. In this Review, we highlight key features of alphaviruses that are known to cause arthritic disease in humans and outline the present findings pertaining to classification, immunogenicity, pathogenesis, and experimental approaches aimed at limiting disease manifestations. Although the most prominent alphavirus outbreaks in the past 15 years featured chikungunya virus, and a large body of work has been dedicated to understanding chikungunya disease mechanisms, this Review will instead focus on other arthritogenic alphaviruses that have been identified globally and provide a comprehensive appraisal of present and future research directions.
Collapse
Affiliation(s)
- Ali Zaid
- Emerging Viruses, Inflammation, and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Felicity J Burt
- Division of Virology, National Health Laboratory Services, Bloemfontein, South Africa; Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Xiang Liu
- Emerging Viruses, Inflammation, and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Yee Suan Poo
- Emerging Viruses, Inflammation, and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Keivan Zandi
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Andreas Suhrbier
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Scott C Weaver
- Department of Microbiology and Immunology and Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, USA
| | - Mauro M Texeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation, and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
4
|
Rawle DJ, Nguyen W, Dumenil T, Parry R, Warrilow D, Tang B, Le TT, Slonchak A, Khromykh AA, Lutzky VP, Yan K, Suhrbier A. Sequencing of Historical Isolates, K-mer Mining and High Serological Cross-Reactivity with Ross River Virus Argue against the Presence of Getah Virus in Australia. Pathogens 2020; 9:pathogens9100848. [PMID: 33081269 PMCID: PMC7650646 DOI: 10.3390/pathogens9100848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
Getah virus (GETV) is a mosquito-transmitted alphavirus primarily associated with disease in horses and pigs in Asia. GETV was also reported to have been isolated from mosquitoes in Australia in 1961; however, retrieval and sequencing of the original isolates (N544 and N554), illustrated that these viruses were virtually identical to the 1955 GETVMM2021 isolate from Malaysia. K-mer mining of the >40,000 terabases of sequence data in the Sequence Read Archive followed by BLASTn confirmation identified multiple GETV sequences in biosamples from Asia (often as contaminants), but not in biosamples from Australia. In contrast, sequence reads aligning to the Australian Ross River virus (RRV) were readily identified in Australian biosamples. To explore the serological relationship between GETV and other alphaviruses, an adult wild-type mouse model of GETV was established. High levels of cross-reactivity and cross-protection were evident for convalescent sera from mice infected with GETV or RRV, highlighting the difficulties associated with the interpretation of early serosurveys reporting GETV antibodies in Australian cattle and pigs. The evidence that GETV circulates in Australia is thus not compelling.
Collapse
Affiliation(s)
- Daniel J. Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (D.J.R.); (W.N.); (T.D.); (B.T.); (T.T.L.); (V.P.L.); (K.Y.)
| | - Wilson Nguyen
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (D.J.R.); (W.N.); (T.D.); (B.T.); (T.T.L.); (V.P.L.); (K.Y.)
| | - Troy Dumenil
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (D.J.R.); (W.N.); (T.D.); (B.T.); (T.T.L.); (V.P.L.); (K.Y.)
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; (R.P.); (A.S.); (A.A.K.)
| | - David Warrilow
- Public Health Virology Laboratory, Department of Health, Queensland Government, Brisbane, QLD 4108, Australia;
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (D.J.R.); (W.N.); (T.D.); (B.T.); (T.T.L.); (V.P.L.); (K.Y.)
| | - Thuy T. Le
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (D.J.R.); (W.N.); (T.D.); (B.T.); (T.T.L.); (V.P.L.); (K.Y.)
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; (R.P.); (A.S.); (A.A.K.)
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; (R.P.); (A.S.); (A.A.K.)
- GVN Center of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD 4006 and 4072, Australia
| | - Viviana P. Lutzky
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (D.J.R.); (W.N.); (T.D.); (B.T.); (T.T.L.); (V.P.L.); (K.Y.)
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (D.J.R.); (W.N.); (T.D.); (B.T.); (T.T.L.); (V.P.L.); (K.Y.)
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (D.J.R.); (W.N.); (T.D.); (B.T.); (T.T.L.); (V.P.L.); (K.Y.)
- GVN Center of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD 4006 and 4072, Australia
- Correspondence:
| |
Collapse
|
5
|
Gyawali N, Murphy AK, Hugo LE, Devine GJ. A micro-PRNT for the detection of Ross River virus antibodies in mosquito blood meals: A useful tool for inferring transmission pathways. PLoS One 2020; 15:e0229314. [PMID: 32706777 PMCID: PMC7380888 DOI: 10.1371/journal.pone.0229314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/06/2020] [Indexed: 01/12/2023] Open
Abstract
Introduction Many arboviruses of public health significance are maintained in zoonotic cycles with complex transmission pathways. The presence of serum antibody against arboviruses in vertebrates provides evidence of their historical exposure but reveals nothing about the vector-reservoir relationship. Moreover, collecting blood or tissue samples from vertebrate hosts is ethically and logistically challenging. We developed a novel approach for screening the immune status of vertebrates against Ross River virus that allows us to implicate the vectors that form the transmission pathways for this commonly notified Australian arboviral disease. Methods A micro-plaque reduction neutralisation test (micro-PRNT) was developed and validated on koala (Phascolarctos cinereus) sera against a standard PRNT. The ability of the micro-PRNT to detect RRV antibodies in mosquito blood meals was then tested using two mosquito models. Laboratory-reared Aedes aegypti were fed, via a membrane, on sheep blood supplemented with RRV seropositive and seronegative human sera. Aedes notoscriptus were fed on RRV seropositive and seronegative human volunteers. Blood-fed mosquitoes were harvested at various time points after feeding and their blood meals analysed for the presence of RRV neutralising antibodies using the micro-PRNT. Results There was significant agreement of the plaque neutralisation resulting from the micro-PRNT and standard PRNT techniques (R2 = 0.65; P<0.0001) when applied to RRV antibody detection in koala sera. Sensitivity and specificity of the micro-PRNT assay were 88.2% and 96%, respectively, in comparison with the standard PRNT. Blood meals from mosquitoes fed on sheep blood supplemented with RRV antibodies, and on blood from RRV seropositive humans neutralised the virus by ≥50% until 48 hr post feeding. The vertebrate origin of the blood meal was also ascertained for the same samples, in parallel, using established molecular techniques. Conclusions The small volumes of blood present in mosquito abdomens can be used to identify RRV antibodies and therefore host exposure to arbovirus infection. In tandem with the accurate identification of the mosquito, and diagnostics for the host origin of the blood meal, this technique has tremendous potential for exploring RRV transmission pathways. It can be adapted for similar studies on other mosquito borne zoonoses.
Collapse
Affiliation(s)
- Narayan Gyawali
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- * E-mail:
| | - Amanda K. Murphy
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Leon E. Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gregor J. Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Yanase T, Murota K, Hayama Y. Endemic and Emerging Arboviruses in Domestic Ruminants in East Asia. Front Vet Sci 2020; 7:168. [PMID: 32318588 PMCID: PMC7154088 DOI: 10.3389/fvets.2020.00168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/10/2020] [Indexed: 02/04/2023] Open
Abstract
Epizootic congenital abnormalities caused by Akabane, Aino, and Chuzan viruses have damaged the reproduction of domestic ruminants in East Asia for many years. In the past, large outbreaks of febrile illness related to bovine ephemeral fever and Ibaraki viruses severely affected the cattle industry in that region. In recent years, vaccines against these viruses have reduced the occurrence of diseases, although the viruses are still circulating and have occasionally caused sporadic and small-scaled epidemics. Over a long-term monitoring period, many arboviruses other than the above-mentioned viruses have been isolated from cattle and Culicoides biting midges in Japan. Several novel arboviruses that may infect ruminants (e.g., mosquito- and tick-borne arboviruses) were recently reported in mainland China based on extensive surveillance. It is noteworthy that some are suspected of being associated with cattle diseases. Malformed calves exposed to an intrauterine infection with orthobunyaviruses (e.g., Peaton and Shamonda viruses) have been observed. Epizootic hemorrhagic disease virus serotype 6 caused a sudden outbreak of hemorrhagic disease in cattle in Japan. Unfortunately, the pathogenicity of many other viruses in ruminants has been uncertain, although these viruses potentially affect livestock production. As global transportation grows, the risk of an accidental incursion of arboviruses is likely to increase in previously non-endemic areas. Global warming will also certainly affect the distribution and active period of vectors, and thus the range of virus spreads will expand to higher-latitude regions. To prevent anticipated damages to the livestock industry, the monitoring system for arboviral circulation and incursion should be strengthened; moreover, the sharing of information and preventive strategies will be essential in East Asia.
Collapse
Affiliation(s)
- Tohru Yanase
- Kyushu Research Station, National Institute of Animal Health, NARO, Kagoshima, Japan
| | - Katsunori Murota
- Kyushu Research Station, National Institute of Animal Health, NARO, Kagoshima, Japan
| | - Yoko Hayama
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, NARO, Tsukuba, Japan
| |
Collapse
|
7
|
Gyawali N, Taylor-Robinson AW, Bradbury RS, Pederick W, Faddy HM, Aaskov JG. Neglected Australian Arboviruses Associated With Undifferentiated Febrile Illnesses. Front Microbiol 2019; 10:2818. [PMID: 31866981 PMCID: PMC6908948 DOI: 10.3389/fmicb.2019.02818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/20/2019] [Indexed: 12/28/2022] Open
Abstract
Infections with commonly occurring Australian arthropod-borne arboviruses such as Ross River virus (RRV) and Barmah Forest virus (BFV) are diagnosed routinely by pathology laboratories in Australia. Others, such as Murray Valley encephalitis (MVEV) and Kunjin (KUNV) virus infections may be diagnosed by specialist reference laboratories. Although Alfuy (ALFV), Edge Hill (EHV), Kokobera (KOKV), Sindbis (SINV), and Stratford (STRV) viruses are known to infect humans in Australia, all are considered 'neglected.' The aetiologies of approximately half of all cases of undifferentiated febrile illnesses (UFI) in Australia are unknown and it is possible that some of these are caused by the neglected arboviruses. The aims of this study were to determine the seroprevalence of antibodies against several neglected Australian arboviruses among residents of Queensland, north-east Australia, and to ascertain whether any are associated with UFI. One hundred age- and sex-stratified human plasma samples from blood donors in Queensland were tested to determine the prevalence of neutralising antibodies against ALFV, BFV, EHV, KOKV, KUNV, MVEV, RRV, SINV, and STRV. The seroconversion rates for RRV and BFV infections were 1.3 and 0.3% per annum, respectively. The prevalence of antibodies against ALFV was too low to enable estimates of annual infection rates to be determined, but the values obtained for other neglected viruses, EHV (0.1%), KOKV (0.05%), and STRV (0.05%), indicated that the numbers of clinical infections occurring with these agents are likely to be extremely small. This was borne out by the observation that only 5.7% of a panel of 492 acute phase sera from UFI patients contained IgM against any of these arboviruses, as detected by an indirect immunofluorescence assay. While none of these neglected arboviruses appear to be a cause of a significant number of UFIs in Australia at this time, each has the potential to emerge as a significant human pathogen if there are changes to their ecological niches.
Collapse
Affiliation(s)
- Narayan Gyawali
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andrew W. Taylor-Robinson
- School of Health, Medical and Applied Sciences, Central Queensland University, Brisbane, QLD, Australia
| | - Richard S. Bradbury
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Wayne Pederick
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Helen M. Faddy
- Research and Development, Australian Red Cross Blood Service, Brisbane, QLD, Australia
| | - John G. Aaskov
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Gyawali N, Taylor-Robinson AW, Bradbury RS, Potter A, Aaskov JG. Infection of Western Gray Kangaroos ( Macropus fuliginosus) with Australian Arboviruses Associated with Human Infection. Vector Borne Zoonotic Dis 2019; 20:33-39. [PMID: 31556842 DOI: 10.1089/vbz.2019.2467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
More than 75 arboviruses (arthropod-borne viruses) have been identified in Australia. While Alfuy virus (ALFV), Barmah Forest virus (BFV), Edge Hill virus (EHV), Kokobera virus (KOKV), Murray Valley encephalitis virus (MVEV), Sindbis virus (SINV), Ross River virus (RRV), Stratford virus (STRV), and West Nile virus strain Kunjin (KUNV) have been associated with human infection, there remains a paucity of data regarding their respective transmission cycles and any potential nonhuman vertebrate hosts. It is likely that these viruses are maintained in zoonotic cycles involving native animals rather than solely by human-to-human transmission. A serosurvey (n = 100) was undertaken to determine the prevalence of neutralizing antibodies against a panel of Australian arboviruses in western gray kangaroos (Macropus fuliginosus) obtained from 11 locations in the midwest to southwest of Western Australia. Neutralizing antibodies against RRV were detected in 25%, against BFV in 14%, and antibodies to both viruses in 34% of serum samples. The prevalence of antibodies against these two viruses was the same in males and females, but higher in adult than in subadult kangaroos (p < 0.05). Twenty-one percent of samples had neutralizing antibodies against any one or more of the flaviviruses ALFV, EHV, KOKV, MVEV, and STRV. No neutralizing antibodies against SINV and KUNV were detected. If this sample of kangaroo sera was representative of the broader Australian population of macropods, it suggests that they are common hosts for RRV and BFV. The absence or low seroprevalence of antibodies against the remaining arboviruses suggests that they are not prevalent in the region or that kangaroos are not commonly infected with them. The detection of neutralizing antibodies to MVEV requires further investigation as this virus has not been identified previously so far south in Western Australia.
Collapse
Affiliation(s)
- Narayan Gyawali
- School of Health, Medical & Applied Sciences, Central Queensland University, Rockhampton, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Andrew W Taylor-Robinson
- School of Health, Medical & Applied Sciences, Central Queensland University, Brisbane, Australia
| | - Richard S Bradbury
- School of Health, Medical & Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Abbey Potter
- Environmental Health Directorate, Public and Aboriginal Health Division, WA Department of Health, Perth, Australia
| | - John G Aaskov
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
9
|
Emerging souvenirs-clinical presentation of the returning traveller with imported arbovirus infections in Europe. Clin Microbiol Infect 2018; 24:240-245. [PMID: 29339224 DOI: 10.1016/j.cmi.2018.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Arboviruses are an emerging group of viruses that are causing increasing health concerns globally, including in Europe. Clinical presentation usually consists of a nonspecific febrile illness that may be accompanied by rash, arthralgia and arthritis, with or without neurological or haemorrhagic syndromes. The range of differential diagnoses of other infectious and noninfectious aetiologies is broad, presenting a challenge for physicians. While knowledge of the geographical distribution of pathogens and the current epidemiological situation, incubation periods, exposure risk factors and vaccination history can help guide the diagnostic approach, the nonspecific and variable clinical presentation can delay final diagnosis. AIMS AND SOURCES This narrative review aims to summarize the main clinical and laboratory-based findings of the three most common imported arboviruses in Europe. Evidence is extracted from published literature and clinical expertise of European arbovirus experts. CONTENT We present three cases that highlight similarities and differences between some of the most common travel-related arboviruses imported to Europe. These include a patient with chikungunya virus infection presenting in Greece, a case of dengue fever in Turkey and a travel-related case of Zika virus infection in Romania. IMPLICATIONS Early diagnosis of travel-imported cases is important to reduce the risk of localized outbreaks of tropical arboviruses such as dengue and chikungunya and the risk of local transmission from body fluids or vertical transmission. Given the global relevance of arboviruses and the continuous risk of (re)emerging arbovirus events, clinicians should be aware of the clinical syndromes of arbovirus fevers and the potential pitfalls in diagnosis.
Collapse
|
10
|
Gyawali N, Bradbury RS, Aaskov JG, Taylor-Robinson AW. Neglected Australian Arboviruses and Undifferentiated Febrile Illness: Addressing Public Health Challenges Arising From the 'Developing Northern Australia' Government Policy. Front Microbiol 2017; 8:2150. [PMID: 29163434 PMCID: PMC5681932 DOI: 10.3389/fmicb.2017.02150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/20/2017] [Indexed: 12/19/2022] Open
Abstract
The Australian Government is currently promoting the development of Northern Australia, with an associated increase in the local population. Consequent to this is the public health threat posed by heightened human exposure to many previously neglected arboviruses that are indigenous to the region. This initiative to support economic activity in the tropical north of the continent is leading to the accelerated expansion of an infection-naïve human population into hitherto un-encountered ecosystems inhabited by reservoir animals and vectors for these arboviruses. Combined with an apparent rise in the number and impact of dramatic climate events, such as tropical cyclones and floods caused by torrential monsoonal rainfall, this heightens the potential for viral transmission to humans. More than 75 arboviruses have been identified in Australia, some of which are associated with human disease but for which routine tests are not available to diagnose infection. Here, we describe briefly the neglected Australian arboviruses that are most likely to emerge as significant agents of human disease in the coming decades. We also advocate the establishment of a thorough surveillance and diagnostic protocol, including developing new pan-viral rapid tests for primary care use to assist in the early diagnosis and correct treatment of affected patients. We propose that the implementation of these activities will enhance our understanding of the geographical range, prevalence, identification and control of neglected Australian arboviruses. This would minimise and limit the possibility of large-scale outbreaks with these agents as population and economic growth expands further into Australia's tropical north.
Collapse
Affiliation(s)
- Narayan Gyawali
- Infectious Diseases Research Group, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Richard S. Bradbury
- Infectious Diseases Research Group, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - John G. Aaskov
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Andrew W. Taylor-Robinson
- Infectious Diseases Research Group, School of Health, Medical and Applied Sciences, Central Queensland University, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Gyawali N, Taylor-Robinson AW. Confronting the Emerging Threat to Public Health in Northern Australia of Neglected Indigenous Arboviruses. Trop Med Infect Dis 2017; 2:E55. [PMID: 30270912 PMCID: PMC6082055 DOI: 10.3390/tropicalmed2040055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 01/12/2023] Open
Abstract
In excess of 75 arboviruses have been identified in Australia, some of which are now well established as causative agents of debilitating diseases. These include Ross River virus, Barmah Forest virus, and Murray Valley encephalitis virus, each of which may be detected by both antibody-based recognition and molecular typing. However, for most of the remaining arboviruses that may be associated with pathology in humans, routine tests are not available to diagnose infection. A number of these so-called 'neglected' or 'orphan' arboviruses that are indigenous to Australia might have been infecting humans at a regular rate for decades. Some of them may be associated with undifferentiated febrile illness-fever, the cause of which is not obvious-for which around half of all cases each year remain undiagnosed. This is of particular relevance to Northern Australia, given the Commonwealth Government's transformative vision for the midterm future of massive infrastructure investment in this region. An expansion of the industrial and business development of this previously underpopulated region is predicted. This is set to bring into intimate proximity infection-naïve human hosts, native reservoir animals, and vector mosquitoes, thereby creating a perfect storm for increased prevalence of infection with neglected Australian arboviruses. Moreover, the escalating rate and effects of climate change that are increasingly observed in the tropical north of the country are likely to lead to elevated numbers of arbovirus-transmitting mosquitoes. As a commensurate response, continuing assiduous attention to vector monitoring and control is required. In this overall context, improved epidemiological surveillance and diagnostic screening, including establishing novel, rapid pan-viral tests to facilitate early diagnosis and appropriate treatment of febrile primary care patients, should be considered a public health priority. Investment in a rigorous identification program would reduce the possibility of significant outbreaks of these indigenous arboviruses at a time when population growth accelerates in Northern Australia.
Collapse
Affiliation(s)
- Narayan Gyawali
- School of Health, Medical & Applied Sciences, Central Queensland University, Rockhampton, QLD 4702, Australia.
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia.
| | - Andrew W Taylor-Robinson
- School of Health, Medical & Applied Sciences, Central Queensland University, Brisbane, QLD 4000, Australia.
| |
Collapse
|