1
|
Smit A, Mulandane FC, Wójcik SH, Malabwa C, Sili G, Mandara S, Vineer HR, Dlamkile Z, Stoltsz WH, Morar-Leather D, Makepeace BL, Neves L. Infection Rates and Characterisation of Rickettsia africae (Rickettsiaceae) Detected in Amblyomma Species from Southern Africa. Microorganisms 2024; 12:1663. [PMID: 39203504 PMCID: PMC11357051 DOI: 10.3390/microorganisms12081663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Tick-borne rickettsioses are considered among the oldest known vector-borne zoonotic diseases. Among the rickettsiae, Rickettsia africae is the most reported and important in Africa, as it is the aetiological agent of African tick bite fever (ATBF). Studies describing the prevalence of R. africae in southern Africa are fragmented, as they are limited to small geographical areas and focused on Amblyomma hebraeum and Amblyomma variegatum as vectors. Amblyomma spp. ticks were collected in Angola, Mozambique, South Africa, Zambia and Zimbabwe during the sampling period from March 2020 to September 2022. Rickettsia africae was detected using the ompA gene, while characterisation was conducted using omp, ompA, ompB and gltA genes. In total, 7734 Amblyomma spp. ticks were collected and were morphologically and molecularly identified as Amblyomma eburneum, A. hebraeum, Amblyomma pomposum and A. variegatum. Low levels of variability were observed in the phylogenetic analysis of the R. africae concatenated genes. The prevalence of R. africae ranged from 11.7% in South Africa to 35.7% in Zambia. This is one of the largest studies on R. africae prevalence in southern Africa and highlights the need for the inclusion of ATBF as a differential diagnosis when inhabitants and travellers present with flu-like symptoms in the documented countries.
Collapse
Affiliation(s)
- Andeliza Smit
- Ticks Research Group, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (S.H.W.); (Z.D.); (W.H.S.); (D.M.-L.); (L.N.)
| | | | - Stephané H. Wójcik
- Ticks Research Group, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (S.H.W.); (Z.D.); (W.H.S.); (D.M.-L.); (L.N.)
| | - Choolwe Malabwa
- Central Veterinary Research Institute, Lusaka P.O. Box 33980, Zambia;
| | - Gourgelia Sili
- Department of Basic Science, Faculty of Veterinary Medicine, University Jose Eduardo dos Santos, Huambo P.O. Box 2458, Angola;
| | - Stephen Mandara
- Department of Animal Production Sciences, Marondera University of Agricultural Sciences and Technology, Marondera P.O. Box 35, Zimbabwe;
| | - Hannah Rose Vineer
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool L69 7ZX, UK;
| | - Zinathi Dlamkile
- Ticks Research Group, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (S.H.W.); (Z.D.); (W.H.S.); (D.M.-L.); (L.N.)
| | - Wilhelm H. Stoltsz
- Ticks Research Group, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (S.H.W.); (Z.D.); (W.H.S.); (D.M.-L.); (L.N.)
| | - Darshana Morar-Leather
- Ticks Research Group, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (S.H.W.); (Z.D.); (W.H.S.); (D.M.-L.); (L.N.)
| | - Benjamin L. Makepeace
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool L69 7ZX, UK;
| | - Luis Neves
- Ticks Research Group, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (S.H.W.); (Z.D.); (W.H.S.); (D.M.-L.); (L.N.)
- Biotechnology Centre, Eduardo Mondlane University, Maputo 1102, Mozambique;
| |
Collapse
|
2
|
Middlebrook EA, Katani R, Fair JM. OrthoPhyl-streamlining large-scale, orthology-based phylogenomic studies of bacteria at broad evolutionary scales. G3 (BETHESDA, MD.) 2024; 14:jkae119. [PMID: 38839049 PMCID: PMC11304591 DOI: 10.1093/g3journal/jkae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
There are a staggering number of publicly available bacterial genome sequences (at writing, 2.0 million assemblies in NCBI's GenBank alone), and the deposition rate continues to increase. This wealth of data begs for phylogenetic analyses to place these sequences within an evolutionary context. A phylogenetic placement not only aids in taxonomic classification but informs the evolution of novel phenotypes, targets of selection, and horizontal gene transfer. Building trees from multi-gene codon alignments is a laborious task that requires bioinformatic expertise, rigorous curation of orthologs, and heavy computation. Compounding the problem is the lack of tools that can streamline these processes for building trees from large-scale genomic data. Here we present OrthoPhyl, which takes bacterial genome assemblies and reconstructs trees from whole genome codon alignments. The analysis pipeline can analyze an arbitrarily large number of input genomes (>1200 tested here) by identifying a diversity-spanning subset of assemblies and using these genomes to build gene models to infer orthologs in the full dataset. To illustrate the versatility of OrthoPhyl, we show three use cases: E. coli/Shigella, Brucella/Ochrobactrum and the order Rickettsiales. We compare trees generated with OrthoPhyl to trees generated with kSNP3 and GToTree along with published trees using alternative methods. We show that OrthoPhyl trees are consistent with other methods while incorporating more data, allowing for greater numbers of input genomes, and more flexibility of analysis.
Collapse
Affiliation(s)
- Earl A Middlebrook
- Genomics and Bioanalytics Group, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA
| | - Robab Katani
- 401 Huck Life Sciences Building, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Jeanne M Fair
- Genomics and Bioanalytics Group, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA
| |
Collapse
|
3
|
Barber MF, Fitzgerald JR. Mechanisms of host adaptation by bacterial pathogens. FEMS Microbiol Rev 2024; 48:fuae019. [PMID: 39003250 PMCID: PMC11308195 DOI: 10.1093/femsre/fuae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/15/2024] Open
Abstract
The emergence of new infectious diseases poses a major threat to humans, animals, and broader ecosystems. Defining factors that govern the ability of pathogens to adapt to new host species is therefore a crucial research imperative. Pathogenic bacteria are of particular concern, given dwindling treatment options amid the continued expansion of antimicrobial resistance. In this review, we summarize recent advancements in the understanding of bacterial host species adaptation, with an emphasis on pathogens of humans and related mammals. We focus particularly on molecular mechanisms underlying key steps of bacterial host adaptation including colonization, nutrient acquisition, and immune evasion, as well as suggest key areas for future investigation. By developing a greater understanding of the mechanisms of host adaptation in pathogenic bacteria, we may uncover new strategies to target these microbes for the treatment and prevention of infectious diseases in humans, animals, and the broader environment.
Collapse
Affiliation(s)
- Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, United States
- Department of Biology, University of Oregon, Eugene, OR 97403, United States
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| |
Collapse
|
4
|
Sit B, Lamason RL. Pathogenic Rickettsia spp. as emerging models for bacterial biology. J Bacteriol 2024; 206:e0040423. [PMID: 38315013 PMCID: PMC10883807 DOI: 10.1128/jb.00404-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Our understanding of free-living bacterial models like Escherichia coli far outpaces that of obligate intracellular bacteria, which cannot be cultured axenically. All obligate intracellular bacteria are host-associated, and many cause serious human diseases. Their constant exposure to the distinct biochemical niche of the host has driven the evolution of numerous specialized bacteriological and genetic adaptations, as well as innovative molecular mechanisms of infection. Here, we review the history and use of pathogenic Rickettsia species, which cause an array of vector-borne vascular illnesses, as model systems to probe microbial biology. Although many challenges remain in our studies of these organisms, the rich pathogenic and biological diversity of Rickettsia spp. constitutes a unique backdrop to investigate how microbes survive and thrive in host and vector cells. We take a bacterial-focused perspective and highlight emerging insights that relate to new host-pathogen interactions, bacterial physiology, and evolution. The transformation of Rickettsia spp. from pathogens to models demonstrates how recalcitrant microbes may be leveraged in the lab to tap unmined bacterial diversity for new discoveries. Rickettsia spp. hold great promise as model systems not only to understand other obligate intracellular pathogens but also to discover new biology across and beyond bacteria.
Collapse
Affiliation(s)
- Brandon Sit
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rebecca L. Lamason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Ardissone S, Greub G. The Chlamydia-related Waddlia chondrophila encodes functional type II toxin-antitoxin systems. Appl Environ Microbiol 2024; 90:e0068123. [PMID: 38214519 PMCID: PMC10880633 DOI: 10.1128/aem.00681-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/13/2023] [Indexed: 01/13/2024] Open
Abstract
Bacterial toxin-antitoxin (TA) systems are widespread in chromosomes and plasmids of free-living microorganisms, but only a few have been identified in obligate intracellular species. We found seven putative type II TA modules in Waddlia chondrophila, a Chlamydia-related species that is able to infect a very broad series of eukaryotic hosts, ranging from protists to mammalian cells. The RNA levels of Waddlia TA systems are significantly upregulated by iron starvation and novobiocin, but they are not affected by antibiotics such as β-lactams and glycopeptides, which suggests different mechanisms underlying stress responses. Five of the identified TA modules, including HigBA1 and MazEF1, encoded on the Waddlia cryptic plasmid, proved to be functional when expressed in a heterologous host. TA systems have been associated with the maintenance of mobile genetic elements, bacterial defense against bacteriophages, and persistence upon exposure to adverse conditions. As their RNA levels are upregulated upon exposure to adverse conditions, Waddlia TA modules may be involved in survival to stress. Moreover, as Waddlia can infect a wide range of hosts including free-living amoebae, TA modules could also represent an innate immunity system to fight against bacteriophages and other microorganisms with which Waddlia has to share its replicative niche.IMPORTANCEThe response to adverse conditions, such as exposure to antibiotics, nutrient starvation and competition with other microorganisms, is essential for the survival of a bacterial population. TA systems are modules composed of two elements, a toxic protein and an antitoxin (protein or RNA) that counteracts the toxin. Although many aspects of TA biological functions still await to be elucidated, TAs have often been implicated in bacterial response to stress, including the response to nutrient starvation, antibiotic treatment and bacteriophage infection. TAs are ubiquitous in free-living bacteria but rare in obligate intracellular species such as chlamydiae. We identified functional TA systems in Waddlia chondrophila, a chlamydial species with a strikingly broad host range compared to other chlamydiae. Our work contributes to understand how obligate intracellular bacteria react to adverse conditions that might arise from competition with other viruses/bacteria for the same replicative niche and would threaten their ability to replicate.
Collapse
Affiliation(s)
- Silvia Ardissone
- Institute of Microbiology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
6
|
Davison HR, Crozier J, Pirro S, Kampen H, Werner D, Hurst GDD. 'Candidatus Tisiphia' is a widespread Rickettsiaceae symbiont in the mosquito Anopheles plumbeus (Diptera: Culicidae). Environ Microbiol 2023; 25:3064-3074. [PMID: 37658745 PMCID: PMC10947512 DOI: 10.1111/1462-2920.16486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
Symbiotic bacteria can alter host biology by providing protection from natural enemies, or alter reproduction or vectoral competence. Symbiont-linked control of vector-borne disease in Anopheles has been hampered by a lack of symbioses that can establish stable vertical transmission in the host. Previous screening found the symbiont 'Candidatus Tisiphia' in Anopheles plumbeus, an aggressive biter and potential secondary vector of malaria parasites and West Nile virus. We screened samples collected over 10-years across Germany and used climate databases to assess environmental influence on incidence. We observed a 95% infection rate, and that the frequency of infection did not fluctuate with broad environmental factors. Maternal inheritance is indicated by presence in the ovaries through FISH microscopy. Finally, we assembled a high-quality 1.6 Mbp draft genome of 'Ca. Tisiphia' to explore its phylogeny and potential metabolic competence. The infection is closely related to strains found in Culicoides biting midges and shows similar patterns of metabolism, providing no evidence of the capacity to synthesize B-vitamins. This infection offers avenues for onward research in anopheline mosquito symbioses. Additionally, it provides future opportunity to study the impact of 'Ca. Tisiphia' on natural and transinfected hosts, especially in relation to reproductive fitness and vectorial competence and capacity.
Collapse
Affiliation(s)
- Helen R. Davison
- Institute of Infection, Veterinary and Ecological Sciences (IVES)University of LiverpoolLiverpoolUK
| | - Jessica Crozier
- Institute of Infection, Veterinary and Ecological Sciences (IVES)University of LiverpoolLiverpoolUK
| | | | - Helge Kampen
- Institute of Infectology (IMED)Friedrich‐Loeffler‐Institut, Federal Research Institute for Animal HealthGreifswaldIsle of RiemsGermany
| | - Doreen Werner
- Land Use and GovernanceLeibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
| | - Gregory D. D. Hurst
- Institute of Infection, Veterinary and Ecological Sciences (IVES)University of LiverpoolLiverpoolUK
| |
Collapse
|
7
|
Helminiak L, Mishra S, Keun Kim H. Pathogenicity and virulence of Rickettsia. Virulence 2022; 13:1752-1771. [PMID: 36208040 PMCID: PMC9553169 DOI: 10.1080/21505594.2022.2132047] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Rickettsiae include diverse Gram-negative microbial species that exhibit obligatory intracellular lifecycles between mammalian hosts and arthropod vectors. Human infections with arthropod-borne Rickettsia continue to cause significant morbidity and mortality as recent environmental changes foster the proliferation of arthropod vectors and increased exposure to humans. However, the technical difficulties in working with Rickettsia have delayed our progress in understanding the molecular mechanisms involved in rickettsial pathogenesis and disease transmission. Recent advances in developing genetic tools for Rickettsia have enabled investigators to identify virulence genes, uncover molecular functions, and characterize host responses to rickettsial determinants. Therefore, continued efforts to determine virulence genes and their biological functions will help us understand the underlying mechanisms associated with arthropod-borne rickettsioses.
Collapse
Affiliation(s)
| | | | - Hwan Keun Kim
- Center for Infectious Diseases, Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
8
|
Cohn AR, Orsi RH, Carroll LM, Liao J, Wiedmann M, Cheng RA. Salmonella enterica serovar Cerro displays a phylogenetic structure and genomic features consistent with virulence attenuation and adaptation to cattle. Front Microbiol 2022; 13:1005215. [PMID: 36532462 PMCID: PMC9748477 DOI: 10.3389/fmicb.2022.1005215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/07/2022] [Indexed: 07/30/2023] Open
Abstract
Salmonella enterica subsp. enterica (S.) serovar Cerro is rarely isolated from human clinical cases of salmonellosis but represents the most common serovar isolated from cattle without clinical signs of illness in the United States. In this study, using a large, diverse set of 316 isolates, we utilized genomic methods to further elucidate the evolutionary history of S. Cerro and to identify genomic features associated with its apparent virulence attenuation in humans. Phylogenetic analyses showed that within this polyphyletic serovar, 98.4% of isolates (311/316) represent a monophyletic clade within section Typhi and the remaining 1.6% of isolates (5/316) form a monophyletic clade within subspecies enterica Clade A1. Of the section Typhi S. Cerro isolates, 93.2% of isolates (290/311) clustered into a large clonal clade comprised of predominantly sequence type (ST) 367 cattle and environmental isolates, while the remaining 6.8% of isolates (21/311), primarily from human clinical sources, clustered outside of this clonal clade. A tip-dated phylogeny of S. Cerro ST367 identified two major clades (I and II), one of which overwhelmingly consisted of cattle isolates that share a most recent common ancestor that existed circa 1975. Gene presence/absence and rarefaction curve analyses suggested that the pangenome of section Typhi S. Cerro is open, potentially reflecting the gain/loss of prophage; human isolates contained the most open pangenome, while cattle isolates had the least open pangenome. Hypothetically disrupted coding sequences (HDCs) displayed clade-specific losses of intact speC and sopA virulence genes within the large clonal S. Cerro clade, while loss of intact vgrG, araH, and vapC occurred in all section Typhi S. Cerro isolates. Further phenotypic analysis suggested that the presence of a premature stop codon in speC does not abolish ornithine decarboxylase activity in S. Cerro, likely due to the activity of the second ornithine decarboxylase encoded by speF, which remained intact in all isolates. Overall, our study identifies specific genomic features associated with S. Cerro's infrequent isolation from humans and its apparent adaptation to cattle, which has broader implications for informing our understanding of the evolutionary events facilitating host adaptation in Salmonella.
Collapse
Affiliation(s)
- Alexa R. Cohn
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Renato H. Orsi
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Laura M. Carroll
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Rachel A. Cheng
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
9
|
Condit ME, Jones E, Biggerstaff BJ, Kato CY. Procedure for spotted fever group Rickettsia isolation from limited clinical blood specimens. PLoS Negl Trop Dis 2022; 16:e0010781. [PMID: 36240222 PMCID: PMC9605293 DOI: 10.1371/journal.pntd.0010781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 10/26/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Current isolation techniques for spotted fever group Rickettsia from clinical samples are laborious and are limited to tissue, blood and blood derivatives with volumes ideally greater than 1 mL. We validated the use of simplified methodologies for spotted fever group Rickettsia culture isolation that overcome sample volume limitations and provide utility in clinical diagnostics and research studies. METHODOLOGY/PRINCIPAL FINDINGS A modified cell culture method is evaluated for the isolation of Rickettsia ssp. from human diagnostic samples. Culture sampling method, culture platform, and growth phase analysis were evaluated to determine best practices for optimal culture isolation conditions. Rickettsial isolates (R. conorii, R. rickettsii, and R. parkeri) were grown in Vero E6 cells over a course of 5 to 7 days at low inoculum treatments (~40 bacterial copies) to standardize the sampling strategy at a copy number reflective of the bacteremia in acute diagnostic samples. This methodology was verified using small volumes (50 μL) of 25 unprocessed clinical whole blood, plasma, and serum samples from acute samples of patients suspected of having Rocky Mountain Spotted Fever, of which 10 were previously confirmed positive via the PanR8 qPCR assay, 13 had no detectable Rickettsia DNA by the PanR8 qPCR assay, and 2 were not previously tested; these samples resulted in the cultivation of 7 new R. rickettsii isolates. CONCLUSIONS/SIGNIFICANCE We observed that rickettsial isolate growth in culture is reproducibly identified by real-time PCR testing of culture media within 72 hours after inoculation. Additionally, specimen sedimentation prior to isolation to remove red blood cells was found to decrease the amount of total organism available in the inoculum. A small volume culture method was established focusing on comparative qPCR detection rather than bacterial visualization, taking significantly shorter time to detect, and requiring less manipulation compared to traditional clinical isolate culture methods.
Collapse
Affiliation(s)
- Marah E. Condit
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Emma Jones
- Office of the Director, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Brad J. Biggerstaff
- Office of the Director, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Cecilia Y. Kato
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America,* E-mail:
| |
Collapse
|
10
|
More S, Bampidis V, Benford D, Bragard C, Halldorsson T, Hernández‐Jerez A, Bennekou SH, Koutsoumanis K, Lambré C, Machera K, Mullins E, Nielsen SS, Schlatter J, Schrenk D, Turck D, Younes M, Herman L, Pelaez C, van Loveren H, Vlak J, Revez J, Aguilera J, Schoonjans R, Cocconcelli PS. Evaluation of existing guidelines for their adequacy for the food and feed risk assessment of microorganisms obtained through synthetic biology. EFSA J 2022; 20:e07479. [PMID: 35991959 PMCID: PMC9380697 DOI: 10.2903/j.efsa.2022.7479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
EFSA was asked by the European Commission to evaluate synthetic biology (SynBio) developments for agri-food use in the near future and to determine whether or not they are expected to constitute potential new hazards/risks. Moreover, EFSA was requested to evaluate the adequacy of existing guidelines for risk assessment of SynBio and if updated guidance is needed. The scope of this Opinion covers food and feed risk assessment, the variety of microorganisms that can be used in the food/feed chain and the whole spectrum of techniques used in SynBio. This Opinion complements a previously adopted Opinion with the evaluation of existing guidelines for the microbial characterisation and environmental risk assessment of microorganisms obtained through SynBio. The present Opinion confirms that microbial SynBio applications for food and feed use, with the exception of xenobionts, could be ready in the European Union in the next decade. New hazards were identified related to the use or production of unusual and/or new-to-nature components. Fifteen cases were selected for evaluating the adequacy of existing guidelines. These were generally adequate for assessing the product, the production process, nutritional and toxicological safety, allergenicity, exposure and post-market monitoring. The comparative approach and a safety assessment per se could be applied depending on the degree of familiarity of the SynBio organism/product with the non-genetically modified counterparts. Updated guidance is recommended for: (i) bacteriophages, protists/microalgae, (ii) exposure to plant protection products and biostimulants, (iii) xenobionts and (iv) feed additives for insects as target species. Development of risk assessment tools is recommended for assessing nutritional value of biomasses, influence of microorganisms on the gut microbiome and the gut function, allergenic potential of new-to-nature proteins, impact of horizontal gene transfer and potential risks of living cell intake. A further development towards a strain-driven risk assessment approach is recommended.
Collapse
|
11
|
Examination of Rickettsial Host Range for Shuttle Vectors Based on dnaA and parA Genes from the pRM Plasmid of Rickettsia monacensis. Appl Environ Microbiol 2022; 88:e0021022. [PMID: 35323021 PMCID: PMC9004397 DOI: 10.1128/aem.00210-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The genus Rickettsia encompasses a diverse group of obligate intracellular bacteria that are highly virulent disease agents of mankind as well as symbionts of arthropods. Native plasmids of Rickettsia amblyommatis (AaR/SC) have been used as models to construct shuttle vectors for genetic manipulation of several Rickettsia species. Here, we report on the isolation of the complete plasmid (pRM658B) from Rickettsia monacensis IrR/Munich mutant Rmona658B and the construction of shuttle vectors based on pRM. To identify regions essential for replication, we made vectors containing the dnaA and parA genes of pRM with various portions of the region surrounding these genes and a selection reporter cassette conferring resistance to spectinomycin and expression of green fluorescent protein. Rickettsia amblyommatis (AaR/SC), R. monacensis (IrR/Munich), Rickettsia bellii (RML 369-C), Rickettsia parkeri (Tate’s Hell), and Rickettsia montanensis (M5/6) were successfully transformed with shuttle vectors containing pRM parA and dnaA. PCR assays targeting pRM regions not included in the vectors revealed that native pRM was retained in R. monacensis transformants. Determination of native pRM copy number using a plasmid-carried gene (RM_p5) in comparison to chromosomally carried gltA indicated reduced copy numbers in R. monacensis transformants. In transformed R. monacensis strains, native pRM and shuttle vectors with homologous parA and dnaA formed native plasmid-shuttle vector complexes. These studies provide insight on the maintenance of plasmids and shuttle vectors in rickettsiae. IMPORTANCERickettsia spp. are found in a diverse array of organisms, from ticks, mites, and fleas to leeches and insects. Many are not pathogenic, but others, such as Rickettsia rickettsii and Rickettsia prowazeckii, can cause severe illness or death. Plasmids are found in a large percentage of nonpathogenic rickettsiae, but not in species that cause severe disease. Studying these plasmids can reveal their role in the biology of these bacteria, as well as the molecular mechanism whereby they are maintained and replicate in rickettsiae. Here, we describe a new series of shuttle plasmids for the transformation of rickettsiae based on parA and dnaA sequences of plasmid pRM from Rickettsia monacensis. These shuttle vectors support transformation of diverse rickettsiae, including the native host of pRM, and are useful for investigating genetic determinants that govern rickettsial virulence or their ability to function as symbionts.
Collapse
|
12
|
Regulator of Actin-Based Motility (RoaM) Downregulates Actin Tail Formation by Rickettsia rickettsii and Is Negatively Selected in Mammalian Cell Culture. mBio 2022; 13:e0035322. [PMID: 35285700 PMCID: PMC9040884 DOI: 10.1128/mbio.00353-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The etiological agent of Rocky Mountain spotted fever, Rickettsia rickettsii, is an obligately intracellular pathogen that induces the polymerization of actin filaments to propel the bacterium through the cytoplasm and spread to new host cells. Cell-to-cell spread via actin-based motility is considered a key virulence determinant for spotted fever group rickettsiae, as interruption of sca2, the gene directly responsible for actin polymerization, has been shown to reduce fever in guinea pigs. However, little is known about how, or if, motility is regulated by the bacterium itself. We isolated a hyperspreading variant of R. rickettsii Sheila Smith that produces actin tails at an increased rate. A1G_06520 (roaM [regulator of actin-based motility]) was identified as a negative regulator of actin tail formation. Disruption of RoaM significantly increased the number of actin tails compared to the wild-type strain but did not increase virulence in guinea pigs; however, overexpression of RoaM dramatically decreased the presence of actin tails and moderated fever response. Localization experiments suggest that RoaM is not secreted, while reverse transcription-quantitative PCR (RT-qPCR) data show that various levels of RoaM do not significantly affect the expression of the known rickettsial actin-regulating proteins sca2, sca4, and rickA. Taken together, the data suggest a previously unrecognized level of regulation of actin-based motility in spotted fever group rickettsiae. Although this gene is intact in many isolates of spotted fever, transitional, and ancestral group Rickettsia spp., it is often ablated in highly passaged laboratory strains. Serial passage experiments revealed strong negative selection of roaM in Vero 76 cells.
Collapse
|
13
|
Sears KP, Knowles DP, Fry LM. Clinical Progression of Theileria haneyi in Splenectomized Horses Reveals Decreased Virulence Compared to Theileria equi. Pathogens 2022; 11:pathogens11020254. [PMID: 35215197 PMCID: PMC8879895 DOI: 10.3390/pathogens11020254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
The global importance of the hemoparasite Theileria haneyi to equine health was recently shown by its resistance to imidocarb dipropionate (ID) and its interference with T. equi clearance by ID in some co-infected horses. Genetic characterization of T. haneyi revealed marked genomic reduction compared to T. equi, and initial experiments demonstrated reduced clinical severity in spleen-intact horses. Furthermore, in early experiments, splenectomized horses survived T. haneyi infection and progressed to an asymptomatic carrier state, in stark contrast to the high fatality rate of T. equi in splenectomized horses. Thus, we hypothesized that T. haneyi is less virulent than T. equi. To objectively assess virulence, clinical data from nine splenectomized, T. haneyi-infected horses were evaluated and compared to published data on T. equi-infected, splenectomized horses. Seven of eight splenectomized, T. haneyi-infected horses survived. Further, in six horses co-infected with T. equi and T. haneyi, only horses cleared of T. equi by ID survived splenectomy and became asymptomatic carriers. The reduced virulence of T. haneyi in splenectomized horses instructs why T. haneyi was, until recently, undetected. This naturally occurring comparative reduction in virulence in a natural host provides a foundation for defining virulence mechanisms of theileriosis and Apicomplexa in general.
Collapse
Affiliation(s)
- Kelly P. Sears
- Department of Clinical Science, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331-4801, USA;
- Department of Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, Pullman, WA 99164-6630, USA;
| | - Donald P. Knowles
- Department of Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, Pullman, WA 99164-6630, USA;
| | - Lindsay M. Fry
- Department of Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, Pullman, WA 99164-6630, USA;
- USDA—ARS, Animal Disease Research Unit, Pullman, WA 99164-6630, USA
- Correspondence: ; Tel.: +1-509-595-1822
| |
Collapse
|
14
|
Castelli M, Lanzoni O, Giovannini M, Lebedeva N, Gammuto L, Sassera D, Melekhin M, Potekhin A, Fokin S, Petroni G. 'Candidatus Gromoviella agglomerans', a novel intracellular Holosporaceae parasite of the ciliate Paramecium showing marked genome reduction. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:34-49. [PMID: 34766443 DOI: 10.1111/1758-2229.13021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Holosporales are an alphaproteobacterial lineage encompassing bacteria obligatorily associated with multiple diverse eukaryotes. For most representatives, little is known on the interactions with their hosts. In this study, we characterized a novel Holosporales symbiont of the ciliate Paramecium polycaryum. This bacterium inhabits the host cytoplasm, frequently forming quite large aggregates. Possibly due to such aggregates, host cells sometimes displayed lethal division defects. The symbiont was also able to experimentally stably infect another Paramecium polycaryum strain. The bacterium is phylogenetically related with symbionts of other ciliates and diplonemids, forming a putatively fast-evolving clade within the family Holosporaceae. Similarly to many close relatives, it presents a very small genome (<600 kbp), and, accordingly, a limited predicted metabolism, implying a heavy dependence on Paramecium, thanks also to some specialized membrane transporters. Characterized features, including the presence of specific secretion systems, are overall suggestive of a mild parasitic effect on the host. From an evolutionary perspective, a potential ancestral trend towards pronounced genome reduction and possibly linked to parasitism could be inferred, at least among fast-evolving Holosporaceae, with some lineage-specific traits. Interestingly, similar convergent features could be observed in other host-associated lineages, in particular Rickettsiales among Alphaproteobacteria.
Collapse
Affiliation(s)
- Michele Castelli
- Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy
| | - Olivia Lanzoni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | | | - Natalia Lebedeva
- Centre of Core Facilities "Culture Collections of Microorganisms", Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Davide Sassera
- Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy
| | - Maksim Melekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Sergei Fokin
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
- Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Giulio Petroni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| |
Collapse
|
15
|
Cohen R, Finn T, Babushkin F, Paran Y, Ben Ami R, Atamna A, Reisfeld S, Weber G, Petersiel N, Zayyad H, Leshem E, Weinberger M, Maor Y, Makhoul N, Nesher L, Zaide G, Klein D, Beth-Din A, Atiya-Nasagi Y. Spotted Fever Group Rickettsioses in Israel, 2010-2019. Emerg Infect Dis 2021; 27:2117-2126. [PMID: 34286684 PMCID: PMC8314820 DOI: 10.3201/eid2708.203661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In a multicenter, nationwide, retrospective study of patients hospitalized with spotted fever group rickettsiosis in Israel during 2010-2019, we identified 42 cases, of which 36 were autochthonous. The most prevalent species was the Rickettsia conorii Israeli tick typhus strain (n = 33, 79%); infection with this species necessitated intensive care for 52% of patients and was associated with a 30% fatality rate. A history of tick bite was rare, found for only 5% of patients; eschar was found in 12%; and leukocytosis was more common than leukopenia. Most (72%) patients resided along the Mediterranean shoreline. For 3 patients, a new Rickettsia variant was identified and had been acquired in eastern, mountainous parts of Israel. One patient had prolonged fever before admission and clinical signs resembling tickborne lymphadenopathy. Our findings suggest that a broad range of Rickettsia species cause spotted fever group rickettsiosis in Israel.
Collapse
|
16
|
Unpacking the intricacies of Rickettsia-vector interactions. Trends Parasitol 2021; 37:734-746. [PMID: 34162522 DOI: 10.1016/j.pt.2021.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022]
Abstract
Although Rickettsia species are molecularly detected among a wide range of arthropods, vector competence becomes an imperative aspect of understanding the ecoepidemiology of these vector-borne diseases. The synergy between vector homeostasis and rickettsial invasion, replication, and release initiated within hours (insects) and days (ticks) permits successful transmission of rickettsiae. Uncovering the molecular interplay between rickettsiae and their vectors necessitates examining the multifaceted nature of rickettsial virulence and vector infection tolerance. Here, we highlight the biological differences between tick- and insect-borne rickettsiae and the factors facilitating the incidence of rickettsioses. Untangling the complex relationship between rickettsial genetics, vector biology, and microbial interactions is crucial in understanding the intricate association between rickettsiae and their vectors.
Collapse
|
17
|
Yen WY, Stern K, Mishra S, Helminiak L, Sanchez-Vicente S, Kim HK. Virulence potential of Rickettsia amblyommatis for spotted fever pathogenesis in mice. Pathog Dis 2021; 79:ftab024. [PMID: 33908603 PMCID: PMC8110513 DOI: 10.1093/femspd/ftab024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/15/2021] [Indexed: 11/14/2022] Open
Abstract
Rickettsia amblyommatis belongs to the spotted fever group of Rickettsia and infects Amblyomma americanum (Lone Star ticks) for transmission to offspring and mammals. Historically, the geographic range of A. americanum was restricted to the southeastern USA. However, recent tick surveys identified the progressive northward invasion of A. americanum, contributing to the increased number of patients with febrile illnesses of unknown etiology after a tick bite in the northeastern USA. While serological evidence strongly suggests that patients are infected with R. amblyommatis, the virulence potential of R. amblyommatis is not well established. Here, we performed a bioinformatic analysis of three genome sequences of R. amblyommatis and identified the presence of multiple putative virulence genes whose products are implicated for spotted fever pathogenesis. Similar to other pathogenic spotted fever rickettsiae, R. amblyommatis replicated intracellularly within the cytoplasm of tissue culture cells. Interestingly, R. amblyommatis displayed defective attachment to microvascular endothelial cells. The attachment defect and slow growth rate of R. amblyommatis required relatively high intravenous infectious doses to produce dose-dependent morbidity and mortality in C3H mice. In summary, our results corroborate clinical evidence that R. amblyommatis can cause mild disease manifestation in some patients.
Collapse
Affiliation(s)
- Wan-Yi Yen
- Division of Laboratory Animal Resources, Laboratory of Comparative Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kayla Stern
- John F. Kennedy High School, Bellmore, NY 11710, USA
| | - Smruti Mishra
- Center for Infectious Diseases, Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Luke Helminiak
- Center for Infectious Diseases, Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Santiago Sanchez-Vicente
- Center for Infectious Diseases, Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hwan Keun Kim
- Center for Infectious Diseases, Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
18
|
Karim S, Kumar D, Budachetri K. Recent advances in understanding tick and rickettsiae interactions. Parasite Immunol 2021; 43:e12830. [PMID: 33713348 DOI: 10.1111/pim.12830] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/31/2022]
Abstract
Ticks are haematophagous arthropods with unique molecular mechanisms for digesting host blood meal while acting as vectors for various pathogens of public health significance. The tick's pharmacologically active saliva plays a fundamental role in modulating the host's immune system for several days to weeks, depending on the tick species. The vector tick has also developed sophisticated molecular mechanisms to serve as a competent vector for pathogens, including the spotted fever group (SFG) rickettsiae. Evidence is still inadequate concerning tick-rickettsiae-host interactions and saliva-assisted transmission of the pathogen to the mammalian host. Rickettsia parkeri, of the SFG rickettsia, can cause a milder version of Rocky Mountain spotted fever known as American Boutonneuse fever. The Gulf Coast tick (Amblyomma maculatum) often transmits this pathogenic rickettsia in the USA. This review discusses the knowledge gap concerning tick-rickettsiae-host interactions by highlighting the SFG rickettsia and the Am maculatum model system. Filling this knowledge gap will provide a better understanding of the tick-rickettsiae-host interactions in disease causation, which will be crucial for developing effective methods for preventing tick-borne diseases.
Collapse
Affiliation(s)
- Shahid Karim
- Center for Molecular and Cellular Biosciences, School of Biological. Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Deepak Kumar
- Center for Molecular and Cellular Biosciences, School of Biological. Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Khemraj Budachetri
- Center for Molecular and Cellular Biosciences, School of Biological. Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, USA.,The Ohio State University, Columbus, OH, USA
| |
Collapse
|
19
|
McGinn J, Lamason RL. The enigmatic biology of rickettsiae: recent advances, open questions and outlook. Pathog Dis 2021; 79:ftab019. [PMID: 33784388 PMCID: PMC8035066 DOI: 10.1093/femspd/ftab019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023] Open
Abstract
Rickettsiae are obligate intracellular bacteria that can cause life-threatening illnesses and are among the oldest known vector-borne pathogens. Members of this genus are extraordinarily diverse and exhibit a broad host range. To establish intracellular infection, Rickettsia species undergo complex, multistep life cycles that are encoded by heavily streamlined genomes. As a result of reductive genome evolution, rickettsiae are exquisitely tailored to their host cell environment but cannot survive extracellularly. This host-cell dependence makes for a compelling system to uncover novel host-pathogen biology, but it has also hindered experimental progress. Consequently, the molecular details of rickettsial biology and pathogenesis remain poorly understood. With recent advances in molecular biology and genetics, the field is poised to start unraveling the molecular mechanisms of these host-pathogen interactions. Here, we review recent discoveries that have shed light on key aspects of rickettsial biology. These studies have revealed that rickettsiae subvert host cells using mechanisms that are distinct from other better-studied pathogens, underscoring the great potential of the Rickettsia genus for revealing novel biology. We also highlight several open questions as promising areas for future study and discuss the path toward solving the fundamental mysteries of this neglected and emerging human pathogen.
Collapse
Affiliation(s)
- Jon McGinn
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Rebecca L Lamason
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| |
Collapse
|
20
|
Snellgrove AN, Krapiunaya I, Scott P, Levin ML. Assessment of the Pathogenicity of Rickettsia amblyommatis, Rickettsia bellii, and Rickettsia montanensis in a Guinea Pig Model. Vector Borne Zoonotic Dis 2021; 21:232-241. [PMID: 33600263 DOI: 10.1089/vbz.2020.2695] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Members of the genus Rickettsia range from nonpathogenic endosymbionts to virulent pathogens such as Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever. Many rickettsiae are considered nonpathogenic because they have been isolated from ticks but not vertebrate hosts. We assessed the ability of three presumed endosymbionts: Rickettsia amblyommatis, Rickettsia bellii, and Rickettsia montanensis, to infect a guinea pig animal model. These species were chosen because of their high prevalence in respective tick vectors or published reports suggestive of human or animal pathogenicity. Following intraperitoneal (IP) inoculation of cell culture suspensions of R. rickettsii, R. amblyommatis, R. bellii, or R. montanensis into guinea pigs, animals were monitored for signs of clinical illness for 13 days. Ear biopsies and blood samples were taken at 2- to 3-day intervals for detection of rickettsial DNA by PCR. Animals were necropsied and internal organ samples were also tested using PCR assays. Among the six guinea pigs inoculated with R. amblyommatis, fever, orchitis, and dermatitis were observed in one, one, and three animals respectively. In R. bellii-exposed animals, we noted fever in one of six animals, orchitis in one, and dermatitis in two. No PCR-positive tissues were present in either the R. amblyommatis- or R. bellii-exposed groups. In the R. montanensis-exposed group, two of six animals became febrile, two had orchitis, and three developed dermatitis in ears or footpads. R. montanensis DNA was detected in ear skin biopsies collected on multiple days from three animals. Also, a liver specimen from one animal and spleen specimens of two animals were PCR positive. The course and severity of disease in the three experimental groups were significantly milder than that of R. rickettsii. This study suggests that the three rickettsiae considered nonpathogenic can cause either subclinical or mild infections in guinea pigs when introduced via IP inoculation.
Collapse
Affiliation(s)
- Alyssa N Snellgrove
- Division of Vector Borne Diseases, Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Inna Krapiunaya
- Division of Vector Borne Diseases, Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Michael L Levin
- Division of Vector Borne Diseases, Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
21
|
Two for the price of one: Co-infection with Rickettsia bellii and spotted fever group Rickettsia in Amblyomma (Acari: Ixodidae) ticks recovered from wild birds in Brazil. Ticks Tick Borne Dis 2019; 10:101266. [PMID: 31402227 DOI: 10.1016/j.ttbdis.2019.101266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/17/2019] [Accepted: 07/28/2019] [Indexed: 11/21/2022]
Abstract
The bacterium Rickettsia bellii has been detected in 25 species of ticks in the American continents, but its pathogenic potential is considered as undetermined. A possible role for this species in the phenomenon of transovarial exclusion of pathogenic members of the spotted fever group (SFG) of Rickettsia has been suggested and co-infections with pathogenic species have been reported infrequently in both North and South America. Traditional methods for the molecular detection of rickettsial agents in ticks focus largely on the identification of sequences found in SFG Rickettsia, an approach that may overlook the presence of co-infections with R. bellii. Two novel, species-specific polymerase chain reaction (PCR) assays, targeting the genes encoding the surface cell antigen (Sca), autotransporter proteins sca9 and sca14, were developed and validated for the detection of R. bellii using 150 Amblyomma ticks collected from wild birds in Brazil. Co-infection of R. bellii infected ticks was evaluated using a novel PCR assay targeting the ompA sequence characteristic of SFG Rickettsia. Preliminary species-level identification was achieved by restriction fragment length polymorphism (RFLP) analysis and subsequently confirmed by sequencing of amplicons. Nine out of seventy-three Amblyomma longirostre and one of two Amblyomma calcaratum ticks were shown to be co-infected with R. bellii and Rickettsia amblyommatis, while two out of sixty-seven Amblyomma sp. haplotype Nazaré ticks were recorded as co-infected with R. bellii and the Rickettsia parkeri-like bacterium, strain ApPR. Interestingly, our data represent the first records of R. bellii in association with A. calcaratum and Amblyomma sp. haplotype Nazaré. The novel PCR-RFLP systems reported herein, provide an alternative, rapid and cost-efficient (relative to strategies based on sequencing or real-time PCR), approach to evaluate rickettsial co-infection of ticks, a potentially significant phenomenon that has most likely been underestimated to date.
Collapse
|
22
|
Hayashi Sant’Anna F, Bach E, Porto RZ, Guella F, Hayashi Sant’Anna E, Passaglia LMP. Genomic metrics made easy: what to do and where to go in the new era of bacterial taxonomy. Crit Rev Microbiol 2019; 45:182-200. [DOI: 10.1080/1040841x.2019.1569587] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fernando Hayashi Sant’Anna
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Evelise Bach
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Renan Z. Porto
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Felipe Guella
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Eduardo Hayashi Sant’Anna
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luciane M. P. Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
23
|
Abstract
Rickettsial organisms are a diverse group of obligate intracellular bacteria; all species known to cause human disease are dependent on an arthropod vector and many are considered zoonotic diseases. Typical vectors of rickettsia are fleas, ticks, mites or lice. Humans become infected either when bitten or upon contact of broken skin or mucous membranes by infected secretions from an arthropod vector. The emergence and re-emergence of rickettsial diseases is a serious public health concern in the United States and abroad. Herein, the clinical and pathologic features of rickettsial diseases are described in tandem with the current scientific underpinnings. The histopathology of emerging and re-emerging rickettsiosis with species-specific discussion relating to vector issues and control are explored. Concepts of endemicity are addressed in the context of climate change and its impact on vector and sylvatic reservoirs, underscoring the need for clinical vigilance and broad consideration for encounters with these potentially life threating human pathogens.
Collapse
Affiliation(s)
- Patricia V Adem
- Department of Pathology, New York Medical College School of Medicine, 30 Sunshine Cottage Road, Basic Sciences Building, Room 413, Valhalla, NY 10595, United States.
| |
Collapse
|
24
|
Guellil M, Kersten O, Namouchi A, Bauer EL, Derrick M, Jensen AØ, Stenseth NC, Bramanti B. Genomic blueprint of a relapsing fever pathogen in 15th century Scandinavia. Proc Natl Acad Sci U S A 2018; 115:10422-10427. [PMID: 30249639 PMCID: PMC6187149 DOI: 10.1073/pnas.1807266115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Louse-borne relapsing fever (LBRF) is known to have killed millions of people over the course of European history and remains a major cause of mortality in parts of the world. Its pathogen, Borrelia recurrentis, shares a common vector with global killers such as typhus and plague and is known for its involvement in devastating historical epidemics such as the Irish potato famine. Here, we describe a European and historical genome of Brecurrentis, recovered from a 15th century skeleton from Oslo. Our distinct European lineage has a discrete genomic makeup, displaying an ancestral oppA-1 gene and gene loss in antigenic variation sites. Our results illustrate the potential of ancient DNA research to elucidate dynamics of reductive evolution in a specialized human pathogen and to uncover aspects of human health usually invisible to the archaeological record.
Collapse
Affiliation(s)
- Meriam Guellil
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
| | - Oliver Kersten
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Amine Namouchi
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Egil L Bauer
- Norwegian Institute for Cultural Heritage Research, N-0155 Oslo, Norway
| | - Michael Derrick
- Norwegian Institute for Cultural Heritage Research, N-0155 Oslo, Norway
| | - Anne Ø Jensen
- Norwegian Institute for Cultural Heritage Research, N-0155 Oslo, Norway
| | - Nils C Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
| | - Barbara Bramanti
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
- Department of Biomedical and Specialty Surgical Sciences, Faculty of Medicine, Pharmacy and Prevention, University of Ferrara, 35-441221 Ferrara, Italy
| |
Collapse
|
25
|
Greub G. Chlamydia, rickettsia and other intracellular bacteria. Microbes Infect 2018; 20:391. [PMID: 30145407 DOI: 10.1016/j.micinf.2018.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Gilbert Greub
- University of Lausanne, Institute of Microbiology, Bugnon 48, 1011, Lausanne, Switzerland.
| |
Collapse
|