1
|
Ge H, Di G, Song P, Han W, Chen P, Wang Y. Role of vitamin A on the ocular surface. Exp Eye Res 2025; 250:110179. [PMID: 39581361 DOI: 10.1016/j.exer.2024.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Vitamin A is an essential fat-soluble vitamin that cannot be endogenously synthesized by the human body. Retinoic acid (RA) is the biologically active form of vitamin A. Utilizing both nuclear and non-nuclear receptor-mediated pathways, RA plays a crucial role in regulating various biological processes, including apoptosis, differentiation, and anti-inflammatory properties within the cornea and conjunctiva. In addition, RA has been demonstrated to exert a significant influence on anti-tumor mechanisms. Disruption of RA signaling can result in corneal defects, anophthalmia, and microphthalmia. However, the beneficial effects of RA are only observed when it is administered at appropriate dosages, and higher doses have an adverse impact. Ocular abnormalities are often early indicators of a vitamin A deficiency. The lacrimal gland secretes vitamin A onto the ocular surface, where it is metabolized into RA via two sequential steps. This article provides a comprehensive overview of how vitamin A is transformed and transported from the intestine to the ocular surface, ultimately contributing to the maintenance of the normal physiological function of the ocular surface.
Collapse
Affiliation(s)
- Huanhuan Ge
- School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Guohu Di
- School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Peirong Song
- School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Wenshuo Han
- School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China; Department of Ophthalmology, Qingdao Eighth People's Hospital, Qingdao, Shandong, 266121, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Ye Wang
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong, 266042, China.
| |
Collapse
|
2
|
Antony F, Kinha D, Nowińska A, Rouse BT, Suryawanshi A. The immunobiology of corneal HSV-1 infection and herpetic stromal keratitis. Clin Microbiol Rev 2024; 37:e0000624. [PMID: 39078136 PMCID: PMC11391706 DOI: 10.1128/cmr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
SUMMARYHuman alphaherpesvirus 1 (HSV-1) is a highly successful neurotropic pathogen that primarily infects the epithelial cells lining the orofacial mucosa. After primary lytic replication in the oral, ocular, and nasal mucosal epithelial cells, HSV-1 establishes life-long latency in neurons within the trigeminal ganglion. Patients with compromised immune systems experience frequent reactivation of HSV-1 from latency, leading to virus entry in the sensory neurons, followed by anterograde transport and lytic replication at the innervated mucosal epithelial surface. Although recurrent infection of the corneal mucosal surface is rare, it can result in a chronic immuno-inflammatory condition called herpetic stromal keratitis (HSK). HSK leads to gradual vision loss and can cause permanent blindness in severe untreated cases. Currently, there is no cure or successful vaccine to prevent latent or recurrent HSV-1 infections, posing a significant clinical challenge to managing HSK and preventing vision loss. The conventional clinical management of HSK primarily relies on anti-virals to suppress HSV-1 replication, anti-inflammatory drugs (such as corticosteroids) to provide symptomatic relief from pain and inflammation, and surgical interventions in more severe cases to replace damaged cornea. However, each clinical treatment strategy has limitations, such as local and systemic drug toxicities and the emergence of anti-viral-resistant HSV-1 strains. In this review, we summarize the factors and immune cells involved in HSK pathogenesis and highlight alternate therapeutic strategies for successful clinical management of HSK. We also discuss the therapeutic potential of immunoregulatory cytokines and immunometabolism modulators as promising HSK therapies against emerging anti-viral-resistant HSV-1 strains.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Kinha
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Anna Nowińska
- Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
- Ophthalmology Department, Railway Hospital in Katowice, Katowice, Poland
| | - Barry T Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Amol Suryawanshi
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Jaggi U, Ghiasi H. Presence of CD80 and Absence of LAT in Modulating Cellular Infiltration and HSV-1 Latency. Viruses 2024; 16:1379. [PMID: 39339855 PMCID: PMC11436179 DOI: 10.3390/v16091379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
CD80 is the best-known costimulatory molecule for effective T cell functions. Many different reports have summarized the role of CD80 in HSV-1 and its functions in maintaining adaptive immunity, which is the main player in causing herpes stromal keratitis (HSK). To determine the effects of absence or overexpression of CD80 in HSV-1 infection, we infected CD80-/- and WT mice with a recombinant HSV-1 expressing murine CD80 (HSV-CD80) in place of the latency associated transcript (LAT). Parental dLAT2903 virus lacking LAT was used as a control. After infection, critical components of infection like virus replication, eye disease, early cellular infiltrates into the corneas and trigeminal ganglia (TG), latency-reactivation in the infected mice were determined. Our findings reveal that the absence of CD80 in the CD80-/- mice infected with both viruses did not affect the viral titers in the mice eyes or eye disease, but it played a significant role in critical components of HSV-induced immunopathology. The WT mice infected with dLAT2903 virus had significantly higher levels of latency compared with the CD80-/- mice infected with dLAT2903 virus, while levels of latency as determined by gB DNA expression were similar between the WT and CD80-/- mice infected with HSV-CD80 virus. In contrast to the differences in the levels of latency between the infected groups, the absence of CD80 expression in the CD80-/- mice or its overexpression by HSV-CD80 virus did not have any effect on the time of reactivation. Furthermore, the absence of CD80 expression contributed to more inflammation in the CD80-/--infected mice. Overall, this study suggests that in the absence of CD80, inflammation increases, latency is reduced, but reactivation is not affected. Altogether, our study suggests that reduced latency correlated with reduced levels of inflammatory molecules and blocking or reducing expression of CD80 could be used to mitigate the immune responses, therefore controlling HSV-induced infection.
Collapse
Affiliation(s)
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC – SSB3, 8700 Beverly Blvd., Los Angeles, CA 90048, USA;
| |
Collapse
|
4
|
Oh JJ, Jaggi U, Tormanen K, Wang S, Hirose S, Ghiasi H. The anti-apoptotic function of HSV-1 LAT in neuronal cell cultures but not its function during reactivation correlates with expression of two small non-coding RNAs, sncRNA1&2. PLoS Pathog 2024; 20:e1012307. [PMID: 38857310 PMCID: PMC11192303 DOI: 10.1371/journal.ppat.1012307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024] Open
Abstract
Multiple functions are associated with HSV-1 latency associated transcript (LAT), including establishment of latency, virus reactivation, and antiapoptotic activity. LAT encodes two sncRNAs that are not miRNAs and previously it was shown that they have antiapoptotic activity in vitro. To determine if we can separate the antiapoptotic function of LAT from its latency-reactivation function, we deleted sncRNA1 and sncRNA2 sequences in HSV-1 strain McKrae, creating ΔsncRNA1&2 recombinant virus. Deletion of the sncRNA1&2 in ΔsncRNA1&2 virus was confirmed by complete sequencing of ΔsncRNA1&2 virus and its parental virus. Replication of ΔsncRNA1&2 virus in tissue culture or in the eyes of WT infected mice was similar to that of HSV-1 strain McKrae (LAT-plus) and dLAT2903 (LAT-minus) viruses. The levels of gB DNA in trigeminal ganglia (TG) of mice latently infected with ΔsncRNA1&2 virus was intermediate to that of dLAT2903 and McKrae infected mice, while levels of LAT in TG of latently infected ΔsncRNA1&2 mice was significantly higher than in McKrae infected mice. Similarly, the levels of LAT expression in Neuro-2A cells infected with ΔsncRNA1&2 virus was significantly higher than in McKrae infected cells. Reactivation in TG of ΔsncRNA1&2 infected mice was similar to that of McKrae and time of reactivation in both groups were significantly faster than dLAT2903 infected mice. However, levels of apoptosis in Neuro-2A cells infected with ΔsncRNA1&2 virus was similar to that of dLAT2903 and significantly higher than that of McKrae infected cells. Our results suggest that the antiapoptotic function of LAT resides within the two sncRNAs, which works independently of its latency-reactivation function and it has suppressive effect on LAT expression in vivo and in vitro.
Collapse
Affiliation(s)
- Jay J. Oh
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, United States of America
| | - Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, United States of America
| | - Kati Tormanen
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, United States of America
| | - Shaohui Wang
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, United States of America
| | - Satoshi Hirose
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, United States of America
| |
Collapse
|
5
|
Musa M, Enaholo E, Aluyi-Osa G, Atuanya GN, Spadea L, Salati C, Zeppieri M. Herpes simplex keratitis: A brief clinical overview. World J Virol 2024; 13:89934. [PMID: 38616855 PMCID: PMC11008405 DOI: 10.5501/wjv.v13.i1.89934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 03/11/2024] Open
Abstract
The aim of our minireview is to provide a brief overview of the diagnosis, clinical aspects, treatment options, management, and current literature available regarding herpes simplex keratitis (HSK). This type of corneal viral infection is caused by the herpes simplex virus (HSV), which can affect several tissues, including the cornea. One significant aspect of HSK is its potential to cause recurrent episodes of inflammation and damage to the cornea. After the initial infection, the HSV can establish a latent infection in the trigeminal ganglion, a nerve cluster near the eye. The virus may remain dormant for extended periods. Periodic reactivation of the virus can occur, leading to recurrent episodes of HSK. Factors triggering reactivation include stress, illness, immunosuppression, or trauma. Recurrent episodes can manifest in different clinical patterns, ranging from mild epithelial involvement to more severe stromal or endothelial disease. The severity and frequency of recurrences vary among individuals. Severe cases of HSK, especially those involving the stroma and leading to scarring, can result in vision impairment or even blindness in extreme cases. The cornea's clarity is crucial for good vision, and scarring can compromise this, potentially leading to visual impairment. The management of HSK involves not only treating acute episodes but also implementing long-term strategies to prevent recurrences and attempt repairs of corneal nerve endings via neurotization. Antiviral medications, such as oral Acyclovir or topical Ganciclovir, may be prescribed for prophylaxis. The immune response to the virus can contribute to corneal damage. Inflammation, caused by the body's attempt to control the infection, may inadvertently harm the corneal tissues. Clinicians should be informed about triggers and advised on measures to minimize the risk of reactivation. In summary, the recurrent nature of HSK underscores the importance of both acute and long-term management strategies to preserve corneal health and maintain optimal visual function.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | - Ehimare Enaholo
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor 434101, Nigeria
| | - Gladness Aluyi-Osa
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | | | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
6
|
Jaggi U, Matundan HH, Oh JJ, Ghiasi H. Absence of CD80 reduces HSV-1 replication in the eye and delays reactivation but not latency levels. J Virol 2024; 98:e0201023. [PMID: 38376148 PMCID: PMC10949485 DOI: 10.1128/jvi.02010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Herpes simplex virus-1 (HSV-1) infections are among the most frequent serious viral eye infections in the U.S. and are a major cause of viral-induced blindness. HSV-1 infection is known to induce T cell activation, proliferation, and differentiation that play crucial roles in the development of virus-induced inflammatory lesions, leading to eye disease and causing chronic corneal damage. CD80 is a co-stimulatory molecule and plays a leading role in T cell differentiation. Previous efforts to limit lesion severity by controlling inflammation at the cellular level led us to ask whether mice knocked out for CD80 would show attenuated virus replication following reactivation. By evaluating the effects of CD80 activity on primary and latent infection, we found that in the absence of CD80, virus replication in the eyes and virus reactivation in latent trigeminal ganglia were both significantly reduced. However, latency in latently infected CD80-/- mice did not differ significantly from that in wild-type (WT) control mice. Reduced virus replication in the eyes of CD80-/- mice correlated with significantly expanded CD11c gene expression as compared to WT mice. Taken together, our results indicate that suppression of CD80 could offer significant beneficial therapeutic effects in the treatment of Herpes Stromal Keratitis (HSK).IMPORTANCEOf the many problems associated with recurrent ocular infection, reducing virus reactivation should be a major goal of controlling ocular herpes simplex virus-1 (HSV-1) infection. In this study, we have shown that the absence of CD80 reduces HSV-1 reactivation, which marks the establishment of a previously undescribed mechanism underlying viral immune evasion that could be exploited to better manage HSV infection.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| | - Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| | - Jay J. Oh
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| |
Collapse
|
7
|
Berber E, Rouse BT. Controlling viral inflammatory lesions by inhibiting fatty acid metabolism. Microbes Infect 2023; 25:105141. [PMID: 37085045 PMCID: PMC10524470 DOI: 10.1016/j.micinf.2023.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Herpes simplex virus infection is a major cause of vision loss in humans. Eye damaging consequences are often driven by inflammatory cells as a result of an immune response to the virus. In the present report, we have compared the effect of inhibiting energy metabolism with etomoxir (Etox), which acts on the fatty acid oxidation pathway and 2-Deoxy-d-glucose (2DG), which acts on glycolysis for their inhibitory effects on herpetic ocular lesions. Both drugs showed similar protective effects when therapy was started on the day of infection, but some 2DG recipients succumbed to encephalitis. In contrast, all Etox recipients remained healthy. Both drugs were compared for effects on inflammatory reactions in the trigeminal ganglion (TG), where virus replicates and then establishes latency. Results indicate that 2DG significantly reduced CD8 and CD4 Th1 T cells in the TG, whereas Etox had minimal or no effect on such cells, perhaps explaining why encephalitis occurred only in 2DG recipients. Unlike treatment with 2DG, Etox therapy was largely ineffective when started at the time of lesion expression. Reasons for the differential effects were discussed as was the relevance of combining metabolic reprogramming approaches to combat viral inflammatory lesions.
Collapse
Affiliation(s)
- Engin Berber
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee Knoxville, TN, 37996, USA
| | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee Knoxville, TN, 37996, USA.
| |
Collapse
|
8
|
Mulik S, Berber E, Sehrawat S, Rouse BT. Controlling viral inflammatory lesions by rebalancing immune response patterns. Front Immunol 2023; 14:1257192. [PMID: 37671156 PMCID: PMC10475736 DOI: 10.3389/fimmu.2023.1257192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
In this review, we discuss a variety of immune modulating approaches that could be used to counteract tissue-damaging viral immunoinflammatory lesions which typify many chronic viral infections. We make the point that in several viral infections the lesions can be largely the result of one or more aspects of the host response mediating the cell and tissue damage rather than the virus itself being directly responsible. However, within the reactive inflammatory lesions along with the pro-inflammatory participants there are also other aspects of the host response that may be acting to constrain the activity of the damaging components and are contributing to resolution. This scenario should provide the prospect of rebalancing the contributions of different host responses and hence diminish or even fully control the virus-induced lesions. We identify several aspects of the host reactions that influence the pattern of immune responsiveness and describe approaches that have been used successfully, mainly in model systems, to modulate the activity of damaging participants and which has led to lesion control. We emphasize examples where such therapies are, or could be, translated for practical use in the clinic to control inflammatory lesions caused by viral infections.
Collapse
Affiliation(s)
- Sachin Mulik
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Engin Berber
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Sharvan Sehrawat
- Indian Institute of Science Education and Research, Department of Biological Sciences, Mohali, Punjab, India
| | - Barry Tyrrell Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
9
|
Jaggi U, Matundan HH, Lee DH, Ghiasi H. Blocking Autophagy in M1 Macrophages Enhances Virus Replication and Eye Disease in Ocularly Infected Transgenic Mice. J Virol 2022; 96:e0140122. [PMID: 36286481 PMCID: PMC9645210 DOI: 10.1128/jvi.01401-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 11/20/2022] Open
Abstract
Macrophages are one of the first innate immune infiltrates in the cornea of mice following ocular infection with herpes simplex virus 1 (HSV-1). Using gamma interferon (IFN-γ) and interleukin-4 (IL-4) injections to polarize macrophages into M1 and M2, respectively, and in M1 and M2 conditional knockout mice, we have shown that M1 macrophages play an important role in suppressing both virus replication in the eye and eye disease in HSV-1-infected mice. Autophagy is also important in controlling HSV infection and integrity of infected cells. To determine if blocking autophagy in M1 and M2 macrophages affects HSV-1 infectivity and eye disease, we generated two transgenic mouse strains expressing the HSV-1 γ34.5 autophagy gene under the M1 promoter (M1-γ34.5) or the M2 promoter (M2-γ34.5). We found that blocking autophagy in M1 macrophages increased both virus replication in the eyes and eye disease in comparison to blocking autophagy in M2 macrophages or wild-type (WT) control mice, but blocked autophagy did not affect latency-reactivation. However, blocking autophagy affected fertility in both M1 and M2 transgenic mice. Analysis of 62 autophagy genes and 32 cytokines/chemokines from infected bone marrow-derived macrophages from M1-γ34.5, M2-γ34.5, and WT mice suggested that upregulation of autophagy-blocking genes (i.e., Hif1a, Mtmr14, mTOR, Mtmr3, Stk11, and ULK2) and the inflammatory tumor necrosis factor alpha (TNF-α) gene in M1-γ34.5 transgenic mice correlated with increased pathogenicity, while upregulation of proautophagy genes (Nrbf2 and Rb1cc1) in M2-γ34.5 macrophages correlated with reduced pathogenicity. The in vivo and in vitro responses of M1-γ34.5 and M2-γ34.5 transgenic mice to HSV-1 infection were independent of the presence of the γ34.5 gene in wild-type HSV-1. Our results suggest that M1 macrophages, but not M2 macrophages, play an important role in autophagy relative to primary virus replication in the eye and eye disease in infected mice. IMPORTANCE Autophagy plays a critical role in clearing, disassembling, and recycling damaged cells, thus limiting inflammation. The HSV-1 γ34.5 gene is involved in neurovirulence and immune evasion by blocking autophagy in infected cells. We found that blocking autophagy in M1 macrophages enhances HSV-1 virus replication in the eye and eye disease in ocularly infected transgenic mice. Our results also show the suppressive effects of γ34.5 on immune responses to infection, suggesting the importance of intact autophagy in M1 but not M2 macrophages in controlling primary infection and eye disease.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, USA
| | - Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, USA
| | - Dhong Hyun Lee
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, USA
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, USA
| |
Collapse
|
10
|
Labib BA, Chigbu DI. Clinical Management of Herpes Simplex Virus Keratitis. Diagnostics (Basel) 2022; 12:diagnostics12102368. [PMID: 36292060 PMCID: PMC9600940 DOI: 10.3390/diagnostics12102368] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
Herpes simplex virus (HSV) keratitis is one of the leading causes of blindness worldwide. Additionally, up to 90% of the population in some countries is seropositive for HSV. HSV can cause a wide spectrum of ocular disease ranging from blepharitis to retinitis. Although the initial clinical expressions of HSV-1 and HSV-2 are similar, HSV-2 has been reported more frequently in association with recurrent HSV disease. Besides irreversible vision loss from keratitis, HSV also causes encephalitis and genital forms of the disease. Despite these statistics, there remains no vaccine against HSV. Current treatment therapies for related ocular diseases include the use of oral and topical antivirals and topical corticosteroids. While effective in many cases, they fail to address the latency and elimination of the virus, making it ineffective in addressing recurrences, a factor which increases the risk of vision loss. As such, there is a need for continued research of other potential therapeutic targets. This review utilized several published articles regarding the manifestations of HSV keratitis, antiviral immune responses to HSV infection, and clinical management of HSV keratitis. This review will summarize the current knowledge on the host–virus interaction in HSV infections, as well as highlighting the current and potential antiviral therapeutics.
Collapse
|
11
|
Small Noncoding RNA (sncRNA1) within the Latency-Associated Transcript Modulates Herpes Simplex Virus 1 Virulence and the Host Immune Response during Acute but Not Latent Infection. J Virol 2022; 96:e0005422. [DOI: 10.1128/jvi.00054-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
HSV-1 latency-associated transcript (LAT) plays a major role in establishing latency and reactivation; however, the mechanism by which LAT controls these processes is largely unknown. In this study, we sought to establish the role of the small noncoding RNA1 (sncRNA1) encoded within LAT during HSV-1 ocular infection. Our results suggest that sncRNA1 has a protective role during acute ocular infection by modulating the innate immune response to infection.
Collapse
|
12
|
Tormanen K, Wang S, Matundan HH, Yu J, Jaggi U, Ghiasi H. Herpes Simplex Virus 1 Small Noncoding RNAs 1 and 2 Activate the Herpesvirus Entry Mediator Promoter. J Virol 2022; 96:e0198521. [PMID: 34851143 PMCID: PMC8826802 DOI: 10.1128/jvi.01985-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) latency-associated transcript (LAT) plays a significant role in efficient establishment of latency and reactivation. LAT has antiapoptotic activity and downregulates expression of components of the type I interferon pathway. LAT also specifically activates expression of the herpesvirus entry mediator (HVEM), one of seven known receptors used by HSV-1 for cell entry that is crucial for latency and reactivation. However, the mechanism by which LAT regulates HVEM expression is not known. LAT has two small noncoding RNAs (sncRNAs) that are not microRNAs (miRNAs), within its 1.5-kb stable transcript, which also have antiapoptotic activity. These sncRNAs may encode short peptides, but experimental evidence is lacking. Here, we demonstrate that these two sncRNAs control HVEM expression by activating its promoter. Both sncRNAs are required for wild-type (WT) levels of activation of HVEM, and sncRNA1 is more important in HVEM activation than sncRNA2. Disruption of a putative start codon in sncRNA1 and sncRNA2 sequences reduced HVEM promoter activity, suggesting that sncRNAs encode a protein. However, we did not detect peptide binding using two chromatin immunoprecipitation (ChIP) approaches, and a web-based algorithm predicts low probability that the putative peptides bind to DNA. In addition, computational modeling predicts that sncRNA molecules bind with high affinity to the HVEM promoter, and deletion of these binding sites to sncRNA1, sncRNA2, or both reduced HVEM promoter activity. Together, our data suggest that sncRNAs exert their function as RNA molecules, not as proteins, and we provide a model for the predicted binding affinities and binding sites of sncRNA1 and sncRNA2 in the HVEM promoter. IMPORTANCE HSV-1 causes recurrent ocular infections, which is the leading cause of corneal scarring and blindness. Corneal scarring is caused by the host immune response to repeated reactivation events. LAT functions by regulating latency and reactivation, in part by inhibiting apoptosis and activating HVEM expression. However, the mechanism used by LAT to control HVEM expression is unclear. Here, we demonstrate that two sncRNAs within the 1.5-kb LAT transcript activate HVEM expression by binding to two regions of its promoter. Interfering with these interactions may reduce latency and thereby eye disease associated with reactivation.
Collapse
Affiliation(s)
- Kati Tormanen
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, USA
| | - Shaohui Wang
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, USA
| | - Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, USA
| | - Jack Yu
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, USA
| | - Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, USA
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, USA
| |
Collapse
|
13
|
Pu J, Chen D, Tian G, He J, Huang Z, Zheng P, Mao X, Yu J, Luo J, Luo Y, Yan H, Yu B. All-Trans Retinoic Acid Attenuates Transmissible Gastroenteritis Virus-Induced Inflammation in IPEC-J2 Cells via Suppressing the RLRs/NF-κB Signaling Pathway. Front Immunol 2022; 13:734171. [PMID: 35173714 PMCID: PMC8841732 DOI: 10.3389/fimmu.2022.734171] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/06/2022] [Indexed: 01/03/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV) infection can cause transmissible gastroenteritis (TGE), especially in suckling piglets, resulting in a significant economic loss for the global pig industry. The pathogenesis of TGEV infection is closely related to intestinal inflammation. All-trans retinoic acid (ATRA) has anti-inflammatory activity and immunomodulatory properties, but it is unclear whether ATRA can attenuate the inflammatory response induced by TGEV. This study aimed to investigate the protective effect of ATRA on TGEV-induced inflammatory injury in intestinal porcine epithelial cells (IPEC-J2) and to explore the underlying molecular mechanism. The results showed that TGEV infection triggered inflammatory response and damaged epithelial barrier integrity in IPEC-J2 cells. However, ATRA attenuated TGEV-induced inflammatory response by inhibiting the release of pro-inflammatory cytokines, including IL-1β, IL-6, IL-8 and TNF-α. ATRA also significantly reversed the reduction of ZO-1 and Occludin protein levels induced by TGEV infection and maintained epithelial barrier integrity. Moreover, ATRA treatment significantly prevented the upregulation of IкBα and NF-κB p65 phosphorylation levels and the nuclear translocation of NF-кB p65 induced by TGEV. On the other hand, treatment of TGEV-infected IPEC-J2 cells with the NF-κB inhibitors (BAY11-7082) significantly decreased the levels of inflammatory cytokines. Furthermore, ATRA treatment significantly downregulated the mRNA abundance and protein levels of TLR3, TLR7, RIG-I and MDA5, and downregulated their downstream signaling molecules TRIF, TRAF6 and MAVS mRNA expressions in TGEV-infected IPEC-J2 cells. However, the knockdown of RIG-I and MDA5 but not TLR3 and TLR7 significantly reduced the NF-κB p65 phosphorylation level and inflammatory cytokines levels in TGEV-infected IPEC-J2 cells. Our results indicated that ATRA attenuated TGEV-induced IPEC-J2 cells damage via suppressing inflammatory response, the mechanism of which is associated with the inhibition of TGEV-mediated activation of the RLRs/NF-κB signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education/Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Miller L, Berber E, Sumbria D, Rouse BT. Controlling the Burden of COVID-19 by Manipulating Host Metabolism. Viral Immunol 2022; 35:24-32. [PMID: 34905407 PMCID: PMC8863913 DOI: 10.1089/vim.2021.0150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the coronavirus-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to cause global health problems, but its impact would be minimized if the many effective vaccines that have been developed were available and in widespread use by all societies. This ideal situation is not occurring so other means of controlling COVID-19 are needed. In this short review, we make the case that manipulating host metabolic pathways could be a therapeutic approach worth exploring. The rationale for such an approach comes from the fact that viruses cause metabolic changes in cells they infect, effective host defense mechanisms against viruses requires the activity of one or more metabolic pathways, and that hosts with metabolic defects such as diabetes are more susceptible to severe consequences after COVID-19. We describe the types of approaches that could be used to redirect various aspects of host metabolism and the success that some of these maneuvers have had at controlling other virus infections. Manipulating metabolic activities to control the outcome of COVID-19 has to date received minimal attention. Manipulating host metabolism will never replace vaccines to control COVID-19 but could be used as an adjunct therapy to the extent of ongoing infection.
Collapse
Affiliation(s)
- Logan Miller
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Engin Berber
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Deepak Sumbria
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Barry T. Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
15
|
Jaggi U, Matundan HH, Yu J, Hirose S, Mueller M, Wormley FL, Ghiasi H. Essential role of M1 macrophages in blocking cytokine storm and pathology associated with murine HSV-1 infection. PLoS Pathog 2021; 17:e1009999. [PMID: 34653236 PMCID: PMC8550391 DOI: 10.1371/journal.ppat.1009999] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/27/2021] [Accepted: 10/01/2021] [Indexed: 12/26/2022] Open
Abstract
Ocular HSV-1 infection is a major cause of eye disease and innate and adaptive immunity both play a role in protection and pathology associated with ocular infection. Previously we have shown that M1-type macrophages are the major and earliest infiltrates into the cornea of infected mice. We also showed that HSV-1 infectivity in the presence and absence of M2-macrophages was similar to wild-type (WT) control mice. However, it is not clear whether the absence of M1 macrophages plays a role in protection and disease in HSV-1 infected mice. To explore the role of M1 macrophages in HSV-1 infection, we used mice lacking M1 activation (M1-/- mice). Our results showed that macrophages from M1-/- mice were more susceptible to HSV-1 infection in vitro than were macrophages from WT mice. M1-/- mice were highly susceptible to ocular infection with virulent HSV-1 strain McKrae, while WT mice were refractory to infection. In addition, M1-/- mice had higher virus titers in the eyes than did WT mice. Adoptive transfer of M1 macrophages from WT mice to M1-/- mice reduced death and rescued virus replication in the eyes of infected mice. Infection of M1-/- mice with avirulent HSV-1 strain KOS also increased ocular virus replication and eye disease but did not affect latency-reactivation seen in WT control mice. Severity of virus replication and eye disease correlated with significantly higher inflammatory responses leading to a cytokine storm in the eyes of M1-/- infected mice that was not seen in WT mice. Thus, for the first time, our study illustrates the importance of M1 macrophages specifically in primary HSV-1 infection, eye disease, and survival but not in latency-reactivation. Macrophages circulating in the blood or present in different tissues constitute an important barrier against infection. We previously showed that the absence of M2 macrophages does not impact HSV-1 infectivity in vivo. However, in this study we demonstrated an essential role of M1 macrophages in protection from primary HSV-1 replication, death, and eye disease but not in latency-reactivation.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Jack Yu
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Satoshi Hirose
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Mathias Mueller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Floyd L. Wormley
- Department of Biology, Texas Christian University, Fort Worth, Texas, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Berber E, Sumbria D, Newkirk KM, Rouse BT. Inhibiting Glucose Metabolism Results in Herpes Simplex Encephalitis. THE JOURNAL OF IMMUNOLOGY 2021; 207:1824-1835. [PMID: 34470854 DOI: 10.4049/jimmunol.2100453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/31/2021] [Indexed: 11/19/2022]
Abstract
This report evaluates how HSV enters the brain to cause herpes simplex encephalitis following infection at a peripheral site. We demonstrate that encephalitis regularly occurred when BALB/c mice were infected with HSV and treated daily with 2-deoxy-d-glucose (2DG), which inhibits glucose use via the glycolysis pathway. The outcome of infection in the trigeminal ganglion (TG), the site to which the virus spreads, replicates, and establishes latency, showed marked differences in viral and cellular events between treated and untreated animals. In control-untreated mice, the replicating virus was present only during early time points, whereas in 2DG recipients, replicating virus remained for the 9-d observation period. This outcome correlated with significantly reduced numbers of innate inflammatory cells as well as T cells in 2DG-treated animals. Moreover, T cells in the TG of treated animals were less activated and contained a smaller fraction of expressed IFN-γ production compared with untreated controls. The breakdown of latency was accelerated when cultures of TG cells taken from mice with established HSV latency were cultured in the presence of 2DG. Taken together, the results of both in vivo and in vitro investigations demonstrate that the overall effects of 2DG therapy impaired the protective effects of one or more inflammatory cell types in the TG that normally function to control productive infection and prevent spread of virus to the brain.
Collapse
Affiliation(s)
- Engin Berber
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN; and.,Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Deepak Sumbria
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN; and
| | - Kim M Newkirk
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN; and
| | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN; and
| |
Collapse
|
17
|
Abstract
We previously reported that herpes simplex virus 1 (HSV-1) ICP22 binds to CD80 and suppresses CD80 expression in vitro and in vivo. Similar to ICP22, the cellular costimulatory molecules CD28, CTLA4, and PD-L1 also bind to CD80. In this study, we asked whether, similar to ICP22-null virus, the absence of these costimulatory molecules will reduce HSV-1 infectivity. To test our hypothesis, CD28−/−, CD28−/− CTLA4−/−, PD-L1−/−, and wild-type control BALB/c mice were ocularly infected with HSV-1 strain KOS. Levels of virus replication in the eye, corneal scarring (CS), latency, and reactivation in infected mice were determined. Expression of different genes in the trigeminal ganglia (TG) of latently infected mice was also determined by NanoString and quantitative reverse transcription-PCR (qRT-PCR). In the absence of costimulatory molecules, latency levels were higher than those in wild-type control mice, but despite higher latency, a significant number of TG from infected knockout mice did not reactivate. Reduced reactivation correlated with downregulation of 26 similar cellular genes that are associated with inflammatory signaling and innate immune responses. These results suggest that lower reactivation directly correlates with lower expression of interferon signaling. Thus, despite having different modes of actions, we identified a similar function for CD28, CTLA4, and PD-L1 in HSV-1 reactivation that is dependent on their interactions with CD80. Therefore, blocking these interactions could be a therapeutic target for HSV-1-induced reactivation.
Collapse
|
18
|
Sumbria D, Berber E, Mathayan M, Rouse BT. Virus Infections and Host Metabolism-Can We Manage the Interactions? Front Immunol 2021; 11:594963. [PMID: 33613518 PMCID: PMC7887310 DOI: 10.3389/fimmu.2020.594963] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023] Open
Abstract
When viruses infect cells, they almost invariably cause metabolic changes in the infected cell as well as in several host cell types that react to the infection. Such metabolic changes provide potential targets for therapeutic approaches that could reduce the impact of infection. Several examples are discussed in this review, which include effects on energy metabolism, glutaminolysis and fatty acid metabolism. The response of the immune system also involves metabolic changes and manipulating these may change the outcome of infection. This could include changing the status of herpesviruses infections from productive to latency. The consequences of viral infections which include coronavirus disease 2019 (COVID-19), may also differ in patients with metabolic problems, such as diabetes mellitus (DM), obesity, and endocrine diseases. Nutrition status may also affect the pattern of events following viral infection and examples that impact on the pattern of human and experimental animal viral diseases and the mechanisms involved are discussed. Finally, we discuss the so far few published reports that have manipulated metabolic events in-vivo to change the outcome of virus infection. The topic is expected to expand in relevance as an approach used alone or in combination with other therapies to shape the nature of virus induced diseases.
Collapse
Affiliation(s)
- Deepak Sumbria
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States
| | - Engin Berber
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States.,Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Manikannan Mathayan
- Center for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, India
| | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
19
|
Sumbria D, Berber E, Rouse BT. Supplementing the Diet with Sodium Propionate Suppresses the Severity of Viral Immuno-inflammatory Lesions. J Virol 2021; 95:e02056-20. [PMID: 33208449 PMCID: PMC7851545 DOI: 10.1128/jvi.02056-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
This report evaluates a dietary manipulation approach to suppress the severity of ocular infections caused by herpes simplex virus infection. The virus causes chronic damage to the cornea that results from a T-cell-orchestrated inflammatory reaction to the infection. Lesion severity can be limited if cells with regulatory activity predominate over proinflammatory T cells and nonlymphoid inflammatory cells. In this report, we show that this outcome can be achieved by including the short-chain fatty acid (SCFA) salt sodium propionate (SP) in the drinking water. Animals given the SP supplement developed significantly fewer ocular lesions than those receiving no supplement. Corneas and lymphoid organs contained fewer CD4 Th1 and Th17 T cells, neutrophils, and macrophages than those of controls, but a higher frequency of regulatory T cells (Treg) was present. The inclusion of SP in cultures to induce CD4 T cell subsets in vitro reduced the magnitude of Th1 and Th17 responses but expanded Treg induction. Dietary manipulation was an effective approach to limit the severity of viral immuno-inflammatory lesions and may be worth exploring as a means to reduce the impact of herpetic lesions in humans.IMPORTANCE Herpetic lesions are a significant problem, and they are difficult to control with therapeutics. Our studies show that the severity of herpetic lesions in a mouse model can be diminished by changing the diet to include increased levels of SCFA, which act to inhibit the involvement of inflammatory T cells. We suggest that changing the diet to include higher levels of SCFA might be a useful approach to reducing the impact of recurrent herpetic lesions in humans.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cornea/immunology
- Cornea/virology
- Dietary Supplements
- Fatty Acids, Volatile/administration & dosage
- Herpesvirus 1, Human/immunology
- Keratitis, Herpetic/diet therapy
- Keratitis, Herpetic/immunology
- Keratitis, Herpetic/virology
- Macrophages/cytology
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophils/cytology
- Propionates/administration & dosage
- T-Lymphocytes, Helper-Inducer/cytology
- T-Lymphocytes, Regulatory/cytology
- Mice
Collapse
Affiliation(s)
- Deepak Sumbria
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Engin Berber
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
- Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
20
|
Jaggi U, Yang M, Matundan HH, Hirose S, Shah PK, Sharifi BG, Ghiasi H. Increased phagocytosis in the presence of enhanced M2-like macrophage responses correlates with increased primary and latent HSV-1 infection. PLoS Pathog 2020; 16:e1008971. [PMID: 33031415 PMCID: PMC7575112 DOI: 10.1371/journal.ppat.1008971] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/20/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
After HSV-1 infection, macrophages infiltrate early into the cornea, where they play an important role in HSV-1 infection. Macrophages are divided into M1 or M2 groups based on their activation. M1 macrophages are pro-inflammatory, while M2 macrophages are anti-inflammatory. Macrophage phenotypes can shift between M1 or M2 in vitro and in vivo following treatment with specific cytokines. In this study we looked at the effect of M2 macrophages on HSV-1 infectivity using mice either lacking M2 (M2-/-) or overexpressing M2 (M2-OE) macrophages. While presence or absence of M2 macrophages had no effect on eye disease, we found that over expression of M2 macrophages was associated with increased phagocytosis, increased primary virus replication, increased latency, and increased expression of pro- and anti-inflammatory cytokines. In contrast, in mice lacking M2 macrophages following infection phagocytosis, replication, latency, and cytokine expression were similar to wild type mice. Our results suggest that enhanced M2 responses lead to higher phagocytosis, which affected both primary and latent infection but not reactivation.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, CA, United States of America
| | - Mingjie Yang
- Oppenheimer Atherosclerosis Research Center, Cedars-Sinai Smidt Heart Institute, and Department of Surgery, Los Angeles, CA United States of America
| | - Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, CA, United States of America
| | - Satoshi Hirose
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, CA, United States of America
| | - Prediman K. Shah
- Oppenheimer Atherosclerosis Research Center, Cedars-Sinai Smidt Heart Institute, and Department of Surgery, Los Angeles, CA United States of America
| | - Behrooz G. Sharifi
- Oppenheimer Atherosclerosis Research Center, Cedars-Sinai Smidt Heart Institute, and Department of Surgery, Los Angeles, CA United States of America
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, CA, United States of America
| |
Collapse
|
21
|
Tormanen K, Wang S, Jaggi U, Ghiasi H. Restoring Herpesvirus Entry Mediator (HVEM) Immune Function in HVEM -/- Mice Rescues Herpes Simplex Virus 1 Latency and Reactivation Independently of Binding to Glycoprotein D. J Virol 2020; 94:e00700-20. [PMID: 32522859 PMCID: PMC7394883 DOI: 10.1128/jvi.00700-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/03/2020] [Indexed: 12/25/2022] Open
Abstract
The immune modulatory protein herpes virus entry mediator (HVEM) is one of several cellular receptors used by herpes simplex virus 1 (HSV-1) for cell entry. HVEM binds to HSV-1 glycoprotein D (gD) but is not necessary for HSV-1 replication in vitro or in vivo Previously, we showed that although HSV-1 replication was similar in wild-type (WT) control and HVEM-/- mice, HSV-1 does not establish latency or reactivate effectively in mice lacking HVEM, suggesting that HVEM is important for these functions. It is not known whether HVEM immunomodulatory functions contribute to latency and reactivation or whether its binding to gD is necessary. We used HVEM-/- mice to establish three transgenic mouse lines that express either human WT HVEM or human or mouse HVEM with a point mutation that ablates its ability to bind to gD. Here, we show that HVEM immune function, not its ability to bind gD, is required for WT levels of latency and reactivation. We further show that HVEM binding to gD does not affect expression of the HVEM ligands BTLA, CD160, or LIGHT. Interestingly, our results suggest that binding of HVEM to gD may contribute to efficient upregulation of CD8α but not PD1, TIM-3, CTLA4, or interleukin 2 (IL-2). Together, our results establish that HVEM immune function, not binding to gD, mediates establishment of latency and reactivation.IMPORTANCE HSV-1 is a common cause of ocular infections worldwide and a significant cause of preventable blindness. Corneal scarring and blindness are consequences of the immune response induced by repeated reactivation events. Therefore, HSV-1 therapeutic approaches should focus on preventing latency and reactivation. Our data suggest that the immune function of HVEM plays an important role in the HSV-1 latency and reactivation cycle that is independent of HVEM binding to gD.
Collapse
Affiliation(s)
- Kati Tormanen
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, USA
| | - Shaohui Wang
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, USA
| | - Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, USA
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, USA
| |
Collapse
|
22
|
Hirose S, Jaggi U, Wang S, Tormanen K, Nagaoka Y, Katsumata M, Ghiasi H. Role of TH17 Responses in Increasing Herpetic Keratitis in the Eyes of Mice Infected with HSV-1. Invest Ophthalmol Vis Sci 2020; 61:20. [PMID: 32516406 PMCID: PMC7415293 DOI: 10.1167/iovs.61.6.20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose TH17 cells play an important role in host defense and autoimmunity yet very little is known about the role of IL17 in herpes simplex virus (HSV)-1 infectivity. To better understand the relationship between IL17 and HSV-1 infection, we assessed the relative impact of IL17A-deficiency and deficiency of its receptors on HSV-1 responses in vivo. Methods We generated IL17RA−/− and IL17RA−/−RC−/− mice in-house and infected them along with IL17A−/− and IL17RC−/− mice in the eyes with 2 × 105 PFU/eye of wild type (WT) HSV-1 strain McKrae. WT C57BL/6 mice were used as control. Virus replication in the eye, survival, corneal scarring (CS), angiogenesis, levels of latency-reactivation, and levels of CD8 and exhaustion markers (PD1, TIM3, LAG3, CTLA4, CD244, and CD39) in the trigeminal ganglia (TG) of infected mice were determined on day 28 postinfection. Results No significant differences in virus replication in the eye, survival, latency, reactivation, and exhaustion markers were detected among IL17A−/−, IL17RA−/−, IL17RC−/−, IL17RA−/−RC−/−, and WT mice. However, mice lacking IL17 had significantly less CS and angiogenesis than WT mice. In addition, angiogenesis levels in the absence of IL17RC and irrespective of the absence of IL17RA were significantly less than in IL17A- or IL17RA-deficient mice. Conclusions Our results suggest that the absence of IL17 protects against HSV-1-induced eye disease, but has no role in protecting against virus replication, latency, or reactivation. In addition, our data provide rationale for blocking IL17RC function rather than IL17A or IL17RA function as a key driver of HSV-1-induced eye disease.
Collapse
|
23
|
Wang L, Wang R, Xu C, Zhou H. Pathogenesis of Herpes Stromal Keratitis: Immune Inflammatory Response Mediated by Inflammatory Regulators. Front Immunol 2020; 11:766. [PMID: 32477330 PMCID: PMC7237736 DOI: 10.3389/fimmu.2020.00766] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Herpes stromal keratitis (HSK) is one of the primary diseases that cause vision loss or even blindness after herpes simplex virus (HSV)-1 infection. HSK-associated vision impairment is predominantly due to corneal scarring and neovascularization caused by inflammation. In the infected cornea, HSV can activate innate and adaptive immune responses of host cells, which triggers a cascade of reactions that leads to the release of inflammatory cytokines, chemokines, microRNA, and other regulatory factors that have stimulating or inhibitory effects on tissue. Physiologically, host cells show homeostasis. In this review, we summarize the factors involved in HSK pathogenesis from the perspective of immunity, molecules, and pathological angiogenesis. We also describe in detail the pathogenesis of chronic inflammatory lesions of the corneal stroma in response to HSV-1 infection.
Collapse
Affiliation(s)
- Li Wang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China.,Department of Ophthalmology, Jilin City Central Hospital, Jilin, China
| | - Runbiao Wang
- Department of Ophthalmology, Jilin City Central Hospital, Jilin, China
| | - Chuyang Xu
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Matundan HH, Jaggi U, Wang S, Ghiasi H. Loss of ICP22 in HSV-1 Elicits Immune Infiltration and Maintains Stromal Keratitis Despite Reduced Primary and Latent Virus Infectivity. Invest Ophthalmol Vis Sci 2019; 60:3398-3406. [PMID: 31387116 PMCID: PMC6685448 DOI: 10.1167/iovs.19-27701] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose We previously have reported that ICP22, an immediate early gene of herpes simplex virus type 1 (HSV-1), binds to the CD80 promoter to suppress CD80 expression in antigen-presenting cells, leading to reduced T-cell function and protection. In contrast, overexpression of CD80 exacerbates corneal scarring (CS) in ocularly infected mice. In this study we tested the hypothesis that the absence of ICP22 could increase disease severity. Methods To test our hypothesis, BALB/c mice were ocularly infected after corneal scarification with a recombinant HSV-1 lacking the ICP22 gene with its parental wild-type (WT) virus (KOS) as a control. Virus replication in the eye, CS, angiogenesis, latency, and reactivation between ICP22 null virus and WT KOS were determined. In addition, expression of IL-2, IL-4, IFN-γ, IFN-α, granzyme A, granzyme B, and perforin by CD4 and CD8 T cells in corneas of infected mice on days 3, 5, 7, 10, 14, 21, and 28 postinfection were determined by flow cytometry. Results We found similar levels of eye disease and angiogenesis in mice following corneal scarification and ocular infection with the ICP22 null virus or parental WT virus despite reduced virus replication in the eye and reduced latency and reactivation in mice ocularly infected with ICP22 null virus. The similar level of eye disease in ICP22 null virus- and WT virus-infected mice correlated with expression of various proinflammatory cytokines that infiltrated the eye after HSV-1 infection. Conclusions Our study identified a critical role for ICP22 in HSV-1 pathogenicity and suggests that HSV-1-associated CS is more dependent on host immune responses to infection than to virus replication in the eye. Thus, HSV-1 as means of survival uses ICP22 as a mechanism of immune escape that protects the host from increased pathology.
Collapse
Affiliation(s)
- Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States
| | - Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States
| | - Shaohui Wang
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States
| |
Collapse
|
25
|
Lobo AM, Agelidis AM, Shukla D. Pathogenesis of herpes simplex keratitis: The host cell response and ocular surface sequelae to infection and inflammation. Ocul Surf 2019; 17:40-49. [PMID: 30317007 PMCID: PMC6340725 DOI: 10.1016/j.jtos.2018.10.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 02/08/2023]
Abstract
Herpes simplex virus type 1 (HSV) keratitis is a leading cause of infectious blindness. Clinical disease occurs variably throughout the cornea from epithelium to endothelium and recurrent HSV stromal keratitis is associated with corneal scarring and neovascularization. HSV keratitis can be associated with ocular pain and subsequent neutrophic keratopathy. Host cell interactions with HSV trigger an inflammatory cascade responsible not only for clearance of virus but also for progressive corneal opacification due to inflammatory cell infiltrate, angiogenesis, and corneal nerve loss. Current antiviral therapies target viral replication to decrease disease duration, severity and recurrence, but there are limitations to these agents. Therapies directed towards viral entry into cells, protein synthesis, inflammatory cytokines and vascular endothelial growth factor pathways in animal models represent promising new approaches to the treatment of recurrent HSV keratitis.
Collapse
Affiliation(s)
- Ann-Marie Lobo
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Alex M Agelidis
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deepak Shukla
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|