1
|
Altintig E, Sarıcı B, Karataş S. Prepared activated carbon from hazelnut shell where coated nanocomposite with Ag + used for antibacterial and adsorption properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13671-13687. [PMID: 36136190 DOI: 10.1007/s11356-022-23004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
In this research, prepared activated carbon by H3PO4 from hazelnut shells was coated with silver ions for the preparation of nanoparticles which were mixed in two ratios (1:0.5 and 1:1) by using of chemical reduction method. The adsorption capacity of activated carbons has been proven by BET and iodine number. Then, the antimicrobial effect of nanoparticles on the Staphylococcus aureus and Escherichia coli was investigated; in addition to that, the characterization of hazelnut shell and silver-coated activated carbons was determined by Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) methods. The optimum condition of activated carbon from hazelnut shells indicated that 66.01% carbon content within 36.22% efficiency, while BET surface area achieved as 1208 m2/g and its contained 0.6104 cm3 g-1 total pore volume. The microbial effect indicated that 105 CFU/mL of E. coli was completely inhibited in 30 min. Silver-coated activated carbon showed excellent bacteriostatic activity against E. coli and S. aureus. The results show that the composite has good prospects for applications in drinking water. E. coli of 104 CFU/mL in drinking water were destroyed within 25 min of contact with the filter made with AgAC.
Collapse
Affiliation(s)
- Esra Altintig
- Pamukova Vocational School, Sakarya University of Applied Sciences, Sakarya, 54900, Turkey.
| | - Birsen Sarıcı
- Food Safety, and Nutrition Department, Food Safety Department, Istanbul Aydın University, Istanbul, 34290, Turkey
| | - Sukru Karataş
- Department of Nutrition and Dietetics, Istanbul Arel University, Istanbul, 34200, Turkey
| |
Collapse
|
2
|
Karimi-Maleh H, Karimi F, Fu L, Sanati AL, Alizadeh M, Karaman C, Orooji Y. Cyanazine herbicide monitoring as a hazardous substance by a DNA nanostructure biosensor. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127058. [PMID: 34488091 DOI: 10.1016/j.jhazmat.2021.127058] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 05/13/2023]
Abstract
Cyanazine is a beneficial herbicide in the triazines group that inhibits photosynthesis in plants and monitoring of this herbicide is so important for study agriculture products. The present researches have been focused on monitoring of cyanazine by a straightforward and fast electrochemical strategy. Herein, to monitor the cyanazine level, Pt and Pd doped CdO nanoparticle decorated SWCNTs composite (Pt-Pd-CdO/SWCNTs) has been synthesized as a conductive mediator and characterized by EDS, SEM and TEM techniques. The Pt-Pd-CdO/SWCNTs and ds-DNA have been used for modification of the gold electrode (GE). Moreover, the oxidation signal of guanine relative to ds-DNA at the surface of Pt-Pd-CdO/SWCNTs/ds-DNA/GE has been considered as an bioelectroanalytical issue to monitoring cyanazine for the first time. Electrochemical impedance spectroscopic (EIS) signals have confirmed that the inclusion of Pt-Pd-CdO/SWCNTs at the surface of the GE has lowered charge-transfer resistance by ca.1.54 times and created a highly conductive state for monitoring of cyanazine in nanomolar concentration. On the other hand, differential pulse voltammograms (DPV) of Pt-Pd-CdO/SWCNTs/ds-DNA/GE have indicated a linear dynamic range of 4.0 nM-70 µM with a detection limit of 0.8 nM to the monitoring of cyanazine. In addition, the molecular docking study has emphasized that cyanazine herbicide is capable of binding to ds-DNA preferably at the guanine-cytosine rich sequences, and confirmed experimental results. In the final step, Pt-Pd-CdO/SWCNTs/ds-DNA/GE has been successfully utilized for the monitoring of cyanazine herbicide in food and water samples.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan 9477177870, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan 9477177870, Iran.
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Afsaneh L Sanati
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Polo II, 3030-290 Coimbra, Portugal
| | - Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Ceren Karaman
- Akdeniz University, Department of Electricity and Energy, Antalya 07070, Turkey
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China
| |
Collapse
|
3
|
Shahraki S, Masrournia M, Karimi-Maleh H. Fabrication of Electrochemical Sensor for Epinine Determination
Amplified with MgO/CNTs Nanocomposite and Ionic Liquid. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017666210303091301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Catecholamines are a large group of pharmacological and biological compounds
that are widely used in biological systems. These compounds are prepared both naturally
and synthetically with many key roles in the human body and its activities. Therefore, many researchers
focused on the identification and determination of catecholamines in biological samples.
Methods:
MgO/SWCNTs were synthesized through the chemical precipitation method. In addition,
cyclic voltammetry, differential pulse voltammetry, and chronoamperometric methods were used
for the electro-oxidation reaction study of epinine at the surface of the modified electrode.
Results:
Carbon paste electrode (CPE) modified with MgO/SWCNTs nanocomposite and 1-butyl-
3-methylimidazolium methanesulfonate (BMMS) was used as an electrochemical sensor for the
determination of epinine. The results showed a linear dynamic range of 5.0 nM-250 μM with a
detection limit of 0.1 nM for epinine determination using MgO/SWCNTs/BMMS/CPE as a sensor.
Conclusion:
In the present study, a highly sensitive electrochemical sensor was designed and fabricated
as an analytical tool for the determination of epinine. MgO/SWCNTs/BMMS/CPE was
successfully used for the determination of epinine in water and dextrose saline with an acceptable
recovery range of 98.7%-102.72%.
Collapse
Affiliation(s)
- Shirin Shahraki
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad,Iran
| | | | - Hassan Karimi-Maleh
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Advanced Technology, Quchan,Iran
| |
Collapse
|
4
|
Soltani R, Baghizadeh A, Karimi-Maleh H, Farrokhi N. Genotypic diversity of 17 cacti species and application to biosynthesis of gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119909. [PMID: 33992890 DOI: 10.1016/j.saa.2021.119909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The genotypic diversity of 17 cacti species were examined and grouped in four clusters using seven inter simple sequence repeat (ISSR) markers. Group representatives (five species) were chosen for AuNPs synthesis in the cacti syrups. To synthesize the Gold nanoparticles (AuNPs), reducing and capping potential of five species of cacti rich in the polyphenolics were explored. Based on the synthesized AuNPs traits (concentration, pH, temperature, and synthesis time), Opuntia pycnacantha with the highest absorption peak at 540 nm was chosen for further characterizations. Varieties of diffraction peaks confirmed the successful synthesis of AuNPs. AuNPs functionalization with the phenolic compounds was confirmed by Fourier transform infrared (FTIR) spectroscopy. At the optimum conditions (pH = 5.0 and T = 60 °C), both dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed more than 87% of AuNPs to be 2.5 nm in size with Zeta potential to be equal to -19.9 mV.
Collapse
Affiliation(s)
- Raha Soltani
- Department of Biotechnology, Graduate University of Advanced Technology, Kerman, Iran.
| | - Amin Baghizadeh
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering and Energy, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran; Department of Chemical Sciences (formerly Department of Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg 2028, South Africa.
| | - Naser Farrokhi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
5
|
Electrochemical Sensor for Facile and Highly Selective Determination of Antineoplastic Agent in Real Samples Using Glassy Carbon Electrode Modified by 2D-MoS2 NFs/TiO2 NPs. Top Catal 2021. [DOI: 10.1007/s11244-021-01479-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Karimi-Maleh H, Mousavi SJ, Mahdavian M, Khaleghi M, Bordbar S, Yola ML, Darabi R, Liu M. Effects of silver nanoparticles added into polyurea coating on sulfate-reducing bacteria activity and electrochemical properties; an environmental nano-biotechnology investigation. ENVIRONMENTAL RESEARCH 2021; 198:111251. [PMID: 33933494 DOI: 10.1016/j.envres.2021.111251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
In the present work, Ag nanoparticles were added to polyurea coating in order to improve its antibacterial and electrochemical properties in sulfide-reducing bacteria-containing media. To this end, Ag nano-powder was mixed with two component polyuria, and then the antibacterial behavior of the nanocomposite coating was studied in sulfate-reducing bacteria (SRB)-containing medium. The results revealed the inhibitory effects of nanocomposite coating on the formation of SRB biofilms on the samples. Moreover, the SRB population decreased in contact with the Ag nanoparticles-mixed coating over 7 days. Investigation of the growth and activity of the bacteria represented the effective antibacterial properties of Ag nanoparticles in the polyurea matrix. Furthermore, EIS (electrochemical impedance spectroscopy) measurements indicated that the corrosion properties of the nanocomposite coating improved considerably over 7 days. The coating resistance increased 2 times by adding Ag nanoparticles after 1 day and 3.3 times after 7 days. In accordance with the same results, the charge transfer resistance increased 1.5 times and 1.1 times by adding Ag nanoparticles after 1 day and 7 days, respectively. The improvement in the protective properties of the nanocomposite coating are reflected in the increase in both film and charge transfer resistance.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronics Science and Technology of China (UESTC), 611731, China; Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran; Department of Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa.
| | - Seyed Jafar Mousavi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran
| | - Majid Mahdavian
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran.
| | - Mouj Khaleghi
- Department of biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sajjad Bordbar
- Department of Metals, Institute of Materials Science and Engineering, Graduate University of Advanced Technology, Kerman, Iran
| | - Mehmet Lütfi Yola
- Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey
| | - Rozhin Darabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran.
| | - Mei Liu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, Liaoning, China
| |
Collapse
|
7
|
Pachaiappan R, Rajendran S, Show PL, Manavalan K, Naushad M. Metal/metal oxide nanocomposites for bactericidal effect: A review. CHEMOSPHERE 2021; 272:128607. [PMID: 33097236 DOI: 10.1016/j.chemosphere.2020.128607] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/13/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Many microbial species causing infectious disease all over the world became a social burden and creating threat among community. These microbes possess long lifetime, enhancing mortality and morbidity rate in affected organisms. In this condition, the treatment was ineffective and more chances of spreading of infection into other organisms. Hence, it is necessary to initiate infection control efforts and prevention activities against multidrug resistant microbes, to reduce the death rate of people. Seriously concerning towards this problem progress was shown in developing significant drugs with least side effects. Emergence of nanoparticles and its novelty showed effective role in targeting and destructing microbes well. Further, many research works have shown nanocomposites developed from nanoparticles coupled with other nanoparticles, polymers, carbon material acted as an exotic substance against microbes causing severe loss. However, metal and metal oxide nanocomposites have gained interest due to its small size and enhancing the surface contact with bacteria, producing damage to it. The bactericidal mechanism of metal and metal oxide nanocomposites involve in the production of reactive oxygen species which includes superoxide radical anions, hydrogen peroxide anions and hydrogen peroxide which interact with the cell wall of bacteria causing damage to the cell membrane in turn inhibiting the further growth of cell with leakage of internal cellular components, leading to death of bacteria. This review provides the detailed view on antibacterial activity of metal and metal oxide nanocomposite which possessed novelty due to its physiochemical changes.
Collapse
Affiliation(s)
- Rekha Pachaiappan
- Department of Sustainable Energy Management, Stella Maris College, Chennai, 600086, Tamilnadu, India.
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad deIngeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia.
| | - Kovendhan Manavalan
- Department of Nuclear Physics, University of Madras, Gunidy Campus, Chennai, 600 025, Tamilnadu, India
| | - Mu Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Yonsei Frontier Lab, Yonsei University, Seoul, Korea
| |
Collapse
|
8
|
Naushad M, Ahamad T, Al-Sheetan KM. Development of a polymeric nanocomposite as a high performance adsorbent for Pb(II) removal from water medium: Equilibrium, kinetic and antimicrobial activity. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124816. [PMID: 33352425 DOI: 10.1016/j.jhazmat.2020.124816] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
In the present study, starch based ZnO nancomposite (CSt-ZnO) was synthesized for the efficient removal of Pb(II) ions from aqueous medium. The structure and morphology of CSt-ZnO nancomposite was characterized using SEM, FTIR, TGA, BET, XPS and zeta potential measurements. The effect of contact time, pH, temperature and initial concentration of Pb(II) on the adsorption was studied. The optimum parameters for maximum Pb(II) removal were time-120 min; pH-6; temperature-318 K and Co-20 ppm. The maximum Langmuir adsorption capacity of CSt-ZnO nancomposite was 256.4 mg/g at 298 K. With increasing the temperature from 298 K to 318 K, the maximum adsorption quantity (qm) was improved from 256.4 to 476 mg/g which showed the endothermic nature of Pb(II) adsorption on CSt-ZnO nanocomposite. The sorption isotherm and kinetics model fitting studies, confirmed that data fit well to Freundlich isotherm and pseudo-first-order kinetics models, respectively. Thermodynamic studies inferred a spontaneous and endothermic nature of adsorption. Moreover, the adsorption capacity was 68% even after four adsorption-desorption cycles which revealed the reusable performance of CSt-ZnO was well. The antimicrobial activity of CSt-ZnO nanocomposite was also examined against S. aureus and E. coli.
Collapse
Affiliation(s)
- Mu Naushad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; School of Science & Technology, Glocal University, Saharanpur, India
| | - Khalid M Al-Sheetan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Saravanan A, Kumar PS, Govarthanan M, George CS, Vaishnavi S, Moulishwaran B, Kumar SP, Jeevanantham S, Yaashikaa PR. Adsorption characteristics of magnetic nanoparticles coated mixed fungal biomass for toxic Cr(VI) ions in aquatic environment. CHEMOSPHERE 2021; 267:129226. [PMID: 33338712 DOI: 10.1016/j.chemosphere.2020.129226] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/21/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
In this research, the adsorptive removal of Cr(VI) ions from the aquatic environment have been studied using newly synthesized magnetic nanoparticles coated mixed fungal biomass (MNP-FB). Two fungal biomass such as Aspergillus fumigatus and Aspergillus niger were isolated, screened, and utilized as a precursor for making an adsorbent. Molecular characterization of isolated fungal species was recognized using 18S rRNA sequencing. The characterization studies of the MNP-FB were evaluated using Fourier Transform Infrared Spectrophotometer (FTIR) and Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analyses. Optimization studies were studied to check the effect of different operating variables such as pH (2.0-9.0), equilibrium time (10-90 min), MNP-FB dosage (0.1-1.0 g/L), temperature (30-60 °C) and concentration of Cr(VI) ions (50-500 mg/L). Additionally, Freundlich isotherm model fits well for the adsorption of Cr(VI) ion using MNP-FB. The adsorption kinetics was interpreted well by Pseudo-first order model. The thermodynamic study concluded that Cr(VI) ions removal by MNP-FB was exothermic and appreciative at low temperatures. The monolayer adsorption efficiency of MNP-FB for Cr(VI) ions was measured as 249.9 mg/g. The current results reveal that MNP-FB has considered being a proficient and economically suitable material for the Cr(VI) ions removal from the water environment.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Cynthia Susan George
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - S Vaishnavi
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - B Moulishwaran
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - S Praveen Kumar
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P R Yaashikaa
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| |
Collapse
|
10
|
Saravanan A, Kumar PS, Karishma S, Vo DVN, Jeevanantham S, Yaashikaa PR, George CS. A review on biosynthesis of metal nanoparticles and its environmental applications. CHEMOSPHERE 2021; 264:128580. [PMID: 33059285 DOI: 10.1016/j.chemosphere.2020.128580] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 05/02/2023]
Abstract
Nanotechnology has become one of the emerging multi-disciplinary fields receiving universal attention and playing a substantial role in agriculture, environment and pharmacology. In spite of various techniques employed for nanoparticle synthesis such as laser ablation, mechanical milling, spinning and chemical deposition, usage of hazardous chemicals and expensiveness of the process makes it unsuitable for the continuous production. Hence the necessity of sustainable, economic and environment friendly approach development have increased in recent years. Microbial synthesis of nanoparticles connecting microbiology and nanotechnology is one of the green techniques employed for sustainable production. Gold, silver and other metal nanoparticles like platinum, palladium, molybdenum nanoparticles biosynthesis by bacteria, fungi, yeast and algae have been reported in the present review. On account of microbial rich community, several microbes have been explored for the production of nanoparticles. Nanoparticles are also employed for environmental remediation processes such as pollutant removal and detection of contaminants. Lack of monodispersity and prolonged duration of synthesis are the limitations of bio-synthesis process which can be overcome by optimization of methods of microbial cultivation and its extraction techniques. The current review describes the different microbes involved in the synthesis of nanoparticles and its environmental applications.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P R Yaashikaa
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Cynthia Susan George
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| |
Collapse
|
11
|
A Short Overview of Recent Developments on Antimicrobial Coatings Based on Phytosynthesized Metal Nanoparticles. COATINGS 2019. [DOI: 10.3390/coatings9120787] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The phytosynthesis of metallic nanoparticles represents an exciting new area of research, with promising perspectives, gaining in the last decades an increasing importance. Nanotechnology represents an important tool and an efficient option for obtaining particles with controlled morphology and shapes, phytosynthesized nanoparticles (NPs) being a good alternative to remove hazardous reagents. Due to the practical applications of the phytosynthesized nanoparticles, which are mainly associated with their antimicrobial potential, the abundance of scientific literature in this domain is given by researches in the phytosynthesis of metallic nanoparticles (3654 articles) and the evaluation of their antimicrobial properties (2338 papers). The application of phytosynthesized nanoparticles as antimicrobial coatings represented the subject of only 446 works, which lead us to the subject of this review paper. Application of antimicrobial coatings containing phytosynthesized nanoparticles for the development of antimicrobial textiles, other biomedical applications, protection of food (including fruits and vegetables), as well as for other types of applications based on their antimicrobial potential are covered by the present review.
Collapse
|
12
|
Lakshmi S, Avti PK, Hegde G. Activated carbon nanoparticles from biowaste as new generation antimicrobial agents: A review. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.nanoso.2018.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
Suganya S, Senthil Kumar P, Saravanan A. Construction of active bio‐nanocomposite by inseminated metal nanoparticles onto activated carbon: probing to antimicrobial activity. IET Nanobiotechnol 2017. [DOI: 10.1049/iet-nbt.2016.0234] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Subburaj Suganya
- Department of Chemical EngineeringSSN College of EngineeringChennai 603110Tamil NaduIndia
| | | | - Anbalagan Saravanan
- Department of Chemical EngineeringSSN College of EngineeringChennai 603110Tamil NaduIndia
| |
Collapse
|
14
|
Activated Carbon, Carbon Nanotubes and Graphene: Materials and Composites for Advanced Water Purification. C — JOURNAL OF CARBON RESEARCH 2017. [DOI: 10.3390/c3020018] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
15
|
Motshekga SC, Ray SS. Highly efficient inactivation of bacteria found in drinking water using chitosan-bentonite composites: Modelling and breakthrough curve analysis. WATER RESEARCH 2017; 111:213-223. [PMID: 28088718 DOI: 10.1016/j.watres.2017.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/06/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Disinfection of bacterially-contaminated drinking water requires a robust and effective technique and can be achieved by using an appropriate disinfectant material. The advanced use of nanomaterials is observed as an alternative and effective way for the disinfection process and water treatment as a whole. Hence, the inactivation of Escherichia coli (E. coli) using chitosan-Bentonite (Cts-Bent) composites was studied in a fixed bed column. Cts-Bent composites were synthesized using in situ cross-linking method using Bent-supported silver and zinc oxide nanoparticles. These composites were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The effect of the composite bed mass, initial concentration of bacteria, and flow rate on the bacterial inactivation was investigated. The characterization results revealed that the composites were successfully prepared and confirmed the presence of both silver and zinc oxide nanoparticles in the chitosan matrix. The growth curves of E. coli were expressed as breakthrough curves, based on the logistic, Gompertz, and Boltzmann models. The breakthrough time and processed volume of treated water at breakthrough were used as performance indicators, which revealed that the composites performed best at low bacterial concentration and flow rate and with substantial bed mass. The chitosan composites were found to be highly effective, which was demonstrated when no bacteria were observed in the effluent sample within the first 27 h of analysing river water. All the models were suitable for adequately describing and reproducing the experimental data with a sigmoidal pattern. Therefore, the prepared composite is showing potential to work as a disinfectant and provide an alternative solution for water disinfection; hence this study should propel further research of the same or similar materials.
Collapse
Affiliation(s)
- Sarah C Motshekga
- DST-CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- DST-CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; Department of Applied Chemistry, University of Johannesburg, Doornfontein, 2028, Johannesburg, South Africa.
| |
Collapse
|