1
|
Monroy-Pérez E, Herrera-Gabriel JP, Olvera-Navarro E, Ugalde-Tecillo L, García-Cortés LR, Moreno-Noguez M, Martínez-Gregorio H, Vaca-Paniagua F, Paniagua-Contreras GL. Molecular Properties of Virulence and Antibiotic Resistance of Pseudomonas aeruginosa Causing Clinically Critical Infections. Pathogens 2024; 13:868. [PMID: 39452738 PMCID: PMC11510431 DOI: 10.3390/pathogens13100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
The increase in the number of hospital strains of hypervirulent and multidrug resistant (MDR) Pseudomonas aeruginosa is a major health problem that reduces medical treatment options and increases mortality. The molecular profiles of virulence and multidrug resistance of P. aeruginosa-associated hospital and community infections in Mexico have been poorly studied. In this study, we analyzed the different molecular profiles associated with the virulence genotypes related to multidrug resistance and the genotypes of multidrug efflux pumps (mex) in P. aeruginosa causing clinically critical infections isolated from Mexican patients with community- and hospital-acquired infections. Susceptibility to 12 antibiotics was determined using the Kirby-Bauer method. The identification of P. aeruginosa and the detection of virulence and efflux pump system genes were performed using conventional PCR. All strains isolated from patients with hospital-acquired (n = 67) and community-acquired infections (n = 57) were multidrug resistant, mainly to beta-lactams (ampicillin [96.7%], carbenicillin [98.3%], cefalotin [97.5%], and cefotaxime [87%]), quinolones (norfloxacin [78.2%]), phenicols (chloramphenicol [91.9%]), nitrofurans (nitrofurantoin [70.9%]), aminoglycosides (gentamicin [75%]), and sulfonamide/trimethoprim (96.7%). Most strains (95.5%) isolated from patients with hospital- and community-acquired infections carried the adhesion (pilA) and biofilm formation (ndvB) genes. Outer membrane proteins (oprI and oprL) were present in 100% of cases, elastases (lasA and lasB) in 100% and 98.3%, respectively, alkaline protease (apr) and alginate (algD) in 99.1% and 97.5%, respectively, and chaperone (groEL) and epoxide hydrolase (cif) in 100% and 97.5%, respectively. Overall, 99.1% of the strains isolated from patients with hospital- and community-acquired infections carried the efflux pump system genes mexB and mexY, while 98.3% of the strains carried mexF and mexZ. These findings show a wide distribution of the virulome related to the genotypic and phenotypic profiles of antibiotic resistance and the origin of the strains isolated from patients with hospital- and community-acquired infections, demonstrating that these molecular mechanisms may play an important role in high-pathogenicity infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Eric Monroy-Pérez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.P.H.-G.); (E.O.-N.); (L.U.-T.)
| | - Jennefer Paloma Herrera-Gabriel
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.P.H.-G.); (E.O.-N.); (L.U.-T.)
| | - Elizabeth Olvera-Navarro
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.P.H.-G.); (E.O.-N.); (L.U.-T.)
| | - Lorena Ugalde-Tecillo
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.P.H.-G.); (E.O.-N.); (L.U.-T.)
| | - Luis Rey García-Cortés
- Coordinación de Investigación del Estado de México Oriente, Insitituto Mexicano del Seguro Social, Tlalnepantla de Baz 50090, Mexico;
| | - Moisés Moreno-Noguez
- Coordinación Clínica de Educación e Investigación en Salud, Unidad de Medicina Familiar No. 55, Insitituto Mexicano del Seguro Social Estado de México Oriente, Zumpango 55600, Mexico;
| | - Héctor Martínez-Gregorio
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (H.M.-G.); (F.V.-P.)
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (H.M.-G.); (F.V.-P.)
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Gloria Luz Paniagua-Contreras
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.P.H.-G.); (E.O.-N.); (L.U.-T.)
| |
Collapse
|
2
|
Choi M, Shridhar S, Fox H, Luo K, Amin MN, Tennant SM, Simon R, Cross AS. The O-glycan is essential for the induction of protective antibodies against lethal infection by flagella A-bearing Pseudomonas aeruginosa. Infect Immun 2024; 92:e0042723. [PMID: 38391207 DOI: 10.1128/iai.00427-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
To address the problem of increased antimicrobial resistance, we developed a glycoconjugate vaccine comprised of O-polysaccharides (OPS) of the four most prevalent serotypes of Klebsiella pneumoniae (KP) linked to recombinant flagellin types A and B (rFlaA and rFlaB) of Pseudomonas aeruginosa (PA). Flagellin is the major subunit of the flagellar filament. Flagella A and B, essential virulence factors for PA, are glycosylated with different glycans. We previously reported that while both rFlaA and rFlaB were highly immunogenic, only the rFlaB antisera reduced PA motility and protected mice from lethal PA infection in a mouse model of thermal injury. Since recombinant flagellin is not glycosylated, we examined the possibility that the glycan on native FlaA (nFlaA) might be critical to functional immune responses. We compared the ability of nFlaA to that of native, deglycosylated FlaA (dnFlaA) to induce functionally active antisera. O glycan was removed from nFlaA with trifluoromethanesulfonic acid. Despite the similar high-titered anti-FlaA antibody levels elicited by nFlaA, rFlaA, and dnFlaA, only the nFlaA antisera inhibited PA motility and protected mice following lethal intraperitoneal bacterial challenge. Both the protective efficacy and carrier protein function of nFlaA were retained when conjugated to KP O1 OPS. We conclude that unlike the case with FlaB O glycan, the FlaA glycan is an important epitope for the induction of functionally active anti-FlaA antibodies.
Collapse
Affiliation(s)
- Myeongjin Choi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Surekha Shridhar
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Heather Fox
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kun Luo
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mohammed N Amin
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Raphael Simon
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alan S Cross
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Bacterial Motility and Its Role in Skin and Wound Infections. Int J Mol Sci 2023; 24:ijms24021707. [PMID: 36675220 PMCID: PMC9864740 DOI: 10.3390/ijms24021707] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Skin and wound infections are serious medical problems, and the diversity of bacteria makes such infections difficult to treat. Bacteria possess many virulence factors, among which motility plays a key role in skin infections. This feature allows for movement over the skin surface and relocation into the wound. The aim of this paper is to review the type of bacterial movement and to indicate the underlying mechanisms than can serve as a target for developing or modifying antibacterial therapies applied in wound infection treatment. Five types of bacterial movement are distinguished: appendage-dependent (swimming, swarming, and twitching) and appendage-independent (gliding and sliding). All of them allow bacteria to relocate and aid bacteria during infection. Swimming motility allows bacteria to spread from 'persister cells' in biofilm microcolonies and colonise other tissues. Twitching motility enables bacteria to press through the tissues during infection, whereas sliding motility allows cocci (defined as non-motile) to migrate over surfaces. Bacteria during swarming display greater resistance to antimicrobials. Molecular motors generating the focal adhesion complexes in the bacterial cell leaflet generate a 'wave', which pushes bacterial cells lacking appendages, thereby enabling movement. Here, we present the five main types of bacterial motility, their molecular mechanisms, and examples of bacteria that utilise them. Bacterial migration mechanisms can be considered not only as a virulence factor but also as a target for antibacterial therapy.
Collapse
|
4
|
Pedraza-Sánchez S, Cruz-González A, Palmeros-Rojas O, Gálvez-Romero JL, Bellanti JA, Torres M. Polyvalent human immunoglobulin for infectious diseases: Potential to circumvent antimicrobial resistance. Front Immunol 2023; 13:987231. [PMID: 36713426 PMCID: PMC9880058 DOI: 10.3389/fimmu.2022.987231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global health problem that causes more than 1.27 million deaths annually; therefore, it is urgent to focus efforts on solving or reducing this problem. The major causes of AMR are the misuse of antibiotics and antimicrobials in agriculture, veterinary medicine, and human medicine, which favors the selection of drug-resistant microbes. One of the strategies proposed to overcome the problem of AMR is to use polyvalent human immunoglobulin or IVIG. The main advantage of this classic form of passive immunization is its capacity to enhance natural immunity mechanisms to eliminate bacteria, viruses, or fungi safely and physiologically. Experimental data suggest that, for some infections, local administration of IVIG may produce better results with a lower dose than intravenous application. This review presents evidence supporting the use of polyvalent human immunoglobulin in AMR, and the potential and challenges associated with its proposed usage.
Collapse
Affiliation(s)
- Sigifredo Pedraza-Sánchez
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico,*Correspondence: Martha Torres, ; Sigifredo Pedraza-Sánchez,
| | - Adrián Cruz-González
- Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Oscar Palmeros-Rojas
- Área de matemáticas, preparatoria agrícola, Universidad Autónoma Chapingo, Texcoco, Mexico
| | | | | | - Martha Torres
- Subdirección de Investigación Biomédica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico,*Correspondence: Martha Torres, ; Sigifredo Pedraza-Sánchez,
| |
Collapse
|
5
|
Pseudomonas aeruginosa PAO1 outer membrane vesicles-diphtheria toxoid conjugate as a vaccine candidate in a murine burn model. Sci Rep 2022; 12:22324. [PMID: 36566282 PMCID: PMC9789887 DOI: 10.1038/s41598-022-26846-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen considered a common cause of nosocomial infection with high morbidity and mortality in burn patients. Immunoprophylaxis techniques may lower the mortality rate of patients with burn wounds infected by P. aeruginosa; consequently, this may be an efficient strategy to manage infections caused by this bacterium. Several pathogenic Gram-negative bacteria like P. aeruginosa release outer membrane vesicles (OMVs), and structurally OMV consists of several antigenic components capable of generating a wide range of immune responses. Here, we evaluated the immunogenicity and efficacy of P. aeruginosa PA-OMVs (PA-OMVs) conjugated with the diphtheria toxoid (DT) formulated with alum adjuvant (PA-OMVs-DT + adj) in a mice model of burn wound infection. ELISA results showed that in the group of mice immunized with PA-OMVs-DT + adj conjugated, there was a significant increase in specific antibodies titer compared to non-conjugated PA-OMVs or control groups. In addition, the vaccination of mice with PA-OMVs-DT + adj conjugated generated greater protective effectiveness, as seen by lower bacterial loads, and eightfold decreased inflammatory cell infiltration with less tissue damage in the mice burn model compared to the control group. The opsonophagocytic killing results confirmed that humoral immune response might be critical for PA-OMVs mediated protection. These findings suggest that PA-OMV-DT conjugated might be used as a new vaccine against P. aeruginosa in burn wound infection.
Collapse
|
6
|
Gong Q, Li Y, Zhai W, Niu M. Immune responses and protective efficacy of a trivalent combination DNA vaccine based on oprL, oprF and flgE genes of Pseudomonas aeruginosa. VET MED-CZECH 2022; 67:611-619. [PMID: 38845784 PMCID: PMC11154874 DOI: 10.17221/86/2021-vetmed] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/29/2022] [Indexed: 06/09/2024] Open
Abstract
Pseudomonas aeruginosa is an infectious pathogenic bacteria infecting many different species of animals. Currently, it lacks a commercial vaccine. In this study, three monovalent DNA vaccines (poprL, poprF, and pflgE), three bivalent combination DNA vaccines (poprL+poprF, poprL+pflgE, poprF+pflgE), and a trivalent DNA vaccine (poprL+poprF+pflgE) were constructed. Consequently, we immunised chickens with these DNA vaccines and used inactivated vaccines as the positive controls. Then, the immune efficacy was evaluated through serum antibody detection, a lymphocyte proliferation assay, and cytokine concentration determination. Lastly, we assessed the protection rate through a challenge experiment. Following vaccination, the serum antibody levels induced using these DNA vaccines were different due to the different coating antigens. In the trivalent combination DNA vaccine group, we established that the lymphocyte proliferation (SI values), IFN-γ, IL-2, and IL-4 levels were significantly higher than those of the other six DNA vaccine groups and the inactivated vaccine group. However, the protection provided was slightly lower than that of the inactivated vaccine and higher than those of other DNA vaccines. The protection rate of poprL, poprF, pflgE, poprL+poprF, poprL+pflgE, poprF+pflgE, poprL+poprF+pflgE, and the inactivated vaccine were 50, 45, 60, 75, 80, 80, 90, and 95%, respectively. The results of this study indicated the trivalent DNA vaccine based on oprL, oprF and flgE genes represents a promising approach for the prevention of Pseudomonas aeruginosa infections.
Collapse
Affiliation(s)
- Qiang Gong
- Henan University of Science and Technology, Luoyang, P.R. China
| | - Yajing Li
- Henan University of Science and Technology, Luoyang, P.R. China
| | - Wenhan Zhai
- Henan University of Science and Technology, Luoyang, P.R. China
| | - Mingfu Niu
- Henan University of Science and Technology, Luoyang, P.R. China
| |
Collapse
|
7
|
Resistance Is Not Futile: The Role of Quorum Sensing Plasticity in Pseudomonas aeruginosa Infections and Its Link to Intrinsic Mechanisms of Antibiotic Resistance. Microorganisms 2022; 10:microorganisms10061247. [PMID: 35744765 PMCID: PMC9228389 DOI: 10.3390/microorganisms10061247] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
Bacteria use a cell-cell communication process called quorum sensing (QS) to orchestrate collective behaviors. QS relies on the group-wide detection of extracellular signal molecules called autoinducers (AI). Quorum sensing is required for virulence and biofilm formation in the human pathogen Pseudomonas aeruginosa. In P. aeruginosa, LasR and RhlR are homologous LuxR-type soluble transcription factor receptors that bind their cognate AIs and activate the expression of genes encoding functions required for virulence and biofilm formation. While some bacterial signal transduction pathways follow a linear circuit, as phosphoryl groups are passed from one carrier protein to another ultimately resulting in up- or down-regulation of target genes, the QS system in P. aeruginosa is a dense network of receptors and regulators with interconnecting regulatory systems and outputs. Once activated, it is not understood how LasR and RhlR establish their signaling hierarchy, nor is it clear how these pathway connections are regulated, resulting in chronic infection. Here, we reviewed the mechanisms of QS progression as it relates to bacterial pathogenesis and antimicrobial resistance and tolerance.
Collapse
|
8
|
Gong Q, Ruan M, Niu M, Qin C. Immune Efficacy of different immunization doses of divalent combination DNA vaccine pOPRL+pOPRF of Pseudomonas aeruginosa. J Vet Med Sci 2021; 83:1959-1964. [PMID: 34759080 PMCID: PMC8762422 DOI: 10.1292/jvms.21-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
At present, there is no vaccine available against Pseudomonas
aeruginosa, a common zoonotic pathogenic bacterium. In a previous study, the
authors prepared a divalent combination DNA vaccine, pOPRL+pOPRF, which exhibited good
protective efficacy. To explore the optimal immunization dose of this divalent combination
DNA vaccine, in the present study, chickens were vaccinated with 25, 50, 100, and 200 µg
doses. The levels of serum antibody, interferon-γ (IFN-γ), and interleukin-2 (IL-2) were
determined, and lymphocyte proliferation assays were performed. After challenge with
virulent P. aeruginosa, the protective efficacy was evaluated. Following
vaccination, the serum antibodies, stimulation index values, and concentrations of IFN-γ
and IL-2 were significantly higher in chickens vaccinated with 100 and 200 µg vaccines
than in those vaccinated with 25 and 50 µg doses (P<0.05). IFN-γ and
IL-2 concentrations in chickens immunized with 100 µg vaccine were slightly higher than
those in chickens immunized with 200 µg vaccine, although the difference was not
statistically significant. The protective rates were 55%, 65%, 85%, and 85% with 25, 50,
100, and 200 µg of the pOPRL+pOPRF DNA vaccine, respectively. Thus, the immune efficacy of
the pOPRL+pOPRF DNA vaccine increased with an increase in immunization dose, but this does
not imply that a higher dose necessarily achieves a better outcome. The optimal
immunization dose of pOPRL+pOPRF DNA vaccine in chickens was 100 µg.
Collapse
Affiliation(s)
- Qiang Gong
- Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, PR China
| | - Mengdie Ruan
- Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, PR China
| | - Mingfu Niu
- Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, PR China
| | - Cuili Qin
- Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, PR China
| |
Collapse
|
9
|
López-Siles M, Corral-Lugo A, McConnell MJ. Vaccines for multidrug resistant Gram negative bacteria: lessons from the past for guiding future success. FEMS Microbiol Rev 2021; 45:fuaa054. [PMID: 33289833 DOI: 10.1093/femsre/fuaa054] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance is a major threat to global public health. Vaccination is an effective approach for preventing bacterial infections, however it has not been successfully applied to infections caused by some of the most problematic multidrug resistant pathogens. In this review, the potential for vaccines to contribute to reducing the burden of disease of infections caused by multidrug resistant Gram negative bacteria is presented. Technical, logistical and societal hurdles that have limited successful vaccine development for these infections in the past are identified, and recent advances that can contribute to overcoming these challenges are assessed. A synthesis of vaccine technologies that have been employed in the development of vaccines for key multidrug resistant Gram negative bacteria is included, and emerging technologies that may contribute to future successes are discussed. Finally, a comprehensive review of vaccine development efforts over the last 40 years for three of the most worrisome multidrug resistant Gram negative pathogens, Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa is presented, with a focus on recent and ongoing studies. Finally, future directions for the vaccine development field are highlighted.
Collapse
Affiliation(s)
- Mireia López-Siles
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Andrés Corral-Lugo
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Michael J McConnell
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
10
|
Medina-Rojas M, Stribling W, Snesrud E, Garry BI, Li Y, Gann PM, Demons ST, Tyner SD, Zurawski DV, Antonic V. Comparison of Pseudomonas aeruginosa strains reveals that Exolysin A toxin plays an additive role in virulence. Pathog Dis 2020; 78:5804881. [PMID: 32167551 DOI: 10.1093/femspd/ftaa010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/18/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa possesses an array of virulence genes ensuring successful infection development. A two-partner secretion system Exolysin BA (ExlBA) is expressed in the PA7-like genetic outliers consisting of ExlA, a pore-forming toxin and ExlB transporter protein. Presence of exlBA in multidrug-resistant (MDR) strains has not been investigated, particularly in the strains isolated from wounded soldiers. METHODS We screened whole genome sequences of 2439 MDR- P. aeruginosa strains for the presence of exlBA. We compiled all exlBA positive strains and compared them with a diversity set for demographics, antimicrobial profiles and phenotypic characteristics: surface motility, biofilm formation, pyocyanin production and hemolysis. We compared the virulence of strains with comparable phenotypic characteristics in Galleria mellonella. RESULTS We identified 33 exlBA-positive strains (1.5%). These strains have increased antibiotic resistance, they are more motile, produce more robust biofilms and have comparable pyocianin production with the diversity set despite the phenotypic differences within the group. In in vivo infection models, these strains were less virulent than Type III Secretion System (T3SS) positive counterparts. CONCLUSIONS exlBA-positive strains are wide spread among the PA7-like outliers. While not as virulent as strains possessing T3SS, these strains exhibit phenotypic features associated with virulence and are still lethal in vivo.
Collapse
Affiliation(s)
- Maria Medina-Rojas
- Walter Reed Army Institute of Research, Wound Infections Department, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - William Stribling
- Walter Reed Army Institute of Research, Multidrug-Resistant Organism Repository and Surveillance Network, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Erik Snesrud
- Walter Reed Army Institute of Research, Multidrug-Resistant Organism Repository and Surveillance Network, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Brittany I Garry
- Walter Reed Army Institute of Research, Wound Infections Department, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Yuanzhang Li
- Walter Reed Army Institute of Research, Preventive Medicine, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Patrick Mc Gann
- Walter Reed Army Institute of Research, Multidrug-Resistant Organism Repository and Surveillance Network, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Samandra T Demons
- Walter Reed Army Institute of Research, Wound Infections Department, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Stuart D Tyner
- Walter Reed Army Institute of Research, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Daniel V Zurawski
- Walter Reed Army Institute of Research, Wound Infections Department, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Vlado Antonic
- Walter Reed Army Institute of Research, Wound Infections Department, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| |
Collapse
|
11
|
Immunotherapy with IgY Antibodies toward Outer Membrane Protein F Protects Burned Mice against Pseudomonas aeruginosa Infection. J Immunol Res 2020; 2020:7840631. [PMID: 32566689 PMCID: PMC7275967 DOI: 10.1155/2020/7840631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/09/2020] [Accepted: 05/19/2020] [Indexed: 11/17/2022] Open
Abstract
Burn patients with multidrug-resistant Pseudomonas aeruginosa infections commonly suffer from high morbidity and mortality, which present a major challenge to healthcare systems throughout the world. Outer membrane protein F (OprF), as a main outer membrane porin, is required for full virulence expression of P. aeruginosa. The aim of this study was to evaluate the protective efficacy of egg yolk-specific antibody (IgY) raised against recombinant OprF (r-OprF) protein in a murine burn model of infection. The hens were immunized with r-OprF, and anti-r-OprF IgY was purified using salt precipitation. Groups of mice were injected with different regimens of anti-OprF IgY or control IgY (C-IgY). Infections were caused by subcutaneous injection of P. aeruginosa strain PAO1 at the burn site. Mice were monitored for mortality for 5 days. The functional activity of anti-OprF IgY was determined by in vitro invasion assays. Immunotherapy with anti-OprF IgY resulted in a significant improvement in the survival of mice infected by P. aeruginosa from 25% to 87.5% compared with the C-IgY and PBS. The anti-OprF IgY decreased the invasion of P. aeruginosa PAO1 into the A549. Passive immunization with anti-OprF IgY led to an efficacious protection against P. aeruginosa burn infection in the burn model.
Collapse
|
12
|
Ranjbar M, Behrouz B, Norouzi F, Mousavi Gargari SL. Anti-PcrV IgY antibodies protect against Pseudomonas aeruginosa infection in both acute pneumonia and burn wound models. Mol Immunol 2019; 116:98-105. [PMID: 31634816 DOI: 10.1016/j.molimm.2019.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Pseudomonas aeruginosa is a common nosocomial pathogen in burn patients, and rapidly acquires antibiotic resistance; thus, developing an effective therapeutic approach is the most promising strategy for combating infection. Type III secretion system (T3SS) translocates bacterial toxins into the cytosol of the targeted eukaryotic cells, which plays important roles in the virulence of P. aeruginosa infections in both acute pneumonia and burn wound models. The PcrV protein, a T3SS translocating protein, is required for T3SS function and is a well-validated target in animal models of immunoprophylactic strategies targeting P. aeruginosa. In the present study, we evaluated the protective efficacy of chicken egg yolk antibodies (IgY) raised against recombinant PcrV (r-PcrV) in both acute pneumonia and burn wound models. R-PcrV protein was generated by expressing the pcrV gene (cloned in pET-28a vector) in E. coli BL-21. Anti-PcrV IgY was obtained by immunization of hen. Anti-PcrV IgY induced greater protection in P. aeruginosamurine acute pneumonia and burn wound models than control IgY (C-IgY) and PBS groups. Anti-PcrV IgY improved opsonophagocytic killing and inhibition of bacterial invasion of host cells. Taken together, our data provide evidence that anti-PcrV IgY can be a promising therapeutic candidate for combating P. aeruginosa infections.
Collapse
Affiliation(s)
- Mahya Ranjbar
- Department of Microbiology, Shahed University, Faculty of Medical Sciences, Tehran, Iran; Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | - Bahador Behrouz
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | - Fatemeh Norouzi
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | | |
Collapse
|
13
|
Hashemi FB, Behrouz B, Irajian G, Laghaei P, Korpi F, Fatemi MJ. A trivalent vaccine consisting of "flagellin A+B and pilin" protects against Pseudomonas aeruginosa infection in a murine burn model. Microb Pathog 2019; 138:103697. [PMID: 31465785 DOI: 10.1016/j.micpath.2019.103697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/22/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
Abstract
Pseudomonas aeruginosa is a common nosocomial pathogen in burn patients, and rapidly achieves antibiotic resistance, and thus, developing an effective vaccine is critically important for combating P. aeruginosa infection. Flagella and pili play important roles in colonization of P. aeruginosa at the burn wound site and its subsequent dissemination to deeper tissue and organs. In the present study, we evaluated protective efficacy of a trivalent vaccine containing flagellins A and B (FlaA + FlaB) + pilin (PilA) in a murine burn model of infection. "FlaA + FlaB + PilA" induced greater protection in P. aeruginosa murine burn model than the single components alone, and it showed broad immune protection against P. aeruginosa strains. Immunization with "FlaA + FlaB + PilA" induced strong opsonophagocytic antibodies and resulted in reduced bacterial loads, systemic IL-12/IL-10 cytokine expression, and increased survival after challenge with three times lethal dose fifty (LD50) of P. eruginosa strains. Moreover, the protective efficacy of "FlaA + FlaB + PilA" vaccination was largely attributed to specific antibodies. Taken together, these data further confirm that the protective effects of "FlaA + FlaB + PilA" vaccine significantly enhance efficacy compared with antibodies against either mono or divalent antigen, and that the former broadens the coverage against P. eruginosa strains that express two of the three antigens.
Collapse
Affiliation(s)
- Farhad B Hashemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahador Behrouz
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Burn Research Center, Hazrat Fatima Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Gholamreza Irajian
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Laghaei
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Korpi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Fatemi
- Burn Research Center, Hazrat Fatima Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Gong Q, Ruan M, Niu M, Qin C, Hou Y, Guo J. Immune efficacy of DNA vaccines based on oprL and oprF genes of Pseudomonas aeruginosa in chickens. Poult Sci 2018; 97:4219-4227. [DOI: 10.3382/ps/pey307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/23/2018] [Indexed: 01/18/2023] Open
|
15
|
Mai B, Gao Y, Li M, Wang X, Zhang K, Liu Q, Xu C, Wang P. Photodynamic antimicrobial chemotherapy for Staphylococcus aureus and multidrug-resistant bacterial burn infection in vitro and in vivo. Int J Nanomedicine 2017; 12:5915-5931. [PMID: 28860757 PMCID: PMC5566361 DOI: 10.2147/ijn.s138185] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background and objectives Antibiotic resistance has emerged as one of the most important determinants of outcome in patients with serious infections, along with the virulence of the underlying pathogen. Photodynamic antimicrobial chemotherapy (PACT) has been proposed as an alternative approach for the inactivation of bacteria. This study aims to evaluate the antibacterial effect of sinoporphyrin sodium (DVDMS)-mediated PACT on Staphylococcus aureus and multidrug resistant S. aureus in vitro and in vivo. Materials and methods Bacteria were incubated with DVDMS and exposed to treatment with light. After PACT treatment, colony-forming units were counted to estimate the bactericidal effect. Intracellular reactive oxygen-species production was detected by flow cytometry. Flow cytometry and fluorescence-microscopy detection of bacterial cell-membrane permeability. Enzyme-linked immunosorbent assays were used to determine expression of VEGF, TGFβ1, TNFα, IL6, and bFGF factors in burn infection. Results DVDMS-PACT effectively killed bacterial proliferation. Intracellular ROS levels were enhanced obviously in the PACT-treatment group. SYTO 9 and propidium iodide staining showed a decrease in the ratio of green:red fluorescence intensity in the PACT-treatment group in comparison to the control group. Enzyme-linked immunosorbent-assay results revealed that in the healing process, the expression of bFGF, TGFβ1, and VEGF in the treatment group were higher than in the control group, which inhibited inflammation-factor secretion. In addition, skin-tissue bacteria were reduced after treatment. Conclusion These results indicate that DVDMS-PACT presents significant bactericidal activity and promotes wound healing after burn infections.
Collapse
Affiliation(s)
- Bingjie Mai
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education.,National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an
| | - Yiru Gao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education.,National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an
| | - Min Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education.,National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education.,National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an
| | - Kun Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education.,National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education.,National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an
| | - Chuanshan Xu
- School of Chinese Medicine, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education.,National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an
| |
Collapse
|