1
|
Peng H, Guo Y, Zhang J, Hei M, Li Y, Zhang W. In Vitro Screening of Trehalose Synbiotics and Their Effects on Early-Lactating Females and Offspring Mice. Antioxidants (Basel) 2024; 13:1223. [PMID: 39456476 PMCID: PMC11505180 DOI: 10.3390/antiox13101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Activities such as childbirth and breastfeeding can cause severe oxidative stress and inflammatory damage to the mother during early lactation, and can affect animal milk production, and the growth and development of offspring. Trehalose alleviates damage to the body by endowing it with stress resistance. In this study, we used trehalose combined with Lactobacillus plantarum, Bifidobacterium longum, Bacillus subtilis, and Saccharomyces cerevisiae to explore whether dietary intervention can alleviate oxidative stress and inflammatory damage in early lactation and to evaluate the growth ability, acid production ability, antioxidant ability, non-specific adhesion ability, antibacterial ability, and other parameters to determine the optimal combinations and proportions. The results showed that the synbiotics composed of 2.5% trehalose and 1 × 107 cfu/g of Bifidobacterium longum could regulate the gut microbiota, and promote mammary gland development in dams by reducing progesterone (PROG) content in the blood, increasing prolactin (PRL) and insulin-like growth factor-1 (IGF-1) content, enhancing their antioxidant and immune abilities, and effectively increasing the weight and lactation of early lactating dams. In addition, it can also affect the growth of offspring and the development of the intestinal barrier. These results indicate that trehalose synbiotics have great potential in alleviating oxidative stress and inflammatory damage in early lactation.
Collapse
Affiliation(s)
| | | | | | | | - Yuanyuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.P.); (Y.G.); (J.Z.); (M.H.)
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.P.); (Y.G.); (J.Z.); (M.H.)
| |
Collapse
|
2
|
Zhang J, Dong F, Ju G, Pan X, Mao X, Zhang X. Sodium Houttuyfonate Alleviates Monocrotaline-induced Pulmonary Hypertension by Regulating Orai1 and Orai2. Am J Respir Cell Mol Biol 2024; 71:332-342. [PMID: 38709251 DOI: 10.1165/rcmb.2023-0015oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/06/2024] [Indexed: 05/07/2024] Open
Abstract
An increased intracellular Ca2+ concentration ([Ca2+]i) is a key trigger for pulmonary arterial smooth muscle cell (PASMC) proliferation and contributes greatly to pulmonary hypertension (PH). Extracellular Ca2+ influx via a store-operated Ca2+ channel, termed store-operated Ca2+ entry (SOCE), is a crucial mechanism for [Ca2+]i increase in PASMCs. Calcium release-activated calcium modulator (Orai) proteins, consisting of three members (Orai1-3), are the main components of the store-operated Ca2+ channel. Sodium houttuyfonate (SH) is a product of the addition reaction of sodium bisulfite and houttuynin and has antibacterial, antiinflammatory, and other properties. In this study, we assessed the contributions of Orai proteins to monocrotaline (MCT)-enhanced SOCE, [Ca2+]i, and cell proliferation in PASMCs and determined the effect of SH on MCT-PH and the underlying mechanism, focusing on Orai proteins, SOCE, and [Ca2+]i in PASMCs. Our results showed that: 1) Orai1 and Orai2 were selectively upregulated in the distal pulmonary arteries and the PASMCs of MCT-PH rats; 2) knockdown of Orai1 or Orai2 reduced SOCE, [Ca2+]i, and cell proliferation without affecting their expression in PASMCs in MCT-PH rats; 3) SH significantly normalized the characteristic parameters in a dose-dependent manner in the MCT-PH rat model; and 4) SH decreased MCT-enhanced SOCE, [Ca2+]i, and PASMC proliferation via Orai1 or Orai2. These results indicate that SH likely exerts its protective role in MCT-PH by inhibiting the Orai1,2-SOCE-[Ca2+]i signaling pathway.
Collapse
MESH Headings
- Animals
- Monocrotaline/toxicity
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/drug therapy
- ORAI1 Protein/metabolism
- ORAI1 Protein/genetics
- Sulfites/pharmacology
- Rats
- Male
- Cell Proliferation/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Pulmonary Artery/pathology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- ORAI2 Protein/metabolism
- Rats, Sprague-Dawley
- Calcium/metabolism
- Calcium Signaling/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Alkanes
Collapse
Affiliation(s)
- Jun Zhang
- School of Medicine, Lishui University, Lishui, China
| | - Fang Dong
- School of Medicine, Lishui University, Lishui, China
| | - Gaojia Ju
- School of Pharmacy, Fujian Medical University, Fuzhou, China; and
| | - Xinli Pan
- School of Medicine, Lishui University, Lishui, China
| | - Xinwu Mao
- Department of Pathology, Lishui Municipal People Hospital, Lishui, China
| | - Xiaowen Zhang
- Department of Pathology, Lishui Municipal People Hospital, Lishui, China
| |
Collapse
|
3
|
Chang Y, Chen YJ, Wang SJ. Sodium Houttuyfonate Prevents Seizures and Neuronal Cell Loss by Maintaining Glutamatergic System Stability in Male Rats with Kainic Acid-Induced Seizures. Biomedicines 2024; 12:1312. [PMID: 38927519 PMCID: PMC11202147 DOI: 10.3390/biomedicines12061312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The present study evaluated the antiseizure and neuroprotective effects of sodium houttuyfonate (SH), a derivative of Houttuynia cordata Thunb. (H. cordata), in a kainic acid (KA)- induced seizure rat model and its underlying mechanism. Sprague Dawley rats were administered normal saline, SH (50 or 100 mg/kg), or carbamazepine (300 mg/kg) by oral gavage for seven consecutive days before the intraperitoneal administration of KA (15 mg/kg). SH showed antiseizure effects at a dose of 100 mg/kg; it prolonged seizure latency and decreased seizure scores. SH also significantly decreased neuronal loss in the hippocampi of KA-treated rats, which was associated with the prevention of glutamate level increase, the upregulation of glutamate reuptake-associated proteins (excitatory amino acid transporters 1-3), glutamate metabolism enzyme glutamine synthetase, the downregulation of the glutamate synthesis enzyme glutaminase, and significant alterations in the expression of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor) and NMDA (N-methyl-D-aspartic acid receptor) receptor subunits in the hippocampus. Furthermore, the effects of SH were similar to those of the antiseizure drug carbamazepine. Therefore, the results of the present study suggest that SH has antiseizure effects on KA-induced seizures, possibly through the prevention of glutamatergic alterations. Our findings suggest that SH is a potential alternative treatment that may prevent seizures by preserving the normal glutamatergic system.
Collapse
Affiliation(s)
- Yi Chang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
| | - Yi-Jun Chen
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan
| |
Collapse
|
4
|
Song H, Lu Z, Zhan K, Datsomor O, Ma X, Yang T, Chen Y, Jiang M, Zhao G. Effects of Glucose Levels on Inflammation and Amino Acid Utilization in Lipopolysaccharide-Induced Bovine Mammary Epithelial Cells. Animals (Basel) 2023; 13:3494. [PMID: 38003112 PMCID: PMC10668840 DOI: 10.3390/ani13223494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Glucose and amino acids are important sources of nutrients in the synthetic milk of dairy cows, and understanding the fate of amino acids is essential to optimize the utilization of amino acids in milk protein synthesis, thereby reducing nutrient inefficiencies during lactation. The purpose of this study was to investigate the effects of LPS and different concentrations of glucose on (1) the expression of inflammatory factors and genes, (2) the glucose metabolism, and (3) amino acid utilization in BMECs. The results showed that there was an interaction (LPS × glucose, p < 0.05) between LPS and glucose content in the inflammatory cytokine genes (IL-6 and TNF-α) and the inflammatory regulatory genes (CXCL2, CXCL8, and CCL5). With the addition of LPS, the HG + LPS group caused downregulated (p < 0.05) expression of IL-6 and TNF-α, compared with the LG + LPS group. Interestingly, compared with the LG + LPS group, the HG + LPS group upregulated (p < 0.05) the expression of CXCL2, CXCL8, and CCL5. LPS supplementation increased (p = 0.056) the consumption of glucose and GLUT1 gene expression (p < 0.05) and tended to increase (p = 0.084) the LDHA gene expression of BMECs under conditions of different concentrations of glucose culture. High glucose content increased (p < 0.001) the consumption of glucose and enhanced (p < 0.05) the GLUT1, HK1, HK2, and LDHA gene expression of BMECs with or without LPS incubation, and there was an interaction (LPS × glucose, p < 0.05) between LPS and glucose concentrations in GLUT1 gene expression. In this study, LPS enhanced (p < 0.05) the consumption of amino acids such as tryptophan, leucine, isoleucine, methionine, valine, histidine, and glutamate, while high levels of glucose decreased (p < 0.01) consumption, except in the case of tyrosine. For histidine, leucine, isoleucine, and valine consumption, there was an interaction (LPS × glucose, p < 0.05) between LPS and glucose levels. Overall, these findings suggest that relatively high glucose concentrations may lessen the LPS-induced BMEC inflammatory response and reduce amino acid consumption, while low glucose concentrations may increase the demand for most amino acids through proinflammatory responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guoqi Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.S.); (Z.L.); (K.Z.); (O.D.); (X.M.); (T.Y.); (Y.C.); (M.J.)
| |
Collapse
|
5
|
Zhao J, Xu L, Lv L, Wang L, Wang X, Liang C, Wang C, Qiu Y, Pei X. Network pharmacology and in vivo and in vitro experiments to determine the mechanism behind the effects of Jiawei Yanghe decoction via TLR4/Myd88/NF-κB against mastitis. Heliyon 2023; 9:e21219. [PMID: 37964842 PMCID: PMC10641157 DOI: 10.1016/j.heliyon.2023.e21219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/15/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Background In the Qing dynasty, Yanghe decoction was as a therapeutic soup for effectively treating chronic inflammatory disorders. It was used as a therapeutic soup for effectively treating chronic inflammatory disorders. In the clinical use of Yanghe decoction, the adjustment of the medication for a variety of inflammatory diseases have therapeutic effect, including mastitis. Therefore, Jiawei Yanghe decoction (JWYHD) may be used to treat inflammatory breast diseases. Methods First, LM- and JWYHD-related components were retrieved from the database and analysis platform. Next, protein-protein interaction networks were constructed to screen the key targets, and gene ontology and Kyoto encyclopedia of gene and genome enrichment analyses were performed to predict the potential biological functions and mechanisms of JWYHD. Simultaneously, the JWYHD samples were collected and analyzed by UPLC-HRMS. Finally, in vivo and in vitro experiments were conducted to construct animal and cellular inflammation models of mastitis with LPS. Pathological changes in the mammary tissues were detected. Enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction, and Western blotting was performed to determine the mRNA and protein levels of inflammatory cytokines and toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor kappa B signaling pathway in the breast tissues to elucidate the potential underlying mechanisms of anti-mastitis effects of JWYHD from different aspects. Results In total, 103 compounds were detected in JWYHD by UPLC-HRMS. 691 active ingredients of JWYHD were screened by network pharmacology, and 47 LM-related targets were identified. The PPI network analysis of the targets revealed the 5 core targets. The KEGG enrichment results established the NF-κB signaling pathways as the core. After JWYHD intervention, low inflammatory enrichment and mild inflammatory damage in breast tissues were observed. Furthermore, JWYHD treatment affected mammary gland inflammatory cytokines and the TLR4/Myd88/NF-κB signaling pathway by considerably reducing the respective protein levels and gene expression; thus, JWYHD alleviated LM symptoms. Conclusions We hypothesized and demonstrated the anti-inflammatory effects of JWYHD by cytokine regulation via the TLR4/Myd88/NF-κB signaling pathway. In conclusion, JWYHD showed its potential in LM treatment and in treating other acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jing Zhao
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Liuyan Xu
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Lingyan Lv
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Liuyi Wang
- Xiamen University, Xiamen, 361102, China
| | - Xuan Wang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Chen Liang
- Dongfang Hospital Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Chunhui Wang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yan Qiu
- Eye Institute of Xiamen University, Xiamen, 361102, China
| | - Xiaohua Pei
- Xiamen Hospital of Beijing University of Traditional Chinese Medicine, Xiamen, 361015, China
| |
Collapse
|
6
|
Li M, Wang C, Xu WT, Zhong X. Sodium houttuyfonate plays a protective role in the asthmatic airway by alleviating the NLRP3-related pyroptosis and Th1/Th2 immune imbalance. Mol Immunol 2023; 160:103-111. [PMID: 37413910 DOI: 10.1016/j.molimm.2023.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Houttuynia cordata is an herbal compound that grows in China and exhibits anti-inflammatory, antiviral, and antioxidant properties. Additionally, pyroptosis is mediated by the activated NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome after stimulation by various inflammatory factors in asthma. OBJECTIVE To investigate the effect of sodium houttuyfonate on NLRP3 inflammasome-related pyroptosis and Th1/Th2 immune imbalance in asthma. METHODS Asthmatic mice model were made, sodium houttuyfonate was injected intraperitoneally to treat the asthmatic mice. Airway reactivity, cell classification and counting in the bronchoalveolar lavage fluid were measured. Hematoxylin-eosin and periodic acid-Schiff staining were used to analyze airway inflammation and mucus hypersecretion. Beas-2b cells were cultured, LPS, NLRP3 antagonist (Mcc950) and sodium houttuyfonate were used to intervene the Beas-2b cells, NLRP3, ASC, caspase-1, GSDMD, IL-1β, and IL-18 expression in the lung tissue and cells were analyzed using immunohistochemistry and western blot, while qRT- PCR was performed to analyze the mRNA contents in the pulmonary and the cells, respectively. Th1 and Th2 cytokines (IL-4 and IFN-γ) were detected with ELISA and the proportions of Th1 and Th2 in splenocyte were detected by flow cytometry. RESULTS Airway reactivity decreased in sodium houttuyfonate group when compared with asthmatic group mice. In the BALF, the numbers of leukocytes, eosinophils, neutrophils, lymphocytes, and macrophages were significantly lower in sodium houttuyfonate group mice than in asthmatic group mice. The proportion of TH1/TH2 cells in spleen cells and IFN-γ /IL-4 in plasma increased in sodium houttuyfonate treatment group when compared with asthma group. Immunohistochemistry, western blot and RT-PCR showed that the expressions of NLRP3, ASC, caspase-1, GSDMD, IL-1β and IL-18 were decreased in the lung tissue of mice after treated with sodium houttuyfonate when compared with those in the asthma group. However, sodium houttuyfonate combined with dexamethasone induced a stronger effect on NLRP3-related pyroptosis and Th1/Th2 immune imbalance compared to sodium houttuyfonate or dexamethasone alone. Beas-2b cells were cultured in vitro, sodium houttuyfonate can alleviate LPS-induced ASC, casepase-1, GSDMD, IL-18 and IL-1β increasing, especially in SH (10 μg/ml) treated group, but the effect less than Mcc950. CONCLUSIONS Sodium houttuyfonate can alleviated NLRP3-related pyroptosis and Th1/Th2 immune imbalance to reduce asthma airway inflammation and airway reactivity.
Collapse
Affiliation(s)
- Miao Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Chao Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wen-Ting Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiao Zhong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
7
|
Wang L, Wang Y, Meng M, Ma N, Wei G, Huo R, Chang G, Shen X. High-concentrate diet elevates histone lactylation mediated by p300/CBP through the upregulation of lactic acid and induces an inflammatory response in mammary gland of dairy cows. Microb Pathog 2023; 180:106135. [PMID: 37172660 DOI: 10.1016/j.micpath.2023.106135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
High-concentrate diet can cause metabolic diseases, such as subacute ruminal acidosis (SARA), and secondary mastitis. To investigate the effect of SARA induced by high-concentrate diet on the lysine lactylation (Kla) and inflammatory responses in the mammary gland of dairy cows and the mechanism between them, we selected twelve mid-lactation Holstein cows with similar body conditions for modelling. They were randomly divided into two groups, fed a low-concentrate diet (LC) and a high-concentrate diet (HC) for 21 days. Our results showed that high-concentrate diet feeding significantly reduced ruminal pH, and the pH was below 5.6 for more than 3 h per day, indicating successful induction of the SARA model. Lactic acid concentrations in mammary gland and plasma were higher in the HC group than that in the LC group. HC diet feeding significantly up-regulated the expression levels of the Pan Kla, H3K18la, p300/CBP and monocarboxylate transporter 1 (MCT1) in the mammary gland. In addition, the mRNA expression levels of inflammatory factors were significantly regulated, including IL-1β, IL-1α, IL-6, IL-8, SAA3, and TNF-α, while the anti-inflammatory factor IL-10 was down-regulated. The mammary gland of HC group was structurally disorganized with incomplete glandular vesicles, with a large number of detached mammary epithelial cells and inflammatory cells infiltration. The up-regulation of TLR4, TNF-α, p-p65, and p-IκBα indicated that the TLR4/NF-κB signaling pathway was activated. In conclusion, this study found that HC diet feeding can induce SARA and increase the concentration of lactic acid in mammary gland and plasma. Then, lactic acid could be transported into cells by MCT1 and up-regulate the expression level of histone lactylation mediated by p300/CBP, and subsequently promote the activation of TLR4/NF-κB signaling pathway, ultimately causing inflammatory responses in the mammary gland.
Collapse
Affiliation(s)
- Lairong Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Yan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Meijuan Meng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Nana Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Guozhen Wei
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Ran Huo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Guangjun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
8
|
Jiang R, Lu B, Feng F, Li Q, Chen X, Cao S, Pan Z, Deng Z, Zhou Y, Liu P, Xu J. The sodium new houttuyfonate suppresses NSCLC via activating pyroptosis through TCONS-14036/miR-1228-5p/PRKCDBP pathway. Cell Prolif 2023:e13402. [PMID: 36696967 DOI: 10.1111/cpr.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/10/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Several studies have suggested the potential value of Houttuynia cordata as a therapeutic agent in lung cancer, but direct evidence is still lacking. The study aimed to determine the regulatory impact of a major H. cordata constituent derivative (sodium new houttuyfonate [SNH]) on lncRNA networks in non-small cell lung cancer (NSCLC) to identify new potential therapeutic targets. After exposing NSCLC cells to SNH, we analysed the following: cell death (via flow cytometry, TUNEL and ASC speck formation assays), immune factors (via ELISA), gene transcription (via RT-qPCR), subcellular localisation (via FISH), gene-gene and gene-protein interactions (via dual-luciferase reporter and RNA immunoprecipitation assays, respectively) and protein expression and distribution (via western blotting and immunocytochemistry or immunohistochemistry). In addition, statistical analysis (via one-way ANOVA or unpaired t-tests) was performed. Exposure to SNH promoted NSCLC cell pyroptosis, concomitant with significant up-regulation of TCONS-14036, a novel lncRNA. Mechanistic research demonstrated that TCONS-14036 functions as a competing endogenous (ce)RNA by sequestering microRNA (miR)-1228-5p, thereby up-regulating PRKCDBP-encoding transcript levels. Indeed, PRKCDBP promoted pyroptosis by activating the NLRP3 inflammasome, resulting in CASP1, IL-1β and GSDMD cleavage. Our findings elucidate the potential molecular mechanisms underlying the ability of SNH to suppress NSCLC growth through activation of pyroptosis via the TCONS-14036/miR-1228-5p/PRKCDBP pathway. Thus, we identify a new potential therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Rilei Jiang
- School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Lu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fanchao Feng
- Pulmonary and Critical Care Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Qian Li
- Medical Department, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaolei Chen
- School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Ma'an Shan Institute of Rehabilitation, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shibing Cao
- Department of General Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhaoxia Pan
- Department of General Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhengming Deng
- Department of General Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Yufei Zhou
- Department of Outpatient, Jiangpu Community Health Service Center, Kunshan, Jiangsu, China
| | - Ping Liu
- E-Institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiatuo Xu
- School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Zhuang T, Hu M, Wang J, Mei L, Zhu X, Zhang H, Jin F, Shao J, Wang T, Wang C, Niu X, Wu D. Sodium houttuyfonate effectively treats acute pulmonary infection of Pseudomonas aeruginosa by affecting immunity and intestinal flora in mice. Front Cell Infect Microbiol 2022; 12:1022511. [PMID: 36530439 PMCID: PMC9751016 DOI: 10.3389/fcimb.2022.1022511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Pseudomonas aeruginosa is a major nosocomial pathogen that frequently causes ventilator-associated pneumonia in specific populations. Sodium houttuyfonate (SH) has shown mild antibacterial activity against P. aeruginosa in vitro, but the mechanism of potent antimicrobial activity of SH against P. aeruginosa infection in vivo remains unclear. Methods Here, using the mouse pneumonia model induced by P. aeruginosa nasal drip to explore the therapeutic effects of SH. Results We found that SH exhibits dose-dependent therapeutic effects of reducing P. aeruginosa burden and systemic inflammation in pneumonia mice. SH ameliorates inflammatory gene expression and production of inflammatory proteins, such as interleukin-6 (IL-6), nuclear factor kappa-B (NF-κB) and toll-like receptor 4 (TLR4), associated with the TLR4/NF-κB pathway in mice with P. aeruginosa pneumonia. Furthermore, we analyzed the intestinal flora of mice and found that compared with the model group, the abundance and diversity of beneficial bacterial flora of SH treatment groups increased significantly, suggesting that SH can improve the intestinal flora disorder caused by inflammation. In addition, SH improves alpha and beta diversity index and reduces species abundance differences of intestinal flora in pneumonia mice. Discussion Taken together, our presented results indicate that SH may effectively alleviate the acute pulmonary infection induced by P. aeruginosa by reducing the disturbance of regulating immunity and intestinal flora in mice.
Collapse
Affiliation(s)
- Tian Zhuang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Mengxue Hu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Jian Wang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China,Pathology Department, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Longfei Mei
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Xiaoxiao Zhu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Haitao Zhang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Feng Jin
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Jing Shao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China,Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Tianming Wang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Changzhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China,Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaojia Niu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China,Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China,*Correspondence: Daqiang Wu, ; Xiaojia Niu,
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China,*Correspondence: Daqiang Wu, ; Xiaojia Niu,
| |
Collapse
|
10
|
The therapeutic potential of Houttuynia cordata: A current review. Heliyon 2022; 8:e10386. [PMID: 36061012 PMCID: PMC9433674 DOI: 10.1016/j.heliyon.2022.e10386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/15/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
|
11
|
Galli C, Sala R, Colangelo MT, Guizzardi S. Tamquam alter idem: formal similarities in a subset of reports on anti-inflammatory compounds in the years 2008–2019. Scientometrics 2022. [DOI: 10.1007/s11192-022-04434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractA literature search on the in vitro testing of anti-inflammatory compounds of natural origin revealed a considerable number of studies adopting a similar template for data reporting in the years up to 2019. Sixty-five such reports appear to have been published between the years 2008 and 2019. Interestingly, this format template was clearly recognizable by a few hallmarks, such as a precise way of plotting cell viability data, extremely consistent endpoints, and the way these were graphically represented. In some instances the similarities extended to some textual features, such as in the case of figure legends. The similarity was so high that chance can be excluded and these studies can be safely assumed to have intentionally followed a template. By 2020, however, no new reports following this format have been published. Although a consistent and reproducible formatting for data reporting may improve report readability, this phenomenon should also be closely scrutinized to assess the rationale why it occurred, the validity of the endpoints that were chosen and why it was then abandoned. The present report reviewed the mean features of this format, traced its origin and its evolution over time, while discussing the limitations of this model.
Collapse
|
12
|
Wang C, Huang CF, Li M. Sodium houttuynia alleviates airway inflammation in asthmatic mice by regulating FoxP3/RORγT expression and reversing Treg/Th17 cell imbalance. Int Immunopharmacol 2021; 103:108487. [PMID: 34959187 DOI: 10.1016/j.intimp.2021.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 11/05/2022]
Abstract
Synthetized from a natural oil of Houttuynia cordata, sodium houttuynia was reported to have anti-inflammatory effects. The present study aimed to investigate whether sodium houttuynia could alleviate the characteristic airway inflammation and Treg/Th17 cell imbalance of asthma in vivo. Experimental mice with neutrophilic asthma were injected with sodium houttuynia or dexamethasone (alone or in combination) intraperitoneally. The airway reactivity was measured, and bronchoalveolar lavage fluid was collected for cell count. Hematoxylin/eosin and periodic acid-Schiff staining were performed to assess pulmonary inflammation and mucus hypersecretion. Immunohistochemical analysis was conducted to determine the expression of IL-10, IL-17A, FoxP3, and RORγT in the lung tissue, and the serum levels of IL-10 and IL-17A were analyzed by ELISA. The proportion of CD4+CD25+FoxP3+ Treg and Th17 cells within the CD4+ T cell subset of splenocytes was analyzed by flow cytometry. FoxP3 and RORγT mRNA and protein expressions in the lung were analyzed by real-time PCR and western blot, respectively. Overall, sodium houttuynia was found to ameliorate the Treg/Th17 cell imbalance and reduce the airway inflammation, hyperresponsiveness, and mucus hypersecretion by increasing the frequency of CD4+CD25+FoxP3+ Treg cells and the secretion of IL-10, while decreasing the proportion of Th17 cells and IL-17A production. Although the regulatory effect of sodium houttuynia was not as good as that achieved with dexamethasone, combination of the two compounds showed improved inhibitory effects on airway hyperresponsiveness, inflammation, and mucus hypersecretion. Hence, sodium houttuynia may be beneficial for the treatment of asthma.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Chen-Feng Huang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Miao Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
13
|
Lu J, Gu B, Lu W, Liu J, Lu J. miR-142-5p regulates lipopolysaccharide-induced bovine epithelial cell proliferation and apoptosis via targeting BAG5. Exp Ther Med 2021; 22:1425. [PMID: 34707706 PMCID: PMC8543189 DOI: 10.3892/etm.2021.10860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Bovine mastitis is a threat to the health of the dairy cow. MicroRNAs (miRs) serve an important role in the progression of bovine mastitis, regulating immune and defense responses. The present study aimed to investigate the possible effects and mechanisms of bovine mastitis underlying miR-142-5p and Bcl-2 associated athanogene 5 (BAG5) in in vitro lipopolysaccharide (LPS)-induced models. Reverse transcription-quantitative PCR and western blotting were performed to determine mRNA and protein expression levels, respectively. ELISAs were conducted to assess the levels of cytokines and an immunofluorescence assay was performed to determine the expression of BAG5. Cell Counting Kit-8, clone formation and 5-ethynyl-2'-deoxyuridine assays were conducted to determine cell viability and proliferation of bovine mammary epithelial MAC-T cells, respectively. Flow cytometry was performed to measure MAC-T cell cycle distribution and apoptosis, and a luciferase assay was conducted to verify whether BAG5 was a target of miR-142-5p. The results indicated that miR-142-5p was upregulated in MAC-T cells treated with LPS compared with the control group. miR-142-5p mimics transfection significantly activated the cytokines TNF-α, IL-1β, IL-6 and IL-8, and significantly increased the expression levels of NF-κB signaling pathway-related proteins in LPS-treated cells. The luciferase activity of MAC-T cells treated with miR-142-5p mimics and BAG5 3'untranslated region wild type decreased, compared with mutant type. By contrast, BAG5 overexpression significantly downregulated the levels of cytokines, including TNF-α, IL-1β, IL-6 and IL-8, in LPS-treated cells. BAG5 overexpression significantly promoted cell proliferation and viability, decreased apoptosis, and regulated Caspase-3, Caspase-9, Bcl-2 and Bax expression in LPS-treated MAC-T cells, which was significantly reversed by transfection with miR-142-5p mimics. In conclusion, the results of the present study suggested that miR-142-5p may promote the progression of bovine mastitis via targeting BAG5. Therefore, the present study provided the foundations for future investigations.
Collapse
Affiliation(s)
- Jinye Lu
- Laboratory of Animal Immunonutrition, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Beibei Gu
- Laboratory of Animal Immunonutrition, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Wei Lu
- Laboratory of Animal Immunonutrition, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Jing Liu
- Laboratory of Animal Immunonutrition, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Jiang Lu
- Laboratory of Animal Immunonutrition, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
14
|
Yao X, Wang S, Chen Y, Sheng L, Li H, You H, Ye J, Zhang Q, Li J. Sodium houttuyfonate attenuates neurological defects after traumatic brain injury in mice via inhibiting NLRP3 inflammasomes. J Biochem Mol Toxicol 2021; 35:e22850. [PMID: 34405489 DOI: 10.1002/jbt.22850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/04/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022]
Abstract
Sodium houttuyfonate (SH) is a chemical compound synthesized by houttuynin and sodium bisulfite. As it has antinflammatory effects, SH has been widely used to treat autoimmune diseases, including post events following traumatic brain injury (TBI). Meanwhile, NOD-like receptor with pyrin domain containing-3 (NLRP3) inflammasomes in microglia may play a central role in TBI. But to date, the intracellular mechanisms involved in the anti-inflammatory effects of SH in TBI remain unknown, especially whether regulating NLRP3. To gain an insight into this possibility, we conducted cell culture and biochemical studies on the effect of SH on NLRP3 inflammasome in microglia. The results showed that SH inhibited TLR4 and NLRP3 inflammasome activation in the microglia cell. In parallel, phosphorylation of ERK and NF-κB p65, which play a key role in NLRP3 inflammasome formation, was decreased. Intraperitoneal injection of SH into TBI mice significantly reduced the modified neurological severity score (mNSS), as well as the degree of microglia apoptosis post-controlled cortical impact (CCI). Immunohistochemistry, Western blot analysis, and reverse-transcription polymerase chain reaction (RT-PCR) revealed that SH markedly reduced NLRP3 inflammasome activation, TLR4 activity, phosphorylation of ERK and NF-κB. Moreover, SH significantly inhibited microglia activation post-CCI, but effectively promoted the astrocyte activation and angiopoiesis. Taken together, our research provides evidence that SH attenuated neurological deficits post TBI through inhibiting NLRP3 inflammasome activation, via influencing the TLR4/NF-κB signaling pathway. These findings explain the intracellular mechanism of the anti-inflammatory activity caused by SH treatment following TBI.
Collapse
Affiliation(s)
- Xiaolong Yao
- Department of Neurosurgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Shengbo Wang
- Department of Neurosurgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Yingchun Chen
- Department of Neurosurgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Liuqing Sheng
- Department of Neurosurgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Huanhuan Li
- Department of Neurosurgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Huichao You
- Department of Neurosurgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Jianfeng Ye
- Department of Neurosurgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Qing Zhang
- Department of Neurosurgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Jun Li
- Department of Neurosurgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| |
Collapse
|
15
|
Jiang K, Yang J, Xue G, Dai A, Wu H. Fisetin Ameliorates the Inflammation and Oxidative Stress in Lipopolysaccharide-Induced Endometritis. J Inflamm Res 2021; 14:2963-2978. [PMID: 34262322 PMCID: PMC8275103 DOI: 10.2147/jir.s314130] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose Fisetin is a natural flavone of polyphenol, which widely exists in many fruits and vegetables and has many pharmacological activities. However, the mechanism involved remains largely unknown. Here, we investigate the mechanisms of fisetin on the inflammatory response and oxidative stress in LPS-induced endometritis model and bovine endometrial epithelial cell line (BEND). Methods The function of fisetin was analyzed by network pharmacology. Effects of increasing doses of fisetin on inflammation and oxidative stress are studied in BALB/c mice with LPS-induced endometritis. The underlying mechanisms of antioxidant activity of fisetin were further explored in LPS-stimulated BEND cells. Results The results showed that fisetin significantly alleviated LPS-induced inflammatory injury and oxidative stress both in vivo and in vitro. Further studies found that fisetin greatly inhibited the LPS stimulated TLR4 expression and nuclear translocation of nuclear factor-κB (NF-κB), thus reducing the pro-inflammatory mediators secretion. Silencing TLR4 reduced LPS-induced inflammatory responses. Moreover, we observed that fisetin evidently decreased ROS production but activated Nrf2/HO-1 pathway in LPS-stimulated BEND cells. To further explore the role of Nrf2 in fisetin-induced HO-1 protein expression, the specific siRNA was used to silence Nrf2 expression. Silencing Nrf2 abrogated the inhibitory effects of fisetin on LPS-induced pro-inflammatory cytokines TNF-α, IL-1β secretion, NADPH oxidase-4 (Nox4) and ROS production. Conclusion In conclusion, fisetin effectively protected against LPS-induced oxidative stress and inflammatory responses which may be closely correlated to inhibition of TLR4-mediated ROS/NF-κB and activation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Kangfeng Jiang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Jing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Guanhong Xue
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Ailing Dai
- College of Life Sciences of Longyan University, Longyan, 364012, Fujian, People's Republic of China
| | - Haichong Wu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| |
Collapse
|
16
|
Liu Y, Tang G, Li J. Effect and Mechanism Study of Sodium Houttuyfonate on Ventilator-Induced Lung Injury by Inhibiting ROS and Inflammation. Yonsei Med J 2021; 62:545-554. [PMID: 34027642 PMCID: PMC8149929 DOI: 10.3349/ymj.2021.62.6.545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/18/2021] [Accepted: 03/16/2021] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Ventilator-induced lung injury (VILI) is a serious complication of mechanical ventilation (MV) that increases morbidity and mortality of patients receiving ventilator treatment. This study aimed to reveal the molecular mechanism of sodium houttuyfonate (SH) on VILI. MATERIALS AND METHODS The male mice VILI model was established by high tidal volume ventilation. The cell model was established by performing cell stretch (CS) experiments on murine respiratory epithelial cells MLE-15. In addition, the JNK activator Anisomycin and JNK inhibitor SP600125 were used on VILI mice and CS-treated cells. RESULTS VILI modeling damaged the structural integrity, increased apoptosis and wet-to-dry (W/D) ratio, enhanced the levels of inflammatory factors, reactive oxygen species (ROS) and malonaldehyde (MDA), and activated JNK pathway in lung tissues. SH gavage alleviated lung injury, decreased apoptosis and W/D ratio, and reduced levels of inflammatory factors, ROS and MDA, and p-JNK/JNK expression of lung tissues in VILI mice. However, activation of JNK wiped the protective effect of SH on VILI. Contrary results were found in experiments with JNK inhibitor SP600125. CONCLUSION SH relieved VILI by inhibiting the ROS-mediated JNK pathway.
Collapse
Affiliation(s)
- Yi Liu
- Department of Anesthesiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Gang Tang
- Department of Anesthesiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinyu Li
- Department of Anesthesiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
17
|
Liu X, Zhong L, Xie J, Sui Y, Li G, Ma Z, Yang L. Sodium houttuyfonate: A review of its antimicrobial, anti-inflammatory and cardiovascular protective effects. Eur J Pharmacol 2021; 902:174110. [PMID: 33901457 DOI: 10.1016/j.ejphar.2021.174110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
There is an almost unlimited interest in searching and developing new drugs, especially when we are in an era that are witnessing more and more emerging pathogens. Natural products from traditional medicines represent a large library for searching lead compounds with novel bioactivities. Sodium houttuyfonate is such one bioactive compound derived from Houttuynia cordata Thunb which has been employed in traditional medicine for treating infectious and inflammatory diseases. Sodium houttuyfonate has demonstrated multiple kinds of pharmacological effects, including antifungal, antibacterial, anti-inflammatory, and cardiovascular protective activities, which are discussed here to provide insights into our understanding of the pharmacological effects of SH and the underlying mechanisms.
Collapse
Affiliation(s)
- Xin Liu
- Eye Center of the Second Hospital of Jilin University, 218# Ziqiang Street, Changchun, Jilin, 130000, China.
| | - Lili Zhong
- Jilin Crovincial Pey Laboratory on Kolecular and Lhemical Genetic, The Second Hospital of Jilin University, 265# Ziqiang Street, Changchun, Jilin, 130000, China.
| | - Jia'nan Xie
- Eye Center of the Second Hospital of Jilin University, 218# Ziqiang Street, Changchun, Jilin, 130000, China.
| | - Yujie Sui
- Jilin Crovincial Pey Laboratory on Kolecular and Lhemical Genetic, The Second Hospital of Jilin University, 265# Ziqiang Street, Changchun, Jilin, 130000, China.
| | - Guangquan Li
- Jilin Crovincial Pey Laboratory on Kolecular and Lhemical Genetic, The Second Hospital of Jilin University, 265# Ziqiang Street, Changchun, Jilin, 130000, China.
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University Changchun 130041, China.
| | - Longfei Yang
- Jilin Crovincial Pey Laboratory on Kolecular and Lhemical Genetic, The Second Hospital of Jilin University, 265# Ziqiang Street, Changchun, Jilin, 130000, China.
| |
Collapse
|
18
|
Khan MZ, Khan A, Xiao J, Ma J, Ma Y, Chen T, Shao D, Cao Z. Overview of Research Development on the Role of NF-κB Signaling in Mastitis. Animals (Basel) 2020; 10:E1625. [PMID: 32927884 PMCID: PMC7552152 DOI: 10.3390/ani10091625] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Mastitis is the inflammation of the mammary gland. Escherichia coli and Staphylococcus aureus are the most common bacteria responsible for mastitis. When mammary epithelial cells are infected by microorganisms, this activates an inflammatory response. The bacterial infection is recognized by innate pattern recognition receptors (PRRs) in the mammary epithelial cells, with the help of Toll-like receptors (TLRs). Upon activation by lipopolysaccharides, a virulent agent of bacteria, the TLRs further trigger nuclear factor-κB (NF-κB) signaling to accelerate its pathogenesis. The NF-κB has an essential role in many biological processes, such as cell survival, immune response, inflammation and development. Therefore, the NF-κB signaling triggered by the TLRs then regulates the transcriptional expression of specific inflammatory mediators to initiate inflammation of the mammary epithelial cells. Thus, any aberrant regulation of NF-κB signaling may lead to many inflammatory diseases, including mastitis. Hence, the inhibiting of NF-κB signaling has potential therapeutic applications in mastitis control strategies. In this review, we highlighted the regulation and function of NF-κB signaling in mastitis. Furthermore, the role of NF-κB signaling for therapeutic purposes in mastitis control has been explored in the current review.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Dafu Shao
- Institute of Agricultural Information of CAAS, Beijing 100081, China;
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| |
Collapse
|
19
|
Liu J, Guo S, Zhang T, Ma X, Wu Z, Jiang K, Zhang X, Guo X, Deng G. MiR-505 as an anti-inflammatory regulator suppresses HMGB1/NF-κB pathway in lipopolysaccharide-mediated endometritis by targeting HMGB1. Int Immunopharmacol 2020; 88:106912. [PMID: 32829092 DOI: 10.1016/j.intimp.2020.106912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/06/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022]
Abstract
Endometritis is characterized by severe inflammation and tissue damage. It is a common clinical disease that causes infertility due to infectious diseases of the reproductive system. MicroRNAs (miRNAs) are the current focus of research on the regulation of the inflammatory process and play a vital role in various inflammatory diseases. The highly conserved miR-505 regulates the mechanism of lipopolysaccharide (LPS) induced endometritis, but the extent to which pro-inflammatory genes are activated remains unclear. The results of this study showed that the expression of miR-505 was significantly down-regulated in mouse endometritis tissue and LPS-stimulated BEND cells. The study also showed that overexpression of miR-505 significantly suppressed the production of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, and this effect was reversed by inhibiting the expression of miR-505. Moreover, miR-505 inhibited the expression of HMGB1 by targeting its 3'-UTR, thereby inhibiting the activation of HMGB1/NF-κB signalling. Taken together, the results of this study further confirmed that miR-505, as an anti-inflammatory agent, regulates the activation of the HMGB1/NF-κB signalling pathway through negative feedback.
Collapse
Affiliation(s)
- Junfeng Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; College of Animal Science, Tarim University, Alar, Xinjiang 843300, People's Republic of China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiaofei Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiuping Zhang
- College of Animal Science, Tarim University, Alar, Xinjiang 843300, People's Republic of China
| | - Xuefeng Guo
- College of Animal Science, Tarim University, Alar, Xinjiang 843300, People's Republic of China.
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
20
|
Liu B, Che Y, Zhang M, Ren W, Xia X, Liu H, Huang T, Huang J, Lei L. IFN-γ Activates the TLR4-CCL5 Signaling Through Reducing Arginine Level, Leading to Enhanced Susceptibility of Bovine Mammary Epithelial Cells to Staphylococcus aureus. Inflammation 2020; 43:2209-2221. [PMID: 32725514 DOI: 10.1007/s10753-020-01288-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dairy cow mastitis is a common bacterial infectious disease which seriously threatens the development of the dairy cow industry. Previous studies have found that increased IFN-γ expression in dairy cows makes dairy cows more susceptible to mastitis, but the underlying mechanism is still not known. In this study, we utilized the in vitro bovine mammary epithelial cells (BMECs) model to explore the molecular mechanism via transcriptome sequencing technology, immunofluorescence, and Western blotting. It was found that IFN-γ promoted the adhesion and invasion of Staphylococcus aureus to BMECs through increasing the expression of TLR4-mediated CCL5 in BMECs. IFN-γ increased the activity of arginase II and reduced the level of arginine in cells, while the addition of arginine inhibited the expression of TLR4 and CCL5. An invasion experiment in mice further validated that IFN-γ treatment significantly increased the bacterial load in mammary glands and blood. However, the colonization and diffusion of S. aureus were interestingly decreased after Arg supplement. These data reveal that increased IFN-γ reduces arginine levels and activates TLR4-CCL5 signaling, leading to enhanced susceptibility of BMECs to S. aureus. Our findings are helpful to understand the pathogenesis of dairy cow mastitis and provide a theoretical basis for improvement of mastitis resistance in dairy cows.
Collapse
Affiliation(s)
- Baijun Liu
- College of Veterinary Medicine, Jilin University, Changchun, Xi'an Road 5333, China
| | - Yanyi Che
- College of Veterinary Medicine, Jilin University, Changchun, Xi'an Road 5333, China
| | - Meina Zhang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Wenbo Ren
- The First Hospital, Jilin University, Xinmin street 71, Changchun, China
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongtao Liu
- College of Veterinary Medicine, Jilin University, Changchun, Xi'an Road 5333, China
| | - Tinghao Huang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Jing Huang
- The First Hospital, Jilin University, Xinmin street 71, Changchun, China.
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, Xi'an Road 5333, China. .,College of Animal Sciences, Yangtze University, Jingzhou, China.
| |
Collapse
|
21
|
Dai H, Coleman DN, Hu L, Martinez-Cortés I, Wang M, Parys C, Shen X, Loor JJ. Methionine and arginine supplementation alter inflammatory and oxidative stress responses during lipopolysaccharide challenge in bovine mammary epithelial cells in vitro. J Dairy Sci 2019; 103:676-689. [PMID: 31733877 DOI: 10.3168/jds.2019-16631] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022]
Abstract
Mastitis, inflammation of the udder, is one of the most common diseases hampering milk yield of dairy cows. Methionine (Met) and arginine (Arg) are key nutrients with potential to regulate inflammation and oxidative stress. The aim of this study was to evaluate the effect of increased supply of Met and Arg on mRNA and protein abundance associated with innate immune response and redox balance during lipopolysaccharide (LPS) stimulation in primary bovine mammary epithelial cells (BMEC). Primary BMEC (n = 4 replicates per treatment) were pre-incubated for 12 h in media with the following amino acid combinations: ideal profile of amino acids (control; Con), increased Met supply (incMet), increased Arg supply (incArg), and increased supply of Met and Arg (incMetArg). Subsequently, cells were challenged with or without LPS (1 µg/mL) and incubated for 6 h. Data were analyzed as a 2 × 2 × 2 factorial using the MIXED procedure of SAS 9.4 (SAS Institute Inc., Cary, NC). The downregulation of SLC36A1 and SLC7A1 mRNA abundance induced by LPS was attenuated in the incArg cultures. Although challenge with LPS led to lower abundance of proteins related to the antioxidant response (NFE2L2, NQO1, GPX1), lower levels of ATG7, and lower mRNA abundance of GPX3, we found little effect in cultures with incMet or incArg. Cultures with incMet, incArg, or incMetArg led to attenuation of the upregulation of SOD2 and NOS2 induced by LPS. Abundance of phosphorylated p65 (RELA) was greater after LPS stimulation, but the response was attenuated in cultures with incMet. The greater ratio of pRELA to total RELA in responses to LPS was also attenuated in cultures with incMetArg. The greater mRNA abundance of the proinflammatory cytokine IL1B induced by LPS was attenuated in cultures with incMet, and the same trend induced by LPS on CXCL2 was also alleviated in cultures with incArg. Overall, the data suggest that greater supply of Met and Arg alleviated the proinflammatory responses triggered by LPS through controlling the abundance of proinflammatory cytokines and chemokines and activity of NF-κB. Little benefit on oxidative stress induced by LPS challenge in BMEC was detected with greater supply of Met and Arg.
Collapse
Affiliation(s)
- H Dai
- College of Veterinary Medicine, Nanjing Agricultural University, 210095 P. R. China; Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - D N Coleman
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - L Hu
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; College of Animal Science and Technology, Yangzhou University, 225009 P. R. China
| | - I Martinez-Cortés
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Agricultural and Animal Production Department, UAM-Xochimilco, Mexico City 04960
| | - M Wang
- College of Animal Science and Technology, Yangzhou University, 225009 P. R. China
| | - C Parys
- Evonik Nutrition and Care GmbH, Hanau-Wolfgang, 63457, Germany
| | - X Shen
- College of Veterinary Medicine, Nanjing Agricultural University, 210095 P. R. China
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
22
|
Yang L, Ji W, Zhong H, Wang L, Zhu X, Zhu J. Anti-tumor effect of volatile oil from Houttuynia cordata Thunb. on HepG2 cells and HepG2 tumor-bearing mice. RSC Adv 2019; 9:31517-31526. [PMID: 35527944 PMCID: PMC9072394 DOI: 10.1039/c9ra06024c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 09/23/2019] [Indexed: 11/21/2022] Open
Abstract
The aim of this paper is to study the anti-tumor mechanism of volatile oil from Houttuynia cordata Thunb. (sodium new houttuyfonate, SNH). In vitro, SNH exhibited a concentration-dependent cytotoxic effect against four human cancer lines (HepG2, A2780, MCF-7, SKOV-3). SNH treatment with different concentrations induced HepG2 cells to exhibit varying degrees of morphological changes in apoptotic features, such as round shape, cell shrinkage and formation of apoptotic body. It was observed that SNH caused the decrease in Bcl-2 mRNA expression and triggered the apoptosis of HepG2 cells. Wound healing assay and RT-PCR results showed that the decrease in the expression level of MMP9 and VEGF was observed in HepG2 cells after treatment with SNH for 48 h, suggesting that the extracellular matrix pathway degradation was involved in the HepG2 cells migration. Moreover, we got an insight into the binding mode of SNH into the MMP9 active site through 3D pharmacophore models. Docking study and molecular dynamics (MD) simulation analysis sheds light on that SNH was completely embedded into the MMP9 active site and formed hydrogen bonds with key catalytic residues of MMP9, including Ala191, His190, Ala189 and Glu227. The prediction of SNH binding interaction energies in the MMP9 was almost in good agreement with the original inhibitor EN140. In vivo experiments, both SNH and cyclophosphamide significantly reduced tumor weights and their tumor inhibitory rates were 50.78% and 82.61% respectively. This study demonstrated that SNH was an apoptosis inducer in HepG2 cells. SNH has four possible functions, that it could induce apoptosis by mitochondria pathway in HepG2 cells, inhibit the tumor growth, regulate Bcl-2 family mRNA expression and effectively subdue migration of hepatocellular carcinoma cells by decreasing the expression of MMP9 and VEGF. Therefore, SNH might be a potential candidate drug for the treatment of hepatocellular carcinoma, which could provide a reference for further clinical research.
Collapse
Affiliation(s)
- Linsong Yang
- Biomedicine Laboratory, School of Pharmaceutical Engineering and Life Science, Changzhou University Changzhou Jiangsu 213164 P. R. China +86-519-86334598 +86-519-86334598
- Changzhou's Key Laboratory of Pharmaceutical Manufacture and Quality Control Engineering Changzhou 213164 P. R. China
| | - Weiwei Ji
- Biomedicine Laboratory, School of Pharmaceutical Engineering and Life Science, Changzhou University Changzhou Jiangsu 213164 P. R. China +86-519-86334598 +86-519-86334598
| | - Hui Zhong
- Biomedicine Laboratory, School of Pharmaceutical Engineering and Life Science, Changzhou University Changzhou Jiangsu 213164 P. R. China +86-519-86334598 +86-519-86334598
| | - Luyao Wang
- Biomedicine Laboratory, School of Pharmaceutical Engineering and Life Science, Changzhou University Changzhou Jiangsu 213164 P. R. China +86-519-86334598 +86-519-86334598
| | - Xiaolin Zhu
- Biomedicine Laboratory, School of Pharmaceutical Engineering and Life Science, Changzhou University Changzhou Jiangsu 213164 P. R. China +86-519-86334598 +86-519-86334598
- Changzhou's Key Laboratory of Pharmaceutical Manufacture and Quality Control Engineering Changzhou 213164 P. R. China
| | - Jie Zhu
- Biomedicine Laboratory, School of Pharmaceutical Engineering and Life Science, Changzhou University Changzhou Jiangsu 213164 P. R. China +86-519-86334598 +86-519-86334598
- Changzhou's Key Laboratory of Pharmaceutical Manufacture and Quality Control Engineering Changzhou 213164 P. R. China
| |
Collapse
|
23
|
Shan Y, Jiang B, Yu J, Wang J, Wang X, Li H, Wang C, Chen J, Sun J. Protective Effect of Schisandra chinensis Polysaccharides Against the Immunological Liver Injury in Mice Based on Nrf2/ARE and TLR4/NF-κB Signaling Pathway. J Med Food 2019; 22:885-895. [DOI: 10.1089/jmf.2018.4377] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yingying Shan
- College of Pharmacy, Beihua University, Jilin, China
| | - Bin Jiang
- Clinical Laboratory, Jilin People's Hospital, Jilin, China
| | - Jiahui Yu
- College of Pharmacy, Beihua University, Jilin, China
| | - Jiaye Wang
- College of Pharmacy, Beihua University, Jilin, China
| | - Xiaoli Wang
- College of Pharmacy, Beihua University, Jilin, China
| | - He Li
- College of Pharmacy, Beihua University, Jilin, China
| | - Chunmei Wang
- College of Pharmacy, Beihua University, Jilin, China
| | | | - Jinghui Sun
- College of Pharmacy, Beihua University, Jilin, China
| |
Collapse
|
24
|
Shi H, Guo X, Yan S, Guo Y, Shi B, Zhao Y. VA inhibits LPS-induced oxidative stress via modulating Nrf2/NF-κB-signalling pathways in bovine mammary epithelial cells. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1619490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Huiyu Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xiaoyu Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Sumei Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yongmei Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanli Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
25
|
Jiang R, Hu C, Li Q, Cheng Z, Gu L, Li H, Guo Y, Li Q, Lu Y, Li K, Chen M, Zhang X. Sodium new houttuyfonate suppresses metastasis in NSCLC cells through the Linc00668/miR-147a/slug axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:155. [PMID: 30971296 PMCID: PMC6458838 DOI: 10.1186/s13046-019-1152-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/22/2019] [Indexed: 12/27/2022]
Abstract
Background As most lung cancer patients present with invasive, metastatic disease, it is vital to investigate anti-metastatic treatments for non-small cell lung cancer (NSCLC). Houttuynia cordata is commonly used as a Chinese anticancer medicine in the clinic, and sodium new houttuyfonate (SNH), a main compound of this herb, has long been found to have antibiotic effects, although its anticancer effects have not been investigated. Here, we tried to address this lack of research from the perspective of the competing endogenous RNA (ceRNA) theory. Methods The effects of SNH on NSCLC cells were analysed with Cell Counting Kit-8 assays and colony formation assays. In addition, transwell assays and wound healing assays were used to determine the effects of SNH on migration and invasion in NSCLC cells. The levels of key genes and proteins were examined by quantitative real-time PCR, western blotting, immunofluorescence staining and IHC staining. Through transcriptome screening and digital gene expression profiling, Linc00668 was identified to be regulated by SNH. Dual-luciferase reporter assays and RNA immunoprecipitation assays verified the binding efficiency between miR-147a and Linc00668 or Slug. Results In the present study, SNH regulated NSCLC cells in multiple ways, the most prominent of which was suppressing the expression of Linc00668, which was indicated to promote migration and invasion in NSCLC cells. Functional studies demonstrated that Linc00668 acted as a ceRNA by sponging miR-147a to further regulate Slug mRNA levels, thereby influencing the progression of the epithelial-mesenchymal transition. Consistently, the results of in vivo animal models showed that SNH depressed Linc00668 and suppressed the metastasis of NSCLC. Conclusions SNH suppressed metastasis of NSCLC cells and the mechanism may involve with the Linc00668/miR-147a/Slug axis. Electronic supplementary material The online version of this article (10.1186/s13046-019-1152-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rilei Jiang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Cheng Hu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qian Li
- Institute of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ziyu Cheng
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ling Gu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Hongxiao Li
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yuanyuan Guo
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qirui Li
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yueyang Lu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ke Li
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Meijuan Chen
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Xu Zhang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China. .,School of Medicine and Life Sciences and Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
26
|
Wang Y, Zhang Y, Chi X, Ma X, Xu W, Shi F, Hu S. Anti-inflammatory mechanism of ginsenoside Rg1: Proteomic analysis of milk from goats with mastitis induced with lipopolysaccharide. Int Immunopharmacol 2019; 71:382-391. [PMID: 30952102 DOI: 10.1016/j.intimp.2019.03.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022]
Abstract
Previous investigation showed that intravenous injection of ginsenoside Rg1 had a therapeutic effect on Escherichia coli lipopolysaccharide-induced mastitis in lactating goats and it protected animals from lipopolysaccharide challenge via toll-like receptor 4 signaling pathway. The present study was to use proteomic approach to explore the anti-inflammatory mechanisms of Rg1. Nine dairy goats were randomly divided into three groups with 3 animals in each: groups 1 and 2 received intra-mammary infusion of lipopolysaccharide and then intravenously injected with saline or Rg1 solution; animals in group 3 were first intramammarily and then intravenously administered saline solution, and served as a control group. Milk whey at 6 h post lipopolysaccharide challenge was prepared for tandem mass tags based quantitative proteomic analysis. The results showed that 791 proteins were totally identified from the whey. Of them, 98 proteins between groups 1 (lipopolysaccharide + Saline) and 3 (Saline + Saline), and 34 proteins between groups 2 (lipopolysaccharide + Rg1) and 1 were significantly different. Group 1 than group 3 had significantly more inflammatory factors such as interleukin 6, acute phase proteins, blood coagulation factors, complement proteins, and oxidative stress markers while these factors were reduced in group 2 treated with Rg1. In addition, proteins in group 2 associated with peroxisome-proliferator-activated receptor γ activation and recovery of milk fat and production were upregulated compared to group 1. Therefore, Rg1 may exert its anti-inflammatory effect on lipopolysaccharide-induced mastitis in goats via modulating expression of proteins relating to peroxisome-proliferator-activated receptor γ and toll-like receptor 4 signaling pathway.
Collapse
Affiliation(s)
- Yuemin Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hang Zhou 310058, PR China.
| | - Yong Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hang Zhou 310058, PR China
| | - Xiaoqing Chi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hang Zhou 310058, PR China
| | - Xiaodan Ma
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hang Zhou 310058, PR China
| | - Wei Xu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hang Zhou 310058, PR China
| | - Fushan Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hang Zhou 310058, PR China
| | - Songhua Hu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hang Zhou 310058, PR China.
| |
Collapse
|
27
|
Liu P, Yang C, Lin S, Zhao G, Zhang T, Guo S, Jiang K, Wu H, Qiu C, Guo M, Deng G. Sodium houttuyfonate inhibits LPS‑induced mastitis in mice via the NF‑κB signalling pathway. Mol Med Rep 2019; 19:2279-2286. [PMID: 30664199 DOI: 10.3892/mmr.2019.9846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/27/2018] [Indexed: 11/06/2022] Open
Abstract
Sodium houttuyfonate (SH) has been indicated to play an important anti‑inflammatory role. Previous studies have confirmed that SH can inhibit the NF‑κB pathway in lipopolysaccharide (LPS)‑induced mastitis in bovine mammary epithelial cells. However, the effects of SH on LPS‑induced mastitis in animals should be verified to further evaluate its actual value. In the present study, the anti‑inflammatory effects of SH were investigated in mouse models and a mouse mammary epithelial cell line. Hematoxylin and eosin staining (H&E) showed that SH therapy significantly alleviated the pathological changes in mammary glands. Myeloperoxidase (MPO) activity analysis demonstrated that SH substantially decreased MPO activity in vivo. RT‑qPCR results showed that SH reduced the expression of interleukin (IL)‑1, IL‑6 and tumor necrosis factor α both in vivo and in vitro. In addition, western blot results indicated that SH suppressed the phosphorylation of nuclear factor kappa‑light‑chain‑enhancer of activated B‑cells (NF‑κB) p65 protein and reduced the degradation of inhibitor of kappa light polypeptide gene enhancer in B‑cells alpha protein in vivo and in vitro. These results demonstrated that SH ameliorates LPS‑induced mastitis by inhibiting the NF‑κB pathway.
Collapse
Affiliation(s)
- Pei Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Chao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Sihui Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Mengyao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
28
|
Shi H, Yan S, Guo Y, Shi B, Guo X. The pre-protective effect of vitamin A on LPS-induced oxidative stress of bovine mammary epithelial cells. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1453757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Huiyu Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Sumei Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yongmei Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaoyu Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
29
|
Zhang WY, Wang H, Qi S, Wang X, Li X, Zhou K, Zhang Y, Gao MQ. CYP1A1 Relieves Lipopolysaccharide-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells. Mediators Inflamm 2018; 2018:4093285. [PMID: 29686530 PMCID: PMC5854104 DOI: 10.1155/2018/4093285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/29/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023] Open
Abstract
The expression of cytochrome P4501A1 (CYP1A1) enzyme is changed in various organs during the host response to inflammation or infection, leading to alterations in the metabolism of endogenous and exogenous compounds. Results of this study showed that CYP1A1 expression was significantly downregulated in the mammary tissue of bovine with mastitis, in inflammatory epithelial cells (INEs) extracted from the tissue, and in lipopolysaccharide- (LPS-) induced INEs compared with their corresponding counterparts. Overexpression of CYP1A1 in bovine mammary epithelial cells alleviated the LPS-induced inhibition of epithelial proliferation, abated the LPS-induced increase of gene expression and protein secretion of inflammatory cytokine tumor necrosis factor-α and interleukin-6, and attenuated the LPS-induced activation of NF-κB signaling. These findings suggest that CYP1A1 has immense potential in the regulation of inflammatory responses in bovine mammary epithelial cells during mastitis and may serve as a useful therapeutic target in mitigating injuries caused by inflammatory overreaction.
Collapse
Affiliation(s)
- Wen-Yao Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shaopei Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xixi Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xueru Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kun Zhou
- Innovation Experimental College, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming-Qing Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
30
|
Wu H, Yang Y, Guo S, Yang J, Jiang K, Zhao G, Qiu C, Deng G. Nuciferine Ameliorates Inflammatory Responses by Inhibiting the TLR4-Mediated Pathway in Lipopolysaccharide-Induced Acute Lung Injury. Front Pharmacol 2017; 8:939. [PMID: 29311940 PMCID: PMC5742629 DOI: 10.3389/fphar.2017.00939] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022] Open
Abstract
Acute lung injury (ALI) is a complex syndrome with sepsis occurring in critical patients, who usually lack effective therapy. Nuciferine is a primary bioactive component extracted from the lotus leaf, and it displays extensive pharmacological functions, including anti-cancer, anti-inflammatory, and antioxidant properties. Nevertheless, the effects of nuciferine on lipopolysaccharide (LPS)-stimulated ALI in mice has not been investigated. ALI of mice stimulated by LPS was used to determine the anti-inflammatory function of nuciferine. The molecular mechanism of nuciferine was performed on RAW264.7 macrophage cells. The results of pathological section, myeloperoxidase activity and lung wet/dry ratio showed that nuciferine alleviated LPS-induced lung injury (p < 0.05). qRT-PCR and ELISA experiments suggested that nuciferine inhibited TNF-α, IL-6, and IL-1β secretion in tissues and RAW264.7 cells but increased IL-10 secretion (p < 0.05). Molecular studies showed that TLR4 expression and nuclear factor (NF)-κB activation were both inhibited by nuciferine treatment (p < 0.05). To further investigate the anti-inflammatory mechanism of nuciferine, TLR4 was knocked down. When TLR4 was silenced, LPS induced the production of IL-1β, and TNF-α was markedly decreased by TLR4-siRNA and nuciferine treatment in LPS-induced RAW264.7 cells (p < 0.05). These results suggested that nuciferine had the ability to protect against LPS-stimulated ALI. Thus, nuciferine may be a potential drug for treating LPS-induced pulmonary inflammation.
Collapse
Affiliation(s)
- Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yaping Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jing Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
31
|
Zhang WB, Zhang HY, Zhang Q, Jiao FZ, Zhang H, Wang LW, Gong ZJ. Glutamine ameliorates lipopolysaccharide-induced cardiac dysfunction by regulating the toll-like receptor 4/mitogen-activated protein kinase/nuclear factor-kB signaling pathway. Exp Ther Med 2017; 14:5825-5832. [PMID: 29285127 PMCID: PMC5740782 DOI: 10.3892/etm.2017.5324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 08/24/2017] [Indexed: 12/19/2022] Open
Abstract
The inflammatory response of sepsis induced by lipopolysaccharide (LPS) may result in irreversible cardiac dysfunction. Glutamine (GLN) has a multitude of pharmacological effects, including anti-inflammatory abilities. Previous studies have reported that GLN attenuated LPS-induced acute lung injury and intestinal mucosal injury. The present study investigated whether GLN exerts potential protective effects on LPS-induced cardiac dysfunction. Male Sprague-Dawley rats were divided into three groups (15 rats per group), including the control (saline-treated), LPS and LPS+GLN groups. Pretreatment with 1 g/kg GLN was provided via gavage for 5 days in the LPS+GLN group, while the control and LPS groups received the same volume of normal saline. On day 6, a cardiac dysfunction model was induced by administration of LPS (10 mg/kg). After 24 h, the cardiac functions of the rats that survived were detected by echocardiography and catheter-based measurements. The serum levels of tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 were detected by enzyme-linked immunosorbent assay, while the mRNA levels of toll-like receptor (TLR)4, TNF-α, IL-1β and IL-6 were examined by reverse transcription-quantitative polymerase chain reaction. The protein expression of TLR4, mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) were also determined by western blot analysis. The results of echocardiography and catheter-based measurements revealed that GLN treatment attenuated cardiac dysfunction. GLN treatment also attenuated the serum and mRNA levels of the pro-inflammatory cytokines. In addition, the protein levels of TLR4, phosphorylated (p-)extracellular signal-regulated kinase, p-c-Jun N-terminal kinase and p-P38 were reduced upon GLN pretreatment. Furthermore, GLN pretreatment resulted in decreased activation of the NF-κB signaling pathway. In conclusion, GLN has a potential therapeutic effect in the protection against cardiac dysfunction mediated by sepsis through regulating the TLR4/MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wen-Bin Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hai-Yue Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fang-Zhou Jiao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hong Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lu-Wen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zuo-Jiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|