1
|
Saddam, Jamal M, Rahman SU, Khan M, Qadeer A, Mahmoud MH. Genomic diversity and nutritional analysis of multi-drug resistant extended spectrum β-lactamase Producing- Klebsiella pneumoniae genes isolated from mastitic cattle milk in district peshawar, Pakistan. Heliyon 2024; 10:e35876. [PMID: 39170179 PMCID: PMC11337036 DOI: 10.1016/j.heliyon.2024.e35876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
The increasing incidence of resistance extended spectrum-beta lactamase (ESBL) producing Klebsiella pneumonia become worldwide issue. The current study aimed to determine the genomic diversity of ESBL-producing K. pneumoniae in milk samples collected from cows with mastitis as well as their antibiotic sensitivity profiles and genetic identification in Peshawar, Pakistan. The california mastitis test (CMT) was initially used to verify the presence for mastitis in 700 collected milk samples. The molecular identification of the 16SrRNA gene confirmed 120/700 (17.14 %) propagation of K. pneumonia. Out of these isolates MDR ESBL-producing isolates were 60/120 (50 %). The lactose were found (M = 3.96 ± 0.28, SD = 2.19), followed by fats (M = 3.12 ± 0.11, SD = 0.90), protein (M = 5.97 ± 0.24, SD = 1.84), sodium (M = 55.74 ± 2.07, SD = 15.81), potassium (M = 138.5 ± 1.53, SD = 11.71), chloride (M = 0.74 ± 0.03, SD = 0.24), calcium (M = 10.27 ± 0.31, SD = 2.42), and chlorine (M = 2.80 ± 0.22, SD = 1.70), respectively. Amikacin (80 %), ceftazidime (71 %), and tetracycline (71 %) were shown to be the most effective antimicrobials against all of the isolates. The occurrence of the blaSHV gene was observed at 56.00 % whereas the blaTEM gene and blaCTX-M gene were 36.00 %, and 30.00 %. The distribution of blaCTX-M subgroup genes was followed by blaCTX-M-1 (38.00 %), blaCTX-M-9 (22.20 %), and blaCTX-M-15 (61.10 %). Co-occurrence of blaCTX-M+ blaSHV was (15.00 %), blaCTX-M+ blaTEM were (6.60 %), and blaSHV + blaTEM were (10.00 %), respectively. The inappropriate, prolonged and common use of antibiotics may apply selective pressure for propagation and the occurrence of resistant isolates.
Collapse
Affiliation(s)
- Saddam
- Department of Microbiology, Abdul Wali Khan University, Marden, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Marden, Pakistan
| | - Sadeeq Ur Rahman
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Muddasir Khan
- Centre of Biotechnology and Microbiology, University of Peshawar, Pakistan
| | - Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Tongzipo Road, Changsha, China
| | - Mohamed H. Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Wei X, Zhong Q, Wang D, Yan Z, Liang H, Zhou Q, Chen F. Epidemiological investigations and multilocus sequence typing of Mycoplasma gallisepticum collected in China. Poult Sci 2023; 102:102930. [PMID: 37716233 PMCID: PMC10507435 DOI: 10.1016/j.psj.2023.102930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 09/18/2023] Open
Abstract
Mycoplasma gallisepticum (MG) is one of the important pathogens in poultry industry and has led to major economic losses. Understanding the epidemiology is crucial to improve the control and eradication program of MG. This study collected 1,250 chicken samples, including trachea and lung, from China in 2022 to investigate the epidemiology of MG. Among the collected samples, 938 samples were positive for MG infection, resulting in an average positive rate of 75.04%. Additionally, 570 samples were positive for both MG and Mycoplasma synoviae (MS) coinfection, with an average positive rate of 45.60%. A total of 183 MG infection positive samples in this study were selected for genotyping, and the multilocus sequence typing (MLST) method based on 7 housekeeping genes was used. As a result, 183 samples belonged to 11 sequence types (STs), with ST-78 being the most prevalent. After BURST analysis, all 183 sequences were divided into group 3. Besides, 119 reference sequences from database and 183 sequences of this study were selected to construct the phylogenetic tree using the neighbor-joining method. The results revealed that the sequences from China, total 196 sequences, were classified into 4 branches. The findings suggest that the MG strains in China exhibit diverse genotypes, which may be related to international trade and the use of live vaccines. Furthermore, we detected the drug susceptibility of 10 isolated strains randomly, which may be helpful to guide the clinical use of drugs to control MG infection.
Collapse
Affiliation(s)
- Xiaona Wei
- Wen's Foodstuff Group Co. Ltd., Xinxing, 527400, Guangdong, China; Yunfu Branch of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527439, China
| | - Qian Zhong
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dingai Wang
- Wen's Foodstuff Group Co. Ltd., Xinxing, 527400, Guangdong, China
| | - Zhuanqiang Yan
- Wen's Foodstuff Group Co. Ltd., Xinxing, 527400, Guangdong, China; Yunfu Branch of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527439, China
| | - Huazhen Liang
- Wen's Foodstuff Group Co. Ltd., Xinxing, 527400, Guangdong, China
| | - Qingfeng Zhou
- Wen's Foodstuff Group Co. Ltd., Xinxing, 527400, Guangdong, China; Yunfu Branch of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527439, China
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Menghwar H, Guo A, Chen Y, Lysnyansky I, Parker AM, Prysliak T, Perez-Casal J. A Core Genome Multilocus Sequence Typing (cgMLST) analysis of Mycoplasma bovis isolates. Vet Microbiol 2022; 273:109532. [DOI: 10.1016/j.vetmic.2022.109532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022]
|
4
|
Wei X, Chen W, Sun Q, Zhong Q, Yan Z, Zhou Q, Cao Y, Chen F, Zhang X. Epidemiological Investigations and Multi-locus Sequence Typing of Mycoplasma synoviae Isolates from Chicken Farms in China. Poult Sci 2022; 102:102006. [PMID: 37099877 PMCID: PMC10165133 DOI: 10.1016/j.psj.2022.102006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/19/2022] Open
Abstract
Mycoplasma synoviae (M. synoviae) is an important pathogen in poultry industry and has led to major economic losses. Understanding the epidemiology is crucial to improve control and eradication program of M. synoviae. In this study, 487 samples suspected with M. synoviae infection were collected from August 2020 to June 2021 in China. Among 487 samples, 324 samples were MS positive, the positive rate was 66.53%, and 104 strains were isolated from 324 positive samples. The multilocus sequence typing (MLST) method based on seven housekeeping genes was used to conduct genotyping 104 M. synoviae strains isolated, and the 104 isolates belonged to 8 sequence types (STs) after MLST genotyping, and ST-34 had the highest proportion. After BURST analysis, all 104 isolates were divided into group 12 with other 56 strains isolated from China. Phylogenetic tree constructed by neighbor-joining method showed that nearly all of Chinese isolates (160 isolates) clustered together and separated from other reference isolates (217 isolates) in the PubMLST database. In conclusion, this study suggested that the M. synoviae strains in China were highly similar and independent of abroad strains.
Collapse
Affiliation(s)
- Xiaona Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd, Yunfu, 527439, China; Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, 527400, Guangdong, China
| | - Wei Chen
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qianjin Sun
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Zhong
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhuanqiang Yan
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd, Yunfu, 527439, China; Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, 527400, Guangdong, China
| | - Qingfeng Zhou
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd, Yunfu, 527439, China; Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, 527400, Guangdong, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangbin Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd, Yunfu, 527439, China; Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, 527400, Guangdong, China.
| |
Collapse
|
5
|
Genome mosaicism in field strains of Mycoplasma bovis as footprints of in-host horizontal chromosomal transfer. Appl Environ Microbiol 2021; 88:e0166121. [PMID: 34669423 DOI: 10.1128/aem.01661-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Horizontal gene transfer was long thought to be marginal in Mollicutes, but the capacity of some of these wall-less bacteria to exchange large chromosomal regions has been recently documented. Mycoplasma chromosomal transfer (MCT) is an unconventional mechanism that relies on the presence of a functional integrative conjugative element (ICE) in at least one partner and involves the horizontal acquisition of small and large chromosomal fragments from any part of the donor genome, which results in progenies composed of an infinitive variety of mosaic genomes. The present study focuses on Mycoplasma bovis, an important pathogen of cattle responsible for major economic losses worldwide. By combining phylogenetic tree reconstructions and detailed comparative genome analyses of 36 isolates collected in Spain (2016-2018) we confirmed the mosaic nature of 16 field isolates and mapped chromosomal transfers exchanged between their hypothetical ancestors. This study provides evidence that MCT can take place in the field, most likely during co-infections by multiple strains. Because mobile genetic elements (MGEs) are classical contributors of genome plasticity, the presence of phages, insertion sequences (ISs) and ICEs was also investigated. Data revealed that these elements are widespread within the M. bovis species and evidenced classical horizontal transfer of phages and ICEs in addition to MCT. These events contribute to wide-genome diversity and reorganization within this species and may have a tremendous impact on diagnostic and disease control. IMPORTANCE Mycoplasma bovis is a major pathogen of cattle with significant detrimental economic and animal welfare on cattle rearing worldwide. Understanding the evolution and the adaptative potential of pathogenic mycoplasma species in the natural host is essential to combating them. In this study, we documented the occurrence of mycoplasma chromosomal transfer, an atypical mechanism of horizontal gene transfer, in field isolates of M. bovis that provide new insights into the evolution of this pathogenic species in their natural host. Despite these events are expected to occur at low frequency, their impact is accountable for genome-wide variety and reorganization within M. bovis species, which may compromise both diagnostic and disease control.
Collapse
|
6
|
Zhang H, Hu G, Lu D, Zhao G, Zhang Y, Zubair M, Chen Y, Hu C, Chen X, Chen J, Chen H, Yang L, Guo A. Comparative Secretome Analyses of Mycoplasma bovis Virulent and Attenuated Strains Revealed MbovP0145 as a Promising Diagnostic Biomarker. Front Vet Sci 2021; 8:666769. [PMID: 34222397 PMCID: PMC8249566 DOI: 10.3389/fvets.2021.666769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Mycoplasmas are successful pathogens both in humans as well as in animals. In cattle, Mycoplasma bovis (M. bovis) is known to be responsible for serious health complications, including pneumonia, mastitis, and arthritis. However, M. bovis pathogenesis remains unclear. Secreted proteins of M. bovis could influence infection and modify host defense signaling pathways after they enter their extracellular space in the host micro-environment. Therefore, this study was aimed to compare the secretomes of M. bovis HB0801 virulent (P1) and attenuated (P150) strains and identify potential pathogenesis-related secreted proteins and biomarkers. The cells of P1 and P150 strains were grown in pleuropneumonia-like organism medium to log phase and then transferred to phosphate-buffered saline for 2 h. Then, the supernatant was analyzed by using label-free quantitative proteomics, and 477 potential secreted proteins were identified. Combined with the bioinformatics prediction, we found that 178 proteins were commonly secreted by the P1 and P150 strains, and 49 of them were encoded by mycoplasmal core genes. Additionally, 79 proteins were found to have a different abundance between the P1 and P150 strains. Among these proteins, 34 were more abundant and uniquely expressed in P1, indicating a possible association with the virulence of M. bovis. Three differentially secreted proteins, MbovP0145, MbovP0725, and MbovP0174, as well as one equally secreted protein, MbovP0481, as positive control and one protein of inner membrane, MbovP0310, as negative control were, respectively, cloned, expressed, and evaluated for antigenicity, subcellular location, and the secretion nature with their mouse antisera by western blotting and colony immunoblotting assay. Among them, MbovP0145 was confirmed to be more secreted by P1 than P150 strain, highly reactive with the antisera from naturally infected and P1 experimentally infected cattle but not with the P150 vaccinated calves, indicating its potential as a diagnostic antigen. In conclusion, these findings may represent the most extensive compilation of potentially secreted proteins in mycoplasma species and the largest number of differentially secreted proteins between the virulent and attenuated M. bovis strains to date and provide new insights into M. bovis pathogenesis and diagnosis.
Collapse
Affiliation(s)
- Hui Zhang
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Guyue Hu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Doukun Lu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yiqiu Zhang
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Zubair
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, China Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, China Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Ruminant Bio-Products of Ministry of China Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Liguo Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, China Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Ruminant Bio-Products of Ministry of China Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Menghwar H, Prysliak T, Perez-Casal J. Phylogeny of Mycoplasma bovis isolates from cattle and bison based on multi locus sequence typing and multiple-locus variable-number tandem repeats. Vet Microbiol 2021; 258:109124. [PMID: 34058524 DOI: 10.1016/j.vetmic.2021.109124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/13/2021] [Indexed: 11/16/2022]
Abstract
Multiple outbreaks of Mycoplasma bovis (M. bovis) have been reported in North American bison (Bison bison) in Alberta, Manitoba, Saskatchewan, Nebraska, New Mexico, Montana, North Dakota, and Kansas. M. bovis is mainly spread through direct contact and disseminated via animal movements thus, reliable genotyping is crucial for epidemiological investigations. The present study describes the genotyping of sixty-one M. bovis strains from cattle and bison isolated from different provinces of Canada by multi locus sequence typing (MLST), and multiple-locus variable-number tandem repeat analysis (MLVA). The sixty M. bovis clinical isolates together with the reference strain PG45 were divided into ten sequence types by MLST. Three novel sequence types were identified. Two isolates, one from cattle and one from bison shared the same sequence type, whereas one strain had the same sequence type as PG45. The cattle isolates could be further subdivided in Clade A with two subclades and bison isolates were grouped in Clade B with two subclades. With the exception of one animal, isolates originating from the same animal had the same sequence type. The sixty-one isolates also formed three main clades with several subclades when analyzed by MLVA. A total of 20 VNTR (Variable number tandem repeats) types were distinguished, 8 in cattle and 12 in bison isolates. The results showed multiple sequence types and genotype populations of M. bovis in bison and cattle. The results may further help to understand the evolution of M. bovis and develop strain specific or sequence type diagnostic tools.
Collapse
Affiliation(s)
- Harish Menghwar
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Rd, Saskatoon, S7N 5E3, Canada.
| | - Tracy Prysliak
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Rd, Saskatoon, S7N 5E3, Canada
| | - Jose Perez-Casal
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Rd, Saskatoon, S7N 5E3, Canada
| |
Collapse
|
8
|
Mycoplasma bovis mbfN Encodes a Novel LRR Lipoprotein That Undergoes Proteolytic Processing and Binds Host Extracellular Matrix Components. J Bacteriol 2020; 203:JB.00154-20. [PMID: 33077633 DOI: 10.1128/jb.00154-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/13/2020] [Indexed: 01/04/2023] Open
Abstract
Mycoplasma bovis causes serious infections in ruminants, leading to huge economic losses. Lipoproteins are key components of the mycoplasma membrane and are believed to function in nutrient acquisition, adherence, enzymatic interactions with the host, and induction of the host's immune response to infection. Many genes of M. bovis have not been assigned functions, in part because of their low sequence similarity with other bacteria, making it difficult to extrapolate gene functions. This study examined functions of a surface-localized leucine-rich repeat (LRR) lipoprotein encoded by mbfN of M. bovis PG45. Homologs of MbfN were detected as 48-kDa peptides by Western blotting in all the strains of M. bovis included in this study, with the predicted 70-kDa full-length polypeptide detected in some strains. Sequence analysis of the gene revealed the absence in some strains of a region encoding the carboxyl-terminal 147 amino acids found in strain PG45, which could account for the variation detected by immunoblotting. In silico analysis of MbfN suggested that it may have an adhesion-related function. In vitro binding assays confirmed MbfN to be a fibronectin and heparin-binding protein. Disruption of mbfN in M. bovis PG45 significantly reduced (P = 0.033) the adherence of M. bovis PG45 to MDBK cells in vitro, demonstrating the role of MbfN as an adhesin.IMPORTANCE Experimental validation of the putative functions of genes in M. bovis will advance our understanding of the basic biology of this economically important pathogen and is crucial in developing prevention strategies. This study demonstrated the extracellular matrix binding ability of a novel immunogenic lipoprotein of M. bovis, and the role of this protein in adhesion by M. bovis suggests that it could play a role in virulence.
Collapse
|
9
|
Multi-locus sequence typing of Mycoplasma bovis to assess its genetic diversity from 2009 to 2018 in Ningxia Hui Autonomous Region, China. BMC Vet Res 2020; 16:454. [PMID: 33228636 PMCID: PMC7686730 DOI: 10.1186/s12917-020-02668-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/06/2020] [Indexed: 12/02/2022] Open
Abstract
Background Mycoplasma bovis (M. bovis) is a highly contagious cattle pathogen spreading worldwide and especially in Ningxia Hui Autonomous Region in China. Results Two types of ST, ST10and ST134, were identified in Ningxia Hui Autonomous Region. Thirty-seven strains belonged to ST10 and 28 strains belonged to ST134. ST134 was a new ST and first found in 2009 and was only widely distributed in Ningxia Hui Autonomous Region at present. The M. bovis ST10 was widely spread in many provinces in China and was widespread in Ningxia Hui Autonomous Region since 2010. It is speculated that the prevalence of M. bovis ST10 in Ningxia Hui Autonomous Region began in 2010. Conclusions This study is the first report on the genetic diversity of M. bovis from 2009 to 2018 in Ningxia Hui Autonomous Region and provides the epidemiological information. These results may help further our understanding of the evolution of M. bovis and provide information that may be useful for the development of novel vaccines.
Collapse
|
10
|
Kumar R, Register K, Christopher-Hennings J, Moroni P, Gioia G, Garcia-Fernandez N, Nelson J, Jelinski MD, Lysnyansky I, Bayles D, Alt D, Scaria J. Population Genomic Analysis of Mycoplasma bovis Elucidates Geographical Variations and Genes associated with Host-Types. Microorganisms 2020; 8:microorganisms8101561. [PMID: 33050495 PMCID: PMC7650767 DOI: 10.3390/microorganisms8101561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
Among more than twenty species belonging to the class Mollecutes, Mycoplasma bovis is the most common cause of bovine mycoplasmosis in North America and Europe. Bovine mycoplasmosis causes significant economic loss in the cattle industry. The number of M. bovis positive herds recently has increased in North America and Europe. Since antibiotic treatment is ineffective and no efficient vaccine is available, M. bovis induced mycoplasmosis is primarily controlled by herd management measures such as the restriction of moving infected animals out of the herds and culling of infected or shedders of M. bovis. To better understand the population structure and genomic factors that may contribute to its transmission, we sequenced 147 M. bovis strains isolated from four different countries viz. USA (n = 121), Canada (n = 22), Israel (n = 3) and Lithuania (n = 1). All except two of the isolates (KRB1 and KRB8) were isolated from two host types i.e., bovine (n = 75) and bison (n = 70). We performed a large-scale comparative analysis of M. bovis genomes by integrating 103 publicly available genomes and our dataset (250 total genomes). Whole genome single nucleotide polymorphism (SNP) based phylogeny using M.agalactiae as an outgroup revealed that M. bovis population structure is composed of five different clades. USA isolates showed a high degree of genomic divergence in comparison to the Australian isolates. Based on host of origin, all the isolates in clade IV was of bovine origin, whereas majority of the isolates in clades III and V was of bison origin. Our comparative genome analysis also revealed that M. bovis has an open pangenome with a large breadth of unexplored diversity of genes. The function based analysis of autogenous vaccine candidates (n = 10) included in this study revealed that their functional diversity does not span the genomic diversity observed in all five clades identified in this study. Our study also found that M. bovis genome harbors a large number of IS elements and their number increases significantly (p = 7.8 × 10−6) as the genome size increases. Collectively, the genome data and the whole genome-based population analysis in this study may help to develop better understanding of M. bovis induced mycoplasmosis in cattle.
Collapse
Affiliation(s)
- Roshan Kumar
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (R.K.); (J.C.-H.); (N.G.-F.); (J.N.)
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD 57007, USA
- P.G. Department of Zoology, Magadh University, Bodh Gaya, Bihar 824234, India
| | - Karen Register
- USDA/ARS/National Animal Disease Center, Ruminant Diseases & Immunology Research Unit, Ames, IA 50010, USA;
| | - Jane Christopher-Hennings
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (R.K.); (J.C.-H.); (N.G.-F.); (J.N.)
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD 57007, USA
| | - Paolo Moroni
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, 240 Farrier Road, Ithaca, NY 14850, USA; (P.M.); (G.G.)
- Dipartimento di Medicina Veterinaria, Via dell’Università, Università degli Studi di Milano, 6, 26900 Lodi LO, Italy
| | - Gloria Gioia
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, 240 Farrier Road, Ithaca, NY 14850, USA; (P.M.); (G.G.)
| | - Nuria Garcia-Fernandez
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (R.K.); (J.C.-H.); (N.G.-F.); (J.N.)
| | - Julia Nelson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (R.K.); (J.C.-H.); (N.G.-F.); (J.N.)
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD 57007, USA
| | - Murray D. Jelinski
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Inna Lysnyansky
- Division of Avian Diseases, Kimron Veterinary Institute, Beit Dagan 50250, Israel;
| | - Darrell Bayles
- USDA/ARS/National Animal Disease Center, Infectious Bacterial Diseases Research Unit, Ames, IA 50010, USA; (D.B.); (D.A.)
| | - David Alt
- USDA/ARS/National Animal Disease Center, Infectious Bacterial Diseases Research Unit, Ames, IA 50010, USA; (D.B.); (D.A.)
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (R.K.); (J.C.-H.); (N.G.-F.); (J.N.)
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD 57007, USA
- Correspondence:
| |
Collapse
|
11
|
Bokma J, Vereecke N, De Bleecker K, Callens J, Ribbens S, Nauwynck H, Haesebrouck F, Theuns S, Boyen F, Pardon B. Phylogenomic analysis of Mycoplasma bovis from Belgian veal, dairy and beef herds. Vet Res 2020; 51:121. [PMID: 32967727 PMCID: PMC7510102 DOI: 10.1186/s13567-020-00848-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
M. bovis is one of the leading causes of respiratory disease and antimicrobial use in cattle. The pathogen is widespread in different cattle industries worldwide, but highest prevalence is found in the veal industry. Knowledge on M. bovis strain distribution over the dairy, beef and veal industries is crucial for the design of effective control and prevention programs, but currently undocumented. Therefore, the present study evaluated the molecular epidemiology and genetic relatedness of M. bovis isolates obtained from Belgian beef, dairy and veal farms, and how these relate to M. bovis strains obtained worldwide. Full genomes of one hundred Belgian M. bovis isolates collected over a 5-year period (2014–2019), obtained from 27 dairy, 38 beef and 29 veal farms, were sequenced by long-read nanopore sequencing. Consensus sequences were used to generate a phylogenetic tree in order to associate genetic clusters with cattle sector, geographical area and year of isolation. The phylogenetic analysis of the Belgian M. bovis isolates resulted in 5 major clusters and 1 outlier. No sector-specific M. bovis clustering was identified. On a world scale, Belgian isolates clustered with Israeli, European and American strains. Different M. bovis clusters circulated for at least 1.5 consecutive years throughout the country, affecting all observed industries. Therefore, the high prevalence in the veal industry is more likely the consequence of frequent purchase from the dairy and beef industry, than that a reservoir of veal specific strains on farm would exist. These results emphasize the importance of biosecurity in M. bovis control and prevention.
Collapse
Affiliation(s)
- Jade Bokma
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Nick Vereecke
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Koen De Bleecker
- DGZ (Animal Health Service-Flanders), Industrielaan 29, 8820, Torhout, Belgium
| | - Jozefien Callens
- DGZ (Animal Health Service-Flanders), Industrielaan 29, 8820, Torhout, Belgium
| | - Stefaan Ribbens
- DGZ (Animal Health Service-Flanders), Industrielaan 29, 8820, Torhout, Belgium
| | - Hans Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Sebastiaan Theuns
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Filip Boyen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Bart Pardon
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
12
|
Liu Y, Xu S, Li M, Zhou M, Huo W, Gao J, Liu G, Kastelic JP, Han B. Molecular characteristics and antibiotic susceptibility profiles of Mycoplasma bovis associated with mastitis on dairy farms in China. Prev Vet Med 2020; 182:105106. [PMID: 32810702 DOI: 10.1016/j.prevetmed.2020.105106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
Mycoplasma bovis (M. bovis) is regarded as the most prevalent mycoplasma species causing bovine mastitis worldwide. This study was conducted with the objectives to: (1) estimate M. bovis prevalence in samples from clinical mastitis and bulk tank milk; (2) assess genetic diversity and population structure of isolates; and (3) determine antibiotic susceptibility of isolates to nine antimicrobials. Milk samples (n = 476), including 450 clinical mastitis and 26 bulk tank milk samples from 23 farms (each with >1000 lactating cows) in 10 provinces of China were collected between May 2018 and September 2019. M. bovis cultured from milk samples were analyzed by multi-locus sequence typing. Minimum inhibitory concentrations of all isolates to nine antimicrobials were determined. Differences in minimum inhibitory concentration values were assessed by Kruskal-Wallis test with Bonferroni correction. The positive proportions of M. bovis in clinical mastitis samples and bulk tank milk samples were 39/450 (8.7%) and 11/26 (42.3%), respectively. Based on multi-locus sequence typing, the 50 isolates were identified as three sequence types, including sequence type 10 and two novel sequence types (newly registered as sequence type 172 and sequence type 173). The most prevalent type, sequence type 172 (31/50, 62.0%), had allelic profile 4, 3, 2, 3, 5, 7, 4. In addition, sequence type 10 with allelic profile 4, 3, 2, 3, 5, 3, 4 had a mid-range prevalence (11/50, 22.0%), whereas sequence type 173 with allelic profile 10, 3, 6, 13, 21, 6, 10 was the least prevalent (8/50, 16.0%). Both sequence type 10 and sequence type 172 were clustered in Clonal Complex 3, with isolates from the USA. M. bovis isolates in this study uniformly had low level minimum inhibitory concentrations to enrofloxacin and tiamulin. Overall variances among isolates were significant (Kruskal-Wallis test) for clindamycin (P = 0.006), erythromycin (P = 0.012) and tylosin (P =0.004). Relative to the sequence type 10 group, there were higher minimum inhibitory concentrations levels for the sequence type 173 group (H = -19.795, P = 0.003, for clindamycin; H = -19.574, P = 0.003, for erythromycin; and H = -18.881, P = 0.003, for tylosin) by post-hoc comparisons using pairwise comparisons of mean ranks following Kruskal-Wallis test with Bonferroni correction. Hence, increasing antimicrobial resistance may have contributed to emergence of novel sequence types. These data provided a baseline for elucidating genetic diversity and antibiotic susceptibility profiles of M. bovis in the main dairy-farming provinces in China.
Collapse
Affiliation(s)
- Yang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Siyu Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Mengyue Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Man Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Wenlin Huo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
13
|
Andrade YMFS, Santos-Junior MN, Rezende IS, Barbosa MS, Amorim AT, Silva ÍBS, Queiroz EC, Bastos BL, Campos GB, Timenetsky J, Marques LM. Multilocus sequence typing characterizes diversity of Ureaplasma diversum strains, and intra-species variability induces different immune response profiles. BMC Vet Res 2020; 16:163. [PMID: 32456681 PMCID: PMC7249313 DOI: 10.1186/s12917-020-02380-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/14/2020] [Indexed: 12/29/2022] Open
Abstract
Background Ureaplasma diversum is a pathogen found in the genital tract of cattle and associated with genital disorders such as infertility, placentitis, abortion, birth of weak calves, low sperm motility, seminal vesiculitis and epididymitis. There are few studies evaluating the genetic diversity of U. diversum strains and their influence on the immune response in cattle. Therefore, to better understand genetic relationships of the pathogenicity of U. diversum, a multilocus sequence typing (MLST) scheme was performed to characterize the ATCC 49782 strain and another 40 isolates recovered from different Brazilian states. Results Primers were designed for housekeeping genes ftsH, polC, rpL22, rpoB, valS and ureA and for virulence genes, phospholipase D (pld), triacylglycerol lipase (tgl), hemolysin (hlyA), MIB-MIP system (mib,mip), MBA (mba), VsA (VsA) and ribose transporter (tABC). PCRs were performed and the targeted gene products were purified and sequenced. Sequence types (STs), and clonal complexes (CCs) were assigned and the phylogenetic relationship was also evaluated. Thus, a total of 19 STs and 4 CCs were studied. Following the molecular analysis, six isolates of U. diversum were selected, inoculated into bovine monocyte/macrophage culture and evaluated for gene expression of the cytokines TNF-α, IL-1, IL-6, IL-10 and IL-17. Differences were detected in the induction of cytokines, especially between isolates 198 and BA78, promoted inflammatory and anti-inflammatory profiles, respectively, and they also differed in virulence factors. Conclusion It was observed that intra-species variability between isolates of U. diversum can induce variations of virulent determinants and, consequently, modulate the expression of the triggered immune response.
Collapse
Affiliation(s)
- Yasmin M F S Andrade
- Universidade Estadual de Santa Cruz, Brazil, Jorge Amado Highway, Km 16, Salobrinho, Ilheus, Bahia, 45662-900, Brazil.,Instituto Gonçalo Muniz, Fundação Oswaldo Cruz, Salvador, Brazil, Waldemar Falcao Street, 121, Candeal, Salvador, Bahia, 40296-710, Brazil
| | - Manoel N Santos-Junior
- Universidade Estadual de Santa Cruz, Brazil, Jorge Amado Highway, Km 16, Salobrinho, Ilheus, Bahia, 45662-900, Brazil
| | - Izadora S Rezende
- Instituto de Ciências Biomedicas, Universidade de Sao Paulo, Brazil, Professor Lineu Prestes Avenue, 2415, Butantã, São Paulo, 05508-900, Brazil
| | - Maysa S Barbosa
- Instituto de Ciências Biomedicas, Universidade de Sao Paulo, Brazil, Professor Lineu Prestes Avenue, 2415, Butantã, São Paulo, 05508-900, Brazil
| | - Aline T Amorim
- Instituto de Ciências Biomedicas, Universidade de Sao Paulo, Brazil, Professor Lineu Prestes Avenue, 2415, Butantã, São Paulo, 05508-900, Brazil
| | - Ícaro B S Silva
- Instituto Gonçalo Muniz, Fundação Oswaldo Cruz, Salvador, Brazil, Waldemar Falcao Street, 121, Candeal, Salvador, Bahia, 40296-710, Brazil
| | - Ellunny C Queiroz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Brazil, Hormindo Barros Street, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Bruno L Bastos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Brazil, Hormindo Barros Street, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Guilherme B Campos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Brazil, Hormindo Barros Street, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Jorge Timenetsky
- Instituto de Ciências Biomedicas, Universidade de Sao Paulo, Brazil, Professor Lineu Prestes Avenue, 2415, Butantã, São Paulo, 05508-900, Brazil
| | - Lucas M Marques
- Universidade Estadual de Santa Cruz, Brazil, Jorge Amado Highway, Km 16, Salobrinho, Ilheus, Bahia, 45662-900, Brazil. .,Instituto de Ciências Biomedicas, Universidade de Sao Paulo, Brazil, Professor Lineu Prestes Avenue, 2415, Butantã, São Paulo, 05508-900, Brazil. .,Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Brazil, Hormindo Barros Street, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil.
| |
Collapse
|
14
|
Register KB, Lysnyansky I, Jelinski MD, Boatwright WD, Waldner M, Bayles DO, Pilo P, Alt DP. Comparison of Two Multilocus Sequence Typing Schemes for Mycoplasma bovis and Revision of the PubMLST Reference Method. J Clin Microbiol 2020; 58:e00283-20. [PMID: 32295891 PMCID: PMC7269390 DOI: 10.1128/jcm.00283-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/07/2020] [Indexed: 12/28/2022] Open
Abstract
Mycoplasma bovis causes pneumonia, pharyngitis, otitis, arthritis, mastitis, and reproductive disorders in cattle and bison. Two multilocus sequence typing (MLST) schemes have been developed for M. bovis, with one serving as the PubMLST reference method, but no comparison of the schemes has been undertaken. Although the PubMLST scheme has proven to be highly discriminatory and informative, the recent discovery of isolates missing one of the typing loci, adh-1, raises concern about its suitability for continued use. The goal of our study was to compare the performance of the two MLST schemes and identify a new reference scheme capable of fully typing all isolates. We evaluated 448 isolates from diverse geographic and anatomic sites that collectively represent cattle, bison, deer, and a goat. The discrimination indexes (DIs) for the PubMLST and the alternative scheme are 0.909 (91 sequence types [STs]) and 0.842 (77 STs), respectively. Although the PubMLST scheme outperformed the alternative scheme, the adh-1 locus must be retired from the PubMLST scheme if it is to be retained as a reference method. The DI obtained using the six remaining PubMLST loci (0.897, 79 STs) fails to reach the benchmark recommended for a reference method (0.900), mandating the addition of a seventh locus. Comparative analysis of genome sequences from the isolates used here identified the dnaA locus from the alternative scheme as the optimal replacement for adh-1 This revised scheme, which will be implemented as the new PubMLST reference method, has a DI of 0.914 and distinguishes 88 STs from the 448 isolates evaluated.
Collapse
Affiliation(s)
- Karen B Register
- Ruminant Diseases and Immunology Research Unit, USDA/Agricultural Research Service/National Animal Disease Center, Ames, Iowa, USA
| | - Inna Lysnyansky
- Department of Avian Diseases, Kimron Veterinary Institute, Beit Dagan, Israel
| | - Murray D Jelinski
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - William D Boatwright
- Ruminant Diseases and Immunology Research Unit, USDA/Agricultural Research Service/National Animal Disease Center, Ames, Iowa, USA
| | - Matthew Waldner
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Darrell O Bayles
- Infectious Bacterial Diseases Research Unit, USDA/Agricultural Research Service/National Animal Disease Center, Ames, Iowa, USA
| | - Paola Pilo
- Department of Infectious Diseases and Pathobiology, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - David P Alt
- Infectious Bacterial Diseases Research Unit, USDA/Agricultural Research Service/National Animal Disease Center, Ames, Iowa, USA
| |
Collapse
|
15
|
Abstract
Mycoplasma bovis is an important component of the bovine respiratory disease complex and recent reports identified that other species are also affected by M bovis. Control of the disease caused by M bovis has been unsuccessful owing to many factors, including the capacity of M bovis to evade and modulate the immune system of the host; the lack of known virulence factors; the absence of a cell wall, which renders antibiotics targeting cell-wall synthesis unusable; and the failure of vaccines to control disease on the field. The current knowledge on virulence and pathogenesis is presented in this review.
Collapse
Affiliation(s)
- Jose Perez-Casal
- Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), 120 Veterinary Road, Saskatoon, Saskatchewan S7N 5E3, Canada.
| |
Collapse
|
16
|
Yair Y, Borovok I, Mikula I, Falk R, Fox LK, Gophna U, Lysnyansky I. Genomics-based epidemiology of bovine Mycoplasma bovis strains in Israel. BMC Genomics 2020; 21:70. [PMID: 31969124 PMCID: PMC6977290 DOI: 10.1186/s12864-020-6460-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023] Open
Abstract
Background Mycoplasma bovis is an important etiologic agent of bovine mycoplasmosis affecting cattle production and animal welfare. In the past in Israel, M. bovis has been most frequently associated with bovine respiratory disease (BRD) and was rarely isolated from mastitis. This situation changed in 2008 when M. bovis-associated mastitis emerged in Israel. The aim of this study was to utilize whole genome sequencing to evaluate the molecular epidemiology and genomic diversity of M. bovis mastitis-associated strains and their genetic relatedness to M. bovis strains isolated from BRD in local feedlot calves and those imported to Israel from different European countries and Australia. Results Phylogeny based on total single nucleotide polymorphism (SNP) analysis of 225 M. bovis genomes clearly showed clustering of isolates on the basis of geographical origin: strains isolated from European countries clustered together and separately from Australian and Chinese isolates, while Israeli isolates were found in the both groups. The dominant genotype was identified among local mastitis-associated M. bovis isolates. This genotype showed a close genomic relatedness to M. bovis strains isolated from calves imported to Israel from Australia, to original Australian M. bovis strains, as well as to strains isolated in China. Conclusions This study represents the first comprehensive high-resolution genome-based epidemiological analysis of M. bovis in Israel and illustrates the possible dissemination of the pathogen across the globe by cattle trade.
Collapse
Affiliation(s)
- Yael Yair
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ilya Borovok
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inna Mikula
- Mycoplasma Unit, Division of Avian Diseases, Kimron Veterinary Institute, POB 12, 50250, Beit Dagan, Israel
| | - Rama Falk
- Israel Dairy Board, Laboratory for Udder Health and Milk Quality, Caesarea, Israel
| | - Larry K Fox
- Washington State University, Pullman, WA, USA
| | - Uri Gophna
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inna Lysnyansky
- Mycoplasma Unit, Division of Avian Diseases, Kimron Veterinary Institute, POB 12, 50250, Beit Dagan, Israel.
| |
Collapse
|
17
|
Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124. [PMID: 30345391 PMCID: PMC6192448 DOI: 10.12688/wellcomeopenres.14826.1] [Citation(s) in RCA: 1741] [Impact Index Per Article: 248.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2018] [Indexed: 12/29/2022] Open
Abstract
The
PubMLST.org website hosts a collection of open-access, curated databases that integrate population sequence data with provenance and phenotype information for over 100 different microbial species and genera. Although the PubMLST website was conceived as part of the development of the first multi-locus sequence typing (MLST) scheme in 1998 the software it uses, the Bacterial Isolate Genome Sequence database (BIGSdb, published in 2010), enables PubMLST to include all levels of sequence data, from single gene sequences up to and including complete, finished genomes. Here we describe developments in the BIGSdb software made from publication to June 2018 and show how the platform realises microbial population genomics for a wide range of applications. The system is based on the gene-by-gene analysis of microbial genomes, with each deposited sequence annotated and curated to identify the genes present and systematically catalogue their variation. Originally intended as a means of characterising isolates with typing schemes, the synthesis of sequences and records of genetic variation with provenance and phenotype data permits highly scalable (whole genome sequence data for tens of thousands of isolates) means of addressing a wide range of functional questions, including: the prediction of antimicrobial resistance; likely cross-reactivity with vaccine antigens; and the functional activities of different variants that lead to key phenotypes. There are no limitations to the number of sequences, genetic loci, allelic variants or schemes (combinations of loci) that can be included, enabling each database to represent an expanding catalogue of the genetic variation of the population in question. In addition to providing web-accessible analyses and links to third-party analysis and visualisation tools, the BIGSdb software includes a RESTful application programming interface (API) that enables access to all the underlying data for third-party applications and data analysis pipelines.
Collapse
Affiliation(s)
- Keith A Jolley
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - James E Bray
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | | |
Collapse
|
18
|
Parker AM, Sheehy PA, Hazelton MS, Bosward KL, House JK. A review of mycoplasma diagnostics in cattle. J Vet Intern Med 2018; 32:1241-1252. [PMID: 29671903 PMCID: PMC5980305 DOI: 10.1111/jvim.15135] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/25/2018] [Accepted: 03/20/2018] [Indexed: 01/21/2023] Open
Abstract
Mycoplasma species have a global distribution causing serious diseases in cattle worldwide including mastitis, arthritis, pneumonia, otitis media and reproductive disorders. Mycoplasma species are typically highly contagious, are capable of causing severe disease, and are difficult infections to resolve requiring rapid and accurate diagnosis to prevent and control disease outbreaks. This review discusses the development and use of different diagnostic methods to identify Mycoplasma species relevant to cattle, with a particular focus on Mycoplasma bovis. Traditionally, the identification and diagnosis of mycoplasma has been performed via microbial culture. More recently, the use of polymerase chain reaction to detect Mycoplasma species from various bovine samples has increased. Polymerase chain reaction has a higher efficiency, specificity, and sensitivity for laboratory diagnosis when compared with conventional culture‐based methods. Several tools are now available for typing Mycoplasma spp. isolates, allowing for genetic characterization in disease outbreak investigations. Serological diagnosis through the use of indirect ELISA allows the detection of antimycoplasma antibodies in sera and milk, with their use demonstrated on individual animal samples as well as BTM samples. While each testing method has strengths and limitations, their combined use provides complementary information, which when interpreted in conjunction with clinical signs and herd history, facilitates pathogen detection, and characterization of the disease status of cattle populations.
Collapse
Affiliation(s)
- Alysia M Parker
- Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, Australia
| | - Paul A Sheehy
- Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, Australia
| | - Mark S Hazelton
- Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, Australia
| | - Katrina L Bosward
- Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, Australia
| | - John K House
- Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, Australia
| |
Collapse
|
19
|
Khan FA, Zhao G, Guo Y, Faisal M, Chao J, Chen X, He C, Menghwar H, Dad R, Zubair M, Hu C, Chen Y, Chen H, Rui Z, Guo A. Proteomics identification and characterization of MbovP730 as a potential DIVA antigen of Mycoplasma bovis. Oncotarget 2017; 9:28322-28336. [PMID: 29983863 PMCID: PMC6033335 DOI: 10.18632/oncotarget.22265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/17/2017] [Indexed: 11/25/2022] Open
Abstract
Mycoplasma bovis (M. bovis) is an important pathogen of cattle. An attenuated live vaccine has recently been developed by this laboratory. However, an effective assay for the differentiation of infected from vaccinated animals (DIVA) is still lacking. Therefore, a comparative immunoproteomics study of the membrane and membrane associated proteins (MAPs) of M. bovis HB0801 and its attenuated strain (M. bovis-150) was aimed to identify potential antigens for DIVA assay. Triton-X-114 fractionated liposoluble proteins of both the virulent and attenuated strains were separated with 2-DE and proteins reacting with sera against the virulent M. bovis strain were detected by MS. A total of 19 differently expressed proteins were identified by MS, among them twelve proteins were detected by MALDI-TOF MS and seven antigenic proteins were identified by short-gun LC-MS/MS. Furthermore, these findings were confirmed at mRNA level by qRT-PCR. The results demonstrated that a putative lipoprotein encoded by functionally unknown gene Mbov_0730 (MbovP730) is a sensitive and specific antigen for DIVA assay. MbovP730 is absent in M. bovis-150 confirmed with Western blot assay and also didn't cross-react with other antisera against common pathogens including infectious bovine rhinotracheitis virus and bovine viral diarrhea virus by iELISA. Thereby rMbovP730-based iELISA was established. For clinical samples, this ELISA provided a sensitivity of 95.7% (95% CI: 90.4%, 98.2%) and specificity was 97.8% (95% CI: 88.4%, 99.6%). Antisera from vaccinated calves (n = 44) were found negative with rMbovP730 based iELISA, while positive with assays based on whole cell proteins of M. bovis-150 and M. bovis HB0801, respectively. In conclusion, this study identified the differential antigen MbovP730 between virulent and attenuated strains and established rMbovP730-based iELISA as a new DIVA method.
Collapse
Affiliation(s)
- Farhan Anwar Khan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Department of Animal Health, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yusi Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Muhammad Faisal
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jin Chao
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xi Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Chenfei He
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Harish Menghwar
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Rahim Dad
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Muhammad Zubair
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Changmin Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, People's Republic of China
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, People's Republic of China
| | - Zhang Rui
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, People's Republic of China.,International Joint Research and Training Centre for Veterinary Epidemiology, Hubei Province, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|