1
|
Zhang M, He T, Wu P, Wang C, Zheng C. Recent advances in the nitrogen cycle involving actinomycetes: Current situation, prospect and challenge. BIORESOURCE TECHNOLOGY 2025; 419:132100. [PMID: 39848446 DOI: 10.1016/j.biortech.2025.132100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/12/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Actinomycetes are essential for sustaining the ecosystem's nitrogen balance and stimulating plant development. In contrast, existing detection and culture techniques for actinomycetes are still limited, making it difficult to fully assess their role in the nitrogen cycle. This review emphasized the advantages of actinomycetes in ecological restoration, outlined the current status and challenges of research on nitrogen cycling by actinomycetes. Special attention was paid to the metabolic pathways and related gene regulatory mechanisms of nitrogen fixation, nitrification, denitrification, dissimilatory nitrate reduction to ammonium, and ammonium assimilation processes. The limitations and strategies of actinomycetes nitrogen metabolic pathways were revealed. In addition, the involvement of carbon, sulphur and phosphorus in the nitrogen cycle of actinomycetes was pointed out. The aim of the review is to improve our understanding of the function of actinomycetes in the nitrogen cycle, which is crucial for enhancing wastewater treatment, ecological preservation, and agricultural output.
Collapse
Affiliation(s)
- Manman Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Educatio, Guizhou University, Guiyang 550025 Guizhou Province, China
| | - Tengxia He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Educatio, Guizhou University, Guiyang 550025 Guizhou Province, China.
| | - Pan Wu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Educatio, Guizhou University, Guiyang 550025 Guizhou Province, China
| | - Cerong Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Educatio, Guizhou University, Guiyang 550025 Guizhou Province, China
| | - Chunxia Zheng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Educatio, Guizhou University, Guiyang 550025 Guizhou Province, China
| |
Collapse
|
2
|
Zeng Q, Pu Y, Liu Q, Li Y, Sun Y, Hao Y, Yang Q, Yang B, Wu Y, Shi S, Gong Z. Effects of decabromodiphenyl ethane (DBDPE) exposure on soil microbial community: Nitrogen cycle, microbial defense and repair and antibiotic resistance genes transfer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124503. [PMID: 39946809 DOI: 10.1016/j.jenvman.2025.124503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
DBDPE, a widely used brominated flame retardant, is frequently detected in soil. However, the toxic effects of DBDPE on soil microbial communities remain unclear. This study investigated the effects of DBDPE on the microbial community shifts, the nitrogen cycle, microbial defense and repair, and antibiotic resistance genes (ARGs) transfer. After 28 days of DBDPE exposure, the soil microbial community was altered. Denitrifier were enriched by 4.07-78.22% under DBDPE exposure concentrations of 100-1000 ng/g. Additionally, the abundances of genes encoding enzymes involved in nitrification and denitrification processes were up-regulated at 100 ng/g DBDPE exposure, and further promoted at 1000 ng/g DBDPE exposure. Meanwhile, DBDPE exposure at concentrations of 100-1000 ng/g stimulated the production of extracellular polymers substances (EPS) (2155-2347 mg/kg), increased the accumulation of reactive oxygen species (ROS) (by 97.95-108.38%), and activated the antioxidant defense system of soil microorganisms, which correspondingly down-regulated catalase (CAT) genes (by 4.65-4.91%), while up-regulated superoxide dismutase (SOD) (by 0.52-2.63%) and glutathione (GSH) genes (by 19.03%-44.61%). Genes related to the tricarboxylic acid (TCA) cycle, glycerophospholipid metabolism, and peptidoglycan biosynthesis were up-regulated, enhancing cell membrane repair in response to DBDPE exposure. Moreover, the increase in DBDPE concentration selectively enriched and promoted the transmission of ARGs. The co-occurrence network of ARGs and mobile genetic elements (MGEs) revealed that DBDPE facilitated the horizontal gene transfer (HGT)-mediated transmission of transposase, ist, and insertion sequence-associated ARGs.
Collapse
Affiliation(s)
- Qianzhi Zeng
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Yunhong Pu
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Qiangwei Liu
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Yuxin Li
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Yanan Sun
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Yiming Hao
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Qing Yang
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Bowen Yang
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Yaxuan Wu
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Shengnan Shi
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China.
| | - Zheng Gong
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China.
| |
Collapse
|
3
|
Saez JM, Raimondo EE, Costa-Gutierrez SB, Aparicio JD, Mosca Angelucci D, Donati E, Polti MA, Tomei MC, Benimeli CS. Enhancing environmental decontamination and sustainable production through synergistic and complementary interactions of actinobacteria and fungi. Heliyon 2025; 11:e42135. [PMID: 39991206 PMCID: PMC11847236 DOI: 10.1016/j.heliyon.2025.e42135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Actinobacteria and fungi are renowned for their metabolic diversity and adaptability to various environments, thus exhibiting significant potential for environmental decontamination and sustainable production. Both actinobacteria and fungi excel in producing diverse secondary metabolites and enzymes, offering valuable tools for industrial and environmental applications. Their ability to detoxify metals and degrade a wide range of organic pollutants, such as pesticides, hydrocarbons, and dyes, positions them as promising candidates for bioremediation. Recent shifts in microbiological sciences emphasize research on mixed microbial populations. Microbial interactions in mixed communities emulate natural processes and yield emergent properties such as stability, robustness, and enhanced metabolism. Co-cultures of actinobacteria and fungi harness a broader range of genes and metabolic capabilities through their distinctive interactions, opening new avenues for developing novel products and/or technologies. This review provides a critical analysis of the present status of knowledge regarding the potential of actinobacteria-fungi co-cultures with a particular focus on novel functionalities and heightened production efficiency. These consortia are promising in several fields, from environmental applications to the biosynthesis of industrially relevant metabolites and enzymes, and enhancements in agricultural production. Although challenges still exist, their potential to address complex problems has been demonstrated and deserves further investigation.
Collapse
Affiliation(s)
- Juliana M. Saez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Enzo E. Raimondo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000, Tucumán, Argentina
| | - Stefanie B. Costa-Gutierrez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Juan D. Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Domenica Mosca Angelucci
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300, CP 10, Monterotondo Stazione, 00015, Rome, Italy
| | - Enrica Donati
- Institute for Biological Systems, National Research Council (CNR-ISB), Via Salaria km 29.300, CP 10, Monterotondo Stazione, 00015, Rome, Italy
| | - Marta A. Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Maria C. Tomei
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300, CP 10, Monterotondo Stazione, 00015, Rome, Italy
| | - Claudia S. Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Belgrano 300, 4700, Catamarca, Argentina
| |
Collapse
|
4
|
Ning X, He L, Long S, Wang S. Bioavailability, migration and driving factors of As, Cd and Pb in calcareous soil amended with organic fertilizer and manganese oxidizing bacteria in arid northwest China. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137528. [PMID: 39933456 DOI: 10.1016/j.jhazmat.2025.137528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Organic matter, serving as a carbon source and energy provider for microbial activities driving manganese oxidation in soil, plays a vital role in the biogeochemical processes underlying the formation of biological manganese oxides (BMOs) and regulating heavy metal (HMs) mobility within soil profiles. The interactions between BMOs and organic matter, their environmental behavior, and practical field applications remain poorly understood. In this study, the remediation effectiveness of organic fertilizer (OF) and manganese-oxidizing bacteria (B) in addressing arsenic (As), cadmium (Cd), and lead (Pb) co-contamination in soil was evaluated, alongside the resulting elemental migration within the soil profile, uptake by maize, and post-remediation soil health. A 400-day field experiment demonstrated that compared with the control, treatment with 1.0 % organic fertilizer promoted the transformation of HMs chemical form from relatively active to stable fraction, significantly controlling Cd and Pb accumulation in maize roots (p < 0.05). Conversely, treatment of B decreased the bioavailability of As by 23.9 % but increased the bioavailability of Cd and Pb by 10.9 % and 20.2 %, respectively. Thus, it significantly increased Pb content in leaves and additional attention should be paid to its feed and food health risks. Under the combined BOF treatment (bacteria + organic fertilizer), high fixation efficiency of As (42.3 %), Cd (16.8 %), and Pb (13.2 %) was achieved through chemical transformation, reduced leaching risks, break the nucleation spatial locations, and the microbial-mineral pump mechanism. BOF treatment also significantly increased the relative abundance of Actinomycetes (+15.8 %) and Proteobacteria (+13.3 %) at the phylum level, suggesting those microorganisms possibly were persistently recruited in biomineralization nucleation. Soil enzyme activity analysis revealed that only treatment B reduced sucrase activity, while urease and catalase activities were not significantly affected in any treatment. Principal component analysis indicated that pH was a critical environmental driver of the biogeochemical cycling of Cd and Pb. Furthermore, maize absorption of nutrients such as iron and phosphorus influenced the transport and mobility of HMs. This study highlights the effectiveness of BOF treatment in simultaneously stabilizing As, Cd, and Pb, while enhancing the adaptability of in-situ remediation materials to the soil, making it a promising strategy for remediating HMs-contaminated soils.
Collapse
Affiliation(s)
- Xiang Ning
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China.
| | - Liang He
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Song Long
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shengli Wang
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
Shu Y, Xie S, Fan H, Duan C, Liu Y, Chen Z. Tea cultivation: facilitating soil organic carbon accumulation and altering soil bacterial community-Leishan County, Guizhou Province, Southwest China. PeerJ 2025; 13:e18683. [PMID: 39872034 PMCID: PMC11771302 DOI: 10.7717/peerj.18683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/19/2024] [Indexed: 01/29/2025] Open
Abstract
Background Camellia sinensis is an important cash crop in southwestern China, with soil organic carbon playing a vital role in soil fertility, and microorganisms contributing significantly to nutrient cycling, thus both of them influencing tea tree growth and development. However, existing studies primarily focus on soil organic carbon, neglecting carbon fractions, and the relationship between soil organic carbon fractions and microbial communities is unclear. Consequently, this study aims to clarify the impact of different tea planting durations on soil organic carbon fractions and microbial communities and identify the main factors influencing microbial communities. It provides a theoretical basis for soil quality evaluation in the study area and scientific guidance for tea plantation management, thus fostering the region's economic sustainability. Methods This study selected tea plantations with different tea planting durations of 3-5 years (Y5), 12-16 years (Y15), 18-22 years (Y20), 40-42 years (Y40), and 48-50 years (Y50), as research subjects and adjacent uncultivated forest without a history of tea planting (CK) served as controls. Soil organic carbon (SOC), particulate organic carbon (POC), easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC), and bacterial diversity were measured in the 0-20 cm and 20-40 cm soil layers, respectively. Results Compared to the adjacent uncultivated forest (CK), the soil organic carbon (SOC), easily oxidizable carbon (EOC), particulate organic carbon (POC), and dissolved organic carbon (DOC) contents in a 40-year tea plantation significantly increased. Nonetheless, the microbial biomass carbon (MBC) content notably decreased. POC/SOC ratios rose with prolonged planting, signifying enhanced conversion of organic carbon into particulate forms. Bacterial community diversity peaked at 15 years and declined by 40 years post-planting and after tea planting dominated by Acidobacteriota, Chloroflexi, Proteobacteria, and Actinobacteriota in the tea garden. FAPROTAX analysis highlighted aerobic and anaerobic chemoheterotrophy, cellulolysis, and nitrogen fixation as key bacterial functions. POC and MBC significantly influenced bacterial community structure. In conclusion, tea plantation soil exhibited the highest organic carbon content at 40 years of tea planting, indicating strong carbon accumulation capacity. However, soil acidification in the tea plantation may affect changes in organic carbon and bacterial community. Therefore, in the tea planting process, it is necessary to improve the management system of tea plantations to ensure the maintenance of a good ecological environment in the tea plantation soil, thus achieving sustainable development of the tea industry in the region.
Collapse
Affiliation(s)
- Yingge Shu
- College of Agronomy, Guizhou University, Guiyang, Guizhou, China
| | - Shan Xie
- College of Agronomy, Guizhou University, Guiyang, Guizhou, China
| | - Hong Fan
- College of Agronomy, Guizhou University, Guiyang, Guizhou, China
| | - Chun Duan
- College of Agronomy, Guizhou University, Guiyang, Guizhou, China
| | - Yuansheng Liu
- College of Agronomy, Guizhou University, Guiyang, Guizhou, China
| | - Zuyong Chen
- College of Agronomy, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Dhahbi S, Lee J, Ryu D, Akinniyi G, Yang I. Actinomycetes studies in Tunisia. Res Microbiol 2025:104279. [PMID: 39827931 DOI: 10.1016/j.resmic.2025.104279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Tunisia, located in North Africa, has a diverse topography along the Mediterranean Sea to the Sahara Desert. These environments encompass oases, rhizosphere soils, desert deposits, saline wetlands, offshore oilrigs, and ancient monument rocks. The country's varied environments have led to the isolation of a multitude of actinomycetes. A phylogenetic analysis based on the 16S rRNA sequences of one hundred isolated actinomycetes strains revealed that the majority belong to the genus Streptomyces. Secondary metabolite studies from these actinomycetes yielded 33 natural products. Notably, compound 12, 3-O-methylviridicatin, exhibited antitumor activity and suppressed HIV expression. This showcases Tunisia's potential for natural product research.
Collapse
Affiliation(s)
- Souleima Dhahbi
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Jeonghee Lee
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Dohee Ryu
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Ganiyu Akinniyi
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Inho Yang
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112, South Korea.
| |
Collapse
|
7
|
Yang G, Juncang T, Zhi W. Composition and functional diversity of soil and water microbial communities in the rice-crab symbiosis system. PLoS One 2025; 20:e0316815. [PMID: 39823489 PMCID: PMC11741653 DOI: 10.1371/journal.pone.0316815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025] Open
Abstract
Rice-crab co-culture is an environmentally friendly agricultural and aquaculture technology with high economic and ecological value. In order to clarify the structure and function of soil and water microbial communities in the rice-crab symbiosis system, the standard rice-crab field with a ring groove was used as the research object. High-throughput sequencing was performed with rice field water samples to analyze the species and abundance differences of soil bacteria and fungi. The results showed that the OTU richness and community diversity in soil were significantly higher than those in water, while there were significant differences in soil microbial diversity and OTU richness in water sediments. The dominant species at the bacterial phylum level were Amoebacteria, Cyanobacteria, Actinomycetes, Synechococcus and Greenbacteria, and at the genus level the dominant species were norank_f_norank_o_Chloroplast, unclassified_f_Rhodobacteraceae, LD29, Cyanobium_PCC-6307, and norank_f_MWH-UniP1_aquatic_group. The dominant species at the fungal phylum level are unclassified_k_Fungi, Ascomycota, Rozellomycota, Phaeomycota and Stenotrophomonas, and at the genus level the dominant species are unclassified_k_Fungi, unclassified_p_Rozellomycota, Metschnikowia, Cladosporium, unclassified_p_Chytridiomycota. The dominant phylum may rely on mechanisms such as organic matter catabolism, secretion of secondary metabolites and phototrophic autotrophy, as predicted by functional gene analysis. The main functional genes are related to metabolic functions, including secondary product metabolism, energy metabolism, and amino acid metabolism.
Collapse
Affiliation(s)
- Guo Yang
- Institute of Civil Engineering and Water Conservancy Engineering, Ningxia University, China
| | - Tian Juncang
- Institute of Civil Engineering and Water Conservancy Engineering, Ningxia University, China
- Ningxia Water Saving Irrigation and Water Resources Control Engineering Technology Research Center, China
- Engineering Research Center of Ministry of Education of Modern Agricultural Water Resources Utilization in Dry Area, China
| | - Wang Zhi
- Department of Earth and Environmental Sciences, California State University, Fresno, CA, United States of America
| |
Collapse
|
8
|
Sayed GHE, Fadel M, Fouad R, Ahmed HM, Hamed AA. Improving natural red pigment production by Streptomyces phaeolivaceus strain GH27 for functionalization of textiles with in silico ADME prediction. BMC Microbiol 2025; 25:19. [PMID: 39806289 PMCID: PMC11726976 DOI: 10.1186/s12866-024-03697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
The red pigment was recovered from the S. phaeolivaceus GH27 isolate, which was molecularly identified using 16S rRNA gene sequencing and submitted to GenBank as OQ145635.1. The ideal growth conditions included 1% (w/v) starch, diammonium citrate, dibasic sodium phosphate, 5% (v/v) inoculum, pH 8, a rotation speed of 150 rpm, a temperature of 37 °C, and an incubation period of 9 days. Using ethanol as a solvent, the red pigment was effectively recovered. Data indicates that pigment content remained steady at 40 and 50 °C. Heating the pigment extract to 60, 70, 80, 90, and 100 °C for one hour results in pigment retention of 98%, 96.5%, 95.5%, 94.6%, and 92.6% of its pigment density, respectively. Studies indicate that the pigment extracts exhibited optimal stability at alkaline pH levels. The findings demonstrate that the red pigment extract has a peak absorbance range of 280-340 nm, with a λmax of 300 nm. GC/MS analysis revealed that the primary components of the pigment extract were linolenic acid methyl ester and oleic acid methyl ester, constituting 26.41% and 25.25%, respectively. Fabrics dyed with extracted red pigment exhibit excellent fastness when using the comprehensive green method. In comparison to conventional and nanotechnological attributes, printed samples exhibit significant color strength without environmental repercussions. The treatment of cotton, wool, and polyester samples suppressed pathogen growth to differing extents. Polyester had the most important inhibitory effects on Staphylococcus aureus (50.03%) and Bacillus cereus (39.49%). The ADME physicochemical properties of the predominant medication were assessed, together with its bioavailability. The radar plot demonstrated ideal parameters for size, polarity, lipophilicity, solubility, and saturation, excluding flexibility. It exhibited intermediate synthetic accessibility, exceptional permeability and absorption, elevated gastrointestinal absorption, and blood-brain barrier penetration; nonetheless, it did not adhere to the medicinal chemistry rule of three.
Collapse
Affiliation(s)
- Gehad H El Sayed
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Center, Dokki, Giza, Egypt.
| | - Mohamed Fadel
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Center, Dokki, Giza, Egypt
| | - Rasha Fouad
- Medicinal and Aromatic Plants Research Department, National Research Centre, Dokki, Giza, Egypt
| | - Hend M Ahmed
- Dyeing, Printing and Intermediate Auxilaries Department, Textile Research and Technology Institute, National Research Center, Dokki, Giza, Egypt
| | - Ahmed A Hamed
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Center, Dokki, Giza, Egypt.
| |
Collapse
|
9
|
Xie J, Chen Y, Huang R, Dai W, Lu J, Wang Z, Gao M. Long-term nitrogen application decreased mineral-associated organic carbon while increasing particulate organic carbon in purple soil in southwest China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123455. [PMID: 39603105 DOI: 10.1016/j.jenvman.2024.123455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
In recent years, anthropogenic activities have increased nitrogen (N) input into terrestrial ecosystems, profoundly impacting soil organic carbon (SOC) sequestration. However, the potential mechanisms through which N affects mineral-associated organic carbon (MAOC) and particulate organic carbon (POC) remain unclear. To address this gap, we conducted a 12-year field trial applying continuous N application (0, 90, 180, 270, and 360 kg N·ha-1) in a maize agro-ecosystem. We assessed plant biomass (yield, straw, and root biomass), microbial properties (enzyme activity, biomass, and diversity), soil chemistry (pH, N availability, and base ions), mineralogy (oxides and silicates), and SOC fractions to elucidate the primary control mechanisms influencing MAOC and POC. Our findings showed that N application increased SOC and POC by 6.56%-10.4% and 43.1%-54.0%, respectively, but decreased MAOC by 7.31%-17.1%. And N application increased plant biomass, but decreased soil pH (pH from 6.7 to 5.6), base ion concentrations (K⁺, Na⁺, Ca2⁺, Mg2⁺), amorphous oxides, and illite content. Partial least squares path model (PLS-PM) and correlation analyses indicated that N application enhances root biomass while increasing microbial decomposition, and ultimately their combined effect increased POC. The decline in MAOC is primarily attributed to soil acidification decreasing the C input from microbial residues, altering mineral composition and diminishing the minerals' capacity to protect SOC. Thus, our study demonstrates that N addition predominantly increases POC through enhanced root biomass, while reducing MAOC by decreasing microbial biomass and weakening mineral protection. These insights provide a deeper understanding of the mechanisms governing SOC fraction dynamics in answer to N inputs in agroecosystems.
Collapse
Affiliation(s)
- Jun Xie
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Yuanxue Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wencai Dai
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Jie Lu
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Zifang Wang
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Ming Gao
- College of Resources and Environment, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
10
|
Al-Awthan YS, Mir R, Alatawi FA, Alatawi AS, Almutairi FM, Khafaga T, Shohdi WM, Fakhry AM, Alharbi BM. Metagenome Analysis Identified Novel Microbial Diversity of Sandy Soils Surrounded by Natural Lakes and Artificial Water Points in King Salman Bin Abdulaziz Royal Natural Reserve, Saudi Arabia. Life (Basel) 2024; 14:1692. [PMID: 39768398 PMCID: PMC11676345 DOI: 10.3390/life14121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Soil microbes play a vital role in the ecosystem as they are able to carry out a number of vital tasks. Additionally, metagenomic studies offer valuable insights into the composition and functional potential of soil microbial communities. Furthermore, analyzing the obtained data can improve agricultural restoration practices and aid in developing more effective environmental management strategies. METHODOLOGY In November 2023, sandy soil samples were collected from ten sites of different geographical areas surrounding natural lakes and artificial water points in the Tubaiq conservation area of King Salman Bin Abdulaziz Royal Natural Reserve (KSRNR), Saudi Arabia. In addition, genomic DNA was extracted from the collected soil samples, and 16S rRNA sequencing was conducted using high-throughput Illumina technology. Several computational analysis tools were used for gene prediction and taxonomic classification of the microbial groups. RESULTS In this study, sandy soil samples from the surroundings of natural and artificial water resources of two distinct natures were used. Based on 16S rRNA sequencing, a total of 24,563 OTUs were detected. The metagenomic information was then categorized into 446 orders, 1036 families, 4102 genera, 213 classes, and 181 phyla. Moreover, the phylum Pseudomonadota was the most dominant microbial community across all samples, representing an average relative abundance of 34%. In addition, Actinomycetes was the most abundant class (26%). The analysis of clustered proteins assigned to COG categories provides a detailed understanding of the functional capabilities and adaptation of microbial communities in soil samples. Amino acid metabolism and transport were the most abundant categories in the soil environment. CONCLUSIONS Metagenome analysis of sandy soils surrounding natural lakes and artificial water points in the Tubaiq conservation area of KSRNR (Saudi Arabia) has unveils rich microbial activity, highlighting the complex interactions and ecological roles of microbial communities in these environments.
Collapse
Affiliation(s)
- Yahya S. Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (F.A.A.); (A.S.A.); (B.M.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Fuad A. Alatawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (F.A.A.); (A.S.A.); (B.M.A.)
| | - Abdulaziz S. Alatawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (F.A.A.); (A.S.A.); (B.M.A.)
| | - Fahad M. Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Tamer Khafaga
- King Salman Bin Abdulaziz Royal Natural Reserve Development Authority, Riyadh 12213, Saudi Arabia; (T.K.); (W.M.S.)
| | - Wael M. Shohdi
- King Salman Bin Abdulaziz Royal Natural Reserve Development Authority, Riyadh 12213, Saudi Arabia; (T.K.); (W.M.S.)
| | - Amal M. Fakhry
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21568, Egypt;
| | - Basmah M. Alharbi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (F.A.A.); (A.S.A.); (B.M.A.)
| |
Collapse
|
11
|
Podar M, Hochanadel LH, Alexander WG, Schadt CW, Pelletier DA. Complete genome sequence of Promicromonospora sp. strain Populi , an actinobacterium isolated from Populus trichocarpa rhizosphere. Microbiol Resour Announc 2024; 13:e0085124. [PMID: 39470237 PMCID: PMC11636086 DOI: 10.1128/mra.00851-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Promicromonospora sp. strain Populi is an actinobacterium isolated from the rhizosphere of a black cottonwood tree, Populus trichocarpa. We completely sequenced its 5.2-Mbp chromosome using Oxford Nanopore long reads and predicted it to encode 4,685 proteins, 3 rRNA operons, and 54 tRNAs and noncoding RNAs.
Collapse
Affiliation(s)
- Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Leah H. Hochanadel
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | | | - Dale A. Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
12
|
Ma W, Ge C, Sun Y, Wang M, Zhou D. Cadmium immobilization by mercapto-palygorskite in alkaline soil: Impacts on soil microbial communities and wheat rhizosphere metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176734. [PMID: 39389138 DOI: 10.1016/j.scitotenv.2024.176734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Weakly alkaline cadmium (Cd) contaminated soil in China has aroused great concern regarding its impact on food security and human health. Mercapto-modified palygorskite (MP) has exhibited good potential to minimize Cd accumulation in wheat, it is imperative to understand the underlying mechanisms within the soil-wheat-microbial system for sustainable development of agrochemicals. This study evaluated the effects of various MP dosages on soil Cd bioavailability, rhizosphere metabolomics, microbial community structure and wheat growth. The results indicated that MP (0.05-0.2 %) application significantly reduced Cd accumulation in wheat grains by 59.0-83.2 % (p < 0.05) and inhibited Cd translocation from root to grain. MP also promoted Mn oxide formation and redistributed the exchangeable Cd to Fe-Mn oxide-bound forms (44.2-109.6 %), thus lowering soil Cd bioavailability by 17.9-32.5 %. Additionally, MP reduced wheat rhizosphere organic acid levels, altered rhizosphere carbon and nitrogen pools, and stimulated the growth of Cd-tolerant Alternaria and Cladosporium, while inhibiting the growth of Fusarium. These findings highlight the potential of MP to modulate soil rhizosphere metabolism and microbial communities, offering a novel perspective on its environmental implications and supporting agrochemical sustainability.
Collapse
Affiliation(s)
- Wenyan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chenghao Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Yuebing Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Min Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
13
|
Zhou J, Liu D, Xu S, Li X, Zheng J, Han F, Zhou S, Na M. Effects of Vegetation Restoration Type on Soil Greenhouse Gas Emissions and Associated Microbial Regulation on the Loess Plateau. Ecol Evol 2024; 14:e70688. [PMID: 39717645 PMCID: PMC11664210 DOI: 10.1002/ece3.70688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/29/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024] Open
Abstract
Investigating responses of soil greenhouse gas (GHG) emissions to vegetation restoration is important for global warming mitigation. On the Loess Plateau, a wide range of vegetation restoration strategies have been implemented to control land degradation. However, the thorough quantification of soil GHG emissions triggered by different modes of vegetation restoration is insufficient. There is still a knowledge gap regarding the regulation of soil biochemical and microbial processing on soil GHG emissions. To do so, we compared responses of soil GHG emissions to various types of vegetation restoration on the Loess Plateau, and investigated the changes in soil properties as well as microbial composition and activities. We found that artificial plantation of Caragana korshinskii had low soil carbon dioxide (CO2) emission, while natural grassland had high CO2 emission. The possible explanations could be related to higher moisture and microbial biomass carbon, and greater nitrogen limitation in natural grassland, which was controlled by actinomycetes and gram-negative bacteria. Natural grassland had low soil nitrous oxide (N2O) emission and high methane (CH4) uptake, whereas Prunus mume had high N2O emission and Medicago sativa had low CH4 uptake, respectively. Soil N2O emission could be driven by fungi and gram-positive bacteria which were affected by N availability and dissolved organic carbon. Soil CH4 consumption was associated with anaerobic bacteria and gram-negative bacteria which were affected by N availability and moisture. These different emissions of CO2, N2O and CH4 generated the largest total GHG emissions for plantation of Prunus mume, but the smallest total GHG emissions for natural grassland and plantation of leguminous Caragana korshinskii. Overall, our findings suggested that the restoration of natural grassland and artificial N-fixing shrubland like Caragana korshinskii should be encouraged to alleviate GHG emissions, with the practical implications for selecting suitable modes and species to improve ecological sustainability in degraded lands.
Collapse
Affiliation(s)
- Jihai Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin co‐Founded by Anhui Province and Ministry of Education, School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
- Collaborative Innovation Center of Southern Modern ForestryNanjing Forestry UniversityNanjingChina
| | - Daokun Liu
- Forestry Technology Center of Wuhu CityWuhuChina
| | - Shangqi Xu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin co‐Founded by Anhui Province and Ministry of Education, School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Xiaoping Li
- Collaborative Innovation Center of Southern Modern ForestryNanjing Forestry UniversityNanjingChina
| | - Jiyong Zheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water ConservationNorthwest A&F UniversityYanglingShaanxiChina
| | - Fengpeng Han
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water ConservationNorthwest A&F UniversityYanglingShaanxiChina
| | - Shoubiao Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin co‐Founded by Anhui Province and Ministry of Education, School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Meng Na
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin co‐Founded by Anhui Province and Ministry of Education, School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| |
Collapse
|
14
|
Pintarič M, Štuhec A, Tratnik E, Langerholc T. Specific Fertilization Practices Reveal Important Insights into the Complex Interaction Between Microbes and Enzymes in Soils of Different Farming Systems. Life (Basel) 2024; 14:1562. [PMID: 39768270 PMCID: PMC11676776 DOI: 10.3390/life14121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
The interaction of microorganisms and their enzyme activity is one of the key indicators for a comprehensive measurement of soil health. The aim of this study was to determine significant correlations between different soil microorganisms and enzyme activities of β-glucosidase, N-acetyl-glucosaminidase, urease, arylamidase, phosphatase, acid phosphatase, alkaline phosphatase, and arylsulfatase after supplementation with standard fertilizer, spent mushroom substrate and composed fertilizer in soils from conventional-integrated, organic and biodynamic farming. Samples were grouped according to the farming system and fertilization for all seasons. The biodynamic farm was the least affected by the different fertilizations, except for standard fertilization. Standard fertilizer caused negative correlations between the actinomycetes and the arylsulfatase in organic and biodynamic farms. The same fertilization affected the actinomycetes/phosphatase relationship differently, regardless of the basic soil structure. Actinomycetes correlated positively with acid phosphatase and urease in conventional-integrated and biodynamic farms after spent mushroom substrate, respectively. Arylamidase activity in relation to total microorganisms responded to fertilization with standard fertilizer and spent mushroom substrate independently of the basic soil structure. Fertilization can influence the soil microbe/enzyme relationships in different soils. Regardless of the basic soil structure, some of these relationships could be important indicators for further studies.
Collapse
Affiliation(s)
- Maša Pintarič
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia; (A.Š.); (E.T.); (T.L.)
| | | | | | | |
Collapse
|
15
|
Huang K, Li L, Wu W, Pu K, Qi W, Qi J, Li M. Enhancing Morchella Mushroom Yield and Quality Through the Amendment of Soil Physicochemical Properties and Microbial Community with Wood Ash. Microorganisms 2024; 12:2406. [PMID: 39770609 PMCID: PMC11676116 DOI: 10.3390/microorganisms12122406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Morchella mushroom is a nutritionally rich and rare edible fungus. The traditional cultivation model, which relies on expanding the cultivation area to meet market demand, is no longer sufficient to address the rapidly growing market demand. Enhancing the yield and quality of Morchella without increasing the cultivation area is an intractable challenge in the development of the Morchella mushroom industry. Against this backdrop, this study investigates the effects of different amounts of wood ash (WA) application on the yield and quality of Morchella, and conducts an in-depth analysis in conjunction with soil physicochemical properties and microbial communities. The results indicate that the application of WA improves both the yield and quality of Morchella, with the highest yield increase observed in the WA2 treatment (4000 kg/hm2), which showed a 118.36% increase compared to the control group (CK). The application of WA also modified the physicochemical properties of the soil, significantly improving the integrated fertility index of the soil (IFI, p < 0.05). The soil microbial community structure was altered by the addition of WA. Redundancy analysis (RDA) revealed that pH and total potassium (TK) were the main environmental factors influencing the bacterial community, while pH, TK, and total nitrogen (TN) were the main factors influencing the fungal community structure. In addition, bacterial community diversity tended to increase with higher WA application rates, whereas fungal community diversity generally showed a decreasing trend. Furthermore, the relative abundance of beneficial microbial communities, such as Acidobacteriota, which promote the growth of Morchella, increased with higher WA application, while the relative abundance of detrimental microbial communities, such as Xanthomonadaceae, decreased. Partial least squares path model (PLS-PM) analysis of external factors affecting Morchella yield and quality indicated that WA application can alter soil physicochemical properties and soil microbial communities, thereby improving Morchella yield and quality. Among these factors, soil fertility was identified as the most important determinant of Morchella yield and quality.
Collapse
Affiliation(s)
- Kai Huang
- Center of Edible Fungi, Northwest A&F University, Yangling 712100, China
- School of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Ling Li
- Center of Edible Fungi, Northwest A&F University, Yangling 712100, China
- School of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Weijun Wu
- Center of Edible Fungi, Northwest A&F University, Yangling 712100, China
| | - Kunlun Pu
- Center of Edible Fungi, Northwest A&F University, Yangling 712100, China
- School of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wei Qi
- Center of Edible Fungi, Northwest A&F University, Yangling 712100, China
| | - Jianzhao Qi
- Center of Edible Fungi, Northwest A&F University, Yangling 712100, China
- School of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Minglei Li
- Center of Edible Fungi, Northwest A&F University, Yangling 712100, China
- School of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
16
|
Alattas H, Glick BR, Murphy DV, Scott C. Harnessing Pseudomonas spp. for sustainable plant crop protection. Front Microbiol 2024; 15:1485197. [PMID: 39640850 PMCID: PMC11617545 DOI: 10.3389/fmicb.2024.1485197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
This review examines the role of Pseudomonas spp. bacteria as biocontrol agents against crop diseases, focusing on their mechanisms of action, efficacy, and potential applications in sustainable agriculture. Pseudomonas spp., ubiquitous in soil ecosystems and root microbiomes, have attracted attention for their ability to suppress phytopathogens and enhance plant health through various mechanisms. These include direct competition for nutrients, production of antimicrobial compounds and volatile organic compounds, competition using type VI secretion systems, and indirect induction of systemic resistance. Our review shows that Pseudomonas strains effectively control a wide range of diseases across diverse plant species, with some strains demonstrating efficacy comparable to chemical fungicides. However, the review also highlights challenges in achieving consistent performance when using Pseudomonas inoculants under field conditions due to various biotic and abiotic factors. Strategies to optimize biocontrol potential, such as formulation techniques, application methods, and integration with other management practices, are discussed. The advantages of Pseudomonas-based biocontrol for sustainable agriculture include reduced reliance on chemical pesticides, enhanced crop productivity, and improved environmental sustainability. Future research directions should focus on understanding the complex interactions within the plant microbiome, optimizing delivery systems, and addressing regulatory hurdles for commercial deployment. This review underscores the significant potential of Pseudomonas spp. in sustainable crop protection while acknowledging the need for further research to fully harness their capabilities in agricultural systems.
Collapse
Affiliation(s)
- Hussain Alattas
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- School of Medical, Molecular, and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Daniel V. Murphy
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Colin Scott
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
17
|
Mamo Z, Abera S, Tafesse M. Taxonomic and functional profiling of microbial community in municipal solid waste dumpsite. World J Microbiol Biotechnol 2024; 40:384. [PMID: 39551884 DOI: 10.1007/s11274-024-04189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024]
Abstract
Understanding the microbial ecology of landfills is crucial for improving waste management strategies and utilizing the potential of these microbial communities for biotechnological applications. This study aimed to conduct a comprehensive taxonomic and functional profiling of the microbial community present in the Addis Ababa municipal solid waste dumpsite using a shotgun metagenomics sequencing approach. The taxonomic analysis of the sample revealed the significant presence of bacteria, with the Actinomycetota (56%), Pseudomonadota (23%), Bacillota (3%), and Chloroflexota (3%) phyla being particularly abundant. The most abundant KEGG categories were carbohydrates metabolism, membrane transport, signal transduction, and amino acid metabolism. The biodegradation and metabolism of xenobiotics, as well as terpenoids and polyketides, were also prevalent. Moreover, the Comprehensive Antibiotic Resistance Database (CARD) identified 52 antibiotic resistance gene (ARG) subtypes belonging to 14 different drug classes, with the highest abundances observed for glycopeptide, phosphonic acid, and multidrug resistance genes. Actinomycetota was the dominant phylum harboring ARGs, followed by Pseudomonadota and Chloroflexota. This study offers valuable insights into the taxonomic and functional diversity of the microbial community in the Addis Ababa municipal solid waste dumpsite. It sheds light on the widespread presence of metabolically versatile microbes, antibiotic resistance genes, mobile genetic elements, and pathogenic bacteria. This understanding can contribute to the creation of efficient waste management strategies and the investigation of possible biotechnological uses for these microbial communities.
Collapse
Affiliation(s)
- Zuriash Mamo
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.
| | - Sewunet Abera
- Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia
| | - Mesfin Tafesse
- Department of Biotechnology (Microbial Biotechnology) Center of Excellence for Biotechnology and Bioprocess, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.
| |
Collapse
|
18
|
Sivalingam P, Easwaran M, Ganapathy D, Basha SF, Poté J. Endophytic Streptomyces: an underexplored source with potential for novel natural drug discovery and development. Arch Microbiol 2024; 206:442. [PMID: 39436470 DOI: 10.1007/s00203-024-04169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/23/2024]
Abstract
Streptomyces has long been considered as key sources for natural compounds discovery in medicine and agriculture. These compounds have been demonstrated to possess different biological activities, including antibiotic, antifungal, anticancer, and antiviral effects. As a result, new pharmaceuticals and antibiotics have been developed. Nevertheless, there have been only a few novel discoveries of bioactive compounds in the past decades from Streptomyces in natural habitats. There is, therefore, now a renewed search for new Streptomyces species having the potential to produce many compounds from one strain in lesser explored natural habitats that may be helpful in fighting diseases. Consequently, modern genome mining approaches are imperative for discovering structurally novel natural compounds with therapeutic applications from untapped sources. In light of these facts, endophytic Streptomyces from plants may offer new avenues for the discovery of bioactive compounds with distinctive chemical properties and activities. In the present review, we present the progress made in isolating natural compounds from endophytic Streptomyces originating from plants which have remarkable antimicrobial, cytotoxic, and antifungal properties. A different of distinct structural classes of compounds were reported from endophytic Streptomyces, such as indolosequiterpene, macrolides, flavones, peptides, naphthoquinones, and terpenoids. Further, we discussed modern genomics progress in finding biosynthetic gene clusters (BGCs) encoding compounds. Overall, this review might provide valuable insights into the potential for novel drug discovery from untapped endophytic Streptomyces in the future.
Collapse
Affiliation(s)
- Periyasamy Sivalingam
- Department of Research and Analytics (DORA), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Maheswaran Easwaran
- Department of Research and Analytics (DORA), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Dhanraj Ganapathy
- Department of Research and Analytics (DORA), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - S Farook Basha
- PG and Research Department of Chemistry, Jamal Mohamed College (Autonomous) (Affiliated to Bharathidasan University), Tamil Nadu, Tiruchchirappalli, 620 020, India
| | - John Poté
- Faculty of Sciences, Earth and Environmental Sciences, Institute F. A. Forel and Institute of Environmental Sciences, University of Geneva, Bd Carl-Vogt 66, CH-1211, Geneva 4, Switzerland
| |
Collapse
|
19
|
Zhang H, Ni T, Liu X, Ma B, Huang T, Zhao D, Li H, Chen K, Liu T. Ignored microbial-induced taste and odor in drinking water reservoirs: Novel insight into actinobacterial community structure, assembly, and odor-producing potential. WATER RESEARCH 2024; 264:122219. [PMID: 39121820 DOI: 10.1016/j.watres.2024.122219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/13/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
The presence of actinobacteria in reservoirs can lead to taste and odor issues, posing potential risks to the safety of drinking water supply. However, the response of actinobacterial communities to environmental factors in drinking water reservoirs remains largely unexplored. To address this gap, this study investigated the community structure and metabolic characteristics of odor-producing actinobacteria in water reservoirs across northern and southern China. The findings revealed differences in the actinobacterial composition across the reservoirs, with Mycobacterium sp. and Candidatus Nanopelagicus being the most prevalent genera. Notably, water temperature, nutrient levels, and metal concentrations were associated with differences in actinobacterial communities, with stochastic processes playing a major role in shaping the community assembly. In addition, three strains of odor-producing actinobacteria were cultured in raw reservoir water, namely Streptomyces antibioticus LJH21, Streptomyces sp. ZEU13, and Streptomyces sp. PQK19, with peak ATP concentrations of 51 nmol/L, 66 nmol/L, and 70 nmol/L, respectively, indicating that odor-producing actinobacteria could remain metabolically active under poor nutrient pressure. Additionally, Streptomyces antibioticus LJH21 produced the highest concentration of geosmin at 24.4 ng/L. These findings enhance our understanding of regional variances and reproductive metabolic mechanisms of actinobacteria in drinking water reservoirs, providing a solid foundation for improving drinking water quality control, especially for taste and odor.
Collapse
Affiliation(s)
- Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tongchao Ni
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daijuan Zhao
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaige Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tao Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
20
|
Meethangdee M, Pathom-aree W. Unraveling growth-promoting potential of plant beneficial actinobacteria on tropical bryophytes. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100284. [PMID: 39957781 PMCID: PMC11827090 DOI: 10.1016/j.crmicr.2024.100284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025] Open
Abstract
Bryophytes are non-vascular plants with dominant gametophyte stage that play vital ecological roles in natural ecosystems. Unfortunately, their populations are currently in decline due to habitat destruction and various anthropogenic activities. The conservation efforts for bryophytes are hampered by their slow growth rates. This study aims to investigate the potential of actinobacteria to promote the growth of bryophytes. In this study, three plant growth-promoting actinobacteria, Dermacoccus abyssi MT1.1T, Micromonospora chalcea CMU55-4 and Streptomyces thermocarboxydus S3 were cultured in International Streptomyces Project medium 2 (ISP2) broth to obtain culture filtrates containing bioactive compounds for enhancing the growth of two bryophyte species, Physcomotrium sphaericum (C. Ludw.) Fürnr and Sphagnum cuspidatulum C. Müll. Interestingly, the incorporation of actinobacterial culture filtrates into 1/16 Murashige and Skoog (MS) medium yielded superior growth performance of P. sphaericum (C. Ludw.) Fürnr and S. cuspidatulum C. Müll, as observed from the thallus height, fresh weight, total chlorophyll contents, and total carotenoid contents compared to control groups. In addition, the inoculation of M. chalcea CMU55-4 on S. cuspidatulum C. Müll grown in sterile peat moss demonstrated the highest values for thallus height, fresh weight, dry weight, total chlorophyll content, and total carotenoid content. All actinobacteria successfully colonized the moss seedlings without any observable negative impacts, indicating beneficial interactions between actinobacteria and bryophytes. This research sheds light on the potential of harnessing plant beneficial actinobacteria to enhance the growth of bryophytes for conservation purposes.
Collapse
Affiliation(s)
- Mathurin Meethangdee
- Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-aree
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
21
|
Dos Santos JDN, Pinto E, Martín J, Vicente F, Reyes F, Lage OM. Unveiling the bioactive potential of Actinomycetota from the Tagus River estuary. Int Microbiol 2024; 27:1357-1372. [PMID: 38236380 PMCID: PMC11452475 DOI: 10.1007/s10123-024-00483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
The increase in global travel and the incorrect and excessive use of antibiotics has led to an unprecedented rise in antibiotic resistance in bacterial and fungal populations. To overcome these problems, novel bioactive natural products must be discovered, which may be found in underexplored environments, such as estuarine habitats. In the present work, estuarine actinomycetotal strains were isolated with conventional and iChip techniques from the Tagus estuary in Alcochete, Portugal, and analysed for different antimicrobial bioactivities. Extracts were produced from the isolated cultures and tested for bioactivity against Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922, Aspergillus fumigatus ATCC 240305, Candida albicans ATCC 10231 and Trichophyton rubrum FF5. Furthermore, bioactive extracts were subjected to dereplication by high-performance liquid chromatography (HPLC) and high-resolution mass spectrometry (HRMS) to putatively identify their chemical components. In total, 105 isolates belonging to 3 genera were obtained. One which was isolated, MTZ3.1 T, represents a described novel taxon for which the name Streptomyces meridianus was proposed. Regarding the bioactivity testing, extracts from 12 strains proved to be active against S. aureus, 2 against E. coli, 4 against A. fumigatus, 3 against C. albicans and 10 against T. rubrum. Dereplication of bioactive extracts showed the presence of 28 known bioactive molecules, 35 hits have one or more possible matches in the DNP and 18 undescribed ones. These results showed that the isolated bacteria might be the source of new bioactive natural products.
Collapse
Affiliation(s)
- José Diogo Neves Dos Santos
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, S/N, 4169-007, Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - Eugénia Pinto
- Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Jesús Martín
- Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Fundación MEDINA, Avenida del Conocimiento, 34 Parque Tecnológico de Ciencias de La Salud, 18016, Granada, Spain
| | - Francisca Vicente
- Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Fundación MEDINA, Avenida del Conocimiento, 34 Parque Tecnológico de Ciencias de La Salud, 18016, Granada, Spain
| | - Fernando Reyes
- Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Fundación MEDINA, Avenida del Conocimiento, 34 Parque Tecnológico de Ciencias de La Salud, 18016, Granada, Spain
| | - Olga Maria Lage
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, S/N, 4169-007, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| |
Collapse
|
22
|
Hyun KA, Xu Y, Boo KH, Hyun CG. 1-Acetyl-β-Carboline from a Jeju Gotjawal Strain Lentzea sp. JNUCC 0626 and Its Melanogenic Stimulating Activity in B16F10 Melanoma Cells. Molecules 2024; 29:4586. [PMID: 39407516 PMCID: PMC11478057 DOI: 10.3390/molecules29194586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
The genus Lentzea is a prolific source of bioactive and structurally diverse secondary metabolites. We isolated a novel strain, Lentzea sp. JNUCC 0626, from Hwasun Gotjawal on Jeju Island, Korea. Based on 16S rRNA partial gene sequence analysis, strain JNUCC 0626 is closely related to Lentzea isolaginshaensis NX62 (99.41% similarity), Lentzea pudingi DHS C021 (99.31%), and Lentzea cavernae SYSU K10001 (99.26%). From the fermentation broth of JNUCC 0626, we isolated 1-acetyl-β-carboline, whose structure was established using IR, HR-ESI-MS, and 1D- and 2D-NMR techniques. 1-acetyl-β-carboline was found to activate melanogenesis in mouse B16F10 cells without cytotoxicity at concentrations up to 50 μM. At this concentration, the compound increased melanin content by 27.44% and tyrosinase activity by 240.64% compared to the control, by upregulating key melanogenic enzymes, including tyrosinase, TRP-1, TRP-2, and microphthalmia-associated transcription factor (MITF), a central regulator of melanogenesis. In addition, 1-acetyl-β-carboline significantly inhibited ERK phosphorylation, reducing it by 20.79% at a concentration of 12.5 μM and by 25.63% at 25 μM. This inhibition supports the hypothesis that 1-acetyl-β-carboline enhances melanin synthesis by upregulating MITF and melanogenic enzymes via the ERK signaling pathway. This study aimed to isolate and identify 1-acetyl-β-carboline from a novel strain of Lentzea sp. JNUCC 0626, discovered in Gotjawal, Jeju Island, and to evaluate its effect on melanin production in B16F10 melanoma cells. Skin irritation tests on 32 subjects confirmed its safety for topical use, and the findings suggest that 1-acetyl-β-carboline, which enhances melanogenesis without cytotoxicity, holds promise as a therapeutic agent for hypopigmentation-related conditions or as a cosmetic ingredient.
Collapse
Affiliation(s)
- Kyung-A Hyun
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Republic of Korea;
| | - Yang Xu
- Department of Beauty and Cosmetology, Jeju Inside Agency and Cosmetic Science Center, Jeju National University, Jeju 63243, Republic of Korea;
| | - Kyung-Hwan Boo
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Republic of Korea;
| | - Chang-Gu Hyun
- Department of Beauty and Cosmetology, Jeju Inside Agency and Cosmetic Science Center, Jeju National University, Jeju 63243, Republic of Korea;
| |
Collapse
|
23
|
Liu Y, Yang Z, Zhang L, Wan H, Deng F, Zhao Z, Wang J. Characteristics of Bacterial Community Structure and Function in Artificial Soil Prepared Using Red Mud and Phosphogypsum. Microorganisms 2024; 12:1886. [PMID: 39338562 PMCID: PMC11434353 DOI: 10.3390/microorganisms12091886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The preparation of artificial soil is a potential cooperative resource utilization scheme for red mud and phosphogypsum on a large scale, with a low cost and simple operation. The characteristics of the bacterial community structure and function in three artificial soils were systematically studied for the first time. Relatively rich bacterial communities were formed in the artificial soils, with relatively high abundances of bacterial phyla (e.g., Cyanobacteria, Proteobacteria, Actinobacteriota, and Chloroflexi) and bacterial genera (e.g., Microcoleus_PCC-7113, Rheinheimera, and Egicoccus), which can play key roles in various nutrient transformations, resistance to saline-alkali stress and pollutant toxicity, the enhancement of various soil enzyme activities, and the ecosystem construction of artificial soil. There were diverse bacterial functions (e.g., photoautotrophy, chemoheterotrophy, aromatic compound degradation, fermentation, nitrate reduction, cellulolysis, nitrogen fixation, etc.), indicating the possibility of various bacteria-dominated biochemical reactions in the artificial soil, which can significantly enrich the nutrient cycling and energy flow and enhance the fertility of the artificial soil and the activity of the soil life. The bacterial communities in the different artificial soils were generally correlated with major physicochemical factors (e.g., pH, OM, TN, AN, and AP), as well as enzyme activity factors (e.g., S-UE, S-SC, S-AKP, S-CAT, and S-AP), which comprehensively illustrates the complexity of the interaction between bacterial communities and environmental factors in artificial soils, and which may affect the succession direction of bacterial communities, the quality of the artificial soil environment, and the speed and direction of the development and maturity of the artificial soil. This study provides an important scientific basis for the synergistic soilization of two typical industrial solid wastes, red mud and phosphogypsum, specifically for the microbial mechanism, for the further evolution and development of artificial soil prepared using red mud and phosphogypsum.
Collapse
Affiliation(s)
- Yong Liu
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Zhi Yang
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Lishuai Zhang
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Hefeng Wan
- Guizhou Institute of Biology, Guiyang 550009, China
| | - Fang Deng
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Zhiqiang Zhao
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (IGCAS), Guiyang 550081, China
| |
Collapse
|
24
|
Liu Y, Zhang L, Chen L, Xue B, Wang G, Zhu G, Gou W, Yang D. Potential of artificial soil preparation for vegetation restoration using red mud and phosphogypsum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173553. [PMID: 38823691 DOI: 10.1016/j.scitotenv.2024.173553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
Red mud and phosphogypsum have long been a focus and challenge in global industrial waste management, and their low-cost and large-scale utilization technology has always been an urgent need. This study is based on the strong acid-base neutralization reaction between red mud and phosphogypsum, which contain an elemental composition similar to that of natural soil, red mud itself has characteristic of clay minerals, and other auxiliary materials (i.e. rice husk powder, bentonite, fly ash, polyacrylamide flocculant and microbial suspension) were added, so as to explore the potential of synergistically prepared artificial soil for vegetation restoration. The results showed that the artificial soils exhibited physicochemical characteristics (e.g., pH, moisture content, cation exchange capacity) similar to those of natural soil, along with abundant organic matter, nitrogen, phosphorus, and potassium contents, meeting the growth requirements of plants. The artificial soils were able to support favorable growth of suitable plants (e.g., sunflower, wheat, rye grass), accumulating high levels of diverse enzymatic activities, comparable to those in natural soils (e.g., catalase, urease, phosphatase), or even surpassing natural soils (e.g., sucrase), and rich microorganism communities, such as Cyanobacteria, Proteobacteria, Actinobacteria in the bacteria domain, and Ascomycota in the fungi domain, were initially developed. It's suggested that preparing 1 ton of artificial soil entails synergistic consumption of 613.7 kg of red mud and 244.6 kg of phosphogypsum, accounting for mass proportions of 61.4 % and 24.5 %, respectively. In future, more evaluations on the leaching loss of nutrients and alkalinity and the environmental risks of heavy metals should be conducted to more references for the artificial soil application. In summary, the preparation of artificial soil is a very simple, efficient, scalable and low-cost collaborative resource utilization scheme of red mud and phosphogypsum, which has great potential for vegetation restoration in some places such as tailings field and soil-deficient depression.
Collapse
Affiliation(s)
- Yong Liu
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China.
| | - Lishuai Zhang
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Li Chen
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Binbin Xue
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Guocheng Wang
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Guangxu Zhu
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Wanli Gou
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Dan Yang
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| |
Collapse
|
25
|
Zhang Y, Cao X, Liu Q, Chen Y, Wang Y, Cong H, Li C, Li Y, Wang Y, Jiang J, Li L. Multi-omics analysis of Streptomyces djakartensis strain MEPS155 reveal a molecular response strategy combating Ceratocystis fimbriata causing sweet potato black rot. Food Microbiol 2024; 122:104557. [PMID: 38839221 DOI: 10.1016/j.fm.2024.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024]
Abstract
To investigate the potential antifungal mechanisms of rhizosphere Actinobacteria against Ceratocystis fimbriata in sweet potato, a comprehensive approach combining biochemical analyses and multi-omics techniques was employed in this study. A total of 163 bacterial strains were isolated from the rhizosphere soil of sweet potato. Among them, strain MEPS155, identified as Streptomyces djakartensis, exhibited robust and consistent inhibition of C. fimbriata mycelial growth in in vitro dual culture assays, attributed to both cell-free supernatant and volatile organic compounds. Moreover, strain MEPS155 demonstrated diverse plant growth-promoting attributes, including the production of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate deaminase, phosphorus solubilization, nitrogen fixation, and enzymatic activities such as cellulase, chitinase, and protease. Notably, strain MEPS155 exhibited efficacy against various sweet potato pathogenic fungi. Following the inoculation of strain MEPS155, a significant reduction (P < 0.05) in malondialdehyde content was observed in sweet potato slices, indicating a potential protective effect. The whole genome of MEPS155 was characterized by a size of 8,030,375 bp, encompassing 7234 coding DNA sequences and 32 secondary metabolite biosynthetic gene clusters. Transcriptomic analysis revealed 1869 differentially expressed genes in the treated group that cultured with C. fimbriata, notably influencing pathways associated with porphyrin metabolism, fatty acid biosynthesis, and biosynthesis of type II polyketide products. These alterations in gene expression are hypothesized to be linked to the production of secondary metabolites contributing to the inhibition of C. fimbriata. Metabolomic analysis identified 1469 potential differently accumulated metabolites (PDAMs) when comparing MEPS155 and the control group. The up-regulated PDAMs were predominantly associated with the biosynthesis of various secondary metabolites, including vanillin, myristic acid, and protocatechuic acid, suggesting potential inhibitory effects on plant pathogenic fungi. Our study underscores the ability of strain S. djakartensis MEPS155 to inhibit C. fimbriata growth through the production of secretory enzymes or secondary metabolites. The findings contribute to a theoretical foundation for future investigations into the role of MEPS155 in postharvest black rot prevention in sweet potato.
Collapse
Affiliation(s)
- Yongjing Zhang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Xiaoying Cao
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Qiao Liu
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yujie Chen
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yiming Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Hao Cong
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Changgen Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yanting Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yixuan Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China.
| | - Ludan Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China.
| |
Collapse
|
26
|
Perez JV, Serrano L, Viteri R, Sosa D, Romero CA, Diez N. Antarctic Streptomyces: Promising biocontrol agents for combating Fusarium oxysporum f. sp. cubense. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 43:e00852. [PMID: 39282660 PMCID: PMC11402157 DOI: 10.1016/j.btre.2024.e00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
Fusarium wilt of Banana (FWB) caused by Fusarium oxysporum f. sp. cubense (Foc) poses a significant threat to the banana industry, with current inadequate control measures. This study evaluated the antifungal potential of nine Streptomyces strains isolated from Antarctic soil samples, using Casein-Starch media to stimulate the production of antifungal compounds. The inhibition spectrum against Foc was assessed under laboratory conditions using the well diffusion on Mueller-Hinton agar, with antifungal activity measured in arbitrary units (AU/mL) and minimum inhibitory concentration (MIC) tested using ethyl acetate extracts. Among the nine isolates, K6 and E7 were closely related to Streptomyces polyrhachis and Streptomyces fildesensis, exhibited significant antifungal activity, with K6 and E7 showing 320 and 80 AU/mL, and MIC values of 250 and >500 ppm, respectively. These findings highlight K6 and E7 as potential biocontrol agents against Foc, offering new avenues for sustainable Fusarium wilt management in banana cultivation.
Collapse
Affiliation(s)
- Jeffrey Vargas Perez
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Lizette Serrano
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Rafael Viteri
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Daynet Sosa
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida (FCV), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Christian A Romero
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Universidad Bolivariana del Ecuador, UBE, Carrera de Enfermería, Km 5.5 vía Durán-Yaguachi, Durán, Ecuador
| | - Nardy Diez
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida (FCV), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
27
|
Hua L, Ye P, Li X, Xu H, Lin F. Anti-Aflatoxigenic Burkholderia contaminans BC11-1 Exhibits Mycotoxin Detoxification, Phosphate Solubilization, and Cytokinin Production. Microorganisms 2024; 12:1754. [PMID: 39338429 PMCID: PMC11434526 DOI: 10.3390/microorganisms12091754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
The productivity and quality of agricultural crops worldwide are adversely affected by disease outbreaks and inadequate nutrient availability. Of particular concern is the potential increase in mycotoxin prevalence due to crop diseases, which poses a threat to food security. Microorganisms with multiple functions have been favored in sustainable agriculture to address such challenges. Aspergillus flavus is a prevalent aflatoxin B1 (AFB1)-producing fungus in China. Therefore, we wanted to obtain an anti-aflatoxigenic bacterium with potent mycotoxin detoxification ability and other beneficial properties. In the present study, we have isolated an anti-aflatoxigenic strain, BC11-1, of Burkholderia contaminans, from a forest rhizosphere soil sample obtained in Luzhou, Sichuan Province, China. We found that it possesses several beneficial properties, as follows: (1) a broad spectrum of antifungal activity but compatibility with Trichoderma species, which are themselves used as biocontrol agents, making it possible to use in a biocontrol mixture or individually with other biocontrol agents in an integrated management approach; (2) an exhibited mycotoxin detoxification capacity with a degradation ratio of 90% for aflatoxin B1 and 78% for zearalenone, suggesting its potential for remedial application; and (3) a high ability to solubilize phosphorus and produce cytokinin production, highlighting its potential as a biofertilizer. Overall, the diverse properties of BC11-1 render it a beneficial bacterium with excellent potential for use in plant disease protection and mycotoxin prevention and as a biofertilizer. Lastly, a pan-genomic analysis suggests that BC11-1 may possess other undiscovered biological properties, prompting further exploration of the properties of this unique strain of B. contaminans. These findings highlight the potential of using the anti-aflatoxigenic strain BC11-1 to enhance disease protection and improve soil fertility, thus contributing to food security. Given its multiple beneficial properties, BC11-1 represents a valuable microbial resource as a biocontrol agent and biofertilizer.
Collapse
Affiliation(s)
- Lixia Hua
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest of Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Pengsheng Ye
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest of Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Xue Li
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Fei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
28
|
Sang Y, Ren K, Chen Y, Wang B, Meng Y, Zhou W, Jiang Y, Xu J. Integration of soil microbiology and metabolomics to elucidate the mechanism of the accelerated infestation of tobacco by the root-knot nematode. Front Microbiol 2024; 15:1455880. [PMID: 39247692 PMCID: PMC11377229 DOI: 10.3389/fmicb.2024.1455880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Tobacco root-knot nematode (TRKN) disease is a soil-borne disease that presents a major hazard to the cultivation of tobacco, causing significant reduction in crop quality and yield, and affecting soil microbial diversity and metabolites. However, differences in rhizosphere soil microbial communities and metabolites between healthy tobacco soils and tobacco soils with varying degrees of TRKN infection remain unclear. Methods In this study, diseased rhizosphere soils of tobacco infected with different degrees of TRKN [severally diseased (DH) soils, moderately diseased (DM) soils, and mildly diseased (DL) soils] and healthy (H) rhizosphere soils were collected. Here, we combined microbiology with metabolomics to investigate changes in rhizosphere microbial communities and metabolism in healthy and TRKN-infected tobacco using high-throughput sequencing and LC-MS/MS platforms. Results The results showed that the Chao1 and Shannon indices of bacterial communities in moderately and mildly diseased soils were significantly higher than healthy soils. The Proteobacteria, Actinobacteria, Ascomycota, Burkholderia, Bradyrhizobium and Dyella were enriched in the rhizosphere soil of healthy tobacco. Basidiomycota, Agaricales, Pseudeurotiaceae and Ralstonia were enriched in severally diseased soils. Besides, healthy soils exhibited a relatively complex and interconnected network of bacterial molecular ecologies, while in severally and moderately diseased soils the fungal molecular networks are relatively complex. Redundancy analysis showed that total nitrogen, nitrate nitrogen, available phosphorus, significantly affected the changes in microbial communities. In addition, metabolomics results indicated that rhizosphere soil metabolites were significantly altered after tobacco plants were infected with TRKNs. The relative abundance of organic acids was higher in severally diseased soils. Spearman's analyses showed that oleic acid, C16 sphinganine, 16-hydroxyhexadecanoic acid, D-erythro-3-methylmalate were positively correlated with Basidiomycota, Agaricales, Ralstonia. Discussion In conclusion, this study revealed the relationship between different levels of TRKN invasion of tobacco root systems with bacteria, fungi, metabolites and soil environmental factors, and provides a theoretical basis for the biological control of TRKN disease.
Collapse
Affiliation(s)
- Yinghua Sang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Ke Ren
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, China
| | - Bin Wang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Yufang Meng
- Yuxi Branch of Yunnan Provincial Tobacco Company, Yuxi, Yunnan, China
| | - Wenbing Zhou
- Yuxi Branch of Yunnan Provincial Tobacco Company, Yuxi, Yunnan, China
| | - Yonglei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, China
| | - Junju Xu
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
29
|
Li Y, Lu J, Dong C, Wang H, Liu B, Li D, Cui Y, Wang Z, Ma S, Shi Y, Wang C, Zhu X, Sun H. Physiological and biochemical characteristics and microbial responses of Medicago sativa (Fabales: Fabaceae) varieties with different resistance to atrazine stress. Front Microbiol 2024; 15:1447348. [PMID: 39220044 PMCID: PMC11363823 DOI: 10.3389/fmicb.2024.1447348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Atrazine, a commonly employed herbicide for corn production, can leave residues in soil, resulting in photosynthetic toxicity and impeding growth in subsequent alfalfa (Medicago sativa L.) crops within alfalfa-corn rotation systems. The molecular regulatory mechanisms by which atrazine affects alfalfa growth and development, particularly its impact on the microbial communities of the alfalfa rhizosphere, are not well understood. This study carried out field experiments to explore the influence of atrazine stress on the biomass, chlorophyll content, antioxidant system, and rhizosphere microbial communities of the atrazine-sensitive alfalfa variety WL-363 and the atrazine-resistant variety JN5010. The results revealed that atrazine significantly reduced WL-363 growth, decreasing plant height by 8.58 cm and root length by 5.42 cm (p < 0.05). Conversely, JN5010 showed minimal reductions, with decreases of 1.96 cm in height and 1.26 cm in root length. Chlorophyll content in WL-363 decreased by 35% under atrazine stress, while in JN5010, it was reduced by only 10%. Reactive oxygen species (ROS) accumulation increased by 60% in WL-363, compared to a 20% increase in JN5010 (p < 0.05 for both). Antioxidant enzyme activities, such as superoxide dismutase (SOD) and catalase (CAT), were significantly elevated in JN5010 (p < 0.05), suggesting a more robust defense mechanism. Although the predominant bacterial and fungal abundances in rhizosphere soils remained generally unchanged under atrazine stress, specific microbial groups exhibited variable responses. Notably, Promicromonospora abundance declined in WL-363 but increased in JN5010. FAPROTAX functional predictions indicated shifts in the abundance of microorganisms associated with pesticide degradation, resistance, and microbial structure reconstruction under atrazine stress, displaying different patterns between the two varieties. This study provides insights into how atrazine residues affect alfalfa rhizosphere microorganisms and identifies differential microbial responses to atrazine stress, offering valuable reference data for screening and identifying atrazine-degrading bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiaoyan Zhu
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hao Sun
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
30
|
Adigoun RFR, Durand A, Tchokponhoué DA, Achigan-Dako EG, Aholoukpè HNS, Bokonon-Ganta AH, Benizri E. Drivers of the Sisrè berry plant [Synsepalum dulcificum (Schumach & Thonn.) Daniell] rhizosphere bacterial communities in Benin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173550. [PMID: 38810760 DOI: 10.1016/j.scitotenv.2024.173550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Each plant species has its own rhizobacteriome, whose activities determine both soil biological quality and plant growth. Little knowledge exists of the rhizosphere bacterial communities associated with opportunity crops with high economic potential such as Synsepalum dulcificum. Native to West Africa, this shrub is famous for its red berries representing the only natural source of miraculin, a glycoprotein, with sweetening properties, but also playing a role in the treatment of cancer and diabetes. This study aimed to characterize the structure and diversity of rhizobacterial communities associated with S. dulcificum and to identify the parameters determining this diversity. An initial sampling stage allowed the collection of rhizosphere soils from 29 S. dulcificum accessions, belonging to three distinct phenotypes, from 16 municipalities of Benin, located either on farms or in home gardens. The bacterial diversity of these rhizosphere soils was assessed by Illumina sequencing of the 16S rRNA gene after DNA extraction from these soils. Furthermore, an analysis of the physicochemical properties of these soils was carried out. All accessions combined, the most represented phylum appeared to be Actinobacteriota, with an average relative abundance of 43.5 %, followed by Proteobacteria (14.8 %), Firmicutes (14.3 %) and Chloroflexi (12.2 %), yet the relative abundance of dominant phyla varied significantly among accessions (p < 0.05). Plant phenotype, habitat, climate and soil physicochemical properties affected the bacterial communities, but our study pointed out that soil physicochemical parameters were the main driver of rhizobacterial communities' structure and diversity. Among them, the assimilable phosphorus, lead, potassium, arsenic and manganese contents, texture and cation exchange capacity of rhizosphere soils were the major determinants of the composition and diversity of rhizosphere bacterial communities. These results suggested the possibility of improving the growth conditions and productivity of S. dulcificum, by harnessing its associated bacteria of interest and better managing soil physicochemical properties.
Collapse
Affiliation(s)
- Rabiath F R Adigoun
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France; Genetics, Biotechnology and Seed Science Unit (GBioS), Laboratory of Plant Production, Physiology and Plant Breeding (PAGEV), Department of Plant Sciences, Faculty of Agronomic Sciences, University of Abomey-Calavi, Abomey-Calavi, Benin; Laboratoire d'Entomologie Agricole (LEAg), Department of Plant Sciences, Faculty of Agronomic Sciences, University of Abomey-Calavi, B.P. 526 Abomey-Calavi, Benin
| | - Alexis Durand
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France
| | - Dèdéou A Tchokponhoué
- Genetics, Biotechnology and Seed Science Unit (GBioS), Laboratory of Plant Production, Physiology and Plant Breeding (PAGEV), Department of Plant Sciences, Faculty of Agronomic Sciences, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Enoch G Achigan-Dako
- Genetics, Biotechnology and Seed Science Unit (GBioS), Laboratory of Plant Production, Physiology and Plant Breeding (PAGEV), Department of Plant Sciences, Faculty of Agronomic Sciences, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Hervé N S Aholoukpè
- Centre de Recherches Agricoles Plantes Pérennes (CRA-PP), Institut National des Recherches Agricoles du Bénin, BP 01 Pobè, Benin
| | - Aimé H Bokonon-Ganta
- Laboratoire d'Entomologie Agricole (LEAg), Department of Plant Sciences, Faculty of Agronomic Sciences, University of Abomey-Calavi, B.P. 526 Abomey-Calavi, Benin
| | - Emile Benizri
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France
| |
Collapse
|
31
|
Pintarič M, Štuhec A, Tratnik E, Langerholc T. Spent Mushroom Substrate Improves Microbial Quantities and Enzymatic Activity in Soils of Different Farming Systems. Microorganisms 2024; 12:1521. [PMID: 39203364 PMCID: PMC11356570 DOI: 10.3390/microorganisms12081521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Organic fertilizers, such as spent mushroom substrate (SMS), improve soil fertility, but studies comparing their effects on different agricultural soils are limited. In this study, the effects of standard, SMS and composed fertilizers on soils from conventional-integrated, organic and biodynamic farming were investigated. Soil samples were analyzed for microorganisms and the activity of β-glucosidase (β-GLU), β-1,4-N-acetylglucosaminidase (NAG), urease (URE), arylamidase (ARN), phosphatase (PHOS), acid phosphatase (PAC), alkaline phosphatase (PAH) and arylsulphatase (ARS). Biodynamic soil showed the highest microbial counts and enzyme activities, followed by organic and conventional soils. SMS significantly increased the number of microorganisms and enzyme activities, especially in biodynamic and organic soils. Seasonal variations affected all microorganisms and most enzymes in all soils, except NAG in conventional and organic soils. Biodynamic soil showed stable activity of enzymes and microorganisms throughout the year, indicating greater stability. This study concludes that soil microorganisms and enzyme activities respond differently to fertilization depending on the soil type, with SMS demonstrating beneficial effects in all tested soils.
Collapse
Affiliation(s)
- Maša Pintarič
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia; (A.Š.); (E.T.); (T.L.)
| | | | | | | |
Collapse
|
32
|
Humaira Z, Cho D, Peng Y, Avila F, Park YL, Kim CY, Lee J. Demequina capsici sp. nov., a novel plant growth-promoting actinomycete isolated from the rhizosphere of bell pepper (Capsicum annuum). Sci Rep 2024; 14:15830. [PMID: 38982145 PMCID: PMC11233565 DOI: 10.1038/s41598-024-66202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
Demequina, commonly found in coastal and marine environments, represents a genus of Actinomycetes. In this study, strains Demequina PMTSA13T and OYTSA14 were isolated from the rhizosphere of Capsicum annuum, leading to the discovery of a novel species, Demequina capsici. Bacteria play a significant role in plant growth, yet there have been no reports of the genus Demequina acting as plant growth-promoting bacteria (PGPB). Comparative genomics analysis revealed ANI similarity values of 74.05-80.63% for PMTSA13T and 74.02-80.54% for OYTSA14, in comparison to various Demequina species. The digital DNA-DNA hybridization (dDDH) values for PMTSA13T ranged from 19 to 39%, and 19.1-38.6% for OYTSA14. Genome annotation revealed the presence of genes associated with carbohydrate metabolism and transport, suggesting a potential role in nutrient cycling and availability for plants. These strains were notably rich in genes related to 'carbohydrate metabolism and transport (G)', according to their Cluster of Orthologous Groups (COG) classification. Additionally, both strains were capable of producing auxin (IAA) and exhibited enzymatic activities for cellulose degradation and catalase. Furthermore, PMTSA13T and OYTSA14 significantly induced the growth of Arabidopsis thaliana seedlings primarily attributed to their capacity to produce IAA, which plays a crucial role in stimulating plant growth and development. These findings shed light on the potential roles of Demequina strains in plant-microbe interactions and agricultural applications. The type strain is Demequina capsici PMTSA13T (= KCTC 59028T = GDMCC 1.4451T), meanwhile OYTSA14 is identified as different strains of Demequina capsici.
Collapse
Affiliation(s)
- Zalfa Humaira
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Yuseong, Daejeon, 34113, Republic of Korea
| | - Donghyun Cho
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Yuxin Peng
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Forbes Avila
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do, 56212, Republic of Korea
- Human and Environmental Toxicology, University of Science and Technology (UST), Yuseong, Daejeon, 34113, Republic of Korea
| | - Yu Lim Park
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Cha Young Kim
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Jiyoung Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Yuseong, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
33
|
Sumang FA, Ward A, Errington J, Dashti Y. Hibiscus acid and hydroxycitric acid dimethyl esters from Hibiscus flowers induce production of dithiolopyrrolone antibiotics by Streptomyces Strain MBN2-2. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:40. [PMID: 38955942 PMCID: PMC11219617 DOI: 10.1007/s13659-024-00460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
Plants and microbes are closely associated with each other in their ecological niches. Much has been studied about plant-microbe interactions, but little is known about the effect of phytochemicals on microbes at the molecular level. To access the products of cryptic biosynthetic gene clusters in bacteria, we incorporated an organic extract of hibiscus flowers into the culture media of different Actinobacteria isolated from plant rhizospheres. This approach led to the production of broad-spectrum dithiolopyrrolone (DTP) antibiotics, thiolutin (1) and aureothricin (2), by Streptomyces sp. MBN2-2. The compounds from the hibiscus extract responsible for triggering the production of these two DTPs were found to be hibiscus acid dimethyl ester (3) and hydroxycitric acid 1,3-dimethyl ester (4). It was subsequently found that the addition of either Fe2+ or Fe3+ to culture media induced the production of 1 and 2. The Chrome Azurol S (CAS) assay revealed that 3 and 4 can chelate iron, and therefore, the mechanism leading to the production of thiolutin and aureothricin appears to be related to changes in iron concentration levels. This work supports the idea that phytochemicals can be used to activate the production of cryptic microbial biosynthetic gene clusters and further understand plant-microbe interactions.
Collapse
Affiliation(s)
- Felaine Anne Sumang
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2015, Australia
| | - Alan Ward
- School of Biology, Newcastle University, Newcastle Upon Tyne, UK
| | - Jeff Errington
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2015, Australia
- Sydney Infectious Diseases Institute, University of Sydney, Sydney, NSW, 2015, Australia
| | - Yousef Dashti
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2015, Australia.
- Sydney Infectious Diseases Institute, University of Sydney, Sydney, NSW, 2015, Australia.
| |
Collapse
|
34
|
Yalcin HA, Jacott CN, Ramirez-Gonzalez RH, Steuernagel B, Sidhu GS, Kirby R, Verbeek E, Schoonbeek HJ, Ridout CJ, Wells R. A complex receptor locus confers responsiveness to necrosis and ethylene-inducing like peptides in Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:266-282. [PMID: 38605581 DOI: 10.1111/tpj.16760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/02/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Brassica crops are susceptible to diseases which can be mitigated by breeding for resistance. MAMPs (microbe-associated molecular patterns) are conserved molecules of pathogens that elicit host defences known as pattern-triggered immunity (PTI). Necrosis and Ethylene-inducing peptide 1-like proteins (NLPs) are MAMPs found in a wide range of phytopathogens. We studied the response to BcNEP2, a representative NLP from Botrytis cinerea, and showed that it contributes to disease resistance in Brassica napus. To map regions conferring NLP response, we used the production of reactive oxygen species (ROS) induced during PTI across a population of diverse B. napus accessions for associative transcriptomics (AT), and bulk segregant analysis (BSA) on DNA pools created from a cross of NLP-responsive and non-responsive lines. In silico mapping with AT identified two peaks for NLP responsiveness on chromosomes A04 and C05 whereas the BSA identified one peak on A04. BSA delimited the region for NLP-responsiveness to 3 Mbp, containing ~245 genes on the Darmor-bzh reference genome and four co-segregating KASP markers were identified. The same pipeline with the ZS11 genome confirmed the highest-associated region on chromosome A04. Comparative BLAST analysis revealed unannotated clusters of receptor-like protein (RLP) homologues on ZS11 chromosome A04. However, no specific RLP homologue conferring NLP response could be identified. Our results also suggest that BR-SIGNALLING KINASE1 may be involved with modulating the NLP response. Overall, we demonstrate that responsiveness to NLP contributes to disease resistance in B. napus and define the associated genomic location. These results can have practical application in crop improvement.
Collapse
Affiliation(s)
- Hicret Asli Yalcin
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- TUBITAK Marmara Research Centre, Life Sciences, TUBITAK, Gebze, Kocaeli, 41470, Türkiye
| | - Catherine N Jacott
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- Department of Microbiology, Faculty of Biology, University of Seville, Seville, Spain
| | | | | | | | - Rachel Kirby
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Emma Verbeek
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Henk-Jan Schoonbeek
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | | | - Rachel Wells
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|
35
|
Wu WF, Li XY, Chen SC, Jin BJ, Wu CY, Li G, Sun CL, Zhu YG, Lin XY. Nitrogen fertilization modulates rice phyllosphere functional genes and pathogens through fungal communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172622. [PMID: 38642761 DOI: 10.1016/j.scitotenv.2024.172622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
The phyllosphere is a vital yet often neglected habitat hosting diverse microorganisms with various functions. However, studies regarding how the composition and functions of the phyllosphere microbiome respond to agricultural practices, like nitrogen fertilization, are limited. This study investigated the effects of long-term nitrogen fertilization with different levels (CK, N90, N210, N330) on the functional genes and pathogens of the rice phyllosphere microbiome. Results showed that the relative abundance of many microbial functional genes in the rice phyllosphere was significantly affected by nitrogen fertilization, especially those involved in C fixation and denitrification genes. Different nitrogen fertilization levels have greater effects on fungal communities than bacteria communities in the rice phyllosphere, and network analysis and structural equation models further elucidate that fungal communities not only changed bacterial-fungal inter-kingdom interactions in the phyllosphere but also contributed to the variation of biogeochemical cycle potential. Besides, the moderate nitrogen fertilization level (N210) was associated with an enrichment of beneficial microbes in the phyllosphere, while also resulting in the lowest abundance of pathogenic fungi (1.14 %). In contrast, the highest abundance of pathogenic fungi (1.64 %) was observed in the highest nitrogen fertilization level (N330). This enrichment of pathogen due to high nitrogen level was also regulated by the fungal communities, as revealed through SEM analysis. Together, we demonstrated that the phyllosphere fungal communities were more sensitive to the nitrogen fertilization levels and played a crucial role in influencing phyllosphere functional profiles including element cycling potential and pathogen abundance. This study expands our knowledge regarding the role of phyllosphere fungal communities in modulating the element cycling and plant health in sustainable agriculture.
Collapse
Affiliation(s)
- Wei-Feng Wu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xin-Yuan Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Song-Can Chen
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Bing-Jie Jin
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Chun-Yan Wu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Cheng-Liang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yong-Guan Zhu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xian-Yong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
36
|
Wang X, Wang S, Huang M, He Y, Guo S, Yang K, Wang N, Sun T, Yang H, Yang T, Xu Y, Shen Q, Friman VP, Wei Z. Phages enhance both phytopathogen density control and rhizosphere microbiome suppressiveness. mBio 2024; 15:e0301623. [PMID: 38780276 PMCID: PMC11237578 DOI: 10.1128/mbio.03016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/21/2024] [Indexed: 05/25/2024] Open
Abstract
Bacteriophages, viruses that specifically target plant pathogenic bacteria, have emerged as a promising alternative to traditional agrochemicals. However, it remains unclear how phages should be applied to achieve efficient pathogen biocontrol and to what extent their efficacy is shaped by indirect interactions with the resident microbiota. Here, we tested if the phage biocontrol efficacy of Ralstonia solanacearum phytopathogenic bacterium can be improved by increasing the phage cocktail application frequency and if the phage efficacy is affected by pathogen-suppressing bacteria already present in the rhizosphere. We find that increasing phage application frequency improves R. solanacearum density control, leading to a clear reduction in bacterial wilt disease in both greenhouse and field experiments with tomato. The high phage application frequency also increased the diversity of resident rhizosphere microbiota and enriched several bacterial taxa that were associated with the reduction in pathogen densities. Interestingly, these taxa often belonged to Actinobacteria known for antibiotics production and soil suppressiveness. To test if they could have had secondary effects on R. solanacearum biocontrol, we isolated Actinobacteria from Nocardia and Streptomyces genera and tested their suppressiveness to the pathogen in vitro and in planta. We found that these taxa could clearly inhibit R. solanacearum growth and constrain bacterial wilt disease, especially when combined with the phage cocktail. Together, our findings unravel an undiscovered benefit of phage therapy, where phages trigger a second line of defense by the pathogen-suppressing bacteria that already exist in resident microbial communities. IMPORTANCE Ralstonia solanacearum is a highly destructive plant-pathogenic bacterium with the ability to cause bacterial wilt in several crucial crop plants. Given the limitations of conventional chemical control methods, the use of bacterial viruses (phages) has been explored as an alternative biological control strategy. In this study, we show that increasing the phage application frequency can improve the density control of R. solanacearum, leading to a significant reduction in bacterial wilt disease. Furthermore, we found that repeated phage application increased the diversity of rhizosphere microbiota and specifically enriched Actinobacterial taxa that showed synergistic pathogen suppression when combined with phages due to resource and interference competition. Together, our study unravels an undiscovered benefit of phages, where phages trigger a second line of defense by the pathogen-suppressing bacteria present in resident microbial communities. Phage therapies could, hence, potentially be tailored according to host microbiota composition to unlock the pre-existing benefits provided by resident microbiota.
Collapse
Affiliation(s)
- Xiaofang Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Shuo Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Mingcong Huang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yilin He
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Saisai Guo
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Keming Yang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ningqi Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Tianyu Sun
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Hongwu Yang
- China National Tobacco Corporation Hunan Company, Changsha, Hunan, China
| | - Tianjie Yang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yangchun Xu
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Ville-Petri Friman
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Zhong Wei
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
37
|
Yang X, Liu P, Yu H, Ling M, Ma M, Wang Q, Tang X, Shen Z, Zhang Y. Comparative analysis of the intestinal flora of BmNPV-resistant and BmNPV-sensitive silkworm varieties. Microb Pathog 2024; 191:106649. [PMID: 38636568 DOI: 10.1016/j.micpath.2024.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a very common and infectious virus that affects silkworms and hinders silk production. To investigate the intestinal flora of BmNPV-resistant and BmNPV-sensitive silkworm varieties, 16 S rDNA high-throughput sequencing was performed. The results of the cluster analysis showed that the intestinal flora of the resistant silkworm variety was more abundant than that of the sensitive silkworm variety. This was found even when infection with BmNPV caused a sharp decline in the number of intestinal floral species in both resistant and sensitive silkworm varieties. The abundances of the intestinal flora, including Aureimonas, Ileibacterium, Peptostreptococcus, Pseudomonas, Enterococcus, and Halomonas, in the resistant variety were considerably greater after infection with BmNPV than those in the sensitive variety. After infection with BmNPV, four kinds of important intestinal bacteria, namely, f_Saccharimonadaceae, Peptostreptococcus, Aureirmonas, and f_Rhizobiaceae, were found in the resistant silkworm variety. In the sensitive silkworm variety, only Faecalibaculum was an important intestinal bacterium. The differential or important bacteria mentioned above might be involved in immunoreaction or antiviral activities, especially in the intestines of BmNPV-resistant silkworms. By conducting a functional enrichment analysis, we found that BmNPV infection did not change the abundance of important functional components of the intestinal flora in resistant or sensitive silkworm varieties. However, some functional factors, such as the biosynthesis, transport, and catabolism of secondary metabolites (e.g., terpenoids and polyketides) and lipid transport and metabolism, were more important in the resistant silkworm variety than in the sensitive variety; thus, these factors may increase the resistance of the host to BmNPV. To summarize, we found significant differences in the composition, abundance, and function of the intestinal flora between resistant and sensitive silkworm varieties, especially after infection with BmNPV, which might be closely related to the resistance of resistant silkworm varieties to BmNPV.
Collapse
Affiliation(s)
- Xu Yang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China.
| | - Pai Liu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China.
| | - Haodong Yu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China.
| | - Min Ling
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China.
| | - Mingzhen Ma
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China.
| | - Qiang Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China.
| | - Xudong Tang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China.
| | - Zhongyuan Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China.
| | - Yiling Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China.
| |
Collapse
|
38
|
Xu J, Knight T, Boone D, Saleem M, Finley SJ, Gauthier N, Ayariga JA, Akinrinlola R, Pulkoski M, Britt K, Tolosa T, Rosado-Rivera YI, Iddrisu I, Thweatt I, Li T, Zebelo S, Burrack H, Thiessen L, Hansen Z, Bernard E, Kuhar T, Samuel-Foo M, Ajayi OS. Influence of Fungicide Application on Rhizosphere Microbiota Structure and Microbial Secreted Enzymes in Diverse Cannabinoid-Rich Hemp Cultivars. Int J Mol Sci 2024; 25:5892. [PMID: 38892079 PMCID: PMC11172691 DOI: 10.3390/ijms25115892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Microbes and enzymes play essential roles in soil and plant rhizosphere ecosystem functioning. However, fungicides and plant root secretions may impact the diversity and abundance of microbiota structure and enzymatic activities in the plant rhizosphere. In this study, we analyzed soil samples from the rhizosphere of four cannabinoid-rich hemp (Cannabis sativa) cultivars (Otto II, BaOx, Cherry Citrus, and Wife) subjected to three different treatments (natural infection, fungal inoculation, and fungicide treatment). DNA was extracted from the soil samples, 16S rDNA was sequenced, and data were analyzed for diversity and abundance among different fungicide treatments and hemp cultivars. Fungicide treatment significantly impacted the diversity and abundance of the hemp rhizosphere microbiota structure, and it substantially increased the abundance of the phyla Archaea and Rokubacteria. However, the abundances of the phyla Pseudomonadota and Gemmatimonadetes were substantially decreased in treatments with fungicides compared to those without fungicides in the four hemp cultivars. In addition, the diversity and abundance of the rhizosphere microbiota structure were influenced by hemp cultivars. The influence of Cherry Citrus on the diversity and abundance of the hemp rhizosphere microbiota structure was less compared to the other three hemp cultivars (Otto II, BaOx, and Wife). Moreover, fungicide treatment affected enzymatic activities in the hemp rhizosphere. The application of fungicides significantly decreased enzyme abundance in the rhizosphere of all four hemp cultivars. Enzymes such as dehydrogenase, dioxygenase, hydrolase, transferase, oxidase, carboxylase, and peptidase significantly decreased in all the four hemp rhizosphere treated with fungicides compared to those not treated. These enzymes may be involved in the function of metabolizing organic matter and degrading xenobiotics. The ecological significance of these findings lies in the recognition that fungicides impact enzymes, microbiota structure, and the overall ecosystem within the hemp rhizosphere.
Collapse
Affiliation(s)
- Junhuan Xu
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| | - Tyson Knight
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| | - Donchel Boone
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA
| | - Sheree J. Finley
- Department of Physical and Forensic Sciences, Alabama State University, 915 S. Jackson Street, Montgomery, AL 36104, USA
| | - Nicole Gauthier
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, Lexington, KY 40546, USA;
| | - Joseph A. Ayariga
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| | - Rufus Akinrinlola
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Melissa Pulkoski
- Department of Crop Science, North Carolina State University, Raleigh, NC 27962, USA
| | - Kadie Britt
- Department of Entomology, Virginia Polytechnic Institute and State University, 170 Drillfield Drive, 220 Price Hall, Blacksburg, VA 24061, USA; (K.B.)
| | - Tigist Tolosa
- Department of Agriculture Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | | | - Ibrahim Iddrisu
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| | - Ivy Thweatt
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| | - Ting Li
- Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA
| | - Simon Zebelo
- Department of Agriculture Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Hannah Burrack
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Lindsey Thiessen
- Department of Crop Science, North Carolina State University, Raleigh, NC 27962, USA
- USDA-APHIS-PPQ, Raleigh, NC 27606, USA
| | - Zachariah Hansen
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
- Emerging Pests and Pathogens Research Unit, USDA-ARS, 538 Tower Rd., Ithaca, NY 14850, USA
| | - Ernest Bernard
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Thomas Kuhar
- Department of Entomology, Virginia Polytechnic Institute and State University, 170 Drillfield Drive, 220 Price Hall, Blacksburg, VA 24061, USA; (K.B.)
| | - Michelle Samuel-Foo
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| | - Olufemi S. Ajayi
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| |
Collapse
|
39
|
Qi D, Liu Q, Zou L, Zhang M, Li K, Zhao Y, Chen Y, Feng J, Zhou D, Wei Y, Wang W, Zhang L, Xie J. Taxonomic identification and antagonistic activity of Streptomyces luomodiensis sp. nov. against phytopathogenic fungi. Front Microbiol 2024; 15:1402653. [PMID: 38860218 PMCID: PMC11163044 DOI: 10.3389/fmicb.2024.1402653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
Banana wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is a devastating fungal disease. Biocontrol strategies hold immense potential for inhibiting the spread of Foc TR4. Here, 30 actinobacteria were isolated from soils and screened for their antagonistic activity against Foc TR4. Strain SCA4-21T was selected due to its strongest antagonistic activity against Foc TR4. Strain SCA4-21T also exhibited strong antagonistic activity against the other eight phytopathogenic fungi. The strain was identified as the genus Streptomyces according to its physiological, biochemical, and phenotypic characteristics. The phylogenetic trees of 16S rRNA sequences demonstrated that strain SCA4-21T formed a subclade with S. iranensis HM 35T and/or S. rapamycinicus NRRL B-5491T with low bootstrap values. Considering that 16S rRNAs did not provide sufficient resolution for species-level identification, the whole genome of strain SCA4-21T was sequenced. Multilocus sequence analysis (MLSA) based on five housekeeping gene alleles (atpD, gyrB, recA, rpoB, and trpB) revealed that strain SCA4-21T clustered into S. hygroscopicus subsp. hygroscopicus NBRC 13472T with 100% of bootstrap value. The analysis of the genome-based phylogeny also approved the results. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) were 91.26 and 44.30%, respectively, with values below the respective species level threshold of 95 and 70%. Hence, strain SCA 4-21T represented a novel species within the genus Streptomyces, named Streptomyces luomodiensis sp. nov. The type strain is SCA4-21T (=GDMCC4.340T = JCM36555T). By the CAZymes analysis, 348 carbohydrate-active enzymes (CAZymes) were detected, including 15 chitinases and eight β-1,3-glucanases. The fermentation broth of strain SCA4-21T, exhibiting strong antagonistic activity against Foc TR4, demonstrated high activities of chitinase and β-1,3-glucanase, which might be involved in antifungal activity. Our results showed an innovative potential biocontrol agent for managing plant fungal diseases, specifically banana fusarium wilt.
Collapse
Affiliation(s)
- Dengfeng Qi
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qiao Liu
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Liangping Zou
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Miaoyi Zhang
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Kai Li
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yankun Zhao
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yufeng Chen
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Junting Feng
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dengbo Zhou
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yongzan Wei
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Wang
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lu Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Jianghui Xie
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
40
|
Zhang L, Zhao T, Geng L, Zhang C, Xiang W, Zhang J, Wang X, Shu C. Characterization and evaluation of actinomycete from the Protaetia brevitarsis Larva Frass. Front Microbiol 2024; 15:1385734. [PMID: 38812691 PMCID: PMC11133513 DOI: 10.3389/fmicb.2024.1385734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Protaetia brevitarsis larvae (PBL) are soil insects important for the soil organic carbon cycle, and PBL frass not only contains a large amount of humic acid but also affects the diversity, novelty, and potential functions of actinomycetes. Here, we characterized and assessed the actinomycete. The operational taxonomic unit (OTU) data showed that 90% of the actinomycetes cannot be annotated to species, and pure culture and genome analysis showed that 35% of the strains had the potential to be new species, indicating the novelty of PBL frass actinomycetes. Additionally, genome annotation showed that many gene clusters related to antifungal, antibacterial and insecticidal compound synthesis were identified, and confrontation culture confirmed the antifungal activities of the actinomycetes against soil-borne plant pathogenic fungi. The incubation experiment results showed that all isolates were able to thrive on media composed of straw powder and alkaline lignin. These results indicated that PBL hindgut-enriched actinomycetes could survive in soil by using the residual lignocellulose organic matter from plant residues, and the antibiotics produced not only give them a competitive advantage among soil microflora but also have a certain inhibitory effect on plant diseases and pests. This study suggests that the application of PBL frass can not only supplement soil humic acid but also potentially affect the soil microbiota of cultivated land, which is beneficial for the healthy growth of crops.
Collapse
Affiliation(s)
- Lida Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianxin Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
41
|
Liu H, Wang H, Nie Z, Tao Z, Peng H, Shi H, Zhao P, Liu H. Combined application of arbuscular mycorrhizal fungi and selenium fertilizer increased wheat biomass under cadmium stress and shapes rhizosphere soil microbial communities. BMC PLANT BIOLOGY 2024; 24:359. [PMID: 38698306 PMCID: PMC11067182 DOI: 10.1186/s12870-024-05032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Selenium (Se) fertilizer and arbuscular mycorrhizal fungi (AMF) are known to modulate cadmium (Cd) toxicity in plants. However, the effects of their co-application on wheat growth and soil microbial communities in Cd-contaminated soil are unclear. RESULTS A pot experiment inoculation with two types of AMF and the application of Se fertilizer under Cd stress in wheat showed that inoculation AMF alone or combined with Se fertilizer significantly increased wheat biomass. Se and AMF alone or in combination significantly reduced available Cd concentration in wheat and soil, especially in the Se combined with Ri treatment. High throughput sequencing of soil samples indicated that Se and AMF application had stronger influence on bacterial community compared to fungal community and the bacterial network seemed to have more complex interconnections than the fungal network, and finally shaped the formation of specific microflora to affect Cd availability. CONCLUSION These results indicate that the application of Se and AMF, particularly in combination, could successfully decrease soil Cd availability and relieve the harm of Cd in wheat by modifying rhizosphere soil microbial communities.
Collapse
Affiliation(s)
- Haiyang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Soil Pollution Control and Remediation in Henan Province, Zhengzhou, 450046, China
| | - Haoquan Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Soil Pollution Control and Remediation in Henan Province, Zhengzhou, 450046, China
| | - Zhaojun Nie
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Soil Pollution Control and Remediation in Henan Province, Zhengzhou, 450046, China
| | - Zhikang Tao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Soil Pollution Control and Remediation in Henan Province, Zhengzhou, 450046, China
| | - Hongyu Peng
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Soil Pollution Control and Remediation in Henan Province, Zhengzhou, 450046, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Peng Zhao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Soil Pollution Control and Remediation in Henan Province, Zhengzhou, 450046, China
| | - Hongen Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China.
- Key Laboratory of Soil Pollution Control and Remediation in Henan Province, Zhengzhou, 450046, China.
| |
Collapse
|
42
|
Yang J, Ding D, Zhang X, Gu H. A comparative analysis of soil physicochemical properties and microbial community structure among four shelterbelt species in the northeast China plain. Microbiol Spectr 2024; 12:e0368323. [PMID: 38376351 PMCID: PMC10986494 DOI: 10.1128/spectrum.03683-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Conducting studies that focus on the alterations occurring in the soil microbiome within protection forests in the northeast plain is of utmost importance in evaluating the ecological rehabilitation of agricultural lands in the Mollisols region. Nevertheless, the presence of geographic factors contributes to substantial disparities in the microbiomes, and thus, addressing this aspect of influence becomes pivotal in ensuring the credibility of the collected data. Consequently, the objective is to compare the variations in soil physicochemical properties and microbial community structure within the understory of diverse shelterbelt species. In this study, we analyzed the understory soils of Juglans mandshurica (Jm), Fraxinus mandschurica (Fm), Acer mono (Am), and Betula platyphylla (Bp) from the same locality. We employed high-throughput sequencing technology and soil physicochemical data to investigate the impact of these different tree species on soil microbial communities, chemical properties, and enzyme activities in Mollisols areas. Significant variations in soil nutrients and enzyme activities were observed among tree species, with soil organic matter content ranging from 49.1 to 67.7 g/kg and cellulase content ranging from 5.3 to 524.0 μg/d/g. The impact of tree species on microbial diversities was found to be more pronounced in the bacterial community (Adnoism: R = 0.605) compared to the fungal community (Adnoism: R = 0.433). The linear discriminant analysis effect size (LEfSe) analysis revealed a total of 5 (Jm), 3 (Bp), and 6 (Am) bacterial biomarkers, as well as 2 (Jm), 6 (Fm), 4 (Bp), and 1 (Am) fungal biomarker at the genus level (LDA3). The presence of various tree species was observed to significantly alter the relative abundance of specific microbial community structures, specifically in Gammaproteobacteria, Ascomycota, and Basidiomycota. Furthermore, environmental factors, such as pH, total potassium, and available phosphorus were important factors influencing changes in bacterial communities. We propose that Fm be utilized as the primary tree species for establishing farmland protection forests in the northeastern region, owing to its superior impact on enhancing soil quality. IMPORTANCE The focal point of this study lies in the implementation of a controlled experiment conducted under field conditions. In this experiment, we deliberately selected four shelterbelts within the same field, characterized by identical planting density, and planting year. This deliberate selection effectively mitigated the potential impact of extraneous factors on the three microbiomes, thereby enhancing the reliability and validity of our findings.
Collapse
Affiliation(s)
- Jia Yang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Dang Ding
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Xiuru Zhang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Huiyan Gu
- School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
43
|
Wang YW, Bai DS, Zhang Y, Luo XG. The role of afforestation with diverse woody species in enhancing and restructuring the soil microenvironment in polymetallic coal gangue dumps. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29916-29929. [PMID: 38594563 DOI: 10.1007/s11356-024-33164-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
To elucidate the effects of long-term (20 years) afforestation with different woody plant species on the soil microenvironment in coal gangue polymetallic contaminated areas. This study analyzed the soil physicochemical properties, soil enzyme activities, soil ionophore, bacterial community structure, soil metabolite, and their interaction relationships at different vertical depths. Urease, sucrase, and acid phosphatase activities in the shallow soil layers increased by 4.70-7.45, 3.83-7.64, and 3.27-4.85 times, respectively, after the restoration by the four arboreal plant species compared to the plant-free control soil. Additionally, it reduced the content of available elements in the soil and alleviated the toxicity stress for Cd, Ni, Co, Cr, As, Fe, Cu, U, and Pb. After the long-term restoration of arboreal plants, the richness and Shannon indices of soil bacteria significantly increased by 4.77-23.81% and 2.93-7.93%, respectively, broadening the bacterial ecological niche. The bacterial community structure shaped by different arboreal plants exhibited high similarity, but the community similarity decreased with increasing vertical depth. Soils Zn, U, Sr, S, P, Mg, K, Fe, Cu, Ca, Ba, and pH were identified as important influencing factors for the community structure of Sphingomonas, Pseudarthrobacter, Nocardioides, and Thiobacillus. The metabolites such as sucrose, raffinose, L-valine, D-fructose 2, 6-bisphosphate, and oxoglutaric acid were found to have the greatest effect on the bacterial community in the rhizosphere soils for arboreal plants. The results of the study demonstrated that long-term planting for woody plants in gangue dumps could regulate microbial abundance and symbiotic patterns through the accumulation of rhizosphere metabolites in the soil, increase soil enzyme activity, reduce heavy metal levels, and improve the soil environment in coal gangue dumps.
Collapse
Affiliation(s)
- Yi-Wang Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | | | - Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
44
|
Guo H, Liu W, Xie Y, Wang Z, Huang C, Yi J, Yang Z, Zhao J, Yu X, Sibirina LA. Soil microbiome of shiro reveals the symbiotic relationship between Tricholoma bakamatsutake and Quercus mongolica. Front Microbiol 2024; 15:1361117. [PMID: 38601932 PMCID: PMC11004381 DOI: 10.3389/fmicb.2024.1361117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Tricholoma bakamatsutake is a delicious and nutritious ectomycorrhizal fungus. However, its cultivation is hindered owing to limited studies on its symbiotic relationships. The symbiotic relationship between T. bakamatsutake and its host is closely related to the shiro, a complex network composed of mycelium, mycorrhizal roots, and surrounding soil. To explore the symbiotic relationship between T. bakamatsutake and its host, soil samples were collected from T. bakamatsutake shiro (Tb) and corresponding Q. mongolica rhizosphere (CK) in four cities in Liaoning Province, China. The physicochemical properties of all the soil samples were then analyzed, along with the composition and function of the fungal and bacterial communities. The results revealed a significant increase in total potassium, available nitrogen, and sand in Tb soil compared to those in CK soil, while there was a significant decrease in pH, total nitrogen, total phosphorus, available phosphorus, and silt. The fungal community diversity in shiro was diminished, and T. bakamatsutake altered the community structure of its shiro by suppressing other fungi, such as Russula (ectomycorrhizal fungus) and Penicillium (phytopathogenic fungus). The bacterial community diversity in shiro increased, with the aggregation of mycorrhizal-helper bacteria, such as Paenibacillus and Bacillus, and plant growth-promoting bacteria, such as Solirubrobacter and Streptomyces, facilitated by T. bakamatsutake. Microbial functional predictions revealed a significant increase in pathways associated with sugar and fat catabolism within the fungal and bacterial communities of shiro. The relative genetic abundance of carboxylesterase and gibberellin 2-beta-dioxygenase in the fungal community was significantly increased, which suggested a potential symbiotic relationship between T. bakamatsutake and Q. mongolica. These findings elucidate the microbial community and relevant symbiotic environment to better understand the relationship between T. bakamatsutake and Q. mongolica.
Collapse
Affiliation(s)
- Hongbo Guo
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
- Primorye State Agricultural Academy, Ussuriysk, Russia
| | - Weiye Liu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Yuqi Xie
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Zhenyu Wang
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Chentong Huang
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Jingfang Yi
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Zhaoqian Yang
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Jiachen Zhao
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Xiaodan Yu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Lidiya Alekseevna Sibirina
- Primorye State Agricultural Academy, Ussuriysk, Russia
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
45
|
Li F, Lu S, Sun W. Comparison of Rhizosphere Bacterial Communities of Pinus squamata, a Plant Species with Extremely Small Populations (PSESP) in Different Conservation Sites. Microorganisms 2024; 12:638. [PMID: 38674583 PMCID: PMC11051972 DOI: 10.3390/microorganisms12040638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Pinus squamata is one of the most threatened conifer species in the world. It is endemic to northeastern Yunnan Province, China, and has been prioritized as a Plant Species with Extremely Small Populations (PSESP). The integrated study of soil properties and rhizosphere bacteria can assist conservation to understand the required conditions for the protection and survival of rare and endangered species. However, differences between the rhizospheric bacterial communities found in the soil surrounding P. squamata at different conservation sites remain unclear. In this study, Samples were collected from wild, ex situ, and reintroduced sites. Bacterial communities in different conservation sites of P. squamata rhizosphere soils were compared using Illumina sequencing. The soil physicochemical properties were determined, the relationships between the bacterial communities and soil physicochemical factors were analyzed, and the potential bacterial ecological functions were predicted. The reintroduced site Qiaojia (RQ) had the highest richness and diversity of bacterial community. Actinobacteria, Proteobacteria, and Acidobacteriota were the dominant phyla, and Bradyrhizobium, Mycobacterium, Acidothermus were the most abundant genera. Samples were scattered (R = 0.93, p = 0.001), indicating significant difference between the different conservation sites. The abundance of Mycobacterium differed between sites (0.01 < p ≤ 0.05), and the relative abundances of Bradyrhizobium and Acidothermus differed significantly among different sites (0.001 < p ≤ 0.01). Soil total potassium (TK) and available nitrogen (AN) were the main factors driving bacterial community at the phylum level (0.01 < p ≤ 0.05). This study generated the first insights into the diversity, compositions, and potential functions of bacterial communities associated with the rhizosphere soils of P. squamata in different conservation sites and provides a foundation to assess the effect of conservation based on bacterial diversity and plant growth-promoting rhizobacteria (PGPR) to guide future research into the conservation of P. squamata.
Collapse
Affiliation(s)
- Fengrong Li
- School of Life Sciences, Yunnan University, Kunming 650091, China;
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shugang Lu
- School of Life Sciences, Yunnan University, Kunming 650091, China;
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
46
|
Wang C, He T, Zhang M, Zheng C, Yang L, Yang L. Review of the mechanisms involved in dissimilatory nitrate reduction to ammonium and the efficacies of these mechanisms in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123480. [PMID: 38325507 DOI: 10.1016/j.envpol.2024.123480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) is currently of great interest because it is an important method for recovering nitrogen from wastewater and offers many advantages, over other methods. A full understanding of DNRA requires the mechanisms, pathways, and functional microorganisms involved to be identified. The roles these pathways play and the effectiveness of DNRA in the environment are not well understood. The objectives of this review are to describe our current understanding of the molecular mechanisms and pathways involved in DNRA from the substrate transfer perspective and to summarize the effects of DNRA in the environment. First, the mechanisms and pathways involved in DNRA are described in detail. Second, our understanding of DNRA by actinomycetes is reviewed and gaps in our understanding are identified. Finally, the effects of DNRA in the environment are assessed. This review will help in the development of future research into DNRA to promote the use of DNRA to treat wastewater and recover nitrogen.
Collapse
Affiliation(s)
- Cerong Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Tengxia He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Manman Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Chunxia Zheng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Li Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Lu Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
47
|
Zhang H, Zhang K, Duan Y, Sun X, Lin L, An Q, Altaf MM, Zhu Z, Liu F, Jiao Y, Yin J, Xie C, Wang B, Feng H, Zhang X, Li D. Effect of EDDS on the rhizosphere ecology and microbial regulation of the Cd-Cr contaminated soil remediation using king grass combined with Piriformospora indica. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133266. [PMID: 38118201 DOI: 10.1016/j.jhazmat.2023.133266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
The negative impacts of soil heavy metals composite pollution on agricultural production and human health are becoming increasingly prevalent. The applications of green chelating agents and microorganisms have emerged as promising alternate methods for enhancing phytoremediation. The regulatory effects of root secretion composition, microbial carbon source utilization, key gene expression, and soil microbial community structure were comprehensively analyzed through a combination of HPLC, Biolog EcoPlates, qPCR, and high-throughput screening techniques. The application of EDDS resulted in a favorable rhizosphere ecological environment for the king grass Piriformospora indica, characterized by a decrease in soil pH by 0.41 units, stimulation of succinic acid and fumaric acid secretion, and an increase in carbon source metabolic activity of amino acids and carbohydrates. Consequently, this improvement enhanced the bioavailability of Cd/Cr and increased the biomass of king grass by 25.7%. The expression of dissimilatory iron-reducing bacteria was significantly upregulated by 99.2%, while there was no significant difference in Clostridium abundance. Furthermore, the richness of the soil rhizosphere fungal community (Ascomycota: 45.8%, Rozellomycota: 16.7%) significantly increased to regulate the proportion of tolerant microbial dominant groups, promoting the improvement of Cd/Cr removal efficiency (Cd: 23.4%, Cr: 18.7%). These findings provide a theoretical basis for the sustainable development of chelating agent-assisted plants-microorganisms combined remediation of heavy metals in soil.
Collapse
Affiliation(s)
- Haixiang Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Kailu Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yali Duan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoyan Sun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Li Lin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi) / Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, Nanning 530007, China
| | - Qianli An
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Muhammad Mohsin Altaf
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zhiqiang Zhu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Fan Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yangqiu Jiao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jing Yin
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Can Xie
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Baijie Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Huiping Feng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dong Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Key Laboratory for Environmental Toxicology of Haikou / Center for Eco-Environmental Restoration aboratory of Marine Resource Utilization in South China Sea / Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China.
| |
Collapse
|
48
|
Bao Q, Bao Y, Shi J, Sun Y. Nano zero-valent iron and melatonin synergistically alters uptake and translocation of Cd and As in soil-rice system and mechanism in soil chemistry and microbiology. ENVIRONMENT INTERNATIONAL 2024; 185:108550. [PMID: 38452466 DOI: 10.1016/j.envint.2024.108550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Nanoscale zero-valent iron (Fe) is a promising nanomaterial for remediating heavy metal-contaminated soils. Melatonin (MT) is essential to alleviate environmental stress in plants. However, the conjunction effects of Fe and MT (FeMT) on rice Cd, As accumulation and the mechanism of soil chemical and microbial factors interaction are unclear. Here, a pot experiment was conducted to evaluated the effects of the FeMT for rice Cd, As accumulation and underlying mechanisms. The findings showed that FeMT significantly reduced grains Cd by 92%-87% and As by over 90%, whereas improving grains Fe by over 213%. Soil available-Cd and iron plaques-Cd (extracted by dithionite-citrate-bicarbonate solution, DCB-Cd) significantly regulated roots Cd, thus affected Cd transport to grains. Soil pH significantly affected soil As and DCB-As, which further influenced roots As uptake and the transport to shoots and grains. The interactions between the soil bacterial community and soil Fe, available Fe, and DCB-Fe together affected root Fe absorption and transportation in rice. FeMT significantly influenced rhizosphere soil bacterial α- and β-diversity. Firmicutes as the dominant phylum exhibited a significant positive response to FeMT measure, and acted a key role in reducing soil Cd and As availability mainly by improving iron-manganese plaques. The increase of soil pH caused by FeMT was beneficial only for Actinobacteriota growth, which reduced Cd, As availability probably through complexation and adsorption. FeMT also showed greater potential in reducing human health and ecological risks by rice consumption and straw returning. These results showed the important role of both soil chemical and microbial factors in FeMT-mediated rice Cd, As reduction efficiency. This study opens a novel strategy for safe rice production and improvement of rice iron nutrition level in heavy-metals polluted soil, but also provides new insights into the intricate regulatory relationships among soil biochemistry, toxic elements, microorganism, and plants.
Collapse
Affiliation(s)
- Qiongli Bao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing, 300191, China.
| | - Yinrong Bao
- Agronomy College, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiahao Shi
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing, 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing, 300191, China
| |
Collapse
|
49
|
Aminudin NI, Wan Jaafar WMS, Mohd Amin NMS, Kamarul Baharin R, Zainal Abidin ZA. Biotransformation of curcumin by Streptomyces sp. K1-18 isolated from mangrove soil. Nat Prod Res 2024:1-7. [PMID: 38372293 DOI: 10.1080/14786419.2024.2318786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Biotransformation is recognised as a green chemistry tool to synthesise diverse natural product analogues for valorisation of their chemistry and bioactivities. It offers significant benefits compared to chemical synthesis, given its cost-effectiveness and greater selectivity. In this work, a curcumin analogue, namely gingerenone A, was yielded from the biotransformation process catalysed by Streptomyces sp. K1-18. The structure of the compound was established by using mass spectrometry/mass spectrometry chemical profiling assisted with in silico fragmentation by MetFrag tool. This biotransformation successfully afforded a reduction reaction on curcumin. This is the first report on utilisation of Streptomyces sp. K1-18 as a biocatalyst for biotransformation of curcumin.
Collapse
Affiliation(s)
- Nurul Iman Aminudin
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | | | | | - Raudah Kamarul Baharin
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | - Zaima Azira Zainal Abidin
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| |
Collapse
|
50
|
Das R, Bharadwaj P, Thakur D. Insights into the functional role of Actinomycetia in promoting plant growth and biocontrol in tea (Camellia sinensis) plants. Arch Microbiol 2024; 206:65. [PMID: 38227026 DOI: 10.1007/s00203-023-03789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
Tea, a highly aromatic and globally consumed beverage, is derived from the aqueous infusion of dried leaves of Camellia sinensis (L.) O. Kuntze. Northeast India, encompassing an expansive geographical area between 24° and 27° N latitude and 88° and 95° E longitude, is a significant tea-producing region covering approximately 312,210 hectares. Despite its prominence, this region faces persistent challenges owing to a conducive climate that harbors the prevalence of pests, fungal pathogens, and weeds, necessitating agrochemicals. Helopeltis theivora, Oligonychus coffeae, and Biston suppressaria are prominent among the tea pests in this region. Concurrently, tea plants encounter fungal infections such as blister blight, brown root rot, and Fusarium dieback. The growing demand for safer tea production and the need to reduce pesticide and fertilizer usage has spurred interest in exploring biological control methods. This review focuses on Actinomycetia, which potentially safeguards plants from diseases and pest infestations by producing many bioactive substances. Actinomycetia, which resides in the tea rhizosphere and internal plant tissues, can produce antagonistic secondary metabolites and extracellular enzymes while promoting plant growth. Harnessing the biocontrol potential of Actinomycetia offers a promising solution to enhance tea production, while minimizing reliance on harmful agrochemicals, contributing to a more environmentally conscious and economically viable tea cultivation system.
Collapse
Affiliation(s)
- Rictika Das
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, 781001, India
| | - Pranami Bharadwaj
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
| |
Collapse
|