1
|
Tsujimoto H, Fujikura Y, Hamamoto TA, Horiguchi H, Takahata R, Ishibashi Y, Sugihara T, Kouzu K, Itazaki Y, Fujishima SI, Okamoto K, Kajiwara Y, Matsukuma S, Ueno H. Drug resistance of Pseudomonas aeruginosa based on the isolation sites and types of gastrointestinal diseases: An observational study. Fukushima J Med Sci 2025; 71:25-34. [PMID: 39694500 DOI: 10.5387/fms.24-00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
INTRODUCTION We investigated the drug resistance status of Pseudomonas aeruginosa (P. aeruginosa) focusing on its isolation sites and types of diseases. Materials and methods: A microbiological laboratory database was searched to identify all clinical cultures positive for P. aeruginosa. Clinicopathologic features and susceptibility of P. aeruginosa to any antibiotics were evaluated in patients admitted to the division of upper (Upper-GI group) or lower gastrointestinal surgery (Lower-GI group). In addition, we investigated the susceptibility of P. aeruginosa to any antibiotics based on the isolation site. Results:P. aeruginosa was frequently detected in the sputum and urine of the Upper-GI and Lower-GI groups, respectively. Among P. aeruginosa isolates from drain discharge, a significantly higher rate of resistance to imipenem, amikacin, and ciprofloxacin was observed; among P. aeruginosa isolates from wounds, a substantially higher proportion had resistance to imipenem and cefozopran in the Upper-GI group. However, there was no difference between the two groups in the drug resistance of P. aeruginosa isolated from urine, sputum, blood, and ascites. P. aeruginosa isolated from sputum showed more resistance to imipenem and ciprofloxacin than those isolated from other sites. Conclusion: There were significant differences in the drug resistance of P. aeruginosa based on the isolation sites and types of diseases. .
Collapse
Affiliation(s)
- Hironori Tsujimoto
- Department of Surgery, National Defense Medical College
- Department of Medical Risk Management and Infection Control, National Defense Medical College Hospital, National Defense Medical College
| | - Yuji Fujikura
- Department of Medical Risk Management and Infection Control, National Defense Medical College Hospital, National Defense Medical College
| | - Taka-Aki Hamamoto
- Department of Laboratory Medicine, National Defense Medical College Hospital
| | | | - Risa Takahata
- Department of Medical Risk Management and Infection Control, National Defense Medical College Hospital, National Defense Medical College
| | | | | | - Keita Kouzu
- Department of Surgery, National Defense Medical College
| | | | | | | | | | - Susumu Matsukuma
- Department of Laboratory Medicine, National Defense Medical College Hospital
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College
| |
Collapse
|
2
|
Monroy-Pérez E, Herrera-Gabriel JP, Olvera-Navarro E, Ugalde-Tecillo L, García-Cortés LR, Moreno-Noguez M, Martínez-Gregorio H, Vaca-Paniagua F, Paniagua-Contreras GL. Molecular Properties of Virulence and Antibiotic Resistance of Pseudomonas aeruginosa Causing Clinically Critical Infections. Pathogens 2024; 13:868. [PMID: 39452738 PMCID: PMC11510431 DOI: 10.3390/pathogens13100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
The increase in the number of hospital strains of hypervirulent and multidrug resistant (MDR) Pseudomonas aeruginosa is a major health problem that reduces medical treatment options and increases mortality. The molecular profiles of virulence and multidrug resistance of P. aeruginosa-associated hospital and community infections in Mexico have been poorly studied. In this study, we analyzed the different molecular profiles associated with the virulence genotypes related to multidrug resistance and the genotypes of multidrug efflux pumps (mex) in P. aeruginosa causing clinically critical infections isolated from Mexican patients with community- and hospital-acquired infections. Susceptibility to 12 antibiotics was determined using the Kirby-Bauer method. The identification of P. aeruginosa and the detection of virulence and efflux pump system genes were performed using conventional PCR. All strains isolated from patients with hospital-acquired (n = 67) and community-acquired infections (n = 57) were multidrug resistant, mainly to beta-lactams (ampicillin [96.7%], carbenicillin [98.3%], cefalotin [97.5%], and cefotaxime [87%]), quinolones (norfloxacin [78.2%]), phenicols (chloramphenicol [91.9%]), nitrofurans (nitrofurantoin [70.9%]), aminoglycosides (gentamicin [75%]), and sulfonamide/trimethoprim (96.7%). Most strains (95.5%) isolated from patients with hospital- and community-acquired infections carried the adhesion (pilA) and biofilm formation (ndvB) genes. Outer membrane proteins (oprI and oprL) were present in 100% of cases, elastases (lasA and lasB) in 100% and 98.3%, respectively, alkaline protease (apr) and alginate (algD) in 99.1% and 97.5%, respectively, and chaperone (groEL) and epoxide hydrolase (cif) in 100% and 97.5%, respectively. Overall, 99.1% of the strains isolated from patients with hospital- and community-acquired infections carried the efflux pump system genes mexB and mexY, while 98.3% of the strains carried mexF and mexZ. These findings show a wide distribution of the virulome related to the genotypic and phenotypic profiles of antibiotic resistance and the origin of the strains isolated from patients with hospital- and community-acquired infections, demonstrating that these molecular mechanisms may play an important role in high-pathogenicity infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Eric Monroy-Pérez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.P.H.-G.); (E.O.-N.); (L.U.-T.)
| | - Jennefer Paloma Herrera-Gabriel
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.P.H.-G.); (E.O.-N.); (L.U.-T.)
| | - Elizabeth Olvera-Navarro
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.P.H.-G.); (E.O.-N.); (L.U.-T.)
| | - Lorena Ugalde-Tecillo
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.P.H.-G.); (E.O.-N.); (L.U.-T.)
| | - Luis Rey García-Cortés
- Coordinación de Investigación del Estado de México Oriente, Insitituto Mexicano del Seguro Social, Tlalnepantla de Baz 50090, Mexico;
| | - Moisés Moreno-Noguez
- Coordinación Clínica de Educación e Investigación en Salud, Unidad de Medicina Familiar No. 55, Insitituto Mexicano del Seguro Social Estado de México Oriente, Zumpango 55600, Mexico;
| | - Héctor Martínez-Gregorio
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (H.M.-G.); (F.V.-P.)
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (H.M.-G.); (F.V.-P.)
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Gloria Luz Paniagua-Contreras
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.P.H.-G.); (E.O.-N.); (L.U.-T.)
| |
Collapse
|
3
|
Hanson-Viana E, Rojas-Ortiz JA, Rendón-Medina MA, Luna-Zepeda BL. Bacterial fluorescence imaging as a predictor of skin graft integration in burn wounds. Burns 2024; 50:1799-1811. [PMID: 38735804 DOI: 10.1016/j.burns.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/26/2024] [Accepted: 04/06/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Split-thickness skin graft (STSG)1 integration rates are susceptible to improvement. Infection and/or biofilm should be appropriately addressed prior to grafting to improve the likelihood of graft-take. Incorporating technological aids such as fluorescence (FL)2 imaging (MolecuLight®), which accurately locates areas of bacterial loads above 104 CFU/gr, for graft site assessment and preparation could yield better outcomes. METHODS This single-center, prospective observational study included adult burn patients with previously infected wounds that had been deemed clinically and microbiologically clean and were therefore candidates for grafting. Prior to grafting, a FL imaging assessment (blinded to the surgical team) localized areas positive for moderate-high bacterial loads (>104 CFU/gr). Intra-operatively, a standard swab sample from the recipient site was collected by the surgical team. Postoperatively, areas positive/negative for FL and areas of graft take and failure were overlapped and measured (cm2) over a 2D schematic. The performance and accuracy of FL imaging and swab sampling in relation to graft outcomes were assessed. RESULTS 38 patients were enrolled in the study. The mean total body surface area (TBSA)3 involvement was 14.5 ± 12.4 % [range 0.8 - 40.2 %]. 25/38 of the subjects enrolled had complete graft take while 13 had partial graft losses. There were no total losses. FL-imaging was positive in 100 % of losses versus 31 % (4/13) of the swab microbiology. FL-imaging was found to have a sensitivity of 86 %, specificity of 98 %, PPV of 72 %, NPV of 99 %, and an accuracy of 94 % for predicting any type or range of graft loss in the entire cohort. Meanwhile, the sensitivity of microbiology from swab samples was 30 %, with a specificity of 76 %. CONCLUSIONS FL imaging is an accurate method for assessing recipient sites and predicting the outcome of a skin graft among burn patients. These findings suggest that FL imaging can inform better decision-making surrounding grafts that may lead to better outcomes. LEVEL OF EVIDENCE Level IIA, Therapeutic study.
Collapse
Affiliation(s)
- Erik Hanson-Viana
- Plastic and Reconstructive Surgery Department, Mexico City General Hospital Dr. Rúben Leñero, Mexico.
| | - Jorge Arturo Rojas-Ortiz
- Plastic and Reconstructive Surgery Department, Mexico City General Hospital Dr. Rúben Leñero, Mexico
| | | | | |
Collapse
|
4
|
de Souza PA, dos Santos MCS, de Miranda RVDSL, da Costa LV, da Silva RPP, de Miranda CAC, da Silva APR, Forsythe SJ, Bôas MHSV, Brandão MLL. Evaluation of Antimicrobial Resistance Patterns of Pseudomonas aeruginosa Strains Isolated among COVID-19 Patients in Brazil Typed by Fourier-Transform Infrared Spectroscopy. Life (Basel) 2024; 14:1079. [PMID: 39337864 PMCID: PMC11433527 DOI: 10.3390/life14091079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to characterize Pseudomonas aeruginosa strains isolated from hospitalized patients during the COVID-19 pandemic. This was achieved using phenotypic and molecular techniques, including their antimicrobial resistance profile and biofilm formation. Eighteen strains were isolated from a hospital in Rio de Janeiro, Brazil, and identified by VITEK®2, MALDI-TOF/MS (VITEK MS® and MALDI Biotyper®), and 16S rRNA sequencing. Fourier-transform infrared (FTIR) spectroscopy, antimicrobial susceptibility testing, and biofilm formation and disinfectant tolerance tests were applied to evaluate the virulence characteristics of the strains. VITEK®2 (≥99%), VITEK MS® (≥82.7%), and MALDI Biotyper® (score ≥ 2.01) accurately identified the P. aeruginosa strains, but 16S rRNA sequencing did not differentiate the species P. aeruginosa from P. paraeruginosa. FTIR typing identified three different clusters, but no correlation between the phenotypical or antimicrobial susceptibility testing patterns was found. Most strains exhibited resistance to various antimicrobials. The exceptions were sensitivity to amikacin and norfloxacin, and consequently, these could be considered potential treatment options. Most strains (n = 15, 83.3%) produced biofilms on polystyrene. Sodium hypochlorite treatment (0.5%/15 min) was shown to be the most effective disinfectant for biofilm elimination. P. aeruginosa biofilm formation and tolerance to disinfectants demonstrate the need for effective cleaning protocols to eliminate contamination by this organism in the hospital environment and medical equipment.
Collapse
Affiliation(s)
- Paula Araujo de Souza
- Laboratory of Microbiology of Food and Sanitizes, INCQS/Fiocruz, Rio de Janeiro 21040-900, Brazil;
- Laboratory of Microbiological Control, Bio-Manguinhos/Fiocruz, Rio de Janeiro 21040-900, Brazil; (M.C.S.d.S.); (R.V.d.S.L.d.M.); (L.V.d.C.); (M.L.L.B.)
| | - Milena Cristina Silva dos Santos
- Laboratory of Microbiological Control, Bio-Manguinhos/Fiocruz, Rio de Janeiro 21040-900, Brazil; (M.C.S.d.S.); (R.V.d.S.L.d.M.); (L.V.d.C.); (M.L.L.B.)
| | | | - Luciana Veloso da Costa
- Laboratory of Microbiological Control, Bio-Manguinhos/Fiocruz, Rio de Janeiro 21040-900, Brazil; (M.C.S.d.S.); (R.V.d.S.L.d.M.); (L.V.d.C.); (M.L.L.B.)
| | | | | | - Ana Paula Roque da Silva
- Analytical Indicators and Data Systems Section, Bio-Manguinhos/Fiocruz, Rio de Janeiro 21040-900, Brazil;
| | | | | | - Marcelo Luiz Lima Brandão
- Laboratory of Microbiological Control, Bio-Manguinhos/Fiocruz, Rio de Janeiro 21040-900, Brazil; (M.C.S.d.S.); (R.V.d.S.L.d.M.); (L.V.d.C.); (M.L.L.B.)
| |
Collapse
|
5
|
Maslova E, EisaianKhongi L, Rigole P, Coenye T, McCarthy RR. Carbon source competition within the wound microenvironment can significantly influence infection progression. NPJ Biofilms Microbiomes 2024; 10:52. [PMID: 38918415 PMCID: PMC11199515 DOI: 10.1038/s41522-024-00518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/08/2024] [Indexed: 06/27/2024] Open
Abstract
It is becoming increasingly apparent that commensal skin bacteria have an important role in wound healing and infection progression. However, the precise mechanisms underpinning many of these probiotic interactions remain to be fully uncovered. In this work, we demonstrate that the common skin commensal Cutibacterium acnes can limit the pathogenicity of the prevalent wound pathogen Pseudomonas aeruginosa in vivo. We show that this impact on pathogenicity is independent of any effect on growth, but occurs through a significant downregulation of the Type Three Secretion System (T3SS), the primary toxin secretion system utilised by P. aeruginosa in eukaryotic infection. We also show a downregulation in glucose acquisition systems, a known regulator of the T3SS, suggesting that glucose availability in a wound can influence infection progression. C. acnes is well known as a glucose fermenting organism, and we demonstrate that topically supplementing a wound with glucose reverses the probiotic effects of C. acnes. This suggests that introducing carbon source competition within the wound microenvironment may be an effective way to prevent or limit wound infection.
Collapse
Affiliation(s)
- Evgenia Maslova
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Lara EisaianKhongi
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000, Ghent, Belgium
| | - Ronan R McCarthy
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK.
| |
Collapse
|
6
|
Zvizdic Z, Hukic L, Ljubovic AD, Milisic E, Jonuzi A, Vranic S. Epidemiology and early bacterial colonization of minor and moderate pediatric burns: A retrospective study from a developing country. Burns 2024; 50:623-629. [PMID: 37981486 DOI: 10.1016/j.burns.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 09/03/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
OBJECTIVES Infection is still the leading cause of morbidity and mortality among burn patients worldwide. Isolation and identification of pediatric burn wound bacterial colonizers can prevent infection and improve burn trauma treatment. In this study, we explored early microbial colonizers within the burn wounds and the susceptibility of those isolates to antibiotics among hospitalized pediatric patients with minor and moderate burns, clinically significant infections and outcomes. METHODS A retrospective analysis of pediatric patients admitted to the inpatient pediatric surgical ward and treated for minor and moderate burns from 2009 to 2018 was performed. RESULTS One hundred six patients met the inclusion criteria. The mean age was 3.6 ± three years (0.2-14.1 years). The most common type of burn was scald burns (82.1%). The mean TBSA of the hospitalized pediatric burn cases was 8.5% (IQR, 6-12%). Seventy-nine (74.5%) patients had positive wound cultures at admission, regardless of the hospital admission day. Fifty-eight (73.4%) had one bacterial growth (mono isolate), while 21 (26.6%) had mixed growth or poly isolates. Among patients with mixed growth or poly isolate, 16 had two bacteria, three had three bacteria, and one had four bacteria isolated, totaling 105 isolated microorganisms (14 different species, 70.5% Gram-positive bacteria and 29.5% Gram-negative bacteria). Twelve patients (11%) developed clinically significant infections (eleven got burn wound infection, and one had septicemia). All patients received prophylactic systemic antibiotics. Only 35.2% of the isolated bacteria from the wounds were sensitive to the prophylactic antibiotics, and only ∼17% in case of clinically significant infections. We found a statistically significant difference in the length of hospital stay between patients with initially colonized samples of burn wounds compared with patients with initial negative samples (p = 0.008). All patients in the cohort survived hospital discharge. CONCLUSION Despite common bacterial colonization of acute burn wounds, only ∼10% of the patients developed clinically significant infections, a minority of which were sensitive to prophylactic antibiotics. Our findings indicate the need to refine the antibiotic approach in pediatric patients with minor/moderate burns in our local setting.
Collapse
Affiliation(s)
- Zlatan Zvizdic
- Clinic of Pediatric Surgery, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Lamija Hukic
- Public Institution Health Center of the Canton Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Amela Dedeic Ljubovic
- Department of Clinical Microbiology, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Emir Milisic
- Clinic of Pediatric Surgery, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Asmir Jonuzi
- Clinic of Pediatric Surgery, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
7
|
Panahi Z, Owrang M, Goli HR. Significant role of pyocyanin and exotoxin A in the pathogenesis of Pseudomonas aeruginosa isolated from hospitalized patients. Folia Med (Plovdiv) 2024; 66:88-96. [PMID: 38426470 DOI: 10.3897/folmed.66.e111038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/27/2023] [Indexed: 03/02/2024] Open
Abstract
AIM Due to the importance of exotoxin A and pyocyanin in the pathogenicity of this bacterium, we decided to evaluate the prevalence of genes encoding these virulence factors in clinical isolates of P.aeruginosa.
Collapse
|
8
|
Ramos C, Lorenz K, Putrinš M, Hind CK, Meos A, Laidmäe I, Tenson T, Sutton JM, Mason AJ, Kogermann K. Fibrous matrices facilitate pleurocidin killing of wound associated bacterial pathogens. Eur J Pharm Sci 2024; 192:106648. [PMID: 37992909 DOI: 10.1016/j.ejps.2023.106648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/20/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Conventional wound infection treatments neither actively promote wound healing nor address the growing problem of antibacterial resistance. Antimicrobial peptides (AMPs) are natural defense molecules, released from host cells, which may be rapidly bactericidal, modulate host-immune responses, and/or act as endogenous mediators for wound healing. However, their routine clinical use has hitherto been hindered due to their instability in the wound environment. Here we describe an electrospun carrier system for topical application of pleurocidin, demonstrating sufficient AMP release from matrices to kill wound-associated pathogens including Acinetobacter baumannii and Pseudomonas aeruginosa. Pleurocidin can be incorporated into polyvinyl alcohol (PVA) fiber matrices, using coaxial electrospinning, without major drug loss with a peptide content of 0.7% w/w predicted sufficient to kill most wound associated species. Pleurocidin retains its activity on release from the electrospun fiber matrix and completely inhibits growth of two strains of A. baumannii (AYE; ATCC 17978) and other ESKAPE pathogens. Inhibition of P. aeruginosa strains (PAO1; NCTC 13437) is, however, matrix weight per volume dependent, with only larger/thicker matrices maintaining complete inhibition. The resulting estimation of pleurocidin release from the matrix reveals high efficiency, facilitating a greater AMP potency. Wound matrices are often applied in parallel or sequentially with the use of standard wound care with biocides, therefore the presence and effect of biocides on pleurocidin potency was tested. It was revealed that combinations displayed additive or modestly synergistic effects depending on the biocide and pathogens which should be considered during the therapy. Taken together, we show that electrospun, pleurocidin-loaded wound matrices have potential to be investigated for wound infection treatment.
Collapse
Affiliation(s)
- Celia Ramos
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury SP4 0JG, United Kingdom; Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King´s College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Kairi Lorenz
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Marta Putrinš
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Charlotte K Hind
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Andres Meos
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Ivo Laidmäe
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - J Mark Sutton
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury SP4 0JG, United Kingdom; Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King´s College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, United Kingdom
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King´s College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Karin Kogermann
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| |
Collapse
|
9
|
Aburayyan WS, Seder N, Al-fawares O, Fararjeh A, Majali IS, Al-Hajaya Y. Characterization of Antibiofilm and Antimicrobial Effects of Trigona Stingless Bee Honey Compared to Stinging Bee Centaurea hyalolepis and Citrus Honeys. J Evid Based Integr Med 2024; 29:2515690X241271978. [PMID: 39118572 PMCID: PMC11311187 DOI: 10.1177/2515690x241271978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 05/15/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
The antibiofilm and antimicrobial properties of tropical honey types including Malaysian stingless bee honey remain explicitly unexplored when compared with Apies honey. The antibiofilm and antimicrobial activities of the Malaysian Trigona honey were characterized with two stinging bee honey types (Centaurea hyalolepis and Citrus honeys) from Jordan. The antibiofilm and antimicrobial investigations were conducted on a set of seven microbial strains; five bacterial species of Pseudomonas aeruginosa ATCC 10145, Streptococcus pyogenes ATCC 19615, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 13883, and two fungal strains Candida albicans ATCC 10231 and Candida krusei ATCC 14243. The antimicrobial investigations revealed a broad spectrum activity for Trigona honey against Gram-positive, Gram-negative, and fungal strains over the two honey types. One-way ANOVA showed a significant difference (p < 0.001) in the zone of inhibition ranging from 9 to 25 mm and minimum inhibition activity (MIC) ranged from 9.4-29.6% (w/v) against the microbial strains. Moreover, the addition of honey to established biofilms has induced a degradation activity in the biofilm mass. Two-way ANOVA showed a significant biofilm degradation proportion (p < 0.001) ranging from 1.3% to 91.3% following treatment with Trigona honey and the other honey types in relevance to the concentration ranging from 10% to 50% (w/v). Moreover, the antibiofilm activity was highly consistent with MIC affecting bacterial growth inhibition. In conclusion, a robust antimicrobial and antibiofilm activity for Trigona stingless bee honey over the stinging bee Centaurea hyalolepis and Citrus honeys is noticed which endows the usage of Trigona honey in the antimicrobial industry.
Collapse
Affiliation(s)
- Walid Salem Aburayyan
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Nesrin Seder
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - O’la Al-fawares
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - AbdulFattah Fararjeh
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Ibrahim S. Majali
- Department of Medical Laboratory Sciences, Mutah University, Karak, Jordan
| | - Yousef Al-Hajaya
- Department of Biological Sciences, Mutah University, Karak, Jordan
| |
Collapse
|
10
|
Li R, Ling B, Zeng J, Wang X, Yang N, Fan L, Guo G, Li X, Yan F, Zheng J. A nosocomial Pseudomonas aeruginosa ST3495 isolated from a wild Burmese python (Python bivittatus) with suppurative pneumonia and bacteremia in Hainan, China. Braz J Microbiol 2023; 54:2403-2412. [PMID: 37344655 PMCID: PMC10484839 DOI: 10.1007/s42770-023-01038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
Pseudomonas aeruginosa is a common infectious agent associated with respiratory diseases in boas and pythons, however, the histopathology, resistance and virulence are yet described for this species. In this study, we investigated a dying Burmese python rescued from tropical rainforest in Hainan. Clinical signs were open-mouthed breathing, abnormal shedding and anorexia. Abundant yellow mucopurulent secretions were observed in highly ectatic segmental bronchi by postmortem. Histopathological lesions included systemic pneumonia, enteritis, nephritis and carditis. P. aeruginosa was the only species isolated from heart blood, kidney, trachea and lung. The phenotype analysis demonstrated that the isolates had strong biofilm, and were sensitive to amikacin, spectinomycin, ciprofloxacin, norfloxacin and polymyxin B, moreover, the LD50 of the most virulent isolate was 2.22×105 cfu/mL in a zebrafish model. Molecular epidemiological analysis revealed that the isolates belonged to sequence type 3495, the common gene patterns were toxA + exoSYT + phzIM + plcHN in virulence and catB + blaTEM + ant (3'')-I+ tetA in resistance. This study highlights that P. aeruginosa should be worth more attention in wildlife conservation and raise the public awareness for the cross infection and cross spread between animals and human.
Collapse
Affiliation(s)
- Roushan Li
- Lab of Microbial Engineering (Infection and Immunity), School of Life Sciences, Hainan University, Haikou, 570228, China
- School of Animal Science and Technology, Hainan University, Haikou, 570228, China
| | - Bo Ling
- Lab of Microbial Engineering (Infection and Immunity), School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Jifeng Zeng
- Lab of Microbial Engineering (Infection and Immunity), School of Life Sciences, Hainan University, Haikou, 570228, China
- School of Animal Science and Technology, Hainan University, Haikou, 570228, China
- One health institute, Hainan university, Haikou, 570228, China
| | - Xin Wang
- Lab of Microbial Engineering (Infection and Immunity), School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Nuo Yang
- Lab of Microbial Engineering (Infection and Immunity), School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Lixia Fan
- Lab of Microbial Engineering (Infection and Immunity), School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Guiying Guo
- Lab of Microbial Engineering (Infection and Immunity), School of Life Sciences, Hainan University, Haikou, 570228, China
- School of Science, Hainan University, Haikou, 570228, China
| | - Xuesong Li
- Lab of Microbial Engineering (Infection and Immunity), School of Life Sciences, Hainan University, Haikou, 570228, China
- One health institute, Hainan university, Haikou, 570228, China
| | - Fei Yan
- Biological and Chemical Engineering College, Panzhihua University, Panzhihua, 617000, China
| | - Jiping Zheng
- Lab of Microbial Engineering (Infection and Immunity), School of Life Sciences, Hainan University, Haikou, 570228, China.
- One health institute, Hainan university, Haikou, 570228, China.
| |
Collapse
|
11
|
Enhancement of Inhibition of the Pseudomonas sp. Biofilm Formation on Bacterial Cellulose-Based Wound Dressing by the Combined Action of Alginate Lyase and Gentamicin. Int J Mol Sci 2023; 24:ijms24054740. [PMID: 36902169 PMCID: PMC10002595 DOI: 10.3390/ijms24054740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Bacterial biofilms generally contribute to chronic infections, including wound infections. Due to the antibiotic resistance mechanisms protecting bacteria living in the biofilm, they are a serious problem in the wound healing process. To accelerate the wound healing process and avoid bacterial infection, it is necessary to select the appropriate dressing material. In this study, the promising therapeutic properties of alginate lyase (AlgL) immobilised on BC membranes for protecting wounds from Pseudomonas aeruginosa infection were investigated. The AlgL was immobilised on never dried BC pellicles via physical adsorption. The maximum adsorption capacity of AlgL was 6.0 mg/g of dry BC, and the equilibrium was reached after 2 h. The adsorption kinetics was studied, and it has been proven that the adsorption was consistent with Langmuir isotherm. In addition, the impact of enzyme immobilisation on bacterial biofilm stability and the effect of simultaneous immobilisation of AlgL and gentamicin on the viability of bacterial cells was investigated. The obtained results showed that the AlgL immobilisation significantly reduced the amount of polysaccharides component of the P. aeruginosa biofilm. Moreover, the biofilm disruption by AlgL immobilised on BC membranes exhibited synergism with the gentamicin, resulting in 86.5% more dead P. aeruginosa PAO-1 cells.
Collapse
|
12
|
Compendium-Wide Analysis of Pseudomonas aeruginosa Core and Accessory Genes Reveals Transcriptional Patterns across Strains PAO1 and PA14. mSystems 2023; 8:e0034222. [PMID: 36541762 PMCID: PMC9948736 DOI: 10.1128/msystems.00342-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes difficult-to-treat infections. Two well-studied divergent P. aeruginosa strain types, PAO1 and PA14, have significant genomic heterogeneity, including diverse accessory genes present in only some strains. Genome content comparisons find core genes that are conserved across both PAO1 and PA14 strains and accessory genes that are present in only a subset of PAO1 and PA14 strains. Here, we use recently assembled transcriptome compendia of publicly available P. aeruginosa RNA sequencing (RNA-seq) samples to create two smaller compendia consisting of only strain PAO1 or strain PA14 samples with each aligned to their cognate reference genome. We confirmed strain annotations and identified other samples for inclusion by assessing each sample's median expression of PAO1-only or PA14-only accessory genes. We then compared the patterns of core gene expression in each strain. To do so, we developed a method by which we analyzed genes in terms of which genes showed similar expression patterns across strain types. We found that some core genes had consistent correlated expression patterns across both compendia, while others were less stable in an interstrain comparison. For each accessory gene, we also determined core genes with correlated expression patterns. We found that stable core genes had fewer coexpressed neighbors that were accessory genes. Overall, this approach for analyzing expression patterns across strain types can be extended to other groups of genes, like phage genes, or applied for analyzing patterns beyond groups of strains, such as samples with different traits, to reveal a deeper understanding of regulation. IMPORTANCE Pseudomonas aeruginosa is a ubiquitous pathogen. There is much diversity among P. aeruginosa strains, including two divergent but well-studied strains, PAO1 and PA14. Understanding how these different strain-level traits manifest is important for identifying targets that regulate different traits of interest. With the availability of thousands of PAO1 and PA14 samples, we created two strain-specific RNA-seq compendia where each one contains hundreds of samples from PAO1 or PA14 strains and used them to compare the expression patterns of core genes that are conserved in both strain types and to determine which core genes have expression patterns that are similar to those of accessory genes that are unique to one strain or the other using an approach that we developed. We found a subset of core genes with different transcriptional patterns across PAO1 and PA14 strains and identified those core genes with expression patterns similar to those of strain-specific accessory genes.
Collapse
|
13
|
Chen Z. Mechanisms and Clinical Relevance of Pseudomonas aeruginosa Heteroresistance. Surg Infect (Larchmt) 2023; 24:27-38. [PMID: 36622941 DOI: 10.1089/sur.2022.349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Abstract Background: Pseudomonas aeruginosa is an opportunistic pathogen that can cause various life-threatening infections. Several unique characteristics make it the ability of survivability and adaptable and develop resistance to antimicrobial agents through multiple mechanisms. Heteroresistance, which is a subpopulation-mediated resistance, has received increasing attention in recent years. Heteroresistance may lead to unexpected treatment failure if not diagnosed in time and treated properly. Therefore, heteroresistant Pseudomonas aeruginosa infections pose considerable problems for hospital-acquired infections. However, the clinical prevalence and implications of Pseudomonas aeruginosa heteroresistance have not been reviewed. Results: In this work, the aspects of the clinically reported heteroresistance of Pseudomonas aeruginosa to commonly used antibiotic agents are reviewed. The prevalence, mechanisms, and clinical relevance of each reported heteroresistant Pseudomonas aeruginosa are discussed.
Collapse
Affiliation(s)
- Zhao Chen
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, P.R. China
| |
Collapse
|
14
|
Comparison of Virulence-Factor-Encoding Genes and Genotype Distribution amongst Clinical Pseudomonas aeruginosa Strains. Int J Mol Sci 2023; 24:ijms24021269. [PMID: 36674786 PMCID: PMC9863696 DOI: 10.3390/ijms24021269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen encoding several virulence factors in its genome, which is well-known for its ability to cause severe and life-threatening infections, particularly among cystic fibrosis patients. The organism is also a major cause of nosocomial infections, mainly affecting patients with immune deficiencies and burn wounds, ventilator-assisted patients, and patients affected by other malignancies. The extensively reported emergence of multidrug-resistant (MDR) P. aeruginosa strains poses additional challenges to the management of infections. The aim of this study was to compare the incidence rates of selected virulence-factor-encoding genes and the genotype distribution amongst clinical multidrug-sensitive (MDS) and MDR P. aeruginosa strains. The study involved 74 MDS and 57 MDR P. aeruginosa strains and the following virulence-factor-encoding genes: lasB, plC H, plC N, exoU, nan1, pilA, and pilB. The genotype distribution, with respect to the antimicrobial susceptibility profiles of the strains, was also analyzed. The lasB and plC N genes were present amongst several P. aeruginosa strains, including all the MDR P. aeruginosa, suggesting that their presence might be used as a marker for diagnostic purposes. A wide variety of genotype distributions were observed among the investigated isolates, with the MDS and MDR strains exhibiting, respectively, 18 and 9 distinct profiles. A higher prevalence of genes determining the virulence factors in the MDR strains was observed in this study, but more research is needed on the prevalence and expression levels of these genes in additional MDR strains.
Collapse
|
15
|
Rezk N, Abdelsattar AS, Elzoghby D, Agwa MM, Abdelmoteleb M, Aly RG, Fayez MS, Essam K, Zaki BM, El-Shibiny A. Bacteriophage as a potential therapy to control antibiotic-resistant Pseudomonas aeruginosa infection through topical application onto a full-thickness wound in a rat model. J Genet Eng Biotechnol 2022; 20:133. [PMID: 36094767 PMCID: PMC9468208 DOI: 10.1186/s43141-022-00409-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/24/2022] [Indexed: 12/20/2022]
Abstract
Abstract
Background
Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) is one of the most critical pathogens in wound infections, causing high mortality and morbidity in severe cases. However, bacteriophage therapy is a potential alternative to antibiotics against P. aeruginosa. Therefore, this study aimed to isolate a novel phage targeting P. aeruginosa and examine its efficacy in vitro and in vivo.
Results
The morphometric and genomic analyses revealed that ZCPA1 belongs to the Siphoviridae family and could infect 58% of the tested antibiotic-resistant P. aeruginosa clinical isolates. The phage ZCPA1 exhibited thermal stability at 37 °C, and then, it decreased gradually at 50 °C and 60 °C. At the same time, it dropped significantly at 70 °C, and the phage was undetectable at 80 °C. Moreover, the phage ZCPA1 exhibited no significant titer reduction at a wide range of pH values (4–10) with maximum activity at pH 7. In addition, it was stable for 45 min under UV light with one log reduction after 1 h. Also, it displayed significant lytic activity and biofilm elimination against P. aeruginosa by inhibiting bacterial growth in vitro in a dose-dependent pattern with a complete reduction of the bacterial growth at a multiplicity of infection (MOI) of 100. In addition, P. aeruginosa-infected wounds treated with phages displayed 100% wound closure with a high quality of regenerated skin compared to the untreated and gentamicin-treated groups due to the complete elimination of bacterial infection.
Conclusion
The phage ZCPA1 exhibited high lytic activity against MDR P. aeruginosa planktonic and biofilms. In addition, phage ZCPA1 showed complete wound healing in the rat model. Hence, this research demonstrates the potential of phage therapy as a promising alternative in treating MDR P. aeruginosa.
Collapse
|
16
|
Kelly EJ, Oliver MA, Carney BC, Shupp JW. Infection and Burn Injury. EUROPEAN BURN JOURNAL 2022; 3:165-179. [PMID: 39604183 PMCID: PMC11575387 DOI: 10.3390/ebj3010014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/29/2024]
Abstract
Burn injury is debilitating and among one of the most frequently occurring traumas. Critical care improvements have allowed for increasingly positive outcomes. However, infection, whether it be localized to the site of the wound or systemic in nature, remains a serious cause of morbidity and mortality. Immune suppression predisposes the burn population to the development of invasive infections; and this along with the possibility of inhalation injury puts them at a significant risk for mortality. Emerging multi-drug-resistant pathogens, including Staphylococcus aureus, Enterococcus, Pseudomonas, Acinetobacter, Enterobacter, and yeast spp., continue to complicate clinical care measures, requiring innovative therapies and antimicrobial treatment. Close monitoring of antimicrobial regimens, strict decontamination procedures, early burn eschar removal, adequate wound closure, proper nutritional maintenance, and management of shock and resuscitation all play a significant role in mitigating infection. Novel antimicrobial therapies such as ultraviolet light, cold plasma and topical antiseptics must continue to evolve in order to lower the burden of infection in burn.
Collapse
Affiliation(s)
- Edward J. Kelly
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (M.A.O.); (B.C.C.); (J.W.S.)
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC 20010, USA
| | - Mary A. Oliver
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (M.A.O.); (B.C.C.); (J.W.S.)
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC 20010, USA
| | - Bonnie C. Carney
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (M.A.O.); (B.C.C.); (J.W.S.)
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC 20010, USA
- Department of Surgery and Biochemistry, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Jeffrey W. Shupp
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (M.A.O.); (B.C.C.); (J.W.S.)
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC 20010, USA
- Department of Surgery and Biochemistry, Georgetown University School of Medicine, Washington, DC 20057, USA
| |
Collapse
|
17
|
Mingoia M, Conte C, Di Rienzo A, Dimmito MP, Marinucci L, Magi G, Turkez H, Cufaro MC, Del Boccio P, Di Stefano A, Cacciatore I. Synthesis and Biological Evaluation of Novel Cinnamic Acid-Based Antimicrobials. Pharmaceuticals (Basel) 2022; 15:ph15020228. [PMID: 35215340 PMCID: PMC8878811 DOI: 10.3390/ph15020228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/15/2022] Open
Abstract
The main antimicrobial resistance (AMR) nosocomial strains (ESKAPE pathogens such as Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are the most widespread bacteria in cutaneous infections. In this work we report the synthesis, in silico skin permeability prediction, antimicrobial, antibiofilm, and wound healing properties of novel cinnamic acid-based antimicrobials (DM1–11) as novel antibacterial drugs for the treatment of ESKAPE-related skin infections. Antimicrobial and wound healing scratch assays were performed to evaluate the antibacterial properties of DM1–11. In silico skin permeability capabilities of DM1–11 were evaluated using Swiss-ADME online database. Cytotoxicity assays were performed on keratinocytes and fibroblasts. DM2, bearing a catechol group on the aromatic ring of the cinnamic portion of the molecule, possesses a significant antibacterial activity against S. aureus (MIC range 16–64 mg/L) and contrasts the biofilm-mediated S. epidermidis infection at low concentrations. Wound healing assays showed that wound closure in 48 h was observed in DM2-treated keratinocytes with a better healing pattern at all the used concentrations (0.1, 1.0, and 10 µM). A potential good skin permeation for DM2, that could guarantee its effectiveness at the target site, was also observed. Cytotoxicity studies revealed that DM2 may be a safe compound for topical use. Taking together all these data confirm that DM2 could represent a safe wound-healing topical agent for the treatment of skin wound infections caused by two of main Gram-positive bacteria belonging to ESKAPE microorganisms.
Collapse
Affiliation(s)
- Marina Mingoia
- Department of Biomedical Sciences and Public Health, Medical School, Polytechnic University of Marche, 60121 Ancona, Italy; (M.M.); (G.M.)
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti, 48, 06123 Perugia, Italy;
| | - Annalisa Di Rienzo
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Italy; (A.D.R.); (M.P.D.); (M.C.C.); (P.D.B.); (A.D.S.)
| | - Marilisa Pia Dimmito
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Italy; (A.D.R.); (M.P.D.); (M.C.C.); (P.D.B.); (A.D.S.)
| | - Lorella Marinucci
- Department of Medicine and Surgery, University of Perugia, S. Andrea Delle Fratte, 06156 Perugia, Italy;
| | - Gloria Magi
- Department of Biomedical Sciences and Public Health, Medical School, Polytechnic University of Marche, 60121 Ancona, Italy; (M.M.); (G.M.)
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey;
| | - Maria Concetta Cufaro
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Italy; (A.D.R.); (M.P.D.); (M.C.C.); (P.D.B.); (A.D.S.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Italy
| | - Piero Del Boccio
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Italy; (A.D.R.); (M.P.D.); (M.C.C.); (P.D.B.); (A.D.S.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Italy; (A.D.R.); (M.P.D.); (M.C.C.); (P.D.B.); (A.D.S.)
| | - Ivana Cacciatore
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Italy; (A.D.R.); (M.P.D.); (M.C.C.); (P.D.B.); (A.D.S.)
- Correspondence: ; Tel.: +39-871-355-44-75
| |
Collapse
|
18
|
Lynch JP, Zhanel GG. Pseudomonas aeruginosa Pneumonia: Evolution of Antimicrobial Resistance and Implications for Therapy. Semin Respir Crit Care Med 2022; 43:191-218. [PMID: 35062038 DOI: 10.1055/s-0041-1740109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa (PA), a non-lactose-fermenting gram-negative bacillus, is a common cause of nosocomial infections in critically ill or debilitated patients, particularly ventilator-associated pneumonia (VAP), and infections of urinary tract, intra-abdominal, wounds, skin/soft tissue, and bloodstream. PA rarely affects healthy individuals, but may cause serious infections in patients with chronic structural lung disease, comorbidities, advanced age, impaired immune defenses, or with medical devices (e.g., urinary or intravascular catheters, foreign bodies). Treatment of pseudomonal infections is difficult, as PA is intrinsically resistant to multiple antimicrobials, and may acquire new resistance determinants even while on antimicrobial therapy. Mortality associated with pseudomonal VAP or bacteremias is high (> 35%) and optimal therapy is controversial. Over the past three decades, antimicrobial resistance (AMR) among PA has escalated globally, via dissemination of several international multidrug resistant "epidemic" clones. We discuss the importance of PA as a cause of pneumonia including health care-associated pneumonia, hospital-acquired pneumonia, VAP, the emergence of AMR to this pathogen, and approaches to therapy (both empirical and definitive).
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
19
|
Clinical Specimens are the Pool of Multidrug- resistant Pseudomonas aeruginosa Harbouring oprL and toxA Virulence Genes: Findings from a Tertiary Hospital of Nepal. Emerg Med Int 2021; 2021:4120697. [PMID: 34745664 PMCID: PMC8570908 DOI: 10.1155/2021/4120697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/21/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
The multidrug- or extensively drug-resistant (MDR/XDR) Pseudomonas aeruginosa carrying some virulence genes has become a global public health threat. However, in Nepal, there is no existing report showing the prevalence of oprL and toxA virulence genes among the clinical isolates of P. aeruginosa. Therefore, this study was conducted for the first time in the country to detect the virulence genes (oprL and toxA) and antibiotic susceptibility pattern of P. aeruginosa. A total of 7,898 clinical specimens were investigated following the standard microbiological procedures. The antibiotic susceptibility testing was examined by the modified disc diffusion method, and virulence genes oprL and toxA of P. aeruginosa were assessed using multiplex PCR. Among the analyzed specimens, 87 isolates were identified to be P. aeruginosa of which 38 (43.68%) isolates were reported as MDR. A higher ratio of P. aeruginosa was detected from urine samples 40 (45.98%), outpatients' specimens 63 (72.4%), and in patients of the age group of 60–79 years 36 (41.37%). P. aeruginosa was more prevalent in males 56 (64.36%) than in female patients 31 (35.63%). Polymyxin (83.90%) was the most effective antibiotic. P. aeruginosa (100%) isolates harboured the oprL gene, while 95.4% of isolates were positive for the toxA gene. Identification of virulence genes such as oprL and toxA carrying isolates along with the multidrug resistance warrants the need for strategic interventions to prevent the emergence and spread of antimicrobial resistance (AMR). The findings could assist in increasing awareness about antibiotic resistance and suggest the judicious prescription of antibiotics to treat the patients in clinical settings of Nepal.
Collapse
|
20
|
Yang A, Yassin M, Phan T. Vibrio mimicus wound infection in a burn patient. Radiol Case Rep 2021; 16:1348-1351. [PMID: 33897927 PMCID: PMC8055523 DOI: 10.1016/j.radcr.2021.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/22/2023] Open
Abstract
Burns are one of the most common and devastating forms of trauma. Burns are a significant problem with high associated morbidity and mortality worldwide. Burn wound infection is a serious complication, which plays an important role in increasing the overall fatality rate in burn patients. In this study, we report a case of the polymicrobial burn wound infection involving V mimicus in a 56-year-old male, who was transferred from an outside hospital to the inpatient burn unit after sustaining traumatic and burn injuries in a firework explosion accident. The patient underwent surgical treatment and antibiotics with good improvement. Although rare, our case study will help to underscore the important role of V mimicus as a human pathogen.
Collapse
Affiliation(s)
- Anne Yang
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Mohamed Yassin
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Tung Phan
- Division of Clinical Microbiology, University of Pittsburgh and University of Pittsburgh Medical Center, Pittssburgh, Pennsylvania, USA,Corresponding author.
| |
Collapse
|
21
|
Interplay between ESKAPE Pathogens and Immunity in Skin Infections: An Overview of the Major Determinants of Virulence and Antibiotic Resistance. Pathogens 2021; 10:pathogens10020148. [PMID: 33540588 PMCID: PMC7912840 DOI: 10.3390/pathogens10020148] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
The skin is the largest organ in the human body, acting as a physical and immunological barrier against pathogenic microorganisms. The cutaneous lesions constitute a gateway for microbial contamination that can lead to chronic wounds and other invasive infections. Chronic wounds are considered as serious public health problems due the related social, psychological and economic consequences. The group of bacteria known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) are among the most prevalent bacteria in cutaneous infections. These pathogens have a high level of incidence in hospital environments and several strains present phenotypes of multidrug resistance. In this review, we discuss some important aspects of skin immunology and the involvement of ESKAPE in wound infections. First, we introduce some fundamental aspects of skin physiology and immunology related to cutaneous infections. Following this, the major virulence factors involved in colonization and tissue damage are highlighted, as well as the most frequently detected antimicrobial resistance genes. ESKAPE pathogens express several virulence determinants that overcome the skin's physical and immunological barriers, enabling them to cause severe wound infections. The high ability these bacteria to acquire resistance is alarming, particularly in the hospital settings where immunocompromised individuals are exposed to these pathogens. Knowledge about the virulence and resistance markers of these species is important in order to develop new strategies to detect and treat their associated infections.
Collapse
|
22
|
Ling L, Yang C, Ma W, Zhao Y, Feng S, Tu Y, Wang N, Li Z, Lu L. Isolation, identification, and control of a resistant bacterium strain found in Ku shui rose pure dew. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lijun Ling
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
- Northwest Normal University Lanzhou City China
| | - Caiyun Yang
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| | - Wenxia Ma
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| | - Yunhua Zhao
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| | - Shenglai Feng
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| | - Yixin Tu
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| | - Nan Wang
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| | - Zibin Li
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| | - Lu Lu
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| |
Collapse
|
23
|
Bel Hadj Ahmed A, Salah Abbassi M, Rojo-Bezares B, Ruiz-Roldán L, Dhahri R, Mehri I, Sáenz Y, Hassen A. Characterization of Pseudomonas aeruginosa isolated from various environmental niches: New STs and occurrence of antibiotic susceptible "high-risk clones". INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2020; 30:643-652. [PMID: 31094221 DOI: 10.1080/09603123.2019.1616080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to investigate the antimicrobial phenotypes, major virulence factors, and the molecular typing of 66 P. aeruginosa isolates collected from various sources: human patients and hospital environment, raw milk, poultry meat, chicken/sheep fecal samples, wastewater, thermal water, and seawater. All isolates, except one, were susceptible to all tested antibiotics. exoA, lasB, rhlR, and lasR genes were harbored by 60 isolates. Forty-six, 18, and 2 isolates amplified exoS, exoU, and exoS+exoU genes, respectively. Twenty-one isolates showed high elastase and pigment production. The PFGE typing identified 26 pulsotypes. Some pulsotypes included isolates from different environmental niches and areas. Twelve selected isolates were typed by MLST and eight different STs were found, three of them were new. Our results highlighted the dissemination of some clones amongst different settings and the occurrence of antibiotic susceptible 'high-risk clones' that might be very harmful when acquiring genes encoding antibiotic resistance.
Collapse
Affiliation(s)
- Asma Bel Hadj Ahmed
- Institut de la Recherche Vétérinaire de Tunisie, Université de Tunis El Manar , Tunis, Tunisie
- Laboratoire de Traitement des Eaux Usées, Centre des Recherches et des Technologies des Eaux (CERTE) , Soliman, Tunisie
| | - Mohamed Salah Abbassi
- Institut de la Recherche Vétérinaire de Tunisie, Université de Tunis El Manar , Tunis, Tunisie
- Faculté de médecine de Tunis, Université de Tunis El Manar , Tunis, Tunisie
| | - Beatriz Rojo-Bezares
- Area de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR) , Logroño, Spain
| | - Lidia Ruiz-Roldán
- Area de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR) , Logroño, Spain
| | - Rabii Dhahri
- Service de rééducation physique et réadaptation fonctionelle, Complexe Sanitaire de Jebel Ouest , Zaghouan, Tunisie
| | - Ines Mehri
- Laboratoire de Traitement des Eaux Usées, Centre des Recherches et des Technologies des Eaux (CERTE) , Soliman, Tunisie
| | - Yolanda Sáenz
- Area de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR) , Logroño, Spain
| | - Abdennaceur Hassen
- Laboratoire de Traitement des Eaux Usées, Centre des Recherches et des Technologies des Eaux (CERTE) , Soliman, Tunisie
| |
Collapse
|
24
|
Prevalence and molecular typing of Metallo-β-lactamase-producing Pseudomonas aeruginosa with adhesion factors: A descriptive analysis of burn wounds isolates from Iran. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
do Nascimento APB, Medeiros Filho F, Pauer H, Antunes LCM, Sousa H, Senger H, Albano RM, Trindade Dos Santos M, Carvalho-Assef APD, da Silva FAB. Characterization of a SPM-1 metallo-beta-lactamase-producing Pseudomonas aeruginosa by comparative genomics and phenotypic analysis. Sci Rep 2020; 10:13192. [PMID: 32764694 PMCID: PMC7413544 DOI: 10.1038/s41598-020-69944-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/16/2020] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most common pathogens related to healthcare-associated infections. The Brazilian isolate, named CCBH4851, is a multidrug-resistant clone belonging to the sequence type 277. The antimicrobial resistance mechanisms of the CCBH4851 strain are associated with the presence of the bla\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_\text {SPM-1}$$\end{document}SPM-1 gene, encoding a metallo-beta-lactamase, in combination with other exogenously acquired genes. Whole-genome sequencing studies focusing on emerging pathogens are essential to identify key features of their physiology that may lead to the identification of new targets for therapy. Using both Illumina and PacBio sequencing data, we obtained a single contig representing the CCBH4851 genome with annotated features that were consistent with data reported for the species. However, comparative analysis with other Pseudomonas aeruginosa strains revealed genomic differences regarding virulence factors and regulatory proteins. In addition, we performed phenotypic assays that revealed CCBH4851 is impaired in bacterial motilities and biofilm formation. On the other hand, CCBH4851 genome contained acquired genomic islands that carry transcriptional factors, virulence and antimicrobial resistance-related genes. Presence of single nucleotide polymorphisms in the core genome, mainly those located in resistance-associated genes, suggests that these mutations may also influence the multidrug-resistant behavior of CCBH4851. Overall, characterization of Pseudomonas aeruginosa CCBH4851 complete genome revealed the presence of features that strongly relates to the virulence and antibiotic resistance profile of this important infectious agent.
Collapse
Affiliation(s)
| | | | - Heidi Pauer
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-361, Brazil
| | - Luis Caetano Martha Antunes
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-361, Brazil.,Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, 21041-210, Brazil
| | - Hério Sousa
- Departamento de Computação, Universidade Federal de São Carlos, São Carlos, 13565-905, Brazil
| | - Hermes Senger
- Departamento de Computação, Universidade Federal de São Carlos, São Carlos, 13565-905, Brazil
| | - Rodolpho Mattos Albano
- Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | | | | | | |
Collapse
|
26
|
Dehbashi S, Tahmasebi H, Alikhani MY, Keramat F, Arabestani MR. Distribution of Class B and Class A β-Lactamases in Clinical Strains of Pseudomonas aeruginosa: Comparison of Phenotypic Methods and High-Resolution Melting Analysis (HRMA) Assay. Infect Drug Resist 2020; 13:2037-2052. [PMID: 32636657 PMCID: PMC7335274 DOI: 10.2147/idr.s255292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background There are various phenotypic methods for identifying class B and class A β-lactamase enzymes in Pseudomonas aeruginosa. The purpose of this study was to compare the sensitivity and specificity of different phenotypic methods with HRMA assay to detect β-lactamase-producing P. aeruginosa strains. Methods Eighty-eight of P. aeruginosa isolates were collected from different specimens. Conventional double-disk test (DDT) and EDTA-imipenem microbiological (EIM) were performed to detect ESBL and MBL-producing strains, respectively. Meanwhile, the Modified Hodge test and Carba-NP test were performed on all carbapenem-resistant strains. HRMA method and sensitivity and specificity of primers were determined based on the melt curve temperature range. In all comparisons, PCR was considered as the gold standard. Results Of the 402 isolates collected from different clinical specimens, 88 isolates of P. aeruginosa were identified. However, 43 strains were (48.88%) ESBL-producing, and 7 strains (7.95%) were MBL-producing. Also, using the Modified Hodge test and Carba-NP method, 11 (12.5%) and 19 (21.59%) strains were carbapenemase-producing, respectively. The results of the HRMA test revealed that genes coding for bla SHV, bla TEM, bla KPC, bla IMP, bla VIM, and bla GES were detected in 44.31%, 22.72%, 13.63%, 14.7%, 5.6%, and 2.27% of P. aeruginosa isolates. Nonetheless, for bla KPC and bla GES genes, sensitivity and specificity of the Carba-NP test were 90.47%, 94.87%, and 83.36%, 94.80%, respectively. However, sensitivity and specificity of MHT was 91.66%, 98.70%, and 77.77%, 96.42%, respectively. For bla SHV and bla TEM genes, sensitivity and specificity of DDT were 95.55%, 95.55%, and 86%, 83.50%, respectively. However, sensitivity and specificity of EMI were 77.77%, 97.59%, and 91.66%, 97.43% for bla VIM and bla IMP, respectively. Conclusion The HRMA is a powerful, accurate, closed-tube, rapid method for detecting β-lactamase genes in P. aeruginosa. The high sensitivity and specificity of this method, along with phenotypic tests, play a useful role in increasing the predictive value of clinical reports.
Collapse
Affiliation(s)
- Sanaz Dehbashi
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Tahmasebi
- Microbiology Department, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Yousef Alikhani
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fariba Keramat
- Brucellosis Research Center, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
27
|
Javanmardi F, Emami A, Pirbonyeh N, Keshavarzi A, Rajaee M. A systematic review and meta-analysis on Exo-toxins prevalence in hospital acquired Pseudomonas aeruginosa isolates. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 75:104037. [PMID: 31518698 DOI: 10.1016/j.meegid.2019.104037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/26/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Pseudomonas aeruginosa (PA) is an opportunistic pathogen that produces widespread and often overwhelming infections. Among different virulence factors, toxins are important bacterial agent which increases PA pathogenesis especially in immunocompromised patients. The aim of this meta-analysis was to determine the prevalence of exotoxin production in PA isolates in the world. Also according to the importance of drug resistance in isolates with more pathogenicity this estimation was conducted in resistant isolates. METHODS A systematic search was conducted in international database like PubMed, Scopus, Web of Science and Embase up to December 2018. Joanna Briggs Institute Checklist was used to evaluate the quality assessment of studies. Random effect model was applied to pool the prevalence data. Stata 13 software was used to analyze the data. RESULTS Total of 58 eligible studies that fulfilled the inclusion criteria of the study were selected for qualitative synthesis. Among exotoxins; the highest prevalence was related to exoT (0.83 (CI95%: 0.64-0.96)). Lowest prevalence rate was seen in exoU with estimated prevalence 0.32 (CI95%: 0.24-0.41). In Carbapenem resistance isolates exoA and exoT had the highest prevalence (1.00 (CI95%: 0.98-1.00)). CONCLUSION This first meta-analysis on PA isolates with toxin potency indicated high prevalence of exotoxin production in clinical isolates of PA which is an alarming point as a clinical aspect. It was found that the ExoT has the most prevalence rate among toxins. The results of simultaneous evaluation of exotoxins and antimicrobial resistance can develop treatment policies against PA infections in hospitals and hospitalized patients.
Collapse
Affiliation(s)
- Fatemeh Javanmardi
- Burn and Wound Healing Research Center, Microbiology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Emami
- Burn and Wound Healing Research Center, Microbiology Department, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Neda Pirbonyeh
- Burn and Wound Healing Research Center, Microbiology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolkhalegh Keshavarzi
- Burn and Wound Healing Research Center, Surgical Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahrokh Rajaee
- Burn and Wound Healing Research Center, Microbiology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
Cho HH. Molecular Detection of Virulence Factors in Carbapenem-Resistant Pseudomonas aeruginosa Isolated from a Tertiary Hospital in Daejeon. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2019. [DOI: 10.15324/kjcls.2019.51.3.301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Hye Hyun Cho
- Department of Biomedical Laboratory Science, Daejeon Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
29
|
Medeiros Filho F, do Nascimento APB, dos Santos MT, Carvalho-Assef APD, da Silva FAB. Gene regulatory network inference and analysis of multidrug-resistant Pseudomonas aeruginosa. Mem Inst Oswaldo Cruz 2019; 114:e190105. [PMID: 31389522 PMCID: PMC6684008 DOI: 10.1590/0074-02760190105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/26/2019] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Healthcare-associated infections caused by bacteria such as
Pseudomonas aeruginosa are a major public health
problem worldwide. Gene regulatory networks (GRN) computationally represent
interactions among regulatory genes and their targets. They are an important
approach to help understand bacterial behaviour and to provide novel ways of
overcoming scientific challenges, including the identification of potential
therapeutic targets and the development of new drugs. OBJECTIVES The goal of this study was to reconstruct the multidrug-resistant (MDR)
P. aeruginosa GRN and to analyse its topological
properties. METHODS The methodology used in this study was based on gene orthology inference
using the reciprocal best hit method. We used the genome of P.
aeruginosa CCBH4851 as the basis of the reconstruction process.
This MDR strain is representative of the sequence type 277, which was
involved in an endemic outbreak in Brazil. FINDINGS We obtained a network with a larger number of regulatory genes, target genes
and interactions as compared to the previously reported network. Topological
analysis results are in accordance with the complex network representation
of biological processes. MAIN CONCLUSIONS The properties of the network were consistent with the biological features
of P. aeruginosa. To the best of our knowledge, the
P. aeruginosa GRN presented here is the most complete
version available to date.
Collapse
|
30
|
Belyy A, Santecchia I, Renault L, Bourigault B, Ladant D, Mechold U. The extreme C terminus of the Pseudomonas aeruginosa effector ExoY is crucial for binding to its eukaryotic activator, F-actin. J Biol Chem 2018; 293:19785-19796. [PMID: 30377256 DOI: 10.1074/jbc.ra118.003784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/22/2018] [Indexed: 12/25/2022] Open
Abstract
Bacterial nucleotidyl cyclase toxins are potent virulence factors that upon entry into eukaryotic cells are stimulated by endogenous cofactors to catalyze the production of large amounts of 3'5'-cyclic nucleoside monophosphates. The activity of the effector ExoY from Pseudomonas aeruginosa is stimulated by the filamentous form of actin (F-actin). Utilizing yeast phenotype analysis, site-directed mutagenesis, functional biochemical assays, and confocal microscopy, we demonstrate that the last nine amino acids of the C terminus of ExoY are crucial for the interaction with F-actin and, consequently, for ExoY's enzymatic activity in vitro and toxicity in a yeast model. We observed that isolated C-terminal sequences of P. aeruginosa ExoY that had been fused to a carrier protein bind to F-actin and that synthetic peptides corresponding to the extreme ExoY C terminus inhibit ExoY enzymatic activity in vitro and compete with the full-length enzyme for F-actin binding. Interestingly, we noted that various P. aeruginosa isolates of the PA14 family, including highly virulent strains, harbor ExoY variants with a mutation altering the C terminus of this effector. We found that these naturally occurring ExoY variants display drastically reduced enzymatic activity and toxicity. Our findings shed light on the molecular basis of the ExoY-F-actin interaction, revealing that the extreme C terminus of ExoY is critical for binding to F-actin in target cells and that some P. aeruginosa isolates carry C-terminally mutated, low-activity ExoY variants.
Collapse
Affiliation(s)
- Alexander Belyy
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie and
| | - Ignacio Santecchia
- Unité Biologie et Génétique de la Paroi Bactérienne, Département de Microbiologie, 75724 Paris cedex 15, France and
| | - Louis Renault
- the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Blandine Bourigault
- the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Daniel Ladant
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie and
| | - Undine Mechold
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie and
| |
Collapse
|
31
|
El-Shouny WA, Ali SS, Sun J, Samy SM, Ali A. Drug resistance profile and molecular characterization of extended spectrum beta-lactamase (ESβL)-producing Pseudomonas aeruginosa isolated from burn wound infections. Essential oils and their potential for utilization. Microb Pathog 2018; 116:301-312. [PMID: 29407236 DOI: 10.1016/j.micpath.2018.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/14/2018] [Accepted: 02/02/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Pseudomonas aeruginosa producing extended spectrum β-lactamase (ESβL) enzyme had the ability for antimicrobial resistance mechanisms and its multidrug-resistant (MDR) phenotype, has been increasingly reported as a major clinical concern worldwide. The aim of this study was to (i) characterize ESβL-producing MDR P. aeruginosa isolated from burn wound infections phenotypically and molecularly, (ii) evaluate the antibacterial activity of some essential oils (EOs) against selected ESβL-producing drug resistant P. aeruginosa and (iii) characterize a promising EO. METHODS Identification and antibiotic susceptibility tests were performed for all isolates. ESβL production was detected phenotypically by an initial screening test (IST) and a phenotypic confirmatory test (PCT). Additionally, ESβL-producing isolates were also characterized molecularly. The antibacterial activity was detected using a disc diffusion method. Mechanisms of antibacterial action, the fatty acid profile, and functional groups characterization of the promising EO were analyzed using scanning and transmission electron microscopy (SEM & TEM), gas chromatography-mass spectrometry (GC-MS), and Fourier transform infrared (FTIR) spectroscopy, respectively. RESULTS A total of 50 non duplicated P. aeruginosa isolates from the wound samples of burn patients were identified. Of these, MDR and pan-drug resistance (PDR) showed a high prevalence in 38 (76%) isolates obtained from 10 clusters, while 21 (42%) were identified as ESβL-producing MDR or PDR P. aeruginosa isolates. Phenotypic detection of ESβL production showed that 20% were considered positive ESβL-producing P. aeruginosa using the IST, and were increased to 56% by the PCT. The most prevalent ESβL-encoding gene was blaOXA-2 (60.7%), followed by blaIMP-7 (53.6%) and blaOXA-50 (42.8%). Ginger oil is the most efficient antibacterial agent and its antibacterial action mechanism is attributed to the morphological changes in bacterial cells. The oil characterization revealed that 9,12-Octadecadienoic acid methyl ester is the major fatty acid (50.49%) identified. CONCLUSION The high incidence of drug-resistance in ESβL-producing P. aeruginosa isolated from burn wounds is alarming. As proven in vitro, EOs may represent promising natural alternatives against ESβL-producing PDR or MDR P. aeruginosa isolates.
Collapse
Affiliation(s)
- Wagih A El-Shouny
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 212013 Zhenjiang, China; Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 212013 Zhenjiang, China.
| | - Sara M Samy
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Asmaa Ali
- Abbasia Chest Hospital, Ministry of Health, 11765 Cairo, Egypt
| |
Collapse
|