1
|
Li J, Yin X, Du M, Wang C, Zou F, Ma J, Song Y. Therapeutic effect of human umbilical cord mesenchymal stem cells and their conditioned medium on LPS-induced endometritis in mice. Tissue Cell 2024; 88:102346. [PMID: 38460354 DOI: 10.1016/j.tice.2024.102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
AIM To explore the effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) and their conditioned medium (MSC-CM) in repairing the endometritis mouse model in vivo. METHODS Lipopolysaccharide (LPS) was used to induce acute inflammation in endometritis mouse model. Mice were treated in six groups: control group (PBS), model group (LPS), LPS+MSC-CM (6 h) group, LPS+MSC-CM (12 h) group, LPS+MSCs (6 h) group and LPS+MSCs (12 h) group. Morphological and histological changes of mouse uterus were observed, and mouse uterine inflammation index myeloperoxidase (MPO) and related immune index TNF-α, IL-6 and IL-1β levels were detected by ELISA. RESULTS There exist remarkable inflammatory response and an obvious increase in the value of MPO, TNF-α, IL-1β and IL-6 in the endometritis mouse model compared with the control group. Morphological and histological appearances were relieved after treated with hUC-MSCs and MSC-CM. Besides, the value of MPO, TNF-α, IL-1β and IL-6 showed different degrees of decline. In comparison with LPS+MSC-CM (12 h) and LPS+MSCs (12 h) group, there was significant decrease in inflammatory indicators in LPS+MSC-CM (6 h) and LPS+MSCs (6 h) group. CONCLUSIONS Intrauterine infusion of hUC-MSCs and MSC-CM can alleviate LPS induced endometritis.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhengzhou University, China
| | - Xiaodi Yin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhengzhou University, China
| | - Ming Du
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhengzhou University, China
| | - Caiyi Wang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, China
| | - Feng Zou
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhengzhou University, China
| | - Jun Ma
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhengzhou University, China.
| | - Yuxia Song
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, China.
| |
Collapse
|
2
|
Bao H, Cong J, Qu Q, He S, Zhao D, Zhao H, Yin S, Ma D. Rosiglitazone alleviates LPS-induced endometritis via suppression of TLR4-mediated NF-κB activation. PLoS One 2024; 19:e0280372. [PMID: 38547218 PMCID: PMC10977739 DOI: 10.1371/journal.pone.0280372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/21/2023] [Indexed: 04/02/2024] Open
Abstract
OBJECTIVE The aim of this study was to investigate the anti-inflammatory effect of Rosiglitazone (RGZ) on lipopolysaccharide (LPS) -induced Endometritis and explore its possible mechanism. METHODS The preventive and therapeutic effects of RGZ on Endometritis were studied in vivo and in vitro. A total of 40 female C57BL/6 mice were randomly divided into the following 4 groups: RGZ+LPS, RGZ control, LPS and DMSO control. The mice uterine tissue sections were performed with HE and immunohistochemical staining. Human endometrial stromal cells (HESCs) were cultured, and different concentrations of LPS stimulation groups and RGZ and/or a TLR4 signaling inhibitor TAK-242 pretreatment +LPS groups were established to further elucidate the underlying mechanisms of this protective effect of RGZ. RESULTS The HE results in mice showed that RGZ+LPS group had less tissue loss than LPS group. Immunohistochemical staining (IHC) results showed that the expression of TLR4 after RGZ treatment was significantly lower than that in LPS group. These findings suggested that RGZ effectively improves the pathological changes associated with LPS-induced endometritis by inhibiting TLR4. Reverse transcription-polymerase chain reaction and western blot analysis demonstrated that RGZ pretreatment suppresses the expression of Toll-like receptor 4 (TLR4) and its downstream activation of nuclear factor-κB (NF-κB). In vitro, RGZ inhibited LPS-stimulated expression of proinflammatory cytokines in a dose-dependent manner and also downregulated LPS induced toll-like receptor 4 (TLR4) expression and inhibited phosphorylation of LPS-induced nuclear transcription factor-kappa B (NF-κB) P65 protein. CONCLUSIONS These results suggest that RGZ may inhibit LPS-induced endometritis through the TLR4-mediated NF-κB pathway.
Collapse
Affiliation(s)
- Hongchu Bao
- Reproductive Medicine Centre, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, China
| | - Jianxiang Cong
- Reproductive Medicine Centre, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, China
| | - Qinglan Qu
- Reproductive Medicine Centre, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, China
| | - Shunzhi He
- Reproductive Medicine Centre, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, China
| | - Dongmei Zhao
- Reproductive Medicine Centre, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, China
| | - Huishan Zhao
- Reproductive Medicine Centre, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, China
| | - Shuyuan Yin
- Reproductive Medicine Centre, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, China
| | - Ding Ma
- Reproductive Medicine Centre, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, China
| |
Collapse
|
3
|
Mendonça ELSS, Xavier JA, Fragoso MBT, Silva MO, Escodro PB, Oliveira ACM, Tucci P, Saso L, Goulart MOF. E-Stilbenes: General Chemical and Biological Aspects, Potential Pharmacological Activity Based on the Nrf2 Pathway. Pharmaceuticals (Basel) 2024; 17:232. [PMID: 38399446 PMCID: PMC10891666 DOI: 10.3390/ph17020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Stilbenes are phytoalexins, and their biosynthesis can occur through a natural route (shikimate precursor) or an alternative route (in microorganism cultures). The latter is a metabolic engineering strategy to enhance production due to stilbenes recognized pharmacological and medicinal potential. It is believed that in the human body, these potential activities can be modulated by the regulation of the nuclear factor erythroid derived 2 (Nrf2), which increases the expression of antioxidant enzymes. Given this, our review aims to critically analyze evidence regarding E-stilbenes in human metabolism and the Nrf2 activation pathway, with an emphasis on inflammatory and oxidative stress aspects related to the pathophysiology of chronic and metabolic diseases. In this comprehensive literature review, it can be observed that despite the broad number of stilbenes, those most frequently explored in clinical trials and preclinical studies (in vitro and in vivo) were resveratrol, piceatannol, pterostilbene, polydatin, stilbestrol, and pinosylvin. In some cases, depending on the dose/concentration and chemical nature of the stilbene, it was possible to identify activation of the Nrf2 pathway. Furthermore, the use of some experimental models presented a challenge in comparing results. In view of the above, it can be suggested that E-stilbenes have a relationship with the Nrf2 pathway, whether directly or indirectly, through different biological pathways, and in different diseases or conditions that are mainly related to inflammation and oxidative stress.
Collapse
Affiliation(s)
- Elaine L. S. S. Mendonça
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | - Jadriane A. Xavier
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Marilene B. T. Fragoso
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Messias O. Silva
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | | | | | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy
| | - Marília O. F. Goulart
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| |
Collapse
|
4
|
Ke J, Li MT, Xu S, Ma J, Liu MY, Han Y. Advances for pharmacological activities of Polygonum cuspidatum - A review. PHARMACEUTICAL BIOLOGY 2023; 61:177-188. [PMID: 36620922 PMCID: PMC9833411 DOI: 10.1080/13880209.2022.2158349] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/22/2022] [Accepted: 12/08/2022] [Indexed: 06/01/2023]
Abstract
CONTEXT Polygonum cuspidatum Sieb. et Zucc (Polygonaceae), the root of which is included in the Chinese Pharmcopoeia under the name 'Huzhang', has a long history as a medicinal plant and vegetable. Polygonum cuspidatum has been used in traditional Chinese medicine for the treatment of inflammation, hyperlipemia, etc. OBJECTIVE This article reviews the pharmacological action and the clinical applications of Polygonum cuspidatum and its extracts, whether in vivo or in vitro. We also summarized the main phytochemical constituents and pharmacokinetics of Polygonum cuspidatum and its extracts. METHODS The data were retrieved from major medical databases, such as CNKI, PubMed, and SinoMed, from 2014 to 2022. Polygonum cuspidatum, pharmacology, toxicity, clinical application, and pharmacokinetics were used as keywords. RESULTS The rhizomes, leaves, and flowers of Polygonum cuspidatum have different phytochemical constituents. The plant contains flavonoids, anthraquinones, and stilbenes. Polygonum cuspidatum and the extracts have anti-inflammatory, antioxidation, anticancer, heart protection, and other pharmacological effects. It is used in the clinics to treat dizziness, headaches, traumatic injuries, and water and fire burns. CONCLUSIONS Polygonum cuspidatum has the potential to treat many diseases, such as arthritis, ulcerative colitis, asthma, and cardiac hypertrophy. It has a broad range of medicinal applications, but mainly focused on root medication; its aerial parts should receive more attention. Pharmacokinetics also need to be further investigated.
Collapse
Affiliation(s)
- Jia Ke
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng-Ting Li
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuyang Xu
- Monteverde Academy Shanghai, Shanghai, China
| | - Jianpeng Ma
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Ming-Yuan Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Santacroce L, Palmirotta R, Bottalico L, Charitos IA, Colella M, Topi S, Jirillo E. Crosstalk between the Resident Microbiota and the Immune Cells Regulates Female Genital Tract Health. Life (Basel) 2023; 13:1531. [PMID: 37511906 PMCID: PMC10381428 DOI: 10.3390/life13071531] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The female genital tract (FGT) performs several functions related to reproduction, but due to its direct exposure to the external environment, it may suffer microbial infections. Both the upper (uterus and cervix) and lower (vagina) FGT are covered by an epithelium, and contain immune cells (macrophages, dendritic cells, T and B lymphocytes) that afford a robust protection to the host. Its upper and the lower part differ in terms of Lactobacillus spp., which are dominant in the vagina. An alteration of the physiological equilibrium between the local microbiota and immune cells leads to a condition of dysbiosis which, in turn, may account for the outcome of FGT infection. Aerobic vaginitis, bacterial vaginosis, and Chlamydia trachomatis are the most frequent infections, and can lead to severe complications in reproduction and pregnancy. The use of natural products, such as probiotics, polyphenols, and lactoferrin in the course of FGT infections is an issue of current investigation. In spite of positive results, more research is needed to define the most appropriate administration, according to the type of patient.
Collapse
Affiliation(s)
- Luigi Santacroce
- Microbiology and Virology Section, Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Raffaele Palmirotta
- Microbiology and Virology Section, Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001 Elbasan, Albania
| | | | - Marica Colella
- Microbiology and Virology Section, Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001 Elbasan, Albania
| | - Emilio Jirillo
- Microbiology and Virology Section, Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
6
|
Demirkapi EN, Ince S, Demirel HH, Arslan-Acaroz D, Acaroz U. Polydatin reduces aflatoxin-B1 induced oxidative stress, DNA damage, and inflammatory cytokine levels in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:70842-70853. [PMID: 37155108 DOI: 10.1007/s11356-023-27361-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
This study showed the protective effect of polydatin (PD), which has an antioxidant activity against oxidative stress in mice caused by aflatoxin B1 (AFB1). In this study, 36 male Swiss albino mice were divided equally into 6 groups: 0.2 mL of FTS was administered to the control group, 0.2 mL of olive oil to the second group, and 0.75 mg/kg AFB1 to the third group by intragastric gavage every day for 28 days. The fourth, fifth, and sixth groups were administered 50, 100, and 200 mg/kg PD and 0.75 mg/kg AFB1 intragastrically for 28 days, respectively. AFB1 administration increased plasma aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, blood urea nitrogen, creatinine, and malondialdehyde levels in blood and tissue samples but decreased the level of glutathione and the activities of superoxide dismutase and catalase. On the other hand, it was determined that PD applications depending on the increasing doses brought these levels closer to normal. In addition, AFB1 administration increased the amount of ssDNA and liver COX-2, TNF-α, IL-6, NFκB, and Cyp3a11 mRNA expression levels; on the other hand, it decreased the IL-2 mRNA expression level. In contrast, increasing doses of PD application regulated the amount of ssDNA and these mRNA expression levels. Additionally, histopathological damage was observed in the liver and kidney tissues of the AFB1 group, while PD applications in a dose-dependent manner improved these damages. As a result, it was determined that PD reduced AFB1-induced oxidative stress, DNA damage, and inflammation and exhibited a protective effect on tissues in mice.
Collapse
Affiliation(s)
- Ezgi Nur Demirkapi
- Veterinary Faculty, Department of Physiology, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey.
| | - Sinan Ince
- Veterinary Faculty, Department of Pharmacology and Toxicology, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | | | - Damla Arslan-Acaroz
- Veterinary Faculty, Department of Biochemistry, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Ulas Acaroz
- Department of Food Hygiene and Technology, Afyon Kocatepe University, Veterinary Faculty, 03200, Afyonkarahisar, Turkey
| |
Collapse
|
7
|
Li MZ, Wen XY, Liu XQ, Wang YQ, Yan L. LPS-Induced Activation of the cGAS-STING Pathway is Regulated by Mitochondrial Dysfunction and Mitochondrial DNA Leakage in Endometritis. J Inflamm Res 2022; 15:5707-5720. [PMID: 36238763 PMCID: PMC9550576 DOI: 10.2147/jir.s374318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction Chronic endometritis is a common disease in women of childbearing age and can cause pelvic inflammatory disease. The cGAS-STING pathway plays an important role in many inflammatory diseases. Purpose The aim of this study was to investigate the relationship between the cGAS-STING pathway and endometritis. Methods We collected endometrium samples from patients with endometritis to detect changes in the cGAS-STING pathway. In vitro, human endometrial stromal cells (HESC) were stimulated with lipopolysaccharide (LPS), and a mouse STING gene-knockout model was established by CRISPR/cas9 for STING to further explore the mechanism underlying its effects in endometritis. We used Western blotting (WB) and immunohistochemical staining to detect the variations in protein levels and real-time PCR to study the variations in gene expression. Results We observed the activation of the cGAS-STING pathway and an increase in the expression of cytokine-encoding genes, including IL-8, IL-6, IL-1β, and IFN-β1, in endometrial tissues of patients with endometritis. Stimulation of HESCs using LPS demonstrated increase in the expression of proteins involved the cGAS-STING pathway and the gene expression of inflammatory cytokines. STING-knockdown experiments demonstrated a decrease in the gene expression levels of inflammatory cytokines. Moreover, we also identified the translocation of IRF3 and STING after LPS stimulation. Regarding mitochondrial function, LPS led to an increase in reactive oxygen species levels and a reduction in mitochondrial membrane potential. However, we observed that the mitochondrial DNA (mtDNA) leaked into the cytoplasm, upregulating the levels of proteins involved in the cGAS-STING pathway upon LPS stimulation. Furthermore, our results showed that LPS induced hyperemia, inflammatory factor production, and expression of Pho-TBK1 in wild-type mice compared with the levels in control mice, and STING gene-knockdown alleviated these effects. Conclusion LPS induces mitochondrial dysfunction in endometrial stromal cells, resulting in mtDNA leakage and promoting endometritis by stimulating the cGAS-STING pathway.
Collapse
Affiliation(s)
- Mu-zi Li
- Center for Reproductive Medicine, Shandong University, Jinan, People’s Republic of China,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, People’s Republic of China,Shandong Key Laboratory of Reproductive Medicine, Jinan, People’s Republic of China,Medical Integration and Practice Center, Shandong University, Jinan, People’s Republic of China,Reproductive Hospital Affiliated to Shandong University, Jinan, People’s Republic of China
| | - Xiao-yang Wen
- Center for Reproductive Medicine, Shandong University, Jinan, People’s Republic of China,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, People’s Republic of China,Shandong Key Laboratory of Reproductive Medicine, Jinan, People’s Republic of China,Medical Integration and Practice Center, Shandong University, Jinan, People’s Republic of China,Reproductive Hospital Affiliated to Shandong University, Jinan, People’s Republic of China
| | - Xiao-qiang Liu
- Center for Reproductive Medicine, Shandong University, Jinan, People’s Republic of China,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, People’s Republic of China,Shandong Key Laboratory of Reproductive Medicine, Jinan, People’s Republic of China,Medical Integration and Practice Center, Shandong University, Jinan, People’s Republic of China,Reproductive Hospital Affiliated to Shandong University, Jinan, People’s Republic of China,Reproductive Medicine Center, Qingdao Women and Children’s Hospital, Qingdao, People’s Republic of China
| | - Yu-qing Wang
- Center for Reproductive Medicine, Shandong University, Jinan, People’s Republic of China,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, People’s Republic of China,Shandong Key Laboratory of Reproductive Medicine, Jinan, People’s Republic of China,Medical Integration and Practice Center, Shandong University, Jinan, People’s Republic of China,Reproductive Hospital Affiliated to Shandong University, Jinan, People’s Republic of China
| | - Lei Yan
- Center for Reproductive Medicine, Shandong University, Jinan, People’s Republic of China,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, People’s Republic of China,Shandong Key Laboratory of Reproductive Medicine, Jinan, People’s Republic of China,Medical Integration and Practice Center, Shandong University, Jinan, People’s Republic of China,Reproductive Hospital Affiliated to Shandong University, Jinan, People’s Republic of China,Correspondence: Lei Yan, Email
| |
Collapse
|
8
|
Karami A, Fakhri S, Kooshki L, Khan H. Polydatin: Pharmacological Mechanisms, Therapeutic Targets, Biological Activities, and Health Benefits. Molecules 2022; 27:6474. [PMID: 36235012 PMCID: PMC9572446 DOI: 10.3390/molecules27196474] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Polydatin is a natural potent stilbenoid polyphenol and a resveratrol derivative with improved bioavailability. Polydatin possesses potential biological activities predominantly through the modulation of pivotal signaling pathways involved in inflammation, oxidative stress, and apoptosis. Various imperative biological activities have been suggested for polydatin towards promising therapeutic effects, including anticancer, cardioprotective, anti-diabetic, gastroprotective, hepatoprotective, neuroprotective, anti-microbial, as well as health-promoting roles on the renal system, the respiratory system, rheumatoid diseases, the skeletal system, and women's health. In the present study, the therapeutic targets, biological activities, pharmacological mechanisms, and health benefits of polydatin are reviewed to provide new insights to researchers. The need to develop further clinical trials and novel delivery systems of polydatin is also considered to reveal new insights to researchers.
Collapse
Affiliation(s)
- Ahmad Karami
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Leila Kooshki
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
9
|
Dong Y, Yuan Y, Ma Y, Luo Y, Zhou W, Deng X, Pu J, Hu B, Liu S. Combined Intestinal Metabolomics and Microbiota Analysis for Acute Endometritis Induced by Lipopolysaccharide in Mice. Front Cell Infect Microbiol 2022; 11:791373. [PMID: 34976866 PMCID: PMC8718680 DOI: 10.3389/fcimb.2021.791373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/24/2021] [Indexed: 01/03/2023] Open
Abstract
Endometritis is generally caused by bacterial infections, including both acute and chronic infections. In the past few decades, accumulated evidence showed that the occurrence of diseases might be related to gut microbiota. The progression of diseases is previously known to change the composition and diversity of intestinal microbiota. Additionally, it also causes corresponding changes in metabolites, primarily by affecting the physiological processes of microbiota. However, the effects of acute endometritis on intestinal microbiota and its metabolism remain unknown. Thus, the present study aimed to assess the effects of acute endometritis on intestinal microbes and their metabolites. Briefly, endometritis was induced in 30 specific pathogen-free (SPF) BALB/c female mice via intrauterine administration of lipopolysaccharide (LPS) after anesthesia. Following this, 16S rRNA gene sequencing and liquid chromatogram-mass spectrometry (LC-MS) were performed. At the genus level, the relative abundance of Klebsiella, Lachnoclostridium_5, and Citrobacter was found to be greater in the LPS group than in the control group. Importantly, the control group exhibited a higher ratio of Christensenellaceae_R−7_group and Parasutterella. Furthermore, intestinal metabolomics analysis in mice showed that acute endometritis altered the concentration of intestinal metabolites and affected biological oxidation, energy metabolism, and biosynthesis of primary bile acids. The correlation analysis between microbial diversity and metabolome provided a basis for a comprehensive understanding of the composition and function of the microbial community. Altogether, the findings of this study would be helpful in the prevention and treatment of acute endometritis in the future.
Collapse
Affiliation(s)
- Yuqing Dong
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China.,College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yuan Yuan
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China.,College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Yichuan Ma
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Yuanyue Luo
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Wenjing Zhou
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Xin Deng
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Jingyu Pu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Binhong Hu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Songqing Liu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| |
Collapse
|
10
|
Zhang P, Li D, Yang Z, Xue P, Liu X. Nrf2/HO-1 pathway is involved the anti-inflammatory action of intrauterine infusion of platelet-rich plasma against lipopolysaccharides in endometritis. Immunopharmacol Immunotoxicol 2022; 44:119-128. [PMID: 34979839 DOI: 10.1080/08923973.2021.2012483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE(S) Endometritis is the inflammatory response of the uterine lining which is linked to infertility. Administration of platelet-rich plasma (PRP) represents a well-recommended strategy for the treatment of endometrium-associated infertility. In this study, we set to characterize the role and molecular mechanism of PRP intrauterine infusion in mice with endometritis. METHODS A mouse model of endometritis was established using lipopolysaccharide (LPS). Mouse endometrial epithelial cells were obtained in primary culture. PRP-treated cells were assayed for proliferative and apoptotic activities. Moreover, iNOS expression and chemokine and inflammatory factor contents in cells were assessed using RT-qPCR and ELISA. The mice were subjected to PRP intrauterine infusion. The expression of genes related to uterine development was analyzed by qPCR and the ki-67 content and caspase-3 activation in endometrial tissues were examined by immunohistochemistry. Finally, the Nrf2/HO-1 pathway activity in tissues was examined by Western blot. RESULTS LPS induced inflammatory cell recruitment and tissue damage in the endometrium of mice, along with significantly increased levels of inflammatory and chemokine factors. PRP significantly enhanced endometrial epithelial cell activity, decreased apoptosis, and reduced inflammatory factor secretion. In addition, PRP intrauterine infusion significantly increased the expression of genes related to uterine development, promoted tissue proliferation, decreased apoptosis, and diminished inflammatory response in endometrial tissues of mice. PRP intrauterine infusion significantly elevated Nrf2/HO-1 pathway activity in endometrial epithelial cells and tissues. CONCLUSION PRP intrauterine infusion significantly inhibited endometrial cell injury and alleviated the inflammatory response through activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Gynecology, Qingdao Women and Children's Hospital, Qingdao, P. R. China
| | - Dan Li
- Department of Nephrology, Qingdao Central Hospital, Qingdao, P. R. China
| | - Zongzhi Yang
- Reproductive Medicine Center, Qingdao Women and Children's Hospital, Qingdao, P. R. China
| | - Pingping Xue
- Reproductive Medicine Center, Qingdao Women and Children's Hospital, Qingdao, P. R. China
| | - Xiaoqiang Liu
- Reproductive Medicine Center, Qingdao Women and Children's Hospital, Qingdao, P. R. China
| |
Collapse
|
11
|
Ye P, Wu H, Jiang Y, Xiao X, Song D, Xu N, Ma X, Zeng J, Guo Y. Old dog, new tricks: Polydatin as a multitarget agent for current diseases. Phytother Res 2021; 36:214-230. [PMID: 34936712 DOI: 10.1002/ptr.7306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
Polydatin (PD) is a natural single-crystal product that is primarily extracted from the traditional plant Polygonum cuspidatum Sieb. et Zucc. Early research showed that PD exhibited a variety of biological activities. PD has attracted increasing research interest since 2014, but no review comprehensively summarized the new findings. A great gap between its biological activities and drug development remains. It is necessary to summarize new findings on the pharmacological effects of PD on current diseases. We propose that PD will most likely be used in cardiac and cerebral ischaemia/reperfusion-related diseases and atherosclerosis in the future. The present work classified these new findings according to diseases and summarized the main effects of PD via specific mechanisms of action. In summary, we found that PD played a therapeutic role in a variety of diseases, primarily via five mechanisms: antioxidative effects, antiinflammatory effects, regulation of autophagy and apoptosis, maintenance of mitochondrial function, and lipid regulation.
Collapse
Affiliation(s)
- Penghui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaoguang Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Chen W, Wu J, Zhan S, Lu X. Honokiol inhibits endoplasmic reticulum stress-associated lipopolysaccharide-induced inflammation and apoptosis in bovine endometrial epithelial cells. Exp Ther Med 2021; 22:1476. [PMID: 34765017 PMCID: PMC8576620 DOI: 10.3892/etm.2021.10911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Honokiol (HKL) has been previously reported to exert anti-inflammatory effects in numerous diseases. However, the role of HKL in endometritis remains unclear. The present study aimed to explore and elucidate the role of HKL in a lipopolysaccharide (LPS)-induced in vitro model of endometritis. Bovine endometrial epithelial cells (bEECs) were pre-treated with HKL at doses of 1, 10 and 20 µM, followed by 1 µg/ml LPS. MTT assay was then used to detect cell viability. ELISA was utilized to measure the levels of the proinflammatory cytokines TNF-α, IL-1β and IL-6 in bEECs culture supernatants. Reverse transcription-quantitative PCR was further performed to examine the mRNA expression levels of these cytokines. Cell apoptosis was observed by TUNEL staining and the levels of Bcl-2, Bax, cleaved caspase 3 and cleaved caspase 9 were assayed by western blotting. Western blotting was also performed to detect the expression levels of endoplasmic reticulum (ER) stress-related proteins activating transcription factor 6, CCAAT-enhancer-binding protein homologous protein, inositol-requiring enzyme 1 and cleaved caspase 12 in bEECs. LPS treatment reduced cell viability and HKL treatment improved the viability of bEECs after LPS treatment. The LPS-induced inflammatory response and apoptosis in bEECs were also inhibited by HKL treatment. Additionally, the increased expression of ER stress-related proteins induced by LPS was reversed by HKL treatment. Following stimulation with the ER stress inducer tunicamycin, it was revealed that HKL attenuated ER stress and inhibited LPS-induced inflammatory response and apoptosis in bEECs. In summary, HKL inhibited ER stress associated with LPS-induced inflammation and apoptosis in bEECs, providing evidence that HKL can serve to be a novel agent for the treatment of endometritis.
Collapse
Affiliation(s)
- Wenshu Chen
- Department of Obstetrics and Gynecology, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Jieli Wu
- Department of Obstetrics and Gynecology, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Sisi Zhan
- Department of Obstetrics and Gynecology, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaojie Lu
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
13
|
DNaseI protects lipopolysaccharide-induced endometritis in mice by inhibiting neutrophil extracellular traps formation. Microb Pathog 2020; 150:104686. [PMID: 33309847 DOI: 10.1016/j.micpath.2020.104686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Endometritis is an inflammatory of the inner lining of the uterus caused by bacterial infections that affect female reproductive health in humans and animals. Neutrophil extracellular traps (NETs) have the ability to resist infections that caused by pathogenic invasions. It has been proved that the formation of NETs is related to certain inflammatory diseases, such as mastitis and chronic obstructive pulmonary disease (COPD). However, there are sparse studies related to NETs and endometritis. In this study, we investigated the role of NETs in lipopolysaccharide (LPS)-induced acute endometritis in mice and evaluated the therapeutic efficiency of DNaseI. We established LPS-induced endometritis model in mice and found that the formation of NETs can be detected in the mice uterine tissues in vivo. In addition, DNaseI treatment can inhibit NETs construction in LPS-induced endometritis in mice. Moreover, myeloperoxidase (MPO) activity assay indicated that DNaseI treatment remarkably alleviated the inflammatory cell infiltrations. ELISA test indicated that the treatment of DNaseI significantly inhibited the expression of the proinflammatory cytokines TNF-α, and IL-1β. Also, DNaseI was found to increase proteins expression of the uterine tissue tight junctions and suppress LPS-induced NF-κB activation. All the results indicated that DNaseI effectively inhibits the formation of NETs by blocking the NF-κB signaling pathway and enhances the expression of tight junction proteins, consequently, alleviates inflammatory reactions in LPS-induced endometritis in mice.
Collapse
|
14
|
Lo Muzio L, Bizzoca ME, Ravagnan G. New intriguing possibility for prevention of coronavirus pneumonitis: Natural purified polyphenols. Oral Dis 2020; 28 Suppl 1:899-903. [PMID: 32597513 PMCID: PMC7361353 DOI: 10.1111/odi.13518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.,Consorzio Interuniversitario Nazionale per la Bio-Oncologia, Chieti, Italy
| | | | - Giampietro Ravagnan
- Microbiology Ca' Foscari University, Venice, Italy.,Institute of Translational Pharmacology of Italian National Research Council, Rome, Italy
| |
Collapse
|