1
|
Mikhailova EO. Green Silver Nanoparticles: An Antibacterial Mechanism. Antibiotics (Basel) 2024; 14:5. [PMID: 39858291 PMCID: PMC11762094 DOI: 10.3390/antibiotics14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/27/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Silver nanoparticles (AgNPs) are a promising tool in the fight against pathogenic microorganisms. "Green" nanoparticles are especially valuable due to their environmental friendliness and lower energy consumption during production, as well as their ability to minimize the number of toxic by-products. This review focuses on the features of AgNP synthesis using living organisms (bacteria, fungi, plants) and the involvement of various biological compounds in this process. The mechanism of antibacterial activity is also discussed in detail with special attention given to anti-biofilm and anti-quorum sensing activities. The toxicity of silver nanoparticles is considered in light of their further biomedical applications.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
2
|
Maršík D, Danda M, Otta J, Thoresen PP, Mat́átková O, Rova U, Christakopoulos P, Matsakas L, Masák J. Preparation and Biological Activity of Lignin-Silver Hybrid Nanoparticles. ACS OMEGA 2024; 9:47765-47787. [PMID: 39651097 PMCID: PMC11618447 DOI: 10.1021/acsomega.4c08117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 12/11/2024]
Abstract
Silver nanoparticles (AgNPs) are excellent antimicrobial agents and promising candidates for preventing or treating bacterial infections caused by antibiotic resistant strains. However, their increasing use in commercial products raises concerns about their environmental impact. In addition, traditional physicochemical approaches often involve harmful agents and excessive energy consumption, resulting in AgNPs with short-term colloidal stability and silver ion leaching. To address these issues, we designed stable hybrid lignin-silver nanoparticles (AgLigNPs) intended to effectively hit bacterial envelopes as a main antimicrobial target. The lignin nanoparticles (LigNPs), serving as a reducing and stabilizing agent for AgNPs, have a median size of 256 nm and a circularity of 0.985. These LigNPs were prepared using the dialysis solvent exchange method, producing spherical particles stable under alkaline conditions and featuring reducing groups oriented toward a wrinkled surface, facilitating AgNPs synthesis and attachment. Maximum accumulation of silver on the LigNP surface was observed at a mass reaction ratio mAg:mLig of 0.25, at pH 11. The AgLigNPs completely inhibited suspension growth and reduced biofilm development by 50% in three tested strains of Pseudomonas aeruginosa at a concentration of 80/9.5 (lignin/silver) mg L-1. Compared to unattached AgNPs, AgLigNPs required two to eight times lower silver concentrations to achieve complete inhibition. Additionally, our silver-containing nanosystems were effective against bacteria at safe concentrations in HEK-293 and HaCaT tissue cultures. Stability experiments revealed that the nanosystems tend to aggregate in media used for bacterial cell cultures but remain stable in media used for tissue cultures. In all tested media, the nanoparticles retained their integrity, and the presence of lignin facilitated the prevention of silver ions from leaching. Overall, our data demonstrate the suitability of AgLigNPs for further valorization in the biomedical sector.
Collapse
Affiliation(s)
- Dominik Maršík
- Department
of Biotechnology, University of Chemistry
and Technology, Prague 166 28, Czech Republic
| | - Matěj Danda
- Department
of Biotechnology, University of Chemistry
and Technology, Prague 166 28, Czech Republic
| | - Jaroslav Otta
- Department
of Physics and Measurements, University
of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Petter P. Thoresen
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental, and Natural Resources, Luleå University of Technology, Luleå 971 87, Sweden
| | - Olga Mat́átková
- Department
of Biotechnology, University of Chemistry
and Technology, Prague 166 28, Czech Republic
| | - Ulrika Rova
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental, and Natural Resources, Luleå University of Technology, Luleå 971 87, Sweden
| | - Paul Christakopoulos
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental, and Natural Resources, Luleå University of Technology, Luleå 971 87, Sweden
| | - Leonidas Matsakas
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental, and Natural Resources, Luleå University of Technology, Luleå 971 87, Sweden
| | - Jan Masák
- Department
of Biotechnology, University of Chemistry
and Technology, Prague 166 28, Czech Republic
| |
Collapse
|
3
|
Antunes Filho S, Pizzorno Backx B, Foguel D. Green nanotechnology in phytosynthesis and its efficiency in inhibiting bacterial biofilm formation: implications for medicine. BIOFOULING 2024; 40:645-659. [PMID: 39319552 DOI: 10.1080/08927014.2024.2407036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/07/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Nanotechnology is used in several biomedical applications, including antimicrobial and antibiofilm applications using nanomaterials. Bacterial biofilm varies according to the strain; the matrix is very strong and resistant. In this sense, phytosynthesis is an important method for combating bacterial biofilms through the use of metallic nanoparticles (silver, gold, or copper) with increased marketing and technical-scientific potential. In this review, we seek to gather the leading publications on the use of phytosynthesized metallic nanoparticles against bacterial biofilms. Furthermore, this study aims to understand the main characteristics and parameters of these nanomaterials, their antibiofilm efficiency, and the presence or absence of cytotoxicity in these developed technologies.
Collapse
Affiliation(s)
- Sérgio Antunes Filho
- NUMPEX - UFRJ, Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Débora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Kungwani NA, Panda J, Mishra AK, Chavda N, Shukla S, Vikhe K, Sharma G, Mohanta YK, Sharifi-Rad M. Combating bacterial biofilms and related drug resistance: Role of phyto-derived adjuvant and nanomaterials. Microb Pathog 2024; 195:106874. [PMID: 39181190 DOI: 10.1016/j.micpath.2024.106874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
The emergence of antimicrobial resistance (AMR) in clinical microbes has led to a search for novel antibiotics for combating bacterial infections. The treatment of bacterial infections becomes more challenging with the onset of biofilm formation. AMR is further accelerated by biofilm physiology and differential gene expression in bacteria with an inherent resistance to conventional antibiotics. In the search for innovative strategies to control the spread of AMR in clinical isolates, plant-derived therapeutic metabolites can be repurposed to control biofilm-associated drug resistance. Unlike antibiotics, designed to act on a single cellular process, phytochemicals can simultaneously target multiple cellular components. Furthermore, they can disrupt biofilm formation and inhibit quorum sensing, offering a comprehensive approach to combat bacterial infections. In bacterial biofilms, the first line of AMR is due to biofilms associated with the extracellular matrix, diffusion barriers, quorum sensing, and persister cells. These extracellular barriers can be overcome using phytochemical-based antibiotic adjuvants to increase the efficacy of antibiotic treatment and restrict the spread of AMR. Furthermore, phytochemicals can be used to target bacterial intracellular machinery such as DNA replication, protein synthesis, efflux pumps, and degrading enzymes. In parallel with pristine phytochemicals, phyto-derived nanomaterials have emerged as an effective means of fighting bacterial biofilms. These nanomaterials can be formulated to cross the biofilm barriers and function on cellular targets. This review focuses on the synergistic effects of phytochemicals and phyto-derived nanomaterials in controlling the progression of biofilm-related AMR. IT provides comprehensive insights into recent advancements and the underlying mechanisms of the use of phyto-derived adjuvants and nanomaterials.
Collapse
Affiliation(s)
- Neelam Amit Kungwani
- Department of Environmental Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India.
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Techno City, 9th Mile, Baridua, Ri-Bhoi, 793101, Meghalaya, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | | | - Sudhir Shukla
- Homi Bhabha National Institute, Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, Tamilnadu, 603102, India
| | - Kalyani Vikhe
- Department of Environmental Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Gunjan Sharma
- Department of Plant Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Techno City, 9th Mile, Baridua, Ri-Bhoi, 793101, Meghalaya, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol, 98613-35856, Iran.
| |
Collapse
|
5
|
Ma P, Yuan L, Jia S, Zhou Z, Xu D, Huang S, Meng F, Zhang Z, Nan Y. Lonicerae Japonicae Flos with the homology of medicine and food: a review of active ingredients, anticancer mechanisms, pharmacokinetics, quality control, toxicity and applications. Front Oncol 2024; 14:1446328. [PMID: 39314630 PMCID: PMC11417411 DOI: 10.3389/fonc.2024.1446328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Lonicerae Japonicae Flos (LJF, called Jinyinhua in China), comes from the dried flower buds or flowers to be opened of Lonicera japonica Thunb. in the Lonicera family. It has a long history of medicinal use and has a wide range of application prospects. As modern research advances, an increasing number of scientific experiments have demonstrated the anticancer potential of LJF. However, there is a notable absence of systematic reports detailing the anti-tumor effects of LJF. This review integrates the principles of Traditional Chinese Medicine (TCM) with contemporary pharmacological techniques, drawing upon literature from authoritative databases such as PubMed, CNKI, and WanFang to conduct a comprehensive study of LJF. Notably, a total of 507 compounds have been isolated and characterized from the plant to date, which include volatile oils, organic acids, flavonoids, iridoids, triterpenes and triterpenoid saponins. Pharmacological studies have demonstrated that LJF extract, along with components such as chlorogenic acid, luteolin, rutin, luteoloside, hyperoside and isochlorogenic acid, exhibits potential anticancer activities. Consequently, we have conducted a comprehensive review and summary of the mechanisms of action and clinical applications of these components. Furthermore, we have detailed the pharmacokinetics, quality control, and toxicity of LJF, while also discussing its prospective applications in the fields of biomedicine and preventive healthcare. It is hoped that these studies will provide valuable reference for the clinical research, development, and application of LJF.
Collapse
Affiliation(s)
- Ping Ma
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shumin Jia
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ziying Zhou
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Duojie Xu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Fandi Meng
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Zhe Zhang
- Department of Chinese Medical Gastrointestinal, China-Japan Friendship Hospital, Beijing, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
6
|
Tanwar SN, Parauha YR, There Y, Ameen F, Dhoble SJ. Inorganic nanoparticles: An effective antibiofilm strategy. LUMINESCENCE 2024; 39:e4878. [PMID: 39223925 DOI: 10.1002/bio.4878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/08/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Biofilm is a common problem associated with human health. Pathogenicity and increase in resistance of bacteria require urgent development of effective ways for the treatment of bacterial diseases. Different strategies have been developed for the treatment of bacterial infections among which nanoparticles have shown greater prospects in battling with infections. Biofilms are resistant microbial colonies that possess resistance and, hence, cannot be killed by conventional drugs. Nanoparticles offer new avenues for treating biofilm-related infections involving multi-drug resistant organisms. They possess great antibiofilm properties, disrupting cell architecture and preventing colony formation. Green-synthesised nanoparticles are more effective and less toxic to human cells than commercially available or chemically synthesised antibiofilm nanoparticles. This review summarises the antibiofilm efficiency of plant-mediated nanoparticles and knowledge about biofilm inhibition.
Collapse
Affiliation(s)
- Shruti Nandkishor Tanwar
- Department of Microbiology, Taywade College, Mahadula-Koradi, Nagpur, India
- Department of Physics, R.T.M., Nagpur University, Nagpur, India
| | - Yatish Ratn Parauha
- Department of Physics, Shri Ramdeobaba College of Engineering and Management, Nagpur, India
- Ramdeobaba University, Nagpur, India
| | - Yogesh There
- Department of Microbiology, Taywade College, Mahadula-Koradi, Nagpur, India
| | - Faud Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arbia
| | | |
Collapse
|
7
|
Saifuddin NN, Matussin SN, Fariduddin Q, Khan MM. Potentials of roots, stems, leaves, flowers, fruits, and seeds extract for the synthesis of silver nanoparticles. Bioprocess Biosyst Eng 2024; 47:1119-1137. [PMID: 38904717 DOI: 10.1007/s00449-024-03044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Silver nanoparticles (AgNPs) have gained significant attention in various applications due to their unique properties that differ from bulk or macro-sized counterparts. In the advancement of nanotechnology, a reliable, non-toxic, and eco-friendly green synthesis has widely been developed as an alternative method for the production of AgNPs, overcoming limitations associated with the traditional physical and chemical methods. Green synthesis of AgNPs involves the utilization of biological sources including plant extracts with silver salt as the precursor. The potential of phytochemicals in plant extracts serves as a reducing/capping and stabilizing agent to aid in the bio-reduction of Ag+ ions into a stable nanoform, Ag0. This review provides insights into the potentials of various plant parts like root, stem, leaf, flower, fruit, and seed extracts that have been extensively reported for the synthesis of AgNPs.
Collapse
Affiliation(s)
- Nurul Nazirah Saifuddin
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam
| | - Shaidatul Najihah Matussin
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam.
| |
Collapse
|
8
|
Tungare K, Gupta J, Bhori M, Garse S, Kadam A, Jha P, Jobby R, Amanullah M, Vijayakumar S. Nanomaterial in controlling biofilms and virulence of microbial pathogens. Microb Pathog 2024; 192:106722. [PMID: 38815775 DOI: 10.1016/j.micpath.2024.106722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The escalating threat of antimicrobial resistance (AMR) poses a grave concern to global public health, exacerbated by the alarming shortage of effective antibiotics in the pipeline. Biofilms, intricate populations of bacteria encased in self-produced matrices, pose a significant challenge to treatment, as they enhance resistance to antibiotics and contribute to the persistence of organisms. Amid these challenges, nanotechnology emerges as a promising domain in the fight against biofilms. Nanomaterials, with their unique properties at the nanoscale, offer innovative antibacterial modalities not present in traditional defensive mechanisms. This comprehensive review focuses on the potential of nanotechnology in combating biofilms, focusing on green-synthesized nanoparticles and their associated anti-biofilm potential. The review encompasses various aspects of nanoparticle-mediated biofilm inhibition, including mechanisms of action. The diverse mechanisms of action of green-synthesized nanoparticles offer valuable insights into their potential applications in addressing AMR and improving treatment outcomes, highlighting novel strategies in the ongoing battle against infectious diseases.
Collapse
Affiliation(s)
- Kanchanlata Tungare
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India.
| | - Juhi Gupta
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India
| | - Mustansir Bhori
- Inveniolife Technology PVT LTD, Office No.118, Grow More Tower, Plot No.5, Sector 2, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Samiksha Garse
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India
| | - Aayushi Kadam
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; Anatek Services PVT LTD, 10, Sai Chamber, Near Santacruz Railway Bridge, Sen Nagar, Santacruz East, Mumbai, Maharashtra, 400055, India
| | - Pamela Jha
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, Maharashtra, India
| | - Renitta Jobby
- Amity Institute of Biotechnology, Amity University, Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India; Amity Centre of Excellence in Astrobiology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India
| | - Mohammed Amanullah
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia, 61421
| | - Sekar Vijayakumar
- Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India; Marine College, Shandong University, Weihai, 264209, PR China
| |
Collapse
|
9
|
Samreen, Ahmad I, Khan SA, Naseer A, Nazir A. Green synthesized silver nanoparticles from Phoenix dactylifera synergistically interact with bioactive extract of Punica granatum against bacterial virulence and biofilm development. Microb Pathog 2024; 192:106708. [PMID: 38782213 DOI: 10.1016/j.micpath.2024.106708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The global rise of antibiotic resistance poses a substantial risk to mankind, underscoring the necessity for alternative antimicrobial options. Developing novel drugs has become challenging in matching the pace at which microbial resistance is evolving. Recently, nanotechnology, coupled with natural compounds, has emerged as a promising solution to combat multidrug-resistant bacteria. In the present study, silver nanoparticles were green-synthesized using aqueous extract of Phoenix dactylifera (variety Ajwa) fruits and characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) coupled with Energy dispersive X-ray analysis (EDX), Transmission electron microscopy (TEM) and Thermogravimetric-differential thermal analysis (TGA-DTA). The in-vitro synergy of green synthesized P. dactylifera silver nanoparticle (PD-AgNPs) with selected antibiotics and bioactive extract of Punica granatum, i.e., ethyl acetate fraction (PGEF), was investigated using checkerboard assays. The most effective synergistic combination was evaluated against the QS-regulated virulence factors production and biofilm of Pseudomonas aeruginosa PAO1 by spectroscopic assays and electron microscopy. In-vivo anti-infective efficacy was examined in Caenorhabditis elegans N2 worms. PD-AgNPs were characterized as spherical in shape with an average diameter of 28.9 nm. FTIR analysis revealed the presence of functional groups responsible for the decrease and stabilization of PD-AgNPs. The signals produced by TGA-DTA analysis indicated the generation of thermally stable and pure crystallite AgNPs. Key phytocompounds detected in bioactive fractions include gulonic acid, dihydrocaffeic acid 3-O-glucuronide, and various fatty acids. The MIC of PD-AgNPs and PGEF ranged from 32 to 128 μg/mL and 250-500 μg/mL, respectively, against test bacterial strains. In-vitro, PD-AgNPs showed additive interaction with selected antibiotics (FICI 0.625-0.75) and synergy with PGEF (FICI 0.25-0.375). This combination inhibited virulence factors by up to 75 % and biofilm formation by 84.87 % in P. aeruginosa PAO1. Infected C. elegans worms with P. aeruginosa PAO1 had a 92.55 % survival rate when treated with PD-AgNPs and PGEF. The combination also reduced the reactive oxygen species (ROS) level in C. elegans N2 compared to the untreated control. Overall, these findings highlight that biosynthesized PD-AgNPs and bioactive P. granatum extract may be used as a potential therapeutic formulation against MDR bacteria.
Collapse
Affiliation(s)
- Samreen
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India.
| | - Sarah Ahmad Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India
| | - Anam Naseer
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Aamir Nazir
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| |
Collapse
|
10
|
Tan X, Pei J, Zhang D, Cui F, Wang D, Li X, Li J. Prunus persica leaves aqueous extract mediated biosynthesis of Ag nanoparticles and assessment of its anti-quorum sensing potential against Hafnia species. Lett Appl Microbiol 2024; 77:ovae055. [PMID: 38886121 DOI: 10.1093/lambio/ovae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Hafnia sp. was one of the specific spoilage bacteria in aquatic products, and the aim of the study was to investigate the inhibition ability of the silver nanoparticles (AgNPs) biosynthesis by an aqueous extract of Prunus persica leaves toward the spoilage-related virulence factors of Hafnia sp. The synthesized P-AgNPs were spherical, with a mean particle size of 36.3 nm and zeta potential of 21.8 ± 1.33 mV. In addition, the inhibition effects of P-AgNPs on the growth of two Hafnia sp. strains and their quorum sensing regulated virulence factors, such as the formation of biofilm, secretion of N-acetyl-homoserine lactone (AHLs), proteases, and exopolysaccharides, as well as their swarming and swimming motilities were evaluated. P-AgNPs had a minimum inhibitory concentration (MIC) of 64 μg ml-1 against the two Hafnia sp. strains. When the concentration of P-AgNPs was below MIC, it could inhibit the formation of biofilms by Hafnia sp at 8-32 μg ml-1, but it promoted the formation of biofilms by Hafnia sp at 0.5-4 μg ml-1. P-AgNPs exhibited diverse inhibiting effects on AHLs and protease production, swimming, and swarming motilities at various concentrations.
Collapse
Affiliation(s)
- Xiqian Tan
- School of Food Science and Engineering/Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Jianbo Pei
- School of Food Science and Engineering/Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Defu Zhang
- School of Food Science and Engineering/Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Fangchao Cui
- School of Food Science and Engineering/Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Dangfeng Wang
- School of Food Science and Engineering/Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Xuepeng Li
- School of Food Science and Engineering/Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Jianrong Li
- School of Food Science and Engineering/Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| |
Collapse
|
11
|
Govindan R, Gnanasekaran C, Govindan R, Muthuchamy M, Quero F, Jothi A, Chelliah CK, Arunachalam A, Viswanathan MR, Natesan M, Kadaikunnan S, Li WJ. Anti-quorum Sensing and Anti-biofilm Effect of Nocardiopsis synnemataformans RMN 4 (MN061002) Compound 2,6-Di-tert-butyl, 1,4-Benzoquinone Against Biofilm-Producing Bacteria. Appl Biochem Biotechnol 2024; 196:3914-3948. [PMID: 37792174 DOI: 10.1007/s12010-023-04738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
In this study, the anti-biofilm compound of 2,6-Di-tert-butyl, 1,4-benzoquinone was purified from Nocardiopsis synnemataformans (N. synnemataformans) RMN 4 (MN061002). To confirm the compound, various spectroscopy analyses were done including ultraviolet (UV) spectrometer, Fourier transform infrared spectroscopy (FTIR), analytical high-performance liquid chromatography (HPLC), preparative HPLC, gas chromatography-mass spectroscopy (GC-MS), liquid chromatography-mass spectroscopy (LC-MS), and 2D nuclear magnetic resonance (NMR). Furthermore, the purified compound was shown 94% inhibition against biofilm-producing Proteus mirabilis (P. mirabilis) (MN396686) at 70 µg/mL concentrations. Furthermore, the metabolic activity, exopolysaccharide damage, and hydrophobicity degradation results of identified compound exhibited excellent inhibition at 100 µg/mL concentration. Furthermore, the confocal laser scanning electron microscope (CLSM) and scanning electron microscope (SEM) results were shown with intracellular damages and architectural changes in bacteria. Consecutively, the in vivo toxicity effect of the compound against Artemia franciscana (A. franciscana) was shown to have a low mortality rate at 100 µg/mL. Finally, the molecular docking interaction between the quorum sensing (QS) genes and identified compound clearly suggested that the identified compound 2,6-Di-tert-butyl, 1,4-benzoquinone has anti-quorum sensing and anti-biofilm activities against P. mirabilis (MN396686).
Collapse
Affiliation(s)
- Rajivgandhi Govindan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- Marine Pharmacology & Toxicology Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Facultad de CienciasFísicas y Matemáticas, Universidad de Chile, Biotecnología y MaterialesAvenida Beauchef 851, 8370456, Santiago, Chile
| | - Chackaravarthi Gnanasekaran
- Marine Pharmacology & Toxicology Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Ramachandran Govindan
- Marine Pharmacology & Toxicology Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| | - Maruthupandy Muthuchamy
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Facultad de CienciasFísicas y Matemáticas, Universidad de Chile, Biotecnología y MaterialesAvenida Beauchef 851, 8370456, Santiago, Chile
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-Dearo 550 Beon-Gil, Saha-Gu, Busan, 49315, South Korea
| | - Franck Quero
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Facultad de CienciasFísicas y Matemáticas, Universidad de Chile, Biotecnología y MaterialesAvenida Beauchef 851, 8370456, Santiago, Chile
| | - Arunachalam Jothi
- School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu, Tanjore, India, 401
| | - Chenthis Knaisha Chelliah
- Department of Nanotechnology, Noorul Islam Centre for Higher Education, Tamil Nadu, Kumaracoil, Kanyakumari, 629180, India
| | - Arulraj Arunachalam
- Departamento de Electricidad, Facultad de Ingeniería, Universidad Tecnológica Metropolitana (UTEM), Macul, Santiago, Chile
| | - Mangalaraja Ramalinga Viswanathan
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Región Metropolitana, Diag. Las Torres 2640, 7941169, Peñalolén, Santiago, Chile
| | - Manoharan Natesan
- Marine Pharmacology & Toxicology Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
12
|
Arshad F, Naikoo GA, Hassan IU, Chava SR, El-Tanani M, Aljabali AA, Tambuwala MM. Bioinspired and Green Synthesis of Silver Nanoparticles for Medical Applications: A Green Perspective. Appl Biochem Biotechnol 2024; 196:3636-3669. [PMID: 37668757 PMCID: PMC11166857 DOI: 10.1007/s12010-023-04719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Silver nanoparticles (AgNPs) possess unmatched chemical, biological, and physical properties that make them unique compounds as antimicrobial, antifungal, antiviral, and anticancer agents. With the increasing drug resistance, AgNPs serve as promising entities for targeted drug therapy against several bacterial, fungal, and viral components. In addition, AgNPs also serve as successful anticancer agents against several cancers, including breast, prostate, and lung cancers. Several works in recent years have been done towards the development of AgNPs by using plant extracts like flowers, leaves, bark, root, stem, and whole plant parts. The green method of AgNP synthesis thus has several advantages over chemical and physical methods, especially the low cost of synthesis, no toxic byproducts, eco-friendly production pathways, can be easily regenerated, and the bio-reducing potential of plant derived nanoparticles. Furthermore, AgNPs are biocompatible and do not harm normally functioning human or host cells. This review provides an exhaustive overview and potential of green synthesized AgNPs that can be used as antimicrobial, antifungal, antiviral, and anticancer agents. After a brief introduction, we discussed the recent studies on the development of AgNPs from different plant extracts, including leaf parts, seeds, flowers, stems, bark, root, and whole plants. In the following section, we highlighted the different therapeutic actions of AgNPs against various bacteria, fungi, viruses, and cancers, including breast, prostate, and lung cancers. We then highlighted the general mechanism of action of AgNPs. The advantages of the green synthesis method over chemical and physical methods were then discussed in the article. Finally, we concluded the review by providing future perspectives on this promising field in nanotechnology.
Collapse
Affiliation(s)
- Fareeha Arshad
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, PC 211, Oman
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, PC 211, Oman.
| | - Israr U Hassan
- College of Engineering, Dhofar University, Salalah, PC 211, Oman
| | | | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
13
|
Egwu CO, Aloke C, Onwe KT, Umoke CI, Nwafor J, Eyo RA, Chukwu JA, Ufebe GO, Ladokun J, Audu DT, Agwu AO, Obasi DC, Okoro CO. Nanomaterials in Drug Delivery: Strengths and Opportunities in Medicine. Molecules 2024; 29:2584. [PMID: 38893460 PMCID: PMC11173789 DOI: 10.3390/molecules29112584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 06/21/2024] Open
Abstract
There is a myriad of diseases that plague the world ranging from infectious, cancer and other chronic diseases with varying interventions. However, the dynamism of causative agents of infectious diseases and incessant mutations accompanying other forms of chronic diseases like cancer, have worsened the treatment outcomes. These factors often lead to treatment failure via different drug resistance mechanisms. More so, the cost of developing newer drugs is huge. This underscores the need for a paradigm shift in the drug delivery approach in order to achieve desired treatment outcomes. There is intensified research in nanomedicine, which has shown promises in improving the therapeutic outcome of drugs at preclinical stages with increased efficacy and reduced toxicity. Regardless of the huge benefits of nanotechnology in drug delivery, challenges such as regulatory approval, scalability, cost implication and potential toxicity must be addressed via streamlining of regulatory hurdles and increased research funding. In conclusion, the idea of nanotechnology in drug delivery holds immense promise for optimizing therapeutic outcomes. This work presents opportunities to revolutionize treatment strategies, providing expert opinions on translating the huge amount of research in nanomedicine into clinical benefits for patients with resistant infections and cancer.
Collapse
Affiliation(s)
- Chinedu O. Egwu
- Medical Research Council, London School of Hygiene and Tropical Medicine, Banjul 220, The Gambia
- Medical Biochemistry Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (C.A.); (R.A.E.); (G.O.U.); (A.O.A.)
| | - Chinyere Aloke
- Medical Biochemistry Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (C.A.); (R.A.E.); (G.O.U.); (A.O.A.)
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
| | - Kenneth T. Onwe
- Anatomy Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (K.T.O.); (C.I.U.); (J.N.)
| | - Chukwunalu Igbudu Umoke
- Anatomy Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (K.T.O.); (C.I.U.); (J.N.)
| | - Joseph Nwafor
- Anatomy Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (K.T.O.); (C.I.U.); (J.N.)
| | - Robert A. Eyo
- Medical Biochemistry Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (C.A.); (R.A.E.); (G.O.U.); (A.O.A.)
| | - Jennifer Adaeze Chukwu
- World Health Organization, United Nations House Plot 617/618 Central Area District, P.M.B. 2861, Abuja 900211, Nigeria;
| | - Godswill O. Ufebe
- Medical Biochemistry Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (C.A.); (R.A.E.); (G.O.U.); (A.O.A.)
| | - Jennifer Ladokun
- Society for Family Health, 20 Omotayo Ojo Street, Allen, Ikeja 100246, Nigeria;
| | - David Tersoo Audu
- UNICEF Sokoto Field Office, 2 Rahamaniyya Street, Off Sama Road, Sokoto 840224, Nigeria;
| | - Anthony O. Agwu
- Medical Biochemistry Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (C.A.); (R.A.E.); (G.O.U.); (A.O.A.)
| | - David Chukwu Obasi
- Department of Medical Biochemistry, David Umahi Federal University of Health Sciences, Uburu 491105, Nigeria; (D.C.O.); (C.O.O.)
| | - Chukwuemeka O. Okoro
- Department of Medical Biochemistry, David Umahi Federal University of Health Sciences, Uburu 491105, Nigeria; (D.C.O.); (C.O.O.)
| |
Collapse
|
14
|
El Megdar S, Fayzi L, Elkheloui R, Laktib A, Bourouache M, El Boulani A, Abou Oualid H, Cherifi K, Msanda F, Hassi M, Mimouni R, Hamadi F. Biological Synthesis of Silver Nanoparticles from Lavandula mairei Humbert: Antibacterial and Antioxidant Activities. Curr Microbiol 2024; 81:151. [PMID: 38647541 DOI: 10.1007/s00284-024-03670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Hospital-acquired infections involving carbapenem-resistant Acinetobacter baumannii (A. baumannii) and extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae pose significant challenges in the intensive care units. The lack of novel antimicrobial drugs amplifies the urgency to explore innovative management strategies. Nanotechnology, with its ability to generate nanoparticles possessing specific properties beneficial in drug delivery and nanomedicine, stands as a pivotal research domain. The objective of this study was to synthesize, for the first time, biologically silver nanoparticles (Ag-NPs) from Lavandula mairei Humbert (L. mairei) plant. The biosynthesized Ag-NPs were characterized by UV-visible spectral analysis, X-Ray diffraction Analysis, Fourier transform infrared spectroscopy analysis, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy. Subsequently, the antibacterial and antioxidant activities of Ag-NPs were assessed using the micro-dilution method, DPPH test and FRAP assay, respectively. The green-synthesized Ag-NPs exhibited high antibacterial activity against ESBL-producing multidrug-resistant (MDR) strains and against carbapenem-resistant and non-carbapenem-resistant strains of A. baumannii, as well as a very interesting antioxidant activity. The present study suggests that these results hold very promising for the potential application of biologically synthesized Ag-NPs from L. mairei (Ag-LM-NPs) in the invention of novel antibacterial and antioxidant agents.
Collapse
Affiliation(s)
- Soufiane El Megdar
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Lahbib Fayzi
- Laboratory of Biotechnologies and Valorization of Natural Resources, Biology Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Raja Elkheloui
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Asma Laktib
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Bourouache
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Abdellah El Boulani
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Hicham Abou Oualid
- Green Energy Park, Institut de Recherche en Energie Solaire Et Energies Nouvelles (IRESEN), Benguerir, Morocco
| | - Khalil Cherifi
- Laboratory of Biotechnologies and Valorization of Natural Resources, Biology Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Fouad Msanda
- Laboratory of Biotechnologies and Valorization of Natural Resources, Biology Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Hassi
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Rachida Mimouni
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Fatima Hamadi
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco.
| |
Collapse
|
15
|
Iungin O, Shydlovska O, Moshynets O, Vasylenko V, Sidorenko M, Mickevičius S, Potters G. Metal-based nanoparticles: an alternative treatment for biofilm infection in hard-to-heal wounds. J Wound Care 2024; 33:xcix-cx. [PMID: 38588056 DOI: 10.12968/jowc.2024.33.sup4a.xcix] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Metal-based nanoparticles (MNPs) are promoted as effective compounds in the treatment of bacterial infections and as possible alternatives to antibiotics. These MNPs are known to affect a broad spectrum of microorganisms using a multitude of strategies, including the induction of reactive oxygen species and interaction with the inner structures of the bacterial cells. The aim of this review was to summarise the latest studies about the effect of metal-based nanoparticles on pathogenic bacterial biofilm formed in wounds, using the examples of Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Pseudomonas aeruginosa, as well as provide an overview of possible clinical applications.
Collapse
Affiliation(s)
- Olga Iungin
- 1 Kyiv National University of Technologies and Design (KNUTD), Kyiv, Ukraine
- 2 Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olga Shydlovska
- 1 Kyiv National University of Technologies and Design (KNUTD), Kyiv, Ukraine
| | - Olena Moshynets
- 2 Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Volodymyr Vasylenko
- 3 Vytautas Magnus University, Faculty of Natural Science, Akademija, Lithuania
| | - Marina Sidorenko
- 3 Vytautas Magnus University, Faculty of Natural Science, Akademija, Lithuania
| | - Saulius Mickevičius
- 3 Vytautas Magnus University, Faculty of Natural Science, Akademija, Lithuania
| | - Geert Potters
- 4 Antwerp Maritime Academy, Antwerp, Belgium
- 5 University of Antwerp, Antwerp, Belgium
| |
Collapse
|
16
|
Rambaran N, Naidoo Y, Mohamed F, Chenia HY, Baijnath H. Antibacterial and Anti-Quorum Sensing Properties of Silver Nanoparticles Phytosynthesized Using Embelia ruminata. PLANTS (BASEL, SWITZERLAND) 2024; 13:168. [PMID: 38256722 PMCID: PMC10821412 DOI: 10.3390/plants13020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024]
Abstract
The rise in antibiotic resistance (AR) poses an imminent threat to human health. Nanotechnology, together with mechanisms such as quorum sensing (QS), which relies on communication between bacterial cells, may decrease the selective pressure for AR. Thus, this study aimed to investigate the effectiveness of silver nanoparticles (AgNPs) synthesized at room temperature (Rt) and 80 °C using Embelia ruminata leaf, stem-bark, and fruit extracts as antibacterial and anti-QS agents. The phytosynthesized AgNPs solutions were subjected to various characterization assays and assessed for their antibacterial activities. Quantitative QS assays were performed using Chromobacterium subtsugae CV017 and Chromobacterium violaceum ATCC 12472. Synthesized AgNPs were spherical-to-near-spherical in shape, poly-dispersed, and crystalline, with a size range of 21.06-32.15 nm. Fruit AgNPs showed stronger antibacterial activity than AgNPs from other plant organs against selected bacterial strains. In the QS assays, fruit 80 °C AgNPs demonstrated the most significant violacein inhibition in an assay performed using the short-chain acyl homoserine lactone CV017 biosensor, while the leaf and fruit Rt AgNPs demonstrated the most violacein inhibition in an assay performed using the long-chain acyl homoserine lactone ATCC 12472 biosensor. The investigations carried out in this study lay the groundwork for future innovative research into antibacterial and anti-QS strategies using E. ruminata.
Collapse
Affiliation(s)
- Neervana Rambaran
- Biological Sciences Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (Y.N.); (H.B.)
| | - Yougasphree Naidoo
- Biological Sciences Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (Y.N.); (H.B.)
| | - Farzana Mohamed
- Microbiology Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (F.M.); (H.Y.C.)
| | - Hafizah Y. Chenia
- Microbiology Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (F.M.); (H.Y.C.)
| | - Himansu Baijnath
- Biological Sciences Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (Y.N.); (H.B.)
| |
Collapse
|
17
|
Abada E, Mashraqi A, Modafer Y, Al Abboud MA, El-Shabasy A. Review green synthesis of silver nanoparticles by using plant extracts and their antimicrobial activity. Saudi J Biol Sci 2024; 31:103877. [PMID: 38148949 PMCID: PMC10749906 DOI: 10.1016/j.sjbs.2023.103877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
Interest in the biosynthesis of nanoparticles has increased in the last era by researchers. Nanoparticles have several applications in different fields like optoelectronics, magnetic devices, drug delivery, and sensors. Nanoparticle synthesis by green methods is safe for the environment and should be explored and encouraged popularly since various plants' have the high extent to form these nanoparticles. Worldwide, UV spectroscopy, X-ray diffraction, Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), Atomic Force Microscopy (AFM) besides Fourier Transform Infrared Spectroscopy (FTIR) are used in many ways for characterize nanoparticles. The most advantageous use of AgNPs is their great attribution to be used as antimicrobial agents. Finally, concept of AgNPs synthesis is deserved to be the modern technical and medical concern. The current review shows a complete comprehensive and analytical survey of the biosynthesis of AgNPs with a particular focus on their activities as antimicrobials and the possible theories of their effect on the microbial cell and all influenced secondary metabolites.
Collapse
Affiliation(s)
- Emad Abada
- Biology Department/ College of Science, Jazan University, Jazan City 82817, Saudi Arabia
| | - Abdullah Mashraqi
- Biology Department/ College of Science, Jazan University, Jazan City 82817, Saudi Arabia
| | - Yosra Modafer
- Biology Department/ College of Science, Jazan University, Jazan City 82817, Saudi Arabia
| | - Mohamed A. Al Abboud
- Biology Department/ College of Science, Jazan University, Jazan City 82817, Saudi Arabia
| | - A. El-Shabasy
- Biology Department/ College of Science, Jazan University, Jazan City 82817, Saudi Arabia
| |
Collapse
|
18
|
Qais FA, Khan MS, Ahmad I, Husain FM, Arshad M, Khan A, Adil M. Modulation of quorum sensing and biofilm of Gram-negative bacterial pathogens by Cinnamomum zeylanicum L. Microsc Res Tech 2024; 87:42-52. [PMID: 37660303 DOI: 10.1002/jemt.24410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
The development of antibiotic resistant microbial pathogens has become a global health threat and a major concern in modern medicine. The problem of antimicrobial resistance (AMR) has majorly arisen due to sub-judicious use of antibiotics in health care and livestock industry. A slow progress has been made in last two decades in discovery of new antibiotics. A new strategy in combatting AMR is to modulate or disarm the microbes for their virulence and pathogenicity. Plants are considered as promising source for new drugs against AMR pathogens. In this study, fraction-based screening of the Cinnamomum zeylanicum extract was performed followed by detailed investigation of antiquorum sensing and antibiofilm activities of the most active fraction that is, C. zeylanicum hexane fraction (CZHF). More than 75% reduction in violacein pigment of C. violaceum 12472 was overserved. CZHF successfully modulated the virulence of Pseudomonas aeruginosa PAO1 by 60.46%-78.35%. A similar effect was recorded against Serratia marcescens MTCC 97. A broad-spectrum inhibition of biofilm development was found in presence of sub-MICs of CZHF. The colonization of bacteria onto the glass coverslips was remarkably reduced apart from the reduction in exopolymeric substances. Alkaloids and terpenoids were found in CZHF. GC/MS analysis revealed the presence of cinnamaldehyde dimethyl acetal, 2-propenal, coumarin, and α-copaene as major phytocompounds. This study provides enough evidence to support potency of C. zeylanicum extract in targeting the virulence of Gram -ve pathogenic bacteria. The plant extract or active compounds can be developed as successful drugs after careful in vivo examination to target microbial infections. RESEARCH HIGHLIGHTS: Hexane fraction of Cinnamomum zeylanicum is active against QS and biofilms. The broad-spectrum antibiofilm activity was further confirmed by microscopic analysis. Dimethyl acetal, 2-propenal, coumarin, α-copaene, and so forth are major phytocompounds.
Collapse
Affiliation(s)
- Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Shavez Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Arshad
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Altaf Khan
- Department of Pharmacology, Central Research Laboratory, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohd Adil
- Department of Environmental Sciences, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
19
|
Rather MA, Mandal M. Attenuation of biofilm and quorum sensing regulated virulence factors of an opportunistic pathogen Pseudomonas aeruginosa by phytofabricated silver nanoparticles. Microb Pathog 2023; 185:106433. [PMID: 37913826 DOI: 10.1016/j.micpath.2023.106433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Green-synthesized nanoparticles provide an effective strategy for inhibiting microbial pathogenesis by affecting biofilm formation, quorum sensing (QS), and other surface properties of microorganisms. QS is a density-dependent communication signaling cascade that regulates biofilm formation and other pathogenic factors of Pseudomonas aeruginosa. In this context, the effect of phytofabricated silver nanoparticles (CC-AgNPs) synthesized using Cuphea carthagenensis extract on biofilm, QS, and QS-dependent virulence factors of P. aeruginosa were evaluated in this study. CC-AgNPs demonstrated significant attenuation of biofilm, QS, and QS-dependent virulence factors at sub-MICs. A significant inhibition of 88.39 ± 4.32 %, 79.64 ± 3.31 %, 73.07 ± 3.0 %, and 61.67 ± 1.5 % of biofilm formation, quorum sensing, pyocyanin, and LasB elastase, respectively was reported in the study at 20 μg/mL. The study also demonstrated a significant reduction of LasA Staphylolytic activity and 91.37 ± 1.05 % exoprotease production in comparison to untreated control. The lower concentrations of CC-AgNPs also demonstrated significant attenuation of biofilm and other virulence factors suggesting the strong potency of NPs against P. aeruginosa. XTT analysis reported the effect of CC-AgNPs on sessile cells of P. aeruginosa without impacting growth of planktonic cells at sub-MICs. Cell-proliferation study in human cell lines (HEK 293 and Caco-2 cells) demonstrated the safe nature of CC-AgNPs at tested concentrations. This study is novel in a way that environmentally friendly CC-AgNPs were used to inhibit QS at sub-MICs without killing the tested strains, therefore, could be developed as an anti-virulent drug to overcome biofilm and antimicrobial resistance problems.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, India.
| |
Collapse
|
20
|
Alghamdi S, Khandelwal K, Pandit S, Roy A, Ray S, Alsaiari AA, Aljuaid A, Almehmadi M, Allahyani M, Sharma R, Anand J, Alshareef AA. Application of nanomaterials as potential quorum quenchers for disease: Recent advances and challenges. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:13-31. [PMID: 37666284 DOI: 10.1016/j.pbiomolbio.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Chemical signal molecules are used by bacteria to interact with one another. Small hormone-like molecules known as autoinducers are produced, released, detected, and responded to during chemical communication. Quorum Sensing (QS) is the word for this procedure; it allows bacterial populations to communicate and coordinate group behavior. Several research has been conducted on using inhibitors to prevent QS and minimize the detrimental consequences. Through the enzymatic breakdown of the autoinducer component, by preventing the formation of autoinducers, or by blocking their reception by adding some compounds (inhibitors) that can mimic the autoinducers, a technique known as "quorum quenching" (QQ) disrupts microbial communication. Numerous techniques, including colorimetry, electrochemistry, bioluminescence, chemiluminescence, fluorescence, chromatography-mass spectroscopy, and many more, can be used to test QS/QQ. They all permit quantitative and qualitative measurements of QS/QQ molecules. The mechanism of QS and QQ, as well as the use of QQ in the prevention of biofilms, are all elaborated upon in this writing, along with the fundamental study of nanoparticle (NP)in QQ. Q.
Collapse
Affiliation(s)
- Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Krisha Khandelwal
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University Greater Noida, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University Greater Noida, India
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India.
| | - Subhasree Ray
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University Greater Noida, India
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Abdulelah Aljuaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Jigisha Anand
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Ahmad Adnan Alshareef
- Laboratory and Blood Bank Department, Alnoor Specialist Hospital, Ministry of Health, Makkah, Saudi Arabia
| |
Collapse
|
21
|
Gajera G, Thakkar N, Godse C, DeSouza A, Mehta D, Kothari V. Sub-lethal concentration of a colloidal nanosilver formulation (Silversol®) triggers dysregulation of iron homeostasis and nitrogen metabolism in multidrug resistant Pseudomonas aeruginosa. BMC Microbiol 2023; 23:303. [PMID: 37872532 PMCID: PMC10591374 DOI: 10.1186/s12866-023-03062-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a notorious pathogen. Its multidrug resistant strains are listed among priority pathogens against whom discovery of novel antibacterial agents and, elucidation of new anti-pathogenicity mechanisms are urgently warranted. This study describes multiple antibacterial effects of a colloidal nano-silver formulation- Silversol® against a multi-drug resistant strain of P. aeruginosa. RESULTS Minimum inhibitory concentration (MIC) of Silversol® against P. aeruginosa was found to be 1.5 ppm; and at sub-MIC of 1 ppm, it was able to alter quorum-sensing regulated pigmentation (pyocanin 82%↓; pyoverdine 48%↑), exopolysaccharide synthesis (76%↑) and biofilm formation, susceptibility to antibiotics (streptomycin and augmentin), protein synthesis and export (65%↑), nitrogen metabolism (37%↑ nitrite accumulation), and siderophore production in this pathogen. Network analysis of the differentially expressed genes in the transcriptome of the silversol-treated bacterium identified ten genes as the potential molecular targets: norB, norD, nirS, nirF, nirM, nirQ, nosZ, nosY, narK1, and norE (all associated with nitrogen metabolism or denitrification). Three of them (norB, narK1, and norE) were also validated through RT-PCR. CONCLUSIONS Generation of nitrosative stress and disturbance of iron homeostasis were found to be the major mechanisms associated with anti-Pseudomonas activity of Silversol®.
Collapse
Affiliation(s)
- Gemini Gajera
- Institute of Science, Nirma University, Ahmedabad, 382481, India
| | - Nidhi Thakkar
- Institute of Science, Nirma University, Ahmedabad, 382481, India
| | | | | | | | - Vijay Kothari
- Institute of Science, Nirma University, Ahmedabad, 382481, India.
| |
Collapse
|
22
|
Verduzco-Chavira K, Vallejo-Cardona AA, González-Garibay AS, Torres-González OR, Sánchez-Hernández IM, Flores-Fernández JM, Padilla-Camberos E. Antibacterial and Antibiofilm Activity of Chemically and Biologically Synthesized Silver Nanoparticles. Antibiotics (Basel) 2023; 12:1084. [PMID: 37508180 PMCID: PMC10376474 DOI: 10.3390/antibiotics12071084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial biofilms are a significant problem in the food industry, as they are difficult to eradicate and represent a threat to consumer health. Currently, nanoparticles as an alternative to traditional chemical disinfectants have garnered much attention due to their broad-spectrum antibacterial activity and low toxicity. In this study, silver nanoparticles (AgNPs) were synthesized by a biological method using a Jacaranda mimosifolia flower aqueous extract and by a chemical method, and the factors affecting both syntheses were optimized. The nanoparticles were characterized by Ultraviolet-visible (UV-Vis) spectrophotometry, Fourier-transform infrared spectroscopy (FTIR), Dynamic light scattering (DLS), X-ray diffraction (XRD), and Transmission electron microscopy (TEM) with a spherical and uniform shape. The antibacterial and antibiofilm formation activity was carried out on bacterial species of Pseudomonas aeruginosa and Staphylococcus aureus with the capacity to form biofilm. The minimum inhibitory concentration was 117.5 μg/mL for the chemical and 5.3 μg/mL for the biological nanoparticles. Both types of nanoparticles showed antibiofilm activity in the qualitative Congo red test and in the quantitative microplate test. Antibiofilm activity tests on fresh lettuce showed that biological nanoparticles decreased the population of S. aureus and P. aeruginosa by 0.63 and 2.38 logarithms, respectively, while chemical nanoparticles had little microbial reduction. In conclusion, the biologically synthesized nanoparticles showed greater antibiofilm activity. Therefore, these results suggest their potential application in the formulation of sanitizing products for the food and healthcare industries.
Collapse
Affiliation(s)
- Karen Verduzco-Chavira
- Department of Technological and Industrial Processes, ITESO, The Jesuit University of Guadalajara, Anillo Perif. Sur Manuel Gómez Morin 3838, Tlaquepaque 45604, Mexico
| | - Alba Adriana Vallejo-Cardona
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara 44270, Mexico
| | - Angélica Sofía González-Garibay
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara 44270, Mexico
| | - Omar Ricardo Torres-González
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara 44270, Mexico
| | - Iván Moisés Sánchez-Hernández
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara 44270, Mexico
| | - Jose Miguel Flores-Fernández
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB T6G 2M8, Canada
- Departamento de Investigación e Innovación, Universidad Tecnológica de Oriental, Oriental C.P., Puebla 75020, Mexico
| | - Eduardo Padilla-Camberos
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara 44270, Mexico
| |
Collapse
|
23
|
Ahamad Khan M, Lone SA, Shahid M, Zeyad MT, Syed A, Ehtram A, Elgorban AM, Verma M, Danish M. Phytogenically Synthesized Zinc Oxide Nanoparticles (ZnO-NPs) Potentially Inhibit the Bacterial Pathogens: In Vitro Studies. TOXICS 2023; 11:toxics11050452. [PMID: 37235266 DOI: 10.3390/toxics11050452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
The usefulness of nanoparticles (NPs) in biological applications, such as nanomedicine, is becoming more widely acknowledged. Zinc oxide nanoparticles (ZnO-NPs) are a type of metal oxide nanoparticle with an extensive use in biomedicine. Here, ZnO-NPs were synthesized using Cassia siamea (L.) leaf extract and characterized using state-of-the-art techniques; UV-vis spectroscopy, XRD, FTIR, and SEM. At sub-minimum inhibitory concentration (MIC) levels, the ability of ZnO@Cs-NPs to suppress quorum-mediated virulence factors and biofilm formation against clinical MDR isolates (Pseudomonas aeruginosa PAO1 and Chromobacterium violaceum MCC-2290) was tested. The ½MIC of ZnO@Cs-NPs reduced violacein production by C. violaceum. Furthermore, ZnO@Cs-NPs sub-MIC significantly inhibited virulence factors such aspyoverdin, pyocyanin, elastase, exoprotease, rhamnolipid, and the swimming motility of P. aeruginosa PAO1 by 76.9, 49.0, 71.1, 53.3, 89.5, and 60%, respectively. Moreover, ZnO@Cs-NPs also showed wide anti-biofilm efficacy, inhibiting a maximum of 67 and 56% biofilms in P. aeruginosa and C. violaceum, respectively. In addition, ZnO@Cs-NPs suppressed extra polymeric substances (EPS) produced by isolates. Additionally, under confocal microscopy, propidium iodide-stained cells of P. aeruginosa and C. violaceum show ZnO@Cs-NP-induced impairment in membrane permeability, revealing strong anti-bacterial efficacy. This research demonstrates that newly synthesized ZnO@Cs-NPs demonstrate a strong efficacy against clinical isolates. In a nutshell, ZnO@Cs-NPs can be used as an alternative therapeutic agent for managing pathogenic infections.
Collapse
Affiliation(s)
- Mo Ahamad Khan
- Department of Microbiology, Jawahar Lal Nehru Medical College (JNMC), Aligarh Muslim University, Aligarh 202002, India
| | - Showkat Ahmad Lone
- Department of Microbiology, Government Medical College, Baramulla 19310, India
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University, Aligarh 202002, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aquib Ehtram
- La Jolla Institute for Immunology, San Diego, CA 92037, USA
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meenakshi Verma
- Centre of Research & Development, Department of Chemistry, Chandigarh University, Mohali 160055, India
| | - Mohammad Danish
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
24
|
Yousef A, Abu-Elghait M, Barghoth MG, Elazzazy AM, Desouky SE. Fighting multidrug-resistant Enterococcus faecalis via interfering with virulence factors using green synthesized nanoparticles. Microb Pathog 2022; 173:105842. [DOI: 10.1016/j.micpath.2022.105842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/02/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
|
25
|
Bhattacharjee G, Gohil J, Gohil N, Chaudhari H, Gangapuram B, Khambhati K, Maurya R, Alzahrani KJ, Ramakrishna S, Singh V. Biosynthesis and characterization of Serratia marcescens derived silver nanoparticles: Investigating its antibacterial, anti-biofilm potency and molecular docking analysis with biofilm-associated proteins. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Wu K, Li H, Cui X, Feng R, Chen W, Jiang Y, Tang C, Wang Y, Wang Y, Shen X, Liu Y, Lynch M, Long H. Mutagenesis and Resistance Development of Bacteria Challenged by Silver Nanoparticles. Antimicrob Agents Chemother 2022; 66:e0062822. [PMID: 36094196 PMCID: PMC9578424 DOI: 10.1128/aac.00628-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022] Open
Abstract
Because of their extremely broad spectrum and strong biocidal power, nanoparticles of metals, especially silver (AgNPs), have been widely applied as effective antimicrobial agents against bacteria, fungi, and so on. However, the mutagenic effects of AgNPs and resistance mechanisms of target cells remain controversial. In this study, we discover that AgNPs do not speed up resistance mutation generation by accelerating genome-wide mutation rate of the target bacterium Escherichia coli. AgNPs-treated bacteria also show decreased expression in quorum sensing (QS), one of the major mechanisms leading to population-level drug resistance in microbes. Nonetheless, these nanomaterials are not immune to resistance development by bacteria. Gene expression analysis, experimental evolution in response to sublethal or bactericidal AgNPs treatments, and gene editing reveal that bacteria acquire resistance mainly through two-component regulatory systems, especially those involved in metal detoxification, osmoregulation, and energy metabolism. Although these findings imply low mutagenic risks of nanomaterial-based antimicrobial agents, they also highlight the capacity for bacteria to evolve resistance.
Collapse
Affiliation(s)
- Kun Wu
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Haichao Li
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Xiao Cui
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Ruobing Feng
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Weizhe Chen
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Yuchen Jiang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Chao Tang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Yaohai Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Yan Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Xiaopeng Shen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Yufei Liu
- Key Laboratory of Optoelectronic Technology & Systems, Chongqing University, Ministry of Education, Chongqing, China
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
27
|
Adu OT, Mohamed F, Naidoo Y, Adu TS, Chenia H, Dewir YH, Rihan H. Green Synthesis of Silver Nanoparticles from Diospyros villosa Extracts and Evaluation of Antioxidant, Antimicrobial and Anti-Quorum Sensing Potential. PLANTS 2022; 11:plants11192514. [PMID: 36235380 PMCID: PMC9573728 DOI: 10.3390/plants11192514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
The biosynthesis of silver nanoparticles (AgNPs) from Diospyros villosa leaves and stem bark extracts is described. The stem bark AgNPs of D. villosa synthesized at 80 °C (S80) showed good scavenging activity with a lower IC50 value of 8.75 µg·mL−1 compared to ascorbic acid (9.58 µg·mL−1). The total phenol content of the S80 AgNPs was measured and found to be 10.22 ± 0.14 mg.g−1 gallic acid equivalence (GAE). Bacterial growth inhibition (% GI) and violacein inhibition (% VI) of 10.08% and 58.83%, respectively, was observed against C.subtsugae CV017 with leaf AgNPs synthesized at 80 °C (L80) at 80 μg·mL−1. Stem bark AgNPs synthesized at room temperature (SRT) also indicated % GI of 13.83% and % VI of 65.97% against C. subtsugae CV017 at 160 μg·mL−1. Leaf AgNPs of D. villosa synthesized at room temperature (LRT), showed % GI of 29.07% and % VI of 56.53%, respectively, against C. violaceum ATCC 12472 at 320 μg·mL−1. The L80 and SRT at 160 μg·mL−1 and LRT at 320 μg·mL−1 may be considered as potential QS inhibitors following their activity against C. subtsugae CV017 and C. violaceum ATCC 12472, respectively. Therefore, D. villosa represents a potential source of antioxidants as well as an anti-quorum sensing therapeutic candidate for the control of Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Oluwatosin Temilade Adu
- Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4041, South Africa
| | - Farzana Mohamed
- Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4041, South Africa
| | - Yougasphree Naidoo
- Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4041, South Africa
| | - Temitope Samson Adu
- Department of Physiological Sciences, Obafemi Awolowo University, Ile Ife 220005, Nigeria
| | - Hafizah Chenia
- Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4041, South Africa
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Hail Rihan
- School of Biological Sciences, Faculty of Science and Environment, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
- Phytome Life Sciences, Launceston PL15 7AB, UK
| |
Collapse
|
28
|
Sun Z, Yang B, Yeung M, Xi J. Quorum sensing improved the low-temperature performance of biofilters treating gaseous toluene. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129277. [PMID: 35724619 DOI: 10.1016/j.jhazmat.2022.129277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Biofilters usually have poor VOC removal performance at temperatures lower than 20 °C. In this study, two quorum sensing (QS) enhancement methods, which are addition of exogenous N-acyl-homoserine lactones (AHLs) and inoculation of AHL-producing bacteria, were applied in biofilters treating gaseous toluene at a low temperature of 12 °C. Their effects on biofilter performance and biofilm characteristics were investigated. The results showed that adding exogenous AHLs and AHL-producing bacteria in biofilters raised the average toluene elimination capacity by 39% and 26% respectively, and raised the average mineralization efficiency by 25% and 47% respectively in first 24 days. In addition, the two QS enhancement methods could increase the attached biomass by 48% and 87% respectively and made the biofilm distribute more uniform by increasing its extracellular polymeric substances content and microbial adhesive strength. The two QS enhancement methods resulted in more mesopores in biofilm, lower O/C and (O+N)/C of organic elements in biofilm, and increased the solubility of toluene in liquid phase, which all benefit VOCs mass transfer in biofilters. These results demonstrate that QS enhancement methods have the potential to optimize the biofilm and thus improve the performance of biofilters treating VOCs at a low temperature. This work provides us a new choice to improve industrial-scale biofilters treating VOCs at high latitude regions or in winter.
Collapse
Affiliation(s)
- Zhuqiu Sun
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Bairen Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Marvin Yeung
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Danish M, Shahid M, Ahamad L, Raees K, Atef Hatamleh A, Al-Dosary MA, Mohamed A, Al-Wasel YA, Singh UB, Danish S. Nano-pesticidal potential of Cassia fistula (L.) leaf synthesized silver nanoparticles (Ag@CfL-NPs): Deciphering the phytopathogenic inhibition and growth augmentation in Solanum lycopersicum (L.). Front Microbiol 2022; 13:985852. [PMID: 36090121 PMCID: PMC9459237 DOI: 10.3389/fmicb.2022.985852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Plant-based synthesis of silver nanoparticles (Ag-NPs) has emerged as a potential alternative to traditional chemical synthesis methods. In this context, the aim of the present study was to synthesize Ag-NPs from Cassia fistula (L.) leaf extract and to evaluate their nano-pesticidal potential against major phyto-pathogens of tomato. From the data, it was found that particle size of spherical C. fistula leaf synthesized (Ag@CfL-NPs) varied from 10 to 20 nm, with the average diameter of 16 nm. Ag@CfL-NPs were validated and characterized by UV-visible spectroscopy (surface resonance peak λmax = 430 nm), energy dispersive spectrophotometer (EDX), Fourier transform infrared (FTIR), and X-ray diffraction pattern (XRD), and electron microscopy; scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The FTIR spectra verified the participation of various living molecules (aromatic/aliphatic moieties and proteins) in synthesized Ag@CfL-NPs. The anti-phytopathogenic potential of Ag@CfL-NPs was assessed under in vitro conditions. Increasing doses of Ag@CfL-NPs exhibited an inhibitory effect against bacterial pathogen Pseudomonas syringae and 400 μg Ag@CfL-NPs ml–1 caused a reduction in cellular viability, altered bacterial morphology, and caused cellular death Furthermore, Ag@CfL-NPs reduced exopolysaccharides (EPS) production and biofilm formation by P. syringae Additionally, Ag@CfL-NPs showed pronounced antifungal activity against major fungal pathogens. At 400 μg Ag@CfL-NPs ml–1, sensitivity of tested fungi followed the order: Fusarium oxysporum (76%) > R. solani (65%) > Sarocladium (39%). Furthermore, 400 μg Ag@CfL-NPs ml–1 inhibited the egg-hatching and increased larval mortality of Meloidogyne incognita by 82 and 65%, respectively, over control. Moreover, pot studies were performed to assess the efficacy of Ag@CfL-NPs to phyto-pathogens using tomato (Solanum lycopersicum L.) as a model crop. The applied phyto-pathogens suppressed the biological, physiological, and oxidative-stress responsiveness of tomatoes. However, 100 mg Ag@CfL-NPs kg–1 improved overall performance and dramatically increased the root length, dry biomass, total chlorophyll, carotenoid, peroxidase (POD), and phenylalanine ammonia lyase (PAL) activity over pathogens-challenged tomatoes. This study is anticipated to serve as an essential indication for synthesis of efficient nano-control agents, which would aid in the management of fatal phyto-pathogens causing significant losses to agricultural productivity. Overall, our findings imply that Ag@CfL-NPs as nano-pesticides might be used in green agriculture to manage the diseases and promote plant health in a sustainable way.
Collapse
Affiliation(s)
- Mohammad Danish
- Section of Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University, Aligarh, India
- *Correspondence: Mohammad Danish,
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-NBAIM, Mau, India
| | - Lukman Ahamad
- Section of Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Kashif Raees
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | - Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-NBAIM, Mau, India
| | - Subhan Danish
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
30
|
Microbial silver resistance mechanisms: recent developments. World J Microbiol Biotechnol 2022; 38:158. [PMID: 35821348 DOI: 10.1007/s11274-022-03341-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/19/2022] [Indexed: 01/12/2023]
Abstract
In this mini-review, after a brief introduction into the widespread antimicrobial use of silver ions and nanoparticles against bacteria, fungi and viruses, the toxicity of silver compounds and the molecular mechanisms of microbial silver resistance are discussed, including recent studies on bacteria and fungi. The similarities and differences between silver ions and silver nanoparticles as antimicrobial agents are also mentioned. Regarding bacterial ionic silver resistance, the roles of the sil operon, silver cation efflux proteins, and copper-silver efflux systems are explained. The importance of bacterially produced exopolysaccharides as a physiological (biofilm) defense mechanism against silver nanoparticles is also emphasized. Regarding fungal silver resistance, the roles of metallothioneins, copper-transporting P-type ATPases and cell wall are discussed. Recent evolutionary engineering (adaptive laboratory evolution) studies are also discussed which revealed that silver resistance can evolve rapidly in bacteria and fungi. The cross-resistance observed between silver resistance and resistance to other heavy metals and antibiotics in bacteria and fungi is also explained as a clinically and environmentally important issue. The use of silver against bacterial and fungal biofilm formation is also discussed. Finally, the antiviral effects of silver and the use of silver nanoparticles against SARS-CoV-2 and other viruses are mentioned. To conclude, silver compounds are becoming increasingly important as antimicrobial agents, and their widespread use necessitates detailed understanding of microbial silver response and resistance mechanisms, as well as the ecological effects of silver compounds. Figure created with BioRender.com.
Collapse
|
31
|
Ödemiş Ö, Özdemir S, Gonca S, Ağırtaş MS. Characterization of silver nanoparticles fabricated by green synthesis using Urtica dioica and Lavandula angustifolia and investigation of antimicrobial and antioxidant. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2068584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ömer Ödemiş
- Department of Chemistry, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, Yenisehir, Mersin, Turkey
| | - Serpil Gonca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Yenisehir, Mersin, Turkey
| | - Mehmet Salih Ağırtaş
- Department of Chemistry, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
32
|
Knocking down Pseudomonas aeruginosa virulence by oral hypoglycemic metformin nano emulsion. World J Microbiol Biotechnol 2022; 38:119. [PMID: 35644864 PMCID: PMC9148876 DOI: 10.1007/s11274-022-03302-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
Abstract
Long-term antibiotic treatment results in the spread of multi-drug resistance in Pseudomonas aeruginosa that complicates treatment. Anti-virulence agents can be viewed as alternative options that cripple virulence factors of the bacteria to facilitate their elimination by the host immunity. The use of nanoparticles in the inhibition of P. aeruginosa virulence factors is a promising strategy. This study aims to study the effect of metformin (MET), metformin nano emulsions (MET-NEs), silver metformin nano emulsions (Ag-MET-NEs) and silver nanoparticles (AgNPs) on P. aeruginosa virulence factors’ expression. The phenotypic results showed that MET-NEs had the highest virulence inhibitory activity. However, concerning RT-PCR results, all tested agents significantly decreased the expression of quorum sensing regulatory genes of P. aeruginosa; lasR, lasI, pqsA, fliC, exoS and pslA, with Ag-MET-NEs being the most potent one, however, it failed to protect mice from P. aeruginosa pathogenesis. MET-NEs showed the highest protective activity against pseudomonal infection in vivo. Our findings support the promising use of nano formulations particularly Ag-MET-NEs as an alternative against multidrug resistant pseudomonal infections via inhibition of virulence factors and quorum sensing gene expression.
Collapse
|
33
|
Das P, Ghosh S, Nayak B. Phyto-fabricated Nanoparticles and Their Anti-biofilm Activity: Progress and Current Status. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.739286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biofilm is the self-synthesized, mucus-like extracellular polymeric matrix that acts as a key virulence factor in various pathogenic microorganisms, thereby posing a serious threat to human health. It has been estimated that around 80% of hospital-acquired infections are associated with biofilms which are found to be present on both biotic and abiotic surfaces. Antibiotics, the current mainstream treatment strategy for biofilms are often found to be futile in the eradication of these complex structures, and to date, there is no effective therapeutic strategy established against biofilm infections. In this regard, nanotechnology can provide a potential platform for the alleviation of this problem owing to its unique size-dependent properties. Accordingly, various novel strategies are being developed for the synthesis of different types of nanoparticles. Bio-nanotechnology is a division of nanotechnology which is gaining significant attention due to its ability to synthesize nanoparticles of various compositions and sizes using biotic sources. It utilizes the rich biodiversity of various biological components which are biocompatible for the synthesis of nanoparticles. Additionally, the biogenic nanoparticles are eco-friendly, cost-effective, and relatively less toxic when compared to chemically or physically synthesized alternatives. Biogenic synthesis of nanoparticles is a bottom-top methodology in which the nanoparticles are formed due to the presence of biological components (plant extract and microbial enzymes) which act as stabilizing and reducing agents. These biosynthesized nanoparticles exhibit anti-biofilm activity via various mechanisms such as ROS production, inhibiting quorum sensing, inhibiting EPS production, etc. This review will provide an insight into the application of various biogenic sources for nanoparticle synthesis. Furthermore, we have highlighted the potential of phytosynthesized nanoparticles as a promising antibiofilm agent as well as elucidated their antibacterial and antibiofilm mechanism.
Collapse
|
34
|
Wang M, Huang X, Zheng H, Tang Y, Zeng K, Shao L, Li L. Nanomaterials applied in wound healing: Mechanisms, limitations and perspectives. J Control Release 2021; 337:236-247. [PMID: 34273419 DOI: 10.1016/j.jconrel.2021.07.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022]
Abstract
Internal and external factors cause various types of wounds on the skin. Infections, nonhealing chronic wounds, and aesthetic and functional recovery all cause challenges for clinicians. The development of nanotechnology in biomedicine has brought many new materials, methods and therapeutic targets for the treatment of wounds, which are believed to have great prospects. In this work, the nanomaterials applied in different stages to promote wound healing and systematically expounded their mechanisms were reviewed. Then, the difficulties and defects of the present research and suggested methods for improvement were pointed out. Moreover, based on the current application status of nanomaterials in wound treatment, some new ideas for subsequent studies were proposed and the feasibility of intelligent healing by real-time monitoring, precision regulation, and signal transmission between electronic signals and human nerve signals in the future were discussed. This review will provide valuable directions and spark new thoughts for researchers.
Collapse
Affiliation(s)
- Menglei Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Huanxin Zheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yingmei Tang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Li Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
35
|
Barabadi H, Mojab F, Vahidi H, Marashi B, Talank N, Hosseini O, Saravanan M. Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108647] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Barabadi H, Mohammadzadeh A, Vahidi H, Rashedi M, Saravanan M, Talank N, Alizadeh A. Penicillium chrysogenum-Derived Silver Nanoparticles: Exploration of Their Antibacterial and Biofilm Inhibitory Activity Against the Standard and Pathogenic Acinetobacter baumannii Compared to Tetracycline. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02121-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Altaf M, Zeyad MT, Hashmi MA, Manoharadas S, Hussain SA, Ali Abuhasil MS, Almuzaini MAM. Effective inhibition and eradication of pathogenic biofilms by titanium dioxide nanoparticles synthesized using Carum copticum extract. RSC Adv 2021; 11:19248-19257. [PMID: 35478667 PMCID: PMC9033554 DOI: 10.1039/d1ra02876f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Most bacteria exist in nature in the form of biofilms. One of the key survival strategies by bacteria to withstand chemical and physical stresses is by forming biofilms on biotic and abiotic surfaces. A different set of genes are expressed in biofilms compared to the planktonic mode of bacterial growth. According to data from the National Institutes of Health (NIH) and Centers for Disease Control and Prevention (CDC), nearly 80 percent of all human infections are encouraged by biofilms and roughly 65 percent of all hospital-acquired infections are associated with biofilms. Hence, considering the role of biofilms in clinical settings, there is an urgent need for the discovery/development of novel antibiofilm agents. In this study, we have tested the effect of freshly prepared titanium dioxide nanoparticles (TiO2-NPs) synthesized using Carum copticum extract on biofilms, both against Gram +ve and Gram −ve bacteria. Being environment friendly in nature, the green route of nanoparticle synthesis is believed to be advantageous over chemical synthesis of metal nanoparticles. The synthesized nanoparticles were found to be predominantly spherical or spheroidal in shape with an average size of 12.01 ± 5.58 nm. As evident from data, more than 70% inhibition of biofilms of test bacteria was achieved in the presence of TiO2-NPs. Electron microscopic analysis revealed that the adherence and colonization of bacteria on the glass surface were remarkably reduced by the treatment of TiO2-NPs. The EPS secretion of E. coli ATCC 25922 and P. aeruginosa PAO1 were inhibited by 62.08 and 74.94%, respectively. The EPS secretion of S. aureus MTCC 3160 was least inhibited (<55%) compared to other test bacteria. Moreover, TiO2-NPs successfully eradicated the preformed biofilms of E. coli ATCC 25922, P. aeruginosa PAO1, and S. aureus MTCC 3160 by 60.09, 64.14, and 48.30%, respectively. The findings demonstrate the efficacy of green synthesized titanium dioxide nanoparticles in inhibiting and eradicating the biofilms of bacterial pathogens and they may be further exploited for the development of a new alternative antibiofilm agent. Titanium dioxide nanoparticles inhibits and eradicates the biofilms of pathogenic bacteria.![]()
Collapse
Affiliation(s)
- Mohammad Altaf
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia.,Central Laboratory, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University Aligarh UP-202002 India
| | - Md Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh UP-202002 India
| | - Salim Manoharadas
- Central Laboratory, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Shaik Althaf Hussain
- Central Laboratory, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Mohammed Saeed Ali Abuhasil
- Department of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University Riyadh 11451 Saudi Arabia
| | | |
Collapse
|
38
|
Galúcio JMP, de Souza SGB, Vasconcelos AA, Lima AKO, da Costa KS, de Campos Braga H, Taube PS. Synthesis, Characterization, Applications, and Toxicity of Green Synthesized Nanoparticles. Curr Pharm Biotechnol 2021; 23:420-443. [PMID: 34355680 DOI: 10.2174/1389201022666210521102307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022]
Abstract
Nanotechnology is a cutting-edge area with numerous industrial applications. Nanoparticles are structures that have dimensions ranging from 1-100 nm which exhibit significantly different mechanical, optical, electrical, and chemical properties when compared with their larger counterparts. Synthetic routes that use natural sources, such as plant extracts, honey, and microorganisms are environmentally friendly and low-cost methods that can be used to obtain nanoparticles. These methods of synthesis generate products that are more stable and less toxic than those obtained using conventional methods. Nanoparticles formed by titanium dioxide, zinc oxide, silver, gold, and copper, as well as cellulose nanocrystals are among the nanostructures obtained by green synthesis that have shown interesting applications in several technological industries. Several analytical techniques have also been used to analyze the size, morphology, hydrodynamics, diameter, and chemical functional groups involved in the stabilization of the nanoparticles as well as to quantify and evaluate their formation. Despite their pharmaceutical, biotechnological, cosmetic, and food applications, studies have detected their harmful effects on human health and the environment; and thus, caution must be taken in uses involving living organisms. The present review aims to present an overview of the applications, the structural properties, and the green synthesis methods that are used to obtain nanoparticles, and special attention is given to those obtained from metal ions. The review also presents the analytical methods used to analyze, quantify, and characterize these nanostructures.
Collapse
Affiliation(s)
| | | | | | - Alan Kelbis Oliveira Lima
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Kauê Santana da Costa
- Institute of Biodiversity, Federal University of Western Pará, Santarém, Pará, Brazil
| | - Hugo de Campos Braga
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Paulo Sérgio Taube
- Institute of Biodiversity, Federal University of Western Pará, Santarém, Pará, Brazil
| |
Collapse
|
39
|
Danish M, Altaf M, Robab MI, Shahid M, Manoharadas S, Hussain SA, Shaikh H. Green Synthesized Silver Nanoparticles Mitigate Biotic Stress Induced by Meloidogyne incognita in Trachyspermum ammi (L.) by Improving Growth, Biochemical, and Antioxidant Enzyme Activities. ACS OMEGA 2021; 6:11389-11403. [PMID: 34056294 PMCID: PMC8153911 DOI: 10.1021/acsomega.1c00375] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/02/2021] [Indexed: 05/27/2023]
Abstract
Meloidogyne incognita is an important plant-parasitic nematode that causes significant crop losses all over the world. The primary control strategy for this pathogen is still based on nematicides, which are hazardous to human health and the environment. Considering these problems, this study aimed to determine the efficacy of different concentrations (25, 50, and 100 ppm) of silver nanoparticles against M. incognita on Trachyspermum ammi. Silver nanoparticles synthesized from Senna siamea were thoroughly characterized using various physicochemical techniques, viz., UV-visible spectrophotometer, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray analyzer (EDX). Results revealed that plants treated with 50 ppm silver nanoparticles one week before M. incognita inoculation (T2) exhibited maximum and significant (p ≤ 0.05) increases in plant growth, biochemical characteristics, and activities of defense enzymes such as peroxidase, catalase, superoxide dismutase, and ascorbate peroxidase over the inoculated control (IC) plants. Furthermore, the maximum reduction in the number of galls, egg masses, and root-knot indices was recorded in plants treated with 100 ppm silver nanoparticles (T3) followed by plants treated with 50 ppm silver nanoparticles before nematode inoculation (T2), over inoculated plants (IC). Anatomical studies showed accumulation of lignin in the transverse section (TS) of roots treated with 50 ppm silver nanoparticles. As a result, the present finding strongly suggests that silver nanoparticles synthesized from S. siamea had nematicidal activity, and it could be an efficient, safe, cost-effective, and affordable alternative to chemical nematicide.
Collapse
Affiliation(s)
- Mohammad Danish
- Section
of Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohammad Altaf
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
- Central
Laboratory, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Merajul Islam Robab
- Department
of Botany, School of Sciences, Maulana Azad
National Urdu University, Hyderabad 500032, India
| | - Mohammad Shahid
- Department
of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Salim Manoharadas
- Central
Laboratory, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Shaik Althaf Hussain
- Central
Laboratory, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Hisamuddin Shaikh
- Section
of Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| |
Collapse
|
40
|
Regulatory mechanisms of sub-inhibitory levels antibiotics agent in bacterial virulence. Appl Microbiol Biotechnol 2021; 105:3495-3505. [PMID: 33893838 DOI: 10.1007/s00253-021-11291-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 01/13/2023]
Abstract
Antibiotics play a key role in the prevention and treatment of bacterial diseases for human and animals. The widespread use of antibiotics results in bacterial exposure to the concentrations that are lower than the MIC (that is, sub-inhibitory concentration (sub-MIC)) in the environment, humans, and livestock, which can lead to antibiotic resistance. In this review, we focus on the impact of sub-MIC antibiotics in bacterial virulence. This paper summarized the known relationships between sub-MIC antibiotics in the environment and bacterial virulence. Together, considering the impact of sub-MIC antibiotics and their alternative products in the virulence of bacteria, it is helpful to the rational use of antibiotics and the development of antibiotic alternative products to provide new insights.Key points• Sub-MIC level antibiotics exist in the environment, humans, and livestock.• The review includes mechanisms of sub-MIC antibiotics in bacterial virulence.• New antibacterial strategies and agents are being a new way to weaken virulence. Graphical Abstract.
Collapse
|
41
|
Qais FA, Ahmad I, Altaf M, Manoharadas S, Al-Rayes BF, Ali Abuhasil MS, Almaroai YA. Biofabricated silver nanoparticles exhibit broad-spectrum antibiofilm and antiquorum sensing activity against Gram-negative bacteria. RSC Adv 2021; 11:13700-13710. [PMID: 35423900 PMCID: PMC8697519 DOI: 10.1039/d1ra00488c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/17/2021] [Indexed: 12/29/2022] Open
Abstract
The emergence and spread of antimicrobial resistance (AMR) among bacterial pathogens have created a global threat to human health and the environment. Targeting the quorum sensing (QS) linked virulent traits of bacteria is considered to be a novel approach for addressing the problem of AMR. In this study, green synthesized silver nanoparticles (AgNPs-MK) were evaluated for the inhibition of the formation of biofilms and quorum sensing controlled virulence factors against three Gram negative bacteria. Remarkable inhibition (>80%) of QS-mediated violacein production was recorded in C. violaceum 12472. Up to 90% inhibition of the QS-mediated virulent traits of S. marcescens MTCC 97 was observed. The virulence factors of P. aeruginosa PAO1 also decreased in a dose dependent manner in the presence of AgNPs-MK. Moreover, the development of biofilms of C. violaceum 12472, S. marcescens MTCC 97, and P. aeruginosa PAO1 was reduced by 87.39, 81.54, and 71.34%, respectively. Biofilms on glass surfaces were remarkably reduced, with less aggregation of bacterial cells and the reduced formation of extra polymeric substances. The findings clearly show the efficacy of AgNPs-MK against the development of biofilms and the QS mediated virulent traits of Gram negative bacterial pathogens. AgNPs-MK may be further exploited for the development of alternative antimicrobial agents after careful scrutiny in animal models for the management of bacterial infections, especially for topical applications.
Collapse
Affiliation(s)
- Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University Aligarh UP 202002 India +91-571-2703516 +91-571-2703516
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University Aligarh UP 202002 India +91-571-2703516 +91-571-2703516
| | - Mohammad Altaf
- Department of Chemistry, College of Science, King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia
- Central Laboratory, College of Science, King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia
| | - Salim Manoharadas
- Central Laboratory, College of Science, King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia
| | - Basel F Al-Rayes
- Central Laboratory, College of Science, King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia
| | - Mohammed Saeed Ali Abuhasil
- Department of Food Science and Nutrition, College of Agriculture and Food Science, King Saud University Riyadh Saudi Arabia
| | - Yaser Ayesh Almaroai
- Department of Biology, College of Science, Umm Al-Qura University Makkah 673 Saudi Arabia
| |
Collapse
|
42
|
Ahmad F, Taj MB, Ramzan M, Ali H, Ali A, Adeel M, Iqbal HMN, Imran M. One-pot synthesis and characterization of in-house engineered silver nanoparticles from Flacourtia jangomas fruit extract with effective antibacterial profiles. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2021; 11:131-141. [DOI: 10.1007/s40097-020-00354-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2024]
|
43
|
Altaf M, Manoharadas S, Zeyad MT. Green synthesis of cerium oxide nanoparticles using Acorus calamus extract and their antibiofilm activity against bacterial pathogens. Microsc Res Tech 2021; 84:1638-1648. [PMID: 33559164 DOI: 10.1002/jemt.23724] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
The emergence of multidrug resistance in bacterial pathogens has increased drastically and it has become prevalent in clinical infections. In last few decades, there is a large gap in the discovery of new antibiotics with novel mode of action. The situation of antimicrobial resistance has become so alarming that if not action is taken, infectious diseases will become major cause of global mortality and morbidity by 2050. The growing interest of researchers in nanotechnology and their possible application in healthcare is being seen as a new hope in discovery of novel antimicrobial agents. Among various approaches employed for the nanoparticle synthesis, biological methods are considered more advantageous and environment friendly. Biofilms are considered as novel target for the development of new antimicrobial entities. In this study, cerium oxide nanoparticles (CeO2 -NPs) were synthesized using Acorus calamus aqueous extract and tested for the antibiofilm activity both against Gram +ve and Gram -ve bacteria. The average size of synthesized CeO2 -NPs was found to be 22.03 nm. The biofilms of the test bacteria were inhibited by more than 75% by the treatment with CeO2 -NPs. The quantitative biofilm data were further verified by light microscopy, electron microscopy, and confocal microscopy. The confocal and electron microscopic analysis confirmed that treatment with CeO2-NPs reduced the development and colonization of the bacteria on solid support. Moreover, it was found that the colonization and biofilm development by test bacteria were fairly reduced on the glass surface. Moreover, a dose-dependent inhibition of preformed biofilms was also found. The exopolysaccharides (EPS) production by the test bacteria were substantially reduced by the supplementation of CeO2 -NPs in culture media. The findings of this study highlight the efficacy of cerium oxide nanoparticles against bacterial pathogens that may be exploited for the development of new alternative antimicrobial agent.
Collapse
Affiliation(s)
- Mohammad Altaf
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.,Central Laboratory, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Salim Manoharadas
- Central Laboratory, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
44
|
Bio-fabrication of titanium oxide nanoparticles from Ochradenus arabicus to obliterate biofilms of drug-resistant Staphylococcus aureus and Pseudomonas aeruginosa isolated from diabetic foot infections. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-020-01630-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Perveen K, Husain FM, Qais FA, Khan A, Razak S, Afsar T, Alam P, Almajwal AM, Abulmeaty MMA. Microwave-Assisted Rapid Green Synthesis of Gold Nanoparticles Using Seed Extract of Trachyspermum ammi: ROS Mediated Biofilm Inhibition and Anticancer Activity. Biomolecules 2021; 11:197. [PMID: 33573343 PMCID: PMC7911733 DOI: 10.3390/biom11020197] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 02/05/2023] Open
Abstract
Green synthesis of metal nanoparticles using plant extracts as capping and reducing agents for the biomedical applications has received considerable attention. Moreover, emergence and spread of multidrug resistance among bacterial pathogens has become a major health concern and lookout for novel alternative effective drugs has gained momentum. In current study, we synthesized gold nanoparticles using the seed extract of Trachyspermum ammi (TA-AuNPs), assessed its efficacy against drug resistant biofilms of Listeria monocytogenes and Serratia marcescens, and evaluated its anticancer potential against HepG2 cancer cell lines. Microwave-assisted green synthesis of gold nanoparticles was carried out and characterization was done using UV-vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and dynamic light scattering (DLS). Most nanoparticles were observed as spherical and spheroidal with few anisotropies with an average crystalline size of 16.63 nm. Synthesized TA-AuNPs demonstrated significant biofilm inhibitory activity against L. monocytogenes (73%) as well as S. marcescens (81%). Exopolysaccharide (EPS), motility, and CSH, key elements that facilitate the formation and maintenance of biofilm were also inhibited significantly at the tested sub-minimum inhibitory concentrations (sub-MICs). Further, TA-AuNPs effectively obliterated preformed mature biofilms of S. marcescens and L. monocytogenes by 64% and 58%, respectively. Induction of intracellular ROS production in TA-AuNPs treated bacterial cells could be the plausible mechanism for the reduced biofilm formation in test pathogens. Administration of TA-AuNPs resulted in the arrest of cellular proliferation in a concentration-dependent manner. TA-AuNPs decrease the intracellular GSH in HepG2 cancer cell lines, cells become more prone to ROS generation, hence induce apoptosis. Thus, this work proposes a new eco-friendly and rapid approach for fabricating NPs which can be exploited for multifarious biomedical applications.
Collapse
Affiliation(s)
- Kahkashan Perveen
- Department of Botany and Microbiology, College of Science, King Saud University, 2460, Riyadh 11451, Saudi Arabia;
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Faizan Abul Qais
- Department of Ag. Microbiology, Aligarh Muslim University, Aligarh 202002, India;
| | - Altaf Khan
- Central Laboratory, Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 2460, Riyadh 11451, Saudi Arabia;
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia; (T.A.); (A.M.A.); (M.M.A.A.)
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia; (T.A.); (A.M.A.); (M.M.A.A.)
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Ali M. Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia; (T.A.); (A.M.A.); (M.M.A.A.)
| | - Mahmoud M. A. Abulmeaty
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia; (T.A.); (A.M.A.); (M.M.A.A.)
| |
Collapse
|
46
|
Vanlalveni C, Lallianrawna S, Biswas A, Selvaraj M, Changmai B, Rokhum SL. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv 2021; 11:2804-2837. [PMID: 35424248 PMCID: PMC8694026 DOI: 10.1039/d0ra09941d] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022] Open
Abstract
Synthesis of metal nanoparticles using plant extracts is one of the most simple, convenient, economical, and environmentally friendly methods that mitigate the involvement of toxic chemicals. Hence, in recent years, several eco-friendly processes for the rapid synthesis of silver nanoparticles have been reported using aqueous extracts of plant parts such as the leaf, bark, roots, etc. This review summarizes and elaborates the new findings in this research domain of the green synthesis of silver nanoparticles (AgNPs) using different plant extracts and their potential applications as antimicrobial agents covering the literature since 2015. While highlighting the recently used different plants for the synthesis of highly efficient antimicrobial green AgNPs, we aim to provide a systematic in-depth discussion on the possible influence of the phytochemicals and their concentrations in the plants extracts, extraction solvent, and extraction temperature, as well as reaction temperature, pH, reaction time, and concentration of precursor on the size, shape and stability of the produced AgNPs. Exhaustive details of the plausible mechanism of the interaction of AgNPs with the cell wall of microbes, leading to cell death, and high antimicrobial activities have also been elaborated. The shape and size-dependent antimicrobial activities of the biogenic AgNPs and the enhanced antimicrobial activities by synergetic interaction of AgNPs with known commercial antibiotic drugs have also been comprehensively detailed.
Collapse
Affiliation(s)
- Chhangte Vanlalveni
- Department of Botany, Mizoram University Tanhril Aizawl Mizoram 796001 India
| | - Samuel Lallianrawna
- Department of Chemistry, Govt. Zirtiri Residential Science College Aizawl 796001 Mizoram India
| | - Ayushi Biswas
- Department of Chemistry, National Institute of Technology Silchar Silchar 788010 India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University Abha 61413 Saudi Arabia
| | - Bishwajit Changmai
- Department of Chemistry, National Institute of Technology Silchar Silchar 788010 India
| | - Samuel Lalthazuala Rokhum
- Department of Chemistry, National Institute of Technology Silchar Silchar 788010 India
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
47
|
Li P, Gao Z, Tan Z, Xiao J, Wei L, Chen Y. New developments in anti-biofilm intervention towards effective management of orthopedic device related infections (ODRI's). BIOFOULING 2021; 37:1-35. [PMID: 33618584 DOI: 10.1080/08927014.2020.1869725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Orthopedic device related infections (ODRI's) represent a difficult to treat situation owing to their biofilm based nature. Biofilm infections once established are difficult to eradicate even with an aggressive treatment regimen due to their recalcitrance towards antibiotics and immune attack. The involvement of antibiotic resistant pathogens as the etiological agent further worsens the overall clinical picture, pressing on the need to look into alternative treatment strategies. The present review highlightes the microbiological challenges associated with treatment of ODRI's due to biofilm formation on the implant surface. Further, it details the newer anti-infective modalities that work either by preventing biofilm formation and/or through effective disruption of the mature biofilms formed on the medical implant. The study, therefore aims to provide a comprehensive insight into the newer anti-biofilm interventions (non-antibiotic approaches) and a better understanding of their mechanism of action essential for improved management of orthopedic implant infections.
Collapse
Affiliation(s)
- Ping Li
- Department of Orthopedics, Ya'an People's Hospital, Yaan City, China
| | - Zhenwu Gao
- Department of Orthopedics, Shanxi Bethune Hospital, Taiyuan City, China
| | - Zhenwei Tan
- Department of Orthopedics, Western Theater Air Force Hospital of PLA, Chengdu, China
| | - Jun Xiao
- Department of Orthopedics, Ya'an People's Hospital, Yaan City, China
| | - Li Wei
- Nursing Department, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, China
| | - Yirui Chen
- Department of Orthopedics, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, China
| |
Collapse
|
48
|
Fabrication of Zinc Oxide-Xanthan Gum Nanocomposite via Green Route: Attenuation of Quorum Sensing Regulated Virulence Functions and Mitigation of Biofilm in Gram-Negative Bacterial Pathogens. COATINGS 2020. [DOI: 10.3390/coatings10121190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The unabated abuse of antibiotics has created a selection pressure that has resulted in the development of antimicrobial resistance (AMR) among pathogenic bacteria. AMR has become a global health concern in recent times and is responsible for a high number of mortalities occurring across the globe. Owing to the slow development of antibiotics, new chemotherapeutic antimicrobials with a novel mode of action is required urgently. Therefore, in the current investigation, we green synthesized a nanocomposite comprising zinc oxide nanoparticles functionalized with extracellular polysaccharide xanthan gum (ZnO@XG). Synthesized nanomaterial was characterized by structurally and morphologically using UV-visible spectroscopy, XRD, FTIR, BET, SEM and TEM. Subinhibitory concentrations of ZnO@XG were used to determine quorum sensing inhibitory activity against Gram-negative pathogens, Chromobacterium violaceum, and Serratia marcescens. ZnO@XG reduced quorum sensing (QS) regulated virulence factors such as violacein (61%), chitinase (70%) in C. violaceum and prodigiosin (71%) and protease (72%) in S. marcescens at 128 µg/mL concentration. Significant (p ≤ 0.05) inhibition of biofilm formation as well as preformed mature biofilms was also recorded along with the impaired production of EPS, swarming motility and cell surface hydrophobicity in both the test pathogens. The findings of this study clearly highlight the potency of ZnO@XG against the QS controlled virulence factors of drug-resistant pathogens that may be developed as effective inhibitors of QS and biofilms to mitigate the threat of multidrug resistance (MDR). ZnO@XG may be used alone or in combination with antimicrobial drugs against MDR bacterial pathogens. Further, it can be utilized in the food industry to counter the menace of contamination and spoilage caused by the formation of biofilms.
Collapse
|
49
|
Chandra H, Singh C, Kumari P, Yadav S, Mishra AP, Laishevtcev A, Brisc C, Brisc MC, Munteanu MA, Bungau S. Promising Roles of Alternative Medicine and Plant-Based Nanotechnology as Remedies for Urinary Tract Infections. Molecules 2020; 25:E5593. [PMID: 33260701 PMCID: PMC7731396 DOI: 10.3390/molecules25235593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Urinary tract infections (UTIs) are considered to be the most common infections worldwide, having an incidence rate of 40-60% in women. Moreover, the prevalence of this disorder in adult women is 30 times more than in men. UTIs are usually found in many hospitals and clinical practice; as disorders, they are complicated and uncomplicated; in uncomplicated cases, there is no structural or functional abnormality in the urogenital tract. However, obstruction, retention of urine flow and use of catheters increase the complexity. There are several bacteria (e.g., E. coli, Klebsiella pneumoniae, Proteus vulgaris, etc.) successfully residing in the tract. The diagnosis must not only be accurate but rapid, so early detection is an important step in the control of UTIs caused by uropathogens. The treatment of UTIs includes appropriate antimicrobial therapy to control the infection and kill the causal microbes inside the body. A long-time usage of antibiotics has resulted in multidrug resistance causing an impediment in treatment. Thus, alternative, combinatorial medication approaches have given some hope. Available treatments considered Homeopathic, Ayurvedic, Unani, and other herbal-based drugs. There are new upcoming roles of nanoparticles in combating UTIs which needs further validation. The role of medicinal plant-based nanotechnology approaches has shown promising results. Therefore, there must be active research in phyto-based therapies of UTIs, such as Ayurvedic Biology.
Collapse
Affiliation(s)
- Harish Chandra
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar 249404, India;
| | - Chanchal Singh
- Department of Microbiology, Faculty of Science and Technology, Mewar University, Chittorgarh 312901, India;
| | - Pragati Kumari
- S-02, Scientist Hostel, Chauras Campus, Srinagar Garhwal, Uttarakhand 246174, India;
| | - Saurabh Yadav
- Department of Biotechnology, H.N.B. Garhwal University (A Central University), Srinagar (Garhwal) 246174, Uttarakhand, India
| | - Abhay P. Mishra
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh 247341, India
| | - Aleksey Laishevtcev
- Federal Research Center, Russian Scientific Research Institute of Experimental Veterinary Medicine Named after K. I. Skryabin and Y. R. Kovalenko of the Russian Academy of Sciences, 109428 Moscow, Russia;
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State University, Named after I. S. Turgenev, 302026 Orel, Russia
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (M.C.B.); (M.A.M.)
| | - Mihaela Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (M.C.B.); (M.A.M.)
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (M.C.B.); (M.A.M.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| |
Collapse
|