1
|
Panda B, Chilvery S, Devi P, Kalmegh R, Godugu C. Inhibition of peptidyl arginine deiminase-4 ameliorated pulmonary fibrosis via modulating M1/M2 polarisation of macrophages. Life Sci 2025; 362:123354. [PMID: 39755270 DOI: 10.1016/j.lfs.2024.123354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Pulmonary fibrosis (PF) arises from dysregulated wound healing, leading to excessive extracellular matrix (ECM) deposition and impaired lung function. Macrophages exhibit high plasticity, polarizing to pro-inflammatory M1 during early inflammation and anti-inflammatory, fibrosis-inducing M2 during later stages of PF. Additionally, neutrophils and neutrophil extracellular traps (NETs) release mediated by peptidyl arginine deiminase (PAD-4), also play a key role in PF progression. PAD-4 inhibitor chloro-amidine (CLA) has shown anti-fibrotic effects in bleomycin (BLM) induced PF mouse model in our earlier study. Here, we have demonstrated that CLA also exhibited inhibition of macrophage polarisation in in-vitro in THP-1 monocytes and in-vivo in BLM induced PF. THP-1 monocytes were exposed to NETs isolated from phorbol 12-myristate-13-acetate (PMA) stimulated and PMA plus CLA treated differentiated HL-60 (dHL-60) cells. Monocytes exposed to stimulated NETs resulted in increased oxidative stress, disrupted mitochondrial membrane potential and increased M1 and M2 macrophage markers. These alterations were abrogated in THP-1 cells upon exposure to CLA treated NETs. Further, CLA treatment in BLM induced mice improved abnormal BALF, biochemical, and histological parameters in line with our previous findings. Additionally, CLA also reduced M1 and M2 markers time-dependently, as shown by immunofluorescence (IF), western blot, and RT-PCR analysis. CLA treatment led to decreased expression of PAD-4, M1-related pro-inflammatory cytokines and M2-related pro-fibrotic cytokines and mediators, as confirmed by western blot and ELISA analysis. Thus, it is established that inhibition of PAD-4 lead to mitigation of macrophage polarisation and a combined anti-fibrotic effect is achieved which can be explored further.
Collapse
Affiliation(s)
- Biswajit Panda
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, TS 500037, India
| | - Shrilekha Chilvery
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, TS 500037, India
| | - Priyanka Devi
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, TS 500037, India
| | - Radha Kalmegh
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, TS 500037, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, TS 500037, India.
| |
Collapse
|
2
|
Tan H, Zhang S, Zhang Z, Zhang J, Wang Z, Liao J, Qiu X, Jia E. Neutrophil extracellular traps promote M1 macrophage polarization in gouty inflammation via targeting hexokinase-2. Free Radic Biol Med 2024; 224:540-553. [PMID: 39277122 DOI: 10.1016/j.freeradbiomed.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/19/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Peptidylarginine deiminase 4 (PAD4)-dependent neutrophil extracellular trap (NET) formation is a new neutrophil death mechanism. Increased NET formation has been demonstrated to be associated with gouty inflammation. Macrophages release proinflammatory mediators and chemokines in acute gouty inflammation and subsequently lead to inflammatory cascades. However, whether NETs regulate macrophage function and polarization and further contribute to gout development remains unclear. Herein, we investigated the relationship between monosodium urate (MSU) crystal-induced NETs and macrophages and the associated mechanisms in gouty inflammation. Elevated NET formation and CD86+ macrophage infiltration were observed in human gouty arthritis (GA). In vitro, MSU crystal-induced NETs or NET-associated histone H3 treatments modulated nod-like receptor protein 3 (NLRP3) inflammasome activation, M1 polarization, and metabolic changes in macrophages. These effects were eliminated by hexokinase-2 (HK-2) silencing. Moreover, NET formation and inflammation were significantly reduced in PAD4-/- GA mice. Pharmacological inhibition of NET formation with Cl-Amidine or NET degradation with DNase Ⅰ significantly reduced M1 polarization of macrophages and ameliorated inflammation in GA mice. In sum, MSU crystal-induced NETs promote M1 polarization and NLRP3 activation in macrophages via targeting HK-2. Cell-free DNA and histone H3 may be the driving elements behind the NET-induced M1 macrophage polarization, NLRP3 activation, and metabolic changes. Targeting NETs could be a potential therapeutic strategy for gout flare.
Collapse
Affiliation(s)
- Haibo Tan
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, 518033, PR China
| | - Shan Zhang
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, 518033, PR China
| | - Zhihao Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Department of Rheumatism, Shenzhen, 518033, PR China
| | - Jianyong Zhang
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, 518033, PR China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Department of Rheumatism, Shenzhen, 518033, PR China
| | - Ziyu Wang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Department of Rheumatism, Shenzhen, 518033, PR China
| | - Junlan Liao
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, 518033, PR China
| | - Xia Qiu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Department of Rheumatism, Shenzhen, 518033, PR China
| | - Ertao Jia
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangdong Second Hospital of Traditional Chinese Medicine, Department of Rheumatism, Guangzhou, 510000, PR China.
| |
Collapse
|
3
|
Wang M, Zhao H, Zhao H, Huo C, Yuan Y, Zhu Y. Moxibustion-mediated alleviation of synovitis in rats with rheumatoid arthritis through the regulation of NLRP3 inflammasome by modulating neutrophil extracellular traps. Heliyon 2024; 10:e23633. [PMID: 38187290 PMCID: PMC10770485 DOI: 10.1016/j.heliyon.2023.e23633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Purpose This study investigates the potential mechanism of moxibustion in the treatment of rheumatoid arthritis (RA) by regulating the neutrophil extracellular trap (NET)/NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome axis with the use of a rat model with adjuvant arthritis (AA). Methods Four groups, including normal control (NC), AA, moxibustion (MOX), and chlor-amidine (Cl-amidine) were created from 24 Wistar male rats (6 rats/group). After the intervention and treatment respectively, the joint swelling degree (JSD) and arthritis index (AI) were compared. The pathological changes of synovium were observed with hematoxylin and eosin staining and transmission electron microscopy. The formation of NETs in synovial tissues was detected with immunofluorescence staining. The protein expression of myeloperoxidase (MPO), neutrophil elastase (NE), citrullinated histone (Cit-H3), acyl arginine deiminase 4 (PAD-4), and NLRP3 was measured in the synovium of rat ankle joints with western blotting, and the levels of anti-cyclic citrullinated peptide antibody (CCP-Ab) and interleukin (IL)-1β were examined in rat serum with ELISA. Results AA modeling markedly increased JSD, AI, synovial protein expression of MPO, NE, Cit-H3, PAD-4, and NLRP3, and serum levels of CCP-Ab and IL-1β in rats (P < 0.01). JSD and AI, as well as the levels of MPO, NE, Cit-H3, PAD-4, NLRP3, CCP-Ab, and IL-1β, were significantly lowered in AA rats by MOX and Cl-amidine (P < 0.01). In addition, AA modeling caused severe pathological injury in the synovium of rats, which was annulled by MOX and Cl-amidine. The formation of NETs in synovium was substantially promoted in rats by AA modeling and was significantly reduced in AA rats after the treatment. Conclusion Moxibustion can markedly alleviate synovitis and repress inflammatory factor release in AA rats, which may be achieved by diminished synthesis of NETs or their constituents and the blocked formation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Miao Wang
- Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Hongfang Zhao
- Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Hui Zhao
- Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Chenlu Huo
- Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Yu Yuan
- Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Yan Zhu
- The Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230061, China
| |
Collapse
|
4
|
Bai Z, Wu Y, Cai W, Zheng Y, Hui T, Yue C, Sun J, Wang Y, Wang Z. High-throughput analysis of lncRNA in cows with naturally infected Staphylococcus aureus mammary gland. Anim Biotechnol 2023; 34:2166-2174. [PMID: 35649423 DOI: 10.1080/10495398.2022.2077744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
LncRNA (long non-coding RNA) is an RNA molecule with a length between 200 and 100,000 nt. It does not encode proteins and is involved in a variety of intracellular processes, becoming a research hotspot of genetics. To identify key lncRNAs associated with dairy mastitis, we collected mammary epithelial tissue samples of Normal disease-free Holstein cows (HCN) and unhealthy Holstein cows with Staphylococcus aureus (HCU) and performed RNA sequencing (RNA-seq) on the samples. A total of 270 differentially expressed lncRNAs and 500 differentially expressed mRNAs were identified by high-throughput sequencing and bioinformatics analysis. Furthermore, Hydrolase activity is the most enriched in GO, and ErbB signaling pathway is significantly enriched in KEGG. In addition, through qPCR validation of 5 candidate lncRNAs in HCN and HCU, four differentially expressed lncRNAs MSTRG.498, MSTRG57.1, MSTRG.41.1 and MSTRG 124.1 were confirmed to have significant differentially expressed in cow mastitis. Also, lncRNA MSTRG.498 and its target gene, SMC4, might directly or indirectly play a role in cow mastitis. The regulatory network of lncRNA-miRNA-mRNA has been inferred from a bioinformatics perspective, which may assist understand the underlying molecular mechanism of lncRNAs involved in regulating mastitis in cows. Our findings will provide meaningful resources for further research on the regulatory function of lncRNAs in cow mastitis.
Collapse
Affiliation(s)
- Zhixian Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanzhi Wu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weidong Cai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Zheng
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Taiyu Hui
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chang Yue
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jiaming Sun
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanru Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeying Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
5
|
Zhu Y, Xia X, He Q, Xiao QA, Wang D, Huang M, Zhang X. Diabetes-associated neutrophil NETosis: pathogenesis and interventional target of diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1202463. [PMID: 37600700 PMCID: PMC10435749 DOI: 10.3389/fendo.2023.1202463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are known as extracellular fibers networks consisting of antimicrobial proteins and decondensated chromatin DNA released by activated neutrophils. NETosis is a NETs-induced neutrophilic cell death which is unique from necrosis or apoptosis. Besides its neutralizing pathogen, NETosis plays a crucial role in diabetes and diabetes-related complications. In patients with diabetes, NETs-releasing products are significantly elevated in blood, and these findings confirm the association of NETosis and diabetic complications, including diabetic wound healing, diabetic retinopathy, and atherosclerosis. This article briefly summarizes the mechanisms of NETosis and discusses its contribution to the pathogenesis of diabetes-related complications and suggests new therapeutic targets by some small molecule compounds.
Collapse
Affiliation(s)
- Yuyan Zhu
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Xuan Xia
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Department of Physiology and Pathophysiology, College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Qian He
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing-Ao Xiao
- Department of Interventional Radiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
- Department of Interventional Radiology, Yichang Central People’s Hospital, Yichang, Hubei, China
| | - Decheng Wang
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Meirong Huang
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Department of Physiology and Pathophysiology, College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Xiaolin Zhang
- Department of Interventional Radiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
- Department of Interventional Radiology, Yichang Central People’s Hospital, Yichang, Hubei, China
| |
Collapse
|
6
|
Shang B, Cui H, Xie R, Wu J, Shi H, Bi X, Feng L, Shou J. Neutrophil extracellular traps primed intercellular communication in cancer progression as a promising therapeutic target. Biomark Res 2023; 11:24. [PMID: 36859358 PMCID: PMC9977644 DOI: 10.1186/s40364-023-00463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
In addition to the anti-infection response, neutrophils are linked to tumor progression through the secretion of inflammation components and neutrophil extracellular traps (NETs) formation. NET is a web-like structure constituted by a chromatin scaffold coated with specific nuclear and cytoplasmic proteins, such as histone and granule peptides. Increasing evidence has demonstrated that NETs are favorable factors to promote tumor growth, invasion, migration, and immunosuppression. However, the cell-cell interaction between NETs and other cells (tumor cells and immune cells) is complicated and poorly studied. This work is the first review to focus on the intercellular communication mediated by NETs in cancer. We summarized the complex cell-cell interaction between NETs and other cells in the tumor microenvironment. We also address the significance of NETs as both prognostic/predictive biomarkers and molecular targets for cancer therapy. Moreover, we presented a comprehensive landscape of cancer immunity, improving the therapeutic efficacy for advanced cancer in the future.
Collapse
Affiliation(s)
- Bingqing Shang
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Honglei Cui
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Ruiyang Xie
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Jie Wu
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Hongzhe Shi
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Xingang Bi
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Lin Feng
- Department of Etiology and Carcinogenesis, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR, China.
| | - Jianzhong Shou
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, PR, China.
| |
Collapse
|
7
|
Cl-amidine attenuates lipopolysaccharide-induced inflammation in human gingival fibroblasts via the JNK/MAPK, NF-κB, and Nrf2 signalling pathways. Hum Cell 2023; 36:223-233. [PMID: 36352311 DOI: 10.1007/s13577-022-00822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
Cl-amidine has been reported to have anti-inflammatory properties in a variety of diseases. However, the role of Cl-amidine in periodontal disease remains unclear. Here, the purpose of this study was to investigate the effect of Cl-amidine on lipopolysaccharide (LPS)-induced inflammation in human gingival fibroblasts (HGFs). The cytotoxic effect of Cl-amidine was measured with the Cell Counting Kit-8 (CCK-8) assay and Annexin V-FITC/PI staining. The protein levels of IL-6 and IL-8 in culture supernatants were measured with enzyme-linked immunosorbent assay (ELISA). The mRNA levels of inflammatory cytokines, TLR4 and MyD88 were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The expression patterns of IL-6, TNF-ɑ, and IL-1β in HGFs were tested with western blot. The levels of NF-κB, MAPK, and Nrf2 pathway-related proteins were detected by western blot. Immunofluorescence (IF) staining was used to examine the nuclear translocation of NF-κB p65. Moreover, a rat gingivitis model was established to further clarify the role of Cl-amidine. Our results showed that Cl-amidine suppressed LPS-induced gingival inflammation both in vitro and in vivo. Mechanistically, Cl-amidine inhibited LPS-induced MyD88 expression, NF-κB activation, and JNK phosphorylation. Additionally, Cl-amidine upregulated Nrf2 and Ho-1 expression both with and without LPS stimulation but did not alter ROS levels or Keap1 expression. Overall, our data suggest that Cl-amidine acts as an inhibitor of LPS-induced gingival inflammation via the JNK/MAPK, NF-κB, and Nrf2 signalling pathways.
Collapse
|
8
|
Chi Q, Xu T, He Y, Li Z, Tang X, Fan X, Li S. Polystyrene nanoparticle exposure supports ROS-NLRP3 axis-dependent DNA-NET to promote liver inflammation. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129502. [PMID: 35868089 DOI: 10.1016/j.jhazmat.2022.129502] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The widespread use of plastics and the rapid development of nanotechnology bring convenience to our lives while also increasing the environmental burden and increasing the risk of exposure of organisms to nanoparticles (NPs). While recent studies have revealed an association between nanoparticles and liver injury, the intrinsic mechanism of NP exposure-induced liver damage remains to be explored. Here, we found that polystyrene nanoparticle (PSNP) exposure resulted in a significant increase in local neutrophil infiltration and neutrophil extracellular trap (NET) formation in the liver. Analysis of a coculture system of PBNs and AML12 cells revealed that PSNP-induced NET formation positively correlates with the reactive oxygen species (ROS)-NLRP3 axis. Inhibition of ROS and genetic and pharmacological inhibition of NLRP3 in AML12 can both alleviate PSNP-induced NET formation. In turn, exposure of mice to deoxyribonuclease I (DNase Ⅰ)-coated PSNPs disassembled NET in vivo, neutrophil infiltration in the liver was reduced, the ROS-NLRP3 axis was inhibited, and the expression of cytokines was markedly decreased. Collectively, our work reveals a mechanism of NET formation in PSNP exposure-induced liver inflammation and highlights the possible role of DNase Ⅰ as a key enzyme in degrading NET and alleviating liver inflammation.
Collapse
Affiliation(s)
- Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yujiao He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhe Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinyu Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
9
|
Li M, Gao Y, Wang Z, Wu B, Zhang J, Xu Y, Han X, Phouthapane V, Miao J. Taurine inhibits Streptococcus uberis-induced NADPH oxidase-dependent neutrophil extracellular traps via TAK1/MAPK signaling pathways. Front Immunol 2022; 13:927215. [PMID: 36148229 PMCID: PMC9488113 DOI: 10.3389/fimmu.2022.927215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are produced by neutrophil activation and usually have both anti-infective and pro-damage effects. Streptococcus uberis (S. uberis), one of the common causative organisms of mastitis, can lead to the production of NETs. Taurine, a free amino acid abundant in the organism, has been shown to have immunomodulatory effects. In this study, we investigated the molecular mechanisms of S. uberis-induced NETs formation and the regulatory role of taurine. The results showed that NETs had a disruptive effect on mammary epithelial cells and barriers, but do not significantly inhibit the proliferation of S. uberis. S. uberis induced NADPH oxidase-dependent NETs. TLR2-mediated activation of the MAPK signaling pathway was involved in this process. Taurine could inhibit the activation of MAPK signaling pathway and NADPH oxidase by modulating the activity of TAK1, thereby inhibiting the production of ROS and NETs. The effects of taurine on NADPH oxidase and NETs in S. uberis infection were also demonstrated in vivo. These results suggest that taurine can protect mammary epithelial cells and barriers from damage by reducing S. uberis-induced NETs. These data provide new insights and strategies for the prevention and control of mastitis.
Collapse
Affiliation(s)
- Ming Li
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yabing Gao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhenglei Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Binfeng Wu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jinqiu Zhang
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuanyuan Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Vanhnaseng Phouthapane
- Department of Livestock and Fisheries, Ministry of Agriculture and Forestry, Vientiane, Laos
| | - Jinfeng Miao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Jinfeng Miao,
| |
Collapse
|
10
|
Shen W, Oladejo AO, Ma X, Jiang W, Zheng J, Imam BH, Wang S, Wu X, Ding X, Ma B, Yan Z. Inhibition of Neutrophil Extracellular Traps Formation by Cl-Amidine Alleviates Lipopolysaccharide-Induced Endometritis and Uterine Tissue Damage. Animals (Basel) 2022; 12:1151. [PMID: 35565576 PMCID: PMC9100562 DOI: 10.3390/ani12091151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Endometritis is a common disease that affects the production in dairy cows and leads to severe losses in the dairy industry. Neutrophil extracellular traps (NETs) formation promotes pathogenic invasions of the lumen of the tissue, leading to inflammatory diseases such as mastitis, pancreatitis, and septic infection. However, research that could show the relationship between NETs and endometritis is scarce. Cl-amidine has been shown to ameliorate the disease squealing and clinical manifestation in various disease models. In this study, we investigated the role of NETs in LPS-triggered endometritis in rats and evaluated the therapeutic efficiency of Cl-amidine. An LPS-induced endometritis model in rats was established and found that the formation of NETs can be detected in the rat's uterine tissues in vivo. In addition, Cl-amidine treatment can inhibit NETs construction in LPS-induced endometritis in rats. Myeloperoxidase (MPO) activity assay indicated that Cl-amidine treatment remarkably alleviated the inflammatory cell infiltrations and attenuated the damage to the uterine tissue. The Western blot results indicated that Cl-amidine decreased the expression of citrullinated Histone H3 (Cit-H3) and high-mobility group box 1 protein (HMGB1) protein in LPS-induced rat endometritis. The ELISA test indicated that Cl-amidine treatment significantly inhibited the expression of the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. The NETs were determined by Quant-iTTMPicoGreen dsDNA kit®, which indicated that Cl-amidine significantly inhibited the NETs in rat serum. All results showed that Cl-amidine effectively reduced the expression of Cit-H3 and HMGB1 proteins by inhibiting the formation of NETs, thereby attenuating the inflammatory response to LPS-induced endometritis in rats. Hence, Cl-amidine could be a potential candidate for the treatment of endometritis.
Collapse
Affiliation(s)
- Wenxiang Shen
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (W.S.); (A.O.O.); (X.M.); (W.J.); (J.Z.); (B.H.I.); (S.W.); (X.W.); (X.D.)
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Ayodele Olaolu Oladejo
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (W.S.); (A.O.O.); (X.M.); (W.J.); (J.Z.); (B.H.I.); (S.W.); (X.W.); (X.D.)
- Department of Animal Health Technology, Oyo State College of Agriculture and Technology, Igboora 201103, Nigeria
| | - Xiaoyu Ma
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (W.S.); (A.O.O.); (X.M.); (W.J.); (J.Z.); (B.H.I.); (S.W.); (X.W.); (X.D.)
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Wei Jiang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (W.S.); (A.O.O.); (X.M.); (W.J.); (J.Z.); (B.H.I.); (S.W.); (X.W.); (X.D.)
| | - Juanshan Zheng
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (W.S.); (A.O.O.); (X.M.); (W.J.); (J.Z.); (B.H.I.); (S.W.); (X.W.); (X.D.)
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Bereket Habte Imam
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (W.S.); (A.O.O.); (X.M.); (W.J.); (J.Z.); (B.H.I.); (S.W.); (X.W.); (X.D.)
- Department of Veterinary Science, Hamelmalo Agricultural College, Keren P.O. Box 397, Eritrea
| | - Shengyi Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (W.S.); (A.O.O.); (X.M.); (W.J.); (J.Z.); (B.H.I.); (S.W.); (X.W.); (X.D.)
| | - Xiaohu Wu
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (W.S.); (A.O.O.); (X.M.); (W.J.); (J.Z.); (B.H.I.); (S.W.); (X.W.); (X.D.)
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (W.S.); (A.O.O.); (X.M.); (W.J.); (J.Z.); (B.H.I.); (S.W.); (X.W.); (X.D.)
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Zuoting Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (W.S.); (A.O.O.); (X.M.); (W.J.); (J.Z.); (B.H.I.); (S.W.); (X.W.); (X.D.)
| |
Collapse
|
11
|
Elliott W, Guda MR, Asuthkar S, Teluguakula N, Prasad DVR, Tsung AJ, Velpula KK. PAD Inhibitors as a Potential Treatment for SARS-CoV-2 Immunothrombosis. Biomedicines 2021; 9:biomedicines9121867. [PMID: 34944683 PMCID: PMC8698348 DOI: 10.3390/biomedicines9121867] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/26/2022] Open
Abstract
Since the discovery of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, the virus's dynamicity has resulted in the evolution of various variants, including the delta variant and the more novel mu variant. With a multitude of mutant strains posing as challenges to vaccine efficacy, it is critical that researchers embrace the development of pharmacotherapeutics specific to SARS-CoV-2 pathophysiology. Neutrophil extracellular traps and their constituents, including citrullinated histones, display a linear connection with thrombotic manifestations in COVID-19 patients. Peptidylarginine deiminases (PADs) are a group of enzymes involved in the modification of histone arginine residues by citrullination, allowing for the formation of NETs. PAD inhibitors, specifically PAD-4 inhibitors, offer extensive pharmacotherapeutic potential across a broad range of inflammatory diseases such as COVID-19, through mediating NETs formation. Although numerous PAD-4 inhibitors exist, current literature has not explored the depth of utilizing these inhibitors clinically to treat thrombotic complications in COVID-19 patients. This review article offers the clinical significance of PAD-4 inhibitors in reducing thrombotic complications across various inflammatory disorders like COVID-19 and suggests that these inhibitors may be valuable in treating the origin of SARS-CoV-2 immunothrombosis.
Collapse
Affiliation(s)
- Willie Elliott
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA; (W.E.J.); (M.R.G.); (S.A.); (A.J.T.)
| | - Maheedhara R. Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA; (W.E.J.); (M.R.G.); (S.A.); (A.J.T.)
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA; (W.E.J.); (M.R.G.); (S.A.); (A.J.T.)
| | | | | | - Andrew J. Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA; (W.E.J.); (M.R.G.); (S.A.); (A.J.T.)
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
- Illinois Neurological Institute, Peoria, IL 61603, USA
| | - Kiran K. Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA; (W.E.J.); (M.R.G.); (S.A.); (A.J.T.)
- Department of Microbiology, Yogi Vemana University, Kadapa 516003, India;
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
- Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
- Correspondence:
| |
Collapse
|