1
|
Abd El-Hamid MI, El-Malt RMS, Khater SI, Abdelwarith AA, Khamis T, Abd El-Wahab RA, Younis EM, Davies SJ, Mohamed DI, Mohamed RI, Zayed S, Abdelrahman MA, Ibrahim D. Impact of liposomal hesperetin in broilers: prospects for improving performance, antioxidant potential, immunity, and resistance against Listeria monocytogenes. Avian Pathol 2025; 54:120-148. [PMID: 39169883 DOI: 10.1080/03079457.2024.2395357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/12/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Liposomal encapsulated phytogenics, such as liposomal hesperetin, are considered novel substitutes for antibiotics in the broiler industry owing to their improved nutritional and therapeutic properties. Therefore, our key goal was to investigate liposomal hesperetin impact on broiler growth performance, health, antioxidant status, tight junction proteins (TJP), and resistance against Listeria monocytogenes. Four broiler groups were fed 0, 150, 250, or 400 mg/kg of liposomal hesperetin-supplemented diets and experimentally infected with L. monocytogenes strain. Herein, liposomal hesperetin, especially at higher concentrations, augmented broilers FCR with upregulation of genes encoding TJP (occludin, JAM-2, MUC-2), and antioxidant attributes (GPX-1, SOD-1, CAT, HO-1, NQO1, COX2), which reflect enhancing health and welfare of broilers. Muscle antioxidant biomarkers were enhanced; meanwhile, muscle MDA, ROS, and H2O2 levels were reduced in response to 400 mg/kg of liposomal hesperetin. Liposomal hesperetin fortification reduced L. monocytogenes loads and expression levels of its virulence-related genes (flaA, hlyA, and ami). Remarkably, histopathological alterations in intestinal and brain tissues of L. monocytogenes-infected broilers were restored post-inclusion at higher levels of liposomal hesperetin, which reflects increase of the birds' resistance to L. monocytogenes infection. Transcription levels of genes encoding cytokines/chemokines (MyD88, AVBD6, CCL20, IL-1β, IL-18), and autophagy (Bcl-2, LC3, AMPK, AKT, CHOP, Bip, p62, XBP1) were ameliorated following dietary liposomal hesperetin fortification, which suggests enhancement of the birds' immunity and health. Collectively, our research recommends liposomal hesperetin application in broiler diets owing to its promoting impact on growth performance, antioxidant status, immunity, health, and welfare besides its antibacterial, and antivirulence characteristics to fight against L. monocytogenes.
Collapse
Affiliation(s)
- Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Rania M S El-Malt
- Department of Bacteriology, Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig, Egypt
| | - Safaa I Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reham A Abd El-Wahab
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saudi University, Riyadh, Saudi Arabia
| | - Simon J Davies
- Aquaculture Nutrition Research Unit (ANRU), Carna Research Station, College of Science and Engineering, Ryan Institute, University of Galway, Galway, Ireland
| | - Dalia Ibrahim Mohamed
- Department of Biochemistry, Animal Health Research Institute, Zagazig Branch, Agriculture Research Center, Zagazig, Egypt
| | - Rania I Mohamed
- Department of Pathology, Agricultural Research Center (ARC), Animal Health Research Institute, Mansoura Provincial Laboratory (AHRI-Mansoura), Cairo, Egypt
| | - Shimaa Zayed
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Mahmoud A Abdelrahman
- Bacteriology Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Abdel-Raheem SM, Abouelhassan EM, Mandour M, El-Ghareeb WR, Shawky M, Eltarabili RM. Novel natural and economic approach for controlling methicillin-resistant Staphylococcus aureus using apple cider vinegar. Microb Pathog 2025; 198:107150. [PMID: 39586338 DOI: 10.1016/j.micpath.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) constitutes a significant health concern because it promotes infectious mastitis in dairy animals and poses a hazard risk to humans. Controlling MRSA infections is a growing challenge on a global scale because of the bacteria's toxicity and its capacity to develop multidrug resistance (MDR). Combating against MDR bacteria and the spread of infectious diseases needs natural antibacterial alternatives to minimize the economic losses of mastitis. The average treatment cost in Egypt was highlighted. The antibacterial effect of apple cider vinegar (ACV) against MDR-MRSA isolates was evaluated, also the study aimed at profiling antimicrobial resistance genes in MRSA isolates. The incidence of mastitis in cows was more than in buffaloes, and the average total treatment cost was estimated at 82 million EGP from 2016 to 2021 (around 14 million EGP annually). Of the 22 S. aureus isolates (20 %), of which (59.1 % were from cows and 40.9 % from buffaloes), 19 (86.4 %) were confirmed as MRSA. All MRSA isolates exhibited resistance to clindamycin (94.7 %), then both ampicillin and doxycycline (84.2 %), and ampicillin and sulbactam, erythromycin and Fosfomycin (each, 78.9 %). Vancomycin, ciprofloxacin, and levofloxacin can be used to treat MRSA. The prevalence of MDR was significantly high, with 94.7 % of the cases having multiple antimicrobial resistance (MAR) indices ranging from 0.25 to 0.75. All MRSA isolates tested positive for mecA, 89.5 % for the blaZ gene, 84.2 % for tetM, and 73.4 % for ermB. In vitro, the antibacterial properties of ACV were demonstrated to be superior by our results which demonstrate a zone of inhibition with diameters ranging from 20 to 40 mm detected by Agar well diffusion technique and MIC's (Minimal Inhibitory Concentration) ranging from 2 to 4 μg/ml. Some isolates possess MBC (Minimal Bactericidal Concentration) values at the same MIC. This research proposes the potential of ACV to act as a promising antibacterial alternative against MRSA. This can help minimize the health problem of antibiotic-resistant bacteria and improve the efficiency of dairy farms. Further studies are recommended to determine the proper dosage for field administration.
Collapse
Affiliation(s)
- Sherief M Abdel-Raheem
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Hofuf, Al-Ahsa, 31982, Saudi Arabia; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Eman M Abouelhassan
- Department of Parasitology, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Mostafa Mandour
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Waleed Rizk El-Ghareeb
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Hofuf, Al-Ahsa, 31982, Saudi Arabia; Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed Shawky
- Avian Research Center, King Faisal University, P.O. Box 400, Al-Hofuf, Al-Ahsa, 31982, Saudi Arabia; Veterinary Serum and Vaccine Research Institute, Cairo, Egypt
| | - Reham M Eltarabili
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
3
|
Nikolic I, Aleksic Sabo V, Gavric D, Knezevic P. Anti- Staphylococcus aureus Activity of Volatile Phytochemicals and Their Combinations with Conventional Antibiotics Against Methicillin-Susceptible S. aureus (MSSA) and Methicillin-Resistant S. aureus (MRSA) Strains. Antibiotics (Basel) 2024; 13:1030. [PMID: 39596725 PMCID: PMC11591321 DOI: 10.3390/antibiotics13111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND MSSA and MRSA strains are challenging human pathogens that can develop resistance to antibiotics, highlighting the need for alternative antimicrobial agents. Plant metabolites, particularly volatile phytochemicals, may offer promising antimicrobial properties. The aim was to evaluate the antimicrobial and antibiofilm efficacy of various commercial volatile phytochemicals from the terpene and terpenoid groups against reference MSSA and MRSA strains, focusing on synergistic effects in both binary combinations and combinations with antibiotics. METHODS The microdilution method was used to determine the minimum inhibitory concentrations (MICs) for antibiotics and phytochemicals. The checkerboard method assessed synergistic interactions between phytochemicals and between phytochemicals and antibiotics, while the time-kill method was used to confirm these results. Biofilm quantification was performed using the microtiter plate method to evaluate the effects of phytochemicals, antibiotics, and their binary combinations on the eradication of 48-h-old biofilms. RESULTS Carvacrol and thymol demonstrated the strongest anti-staphylococcal activity, while other terpene compounds showed weaker effects. In binary combinations, carvacrol and thymol exhibited synergy against one MSSA strain (FICI = 0.50) and with tetracycline and chloramphenicol (FICI = 0.28-0.50). Synergy was also noted with streptomycin sulfate against one MRSA strain (FICI = 0.31-0.50) and with other antibiotics, including gentamicin (FICI = 0.25-0.50) and oxacillin (FICI = 0.44). Additionally, effective combinations achieved over 50% biofilm removal at both minimum inhibitory and sub-inhibitory concentrations. CONCLUSIONS Results showed that synergy varies based on strain sensitivity to chemical agents, highlighting their potential for personalized therapy. Despite the difficulty in removing preformed biofilms, the findings highlight the importance of combined treatments to enhance antibiotic effectiveness.
Collapse
Affiliation(s)
| | | | | | - Petar Knezevic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia; (I.N.); (V.A.S.); (D.G.)
| |
Collapse
|
4
|
Abdelaziz R, Abd El-Hamid MI, El-Wafaei N, Ghaly MF, Askora A, El-Didamony G, AboElmaaty SA, Ismail TA, Ibrahim D, Eissa SA. Phage-resistant Streptomyces abietis and its telomycin bioactive metabolite as a possible alternative to antibiotics. Microb Pathog 2024; 194:106822. [PMID: 39047802 DOI: 10.1016/j.micpath.2024.106822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Multidrug-resistant pathogens are now thought to be the primary global causes of disease and death. Therefore, it is imperative to develop new effective bioactive compounds from microbial sources, such as Streptomyces species. Nevertheless, the pharmaceutical industry suffered financial losses and low-quality end products as a result of Streptomyces bacteriophage contamination. To reduce the likelihood of phage-induced issues in the medical industry, it is crucial to develop a method for finding phage-resistant strains. Hence, we aimed to isolate and characterize Streptomyces spp. and Streptomyces phages from various rhizospheric soil samples in Egypt and to investigate their antibacterial activities. Moreover, we targeted development of a Streptomyces phage-resistant strain to extract its active metabolites and further testing its antibacterial activity. Herein, the antibacterial activities of the isolated 58 Streptomyces isolates showed that 10 (17.2 %) Streptomyces isolates had antibacterial activities against the tested bacteria including Listeria monocytogenes, E. coli O157, Acinetobacter baumannii, methicillin resistant-vancomycin-intermediate Staphylococcus aureus (MRSA-VISA) and Micrococcus luteus. Three lytic bacteriophages (ϕPRSC1, ϕPRSC2, and ϕPRSC4) belonging to the families Siphoviridae and Podoviridae were obtained from the rhizospheric soil samples using the most potent S. abietis isolate as the host strain. The three isolated Streptomyces phages were thermostable, ultraviolet stable, infectious, and had a wide range of hosts against the 10 tested Streptomyces isolates with antibacterial activities. The DNA of the ϕPRSC1 and ϕPRSC4 phages were resistant to digestion by EcoRI and HindIII, but the DNA of ϕPRSC2 was resistant to digestion by EcoRI and sensitive to digestion by HindIII. Of note, we developed a S. abietis strain resistant to the three isolated phages and its antibacterial activities were twice that of the wild strain. Finally, telomycin was recognized as an antibacterial metabolite extracted from phage-resistant S. abietis strain, which was potent against the tested Gram-positive bacteria including L. monocytogenes, MRSA-VISA, and M. luteus. Thus, our findings open new horizons for researching substitute antimicrobial medications for both existing and reemerging illnesses.
Collapse
Affiliation(s)
- Rewan Abdelaziz
- Department of Microbiology, Ain Shams University, Faculty of Science, 11566, Egypt.
| | - Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Nahed El-Wafaei
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511, Egypt.
| | - Mohamed F Ghaly
- Department of Botany and Microbiology, Zagazig University, Faculty of Science, Zagazig, 44519, Egypt.
| | - Ahmed Askora
- Department of Botany and Microbiology, Zagazig University, Faculty of Science, Zagazig, 44519, Egypt.
| | - Gamal El-Didamony
- Department of Botany and Microbiology, Zagazig University, Faculty of Science, Zagazig, 44519, Egypt.
| | - Sabah A AboElmaaty
- Department of Botany and Microbiology, Banha University, Faculty of Science, Banha, 44519, Egypt.
| | - Tamer A Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif, 21944, Saudi Arabia.
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Egypt.
| | - Samar A Eissa
- Department of Medical Microbiology and Immunology, Faculty of Medicine-Kafrelsheikh University, 31511, Egypt.
| |
Collapse
|
5
|
Malveira EA, Nunes AKA, Andrade AL, Melo GLC, da Silva WMB, de Morais SM, Dos Santos HS, de Lima LB, de Albuquerque CC, do Nascimento Souza DN, Teixeira EH, de Vasconcelos MA. Antibacterial and Antibiofilm Activity of Croton urticifolius Lam. Essential Oil Via Membrane Disruption. Curr Microbiol 2024; 81:256. [PMID: 38955831 DOI: 10.1007/s00284-024-03779-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Antimicrobial resistance is a global health issue, in which microorganisms develop resistance to antimicrobial drugs, making infections more difficult to treat. This threatens the effectiveness of standard medical treatments and necessitates the urgent development of new strategies to combat resistant microbes. Studies have increasingly explored natural sources of new antimicrobial agents that harness the rich diversity of compounds found in plant species. This pursuit holds promise for the discovery of novel treatments for combating antimicrobial resistance. In this context, the chemical composition, antibacterial, and antibiofilm activities of the essential oil from Croton urticifolius Lam. leaves (CuEO) were evaluated. CuEO was extracted via hydrodistillation, and its chemical constituents were identified via gas chromatography-mass spectrometry (GC/MS). The antibacterial activity of CuEO was evaluated in a 96-well plate via the microdilution method, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were determined. The effect of CuEO on biofilm formation was assessed by quantifying the biomass using crystal violet staining and viable cell counting. In addition, alterations in the cellular morphology of biofilms treated with CuEO were examined using scanning electron microscopy (SEM) and laser confocal microscopy. GC/MS analysis identified 26 compounds, with elemicine (39.72%); eucalyptol (19.03%), E-caryophyllene (5.36%), and methyleugenol (4.12%) as the major compounds. In terms of antibacterial activity, CuEO showed bacteriostatic effects against Staphylococcus aureus ATCC 700698, S. aureus ATCC 25923, Staphylococcus epidermidis ATCC 12228, and Escherichia coli ATCC 11303, and bactericidal activity against S. aureus ATCC 700698. In addition, CuEO significantly inhibited bacterial biofilm formation. Microscopic analysis showed that CuEO damaged the bacterial membrane by leaching out the cytoplasmic content. Therefore, the results of this study show that the essential oil of C. urticifolius may be a promising natural alternative for preventing infections caused by bacterial biofilms. This study is the first to report the antibiofilm activity of C. urticifolius essential oil.
Collapse
Affiliation(s)
- Ellen Araújo Malveira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Aluska Kelly A Nunes
- Faculdade de Ciências Exatas E Naturais, Universidade Do Estado Do Rio Grande Do Norte, Mossoró, RN, Brazil
| | - Alexandre Lopes Andrade
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Gabriel Lucas Carvalho Melo
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | | | - Selene Maia de Morais
- Centro de Ciência E Tecnologia, Universidade Estadual Do Ceará, Fortaleza, CE, Brasil
| | - Hélcio Silva Dos Santos
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
- Centro de Ciências Exatas E Tecnologia, Universidade Estadual Do Vale Do Acaraú, Sobral, CE, Brazil
| | - Leandro Bezerra de Lima
- Faculdade de Ciências Exatas E Naturais, Universidade Do Estado Do Rio Grande Do Norte, Mossoró, RN, Brazil
| | | | | | - Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | | |
Collapse
|
6
|
Balta I, McCleery D, David SRF, Pet E, Stef D, Iancu T, Pet I, Stef L, Corcionivoschi N. The mechanistic role of natural antimicrobials in preventing Staphylococcus aureus invasion of MAC-T cells using an in vitro mastitis model. Ir Vet J 2024; 77:3. [PMID: 38414081 PMCID: PMC10898119 DOI: 10.1186/s13620-024-00265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Starting primarily as an inflammation of the mammary gland, mastitis is frequently driven by infectious agents such as Staphylococcus aureus. Mastitis has a large economic impact globally, which includes diagnostic, treatment, and the production costs not to mention the potential milk contamination with antimicrobial residues. Currently, mastitis prevention and cure depends on intramammary infusion of antimicrobials, yet, their overuse risks engendering resistant pathogens, posing further threats to livestock. METHODS In our study we aimed to investigate, in vitro, using bovine mammary epithelial cells (MAC-T), the efficacy of the AuraShield an antimicrobial mixture (As) in preventing S. aureus attachment, internalisation, and inflammation. The antimicrobial mixture (As) included: 5% maltodextrin, 1% sodium chloride, 42% citric acid, 18% sodium citrate, 10% silica, 12% malic acid, 9% citrus extract and 3% olive extract (w/w). RESULTS AND DISCUSSION Herein we show that As can significantly reduce both adherence and invasion of MAC-T cells by S. aureus, with no impact on cell viability at all concentrations tested (0.1, 0.2, 0.5, 1%) compared with untreated controls. The anti-apoptotic effect of As was achieved by significantly reducing cellular caspase 1, 3 and 8 activities in the infected MAC-T cells. All As concentrations were proven to be subinhibitory, suggesting that Ac can reduce S. aureus virulence without bacterial killing and that the effect could be dual including a host modulation effect. In this context, we show that As can reduce the expression of S. aureus clumping factor (ClfB) and block its interaction with the host Annexin A2 (AnxA2), resulting in decreased bacterial adherence in infection of MAC-T cells. Moreover, the ability of As to block AnxA2 had a significant decreasing effect on the levels of pro inflammatory cytokine released upon S. aureus interaction with MAC-T cells. CONCLUSION The results presented in this study indicate that mixtures of natural antimicrobials could potentially be considered an efficient alternative to antibiotics in treating S. aureus induced mastitis.
Collapse
Affiliation(s)
- Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania
| | - David McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Northern Ireland, Belfast, BT4 3SD, UK
| | - Saida Roxana Feier David
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania
| | - Elena Pet
- Faculty of Management and Rural Development, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania
| | - Ducu Stef
- Faculty of Food Engineering, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania
| | - Tiberiu Iancu
- Faculty of Management and Rural Development, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania
| | - Ioan Pet
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Northern Ireland, Belfast, BT4 3SD, UK
| | - Lavinia Stef
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Northern Ireland, Belfast, BT4 3SD, UK
| | - Nicolae Corcionivoschi
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania.
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Northern Ireland, Belfast, BT4 3SD, UK.
| |
Collapse
|
7
|
Attia ASA, Abou Elez RMM, El-Gazzar N, Elnahriry SS, Alfifi A, Al-Harthi HF, Alkhalifah DHM, Hozzein WN, Diab HM, Ibrahim D. Cross-sectional analysis of risk factors associated with Mugil cephalus in retail fish markets concerning methicillin-resistant Staphylococcus aureus and Aeromonas hydrophila. Front Cell Infect Microbiol 2024; 14:1348973. [PMID: 38371296 PMCID: PMC10869461 DOI: 10.3389/fcimb.2024.1348973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Aeromonas hydrophila and methicillin-resistant Staphylococcus aureus (MRSA) are potent bacterial pathogens posing major hazards to human health via consuming fish harboring these pathogens or by cross-contamination beyond the contaminated environment. The aim of this study was to determine risk variables associated with the presence of certain pathogenic bacteria from Mugil cephalus fish in retail markets in Egypt. The virulence genes of A. hydrophila and S. aureus were also studied. Furthermore, the antibiotic sensitivity and multidrug resistance of the microorganisms were evaluated. Methods In a cross-sectional investigation, 370 samples were collected from mullet skin and muscle samples, washing water, fish handlers, knives, and chopping boards. Furthermore, fish handlers' public health implications were assessed via their response to a descriptive questionnaire. Results S. aureus and Aeromonas species dominated the investigated samples with percentages of 26.76% and 30.81%, respectively. Furthermore, A. hydrophila and MRSA were the predominant recovered bacterial pathogens among washing water and knives (53.85% and 46.66%, respectively). The virulence markers aerA and hlyA were found in 90.7% and 46.5% of A. hydrophila isolates, respectively. Moreover, the virulence genes nuc and mec were prevalent in 80% and 60% of S. aureus isolates, respectively. Antimicrobial susceptibility results revealed that all A. hydrophila isolates were resistant to amoxicillin and all MRSA isolates were resistant to amoxicillin and ampicillin. Remarkably, multiple drug resistance (MDR) patterns were detected in high proportions in A. hydrophila (88.37%) and MRSA (100%) isolates. The prevalence of Aeromonas spp. and S. aureus had a positive significant correlation with the frequency of handwashing and use of sanitizer in cleaning of instruments. MRSA showed the highest significant prevalence rate in the oldest age category. Conclusion The pathogenic bacteria recovered in this study were virulent and had a significant correlation with risk factors associated with improper fish handling. Furthermore, a high frequency of MDR was detected in these pathogenic bacteria, posing a significant risk to food safety and public health.
Collapse
Affiliation(s)
- Amira S. A. Attia
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha M. M. Abou Elez
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nashwa El-Gazzar
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Shimaa S. Elnahriry
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ahmed Alfifi
- Department of Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Helal F. Al-Harthi
- Department of Biology, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hassan Mohmoud Diab
- Department of Animal and Poultry Health and Environment, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
8
|
Abd El-Hamid MI, El-Azzouny MM, El-Malt RMS, Elkenawy ME, Abdelwarith AA, Younis EM, Youssef W, Dawod RE, Elged DWAH, Habaka MAM, El Oksh ASA, Mekawy S, Davies SJ, Ibrahim D. Future impact of thymoquinone-loaded nanoemulsion in rabbits: prospects for enhancing growth, immunity, antioxidant potential and resistance against Pasteurella multocida. Front Vet Sci 2024; 10:1340964. [PMID: 38292130 PMCID: PMC10824920 DOI: 10.3389/fvets.2023.1340964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Phytochemical nanoemulsions, such as thymoquinone nanoemulsions (TQN), are regarded as innovative alternatives to antimicrobials that significantly improve the performance, digestion, antioxidant potential and immunity of rabbits. Thus, the potential effects of TQN on growth, digestibility, antioxidant potential, immunity and resistance against Pasteurella multocida (P. multocida) in rabbits were assessed. Herein, 240 rabbits were offered either a basal diet or diets fortified with three TQN-graded concentrations. At 60 days of age, rabbits were challenged with multidrug-resistant (MDR) virulent P. multocida strain. Our outcomes described that dietary inclusion of TQN, especially at higher concentrations, significantly enhanced the growth performance of rabbits, which was supported by increasing the levels of jejunal lipase, amylase and trypsin enzymes. Of note, the levels of muscle and jejunal antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) and total antioxidant capacity (T-AOC)], serum immunological markers (IgG, IgG, IgM and total Igs) and blood phagocytic percentage were significantly provoked after TQN fortification; meanwhile, the levels of muscle and jejunal MDA, serum biochemical parameters (total cholesterol, TG and LDL), abdominal fat percentage, breast and thigh cholesterol were significantly decreased following TQN supplementations. Our findings showed that TQN protected rabbits against P. multocida experimental challenge as evidenced by reducing P. multocida counts in rabbits' lungs, downregulating the transcription levels of P. multocida virulence-related genes (ptfA, toxA and nanB) at 48 and 96 h post-infection and ameliorating the expression levels of cytokines-related genes (IL-1β, IL-10, IL-8, IL-6, DEFB1, TNF-α, TLR-4 and TLR-2) at 96 h post-infection. Our findings suggest the utilization of TQN in rabbits' diets due to their stimulating effects on digestibility as well as their growth-promoting, anti-inflammatory, antioxidant, antibacterial, anti-virulence and immunostimulant properties, which enhance the rabbits' P. multocida resistance.
Collapse
Affiliation(s)
- Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mona M. El-Azzouny
- Department of Bacteriology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Rania M. S. El-Malt
- Department of Bacteriology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Mona E. Elkenawy
- Department of Biochemistry, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Mansoura, Egypt
| | | | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saudi University, Riyadh, Saudi Arabia
| | - Wessam Youssef
- Department of Biotechnology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Giza, Egypt
| | - Rehab E. Dawod
- Department of Bacteriology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Damietta, Egypt
| | - Dalia W. A. H. Elged
- Toxicology and Biochemical Department, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Manal A. M. Habaka
- Department of Poultry and Rabbits Diseases, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Amal S. A. El Oksh
- Department of Biotechnology, Reference Laboratory for Quality Control of Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Soad Mekawy
- Department of Clinical Pathology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Simon J. Davies
- Aquaculture Nutrition Research Unit (ANRU), Carna Research Station, College of Science and Engineering, Ryan Institute, University of Galway, Galway, Ireland
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Zhang C, Zhang W, Zhu S, Hu C, Che S, Wang M, Jin M, Bian N, Song W, Jiang S, Jiang Y, Hou J, Liu C, Zhou H, Wei L, Shi G, Tang Y. Bilobetin attenuates Staphylococcus aureus virulence by targeting Von Willebrand factor-binding protein and staphylocoagulase. World J Microbiol Biotechnol 2023; 39:358. [PMID: 37884743 DOI: 10.1007/s11274-023-03812-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Staphylococcus aureus (S. aureus) induces a variety of infectious diseases in humans and animals and is responsible for hospital- and community-acquired infections. The aim of this study was to investigate how bilobetin, a natural compound, attenuates S. aureus virulence by inhibiting two key virulence factors, von Willebrand factor-binding protein (vWbp) and staphylocoagulase (Coa). The results showed that bilobetin inhibited Coa- or vWbp-induced coagulation without affecting S. aureus proliferation. The Western blotting and fluorescence quenching assays indicated that bilobetin did not affect the expression of vWbp and Coa but directly bound to the proteins with KA values of 1.66 × 104 L/mol and 1.04 × 104 L/mol, respectively. To gain further insight into the mechanism of interaction of bilobetin with these virulence factors, we performed molecular docking and point mutation assays, which indicated that the TYR-6 and TYR-18 residues on vWbp and the ALA-190 and ASP-189 residues on Coa were essential for the binding of bilobetin. In addition, the in vivo studies showed that bilobetin ameliorated lung tissue damage and inflammation caused by S. aureus, thereby improving the survival of mice. Furthermore, the use of bilobetin as an adjuvant in combination with vancomycin was more effective in the treatment of a mouse model of pneumonia. Taken together, bilobetin had a dual inhibitory effect on vWbp and Coa by reducing the virulence of S. aureus, suggesting that it is a viable lead compound against S. aureus infections.
Collapse
Affiliation(s)
| | - Wenyuan Zhang
- Changchun University of Chinese Medicine, Changchun, China
| | - Shuyue Zhu
- Changchun University of Chinese Medicine, Changchun, China
| | - Chunjie Hu
- Proctology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Sihua Che
- Changchun University of Chinese Medicine, Changchun, China
| | - Meiling Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Mengli Jin
- Changchun University of Chinese Medicine, Changchun, China
| | - Nan Bian
- Changchun University of Chinese Medicine, Changchun, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Jiang
- Changchun University of Chinese Medicine, Changchun, China
| | - Yijing Jiang
- Changchun University of Chinese Medicine, Changchun, China
| | - Juan Hou
- Changchun University of Chinese Medicine, Changchun, China
| | - Chang Liu
- Changchun University of Chinese Medicine, Changchun, China
| | - Haofang Zhou
- Changchun University of Chinese Medicine, Changchun, China
| | - Lin Wei
- Changchun University of Chinese Medicine, Changchun, China.
| | - Guijun Shi
- Changchun University of Chinese Medicine, Changchun, China.
- Changchun Hospital of Traditional Chinese Medicine, Changchun, China.
| | - Yong Tang
- Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|