1
|
Rahim MA, Seo H, Kim S, Barman I, Ghorbanian F, Hossain MS, Shuvo MSH, Lee S, Song HY. Exploring the potential of Lactocaseibacillus rhamnosus PMC203 in inducing autophagy to reduce the burden of Mycobacterium tuberculosis. Med Microbiol Immunol 2024; 213:14. [PMID: 38977511 PMCID: PMC11231020 DOI: 10.1007/s00430-024-00794-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024]
Abstract
Mycobacterium tuberculosis, a lethal pathogen in human history, causes millions of deaths annually, which demands the development of new concepts of drugs. Considering this fact, earlier research has explored the anti-tuberculosis potential of a probiotic strain, Lactocaseibacillus rhamnosus PMC203, leading to a subsequent focus on the molecular mechanism involved in its effect, particularly on autophagy. In this current study, immunoblotting-based assay exhibited a remarkable expression of autophagy marker LC3-II in the PMC203 treated group compared to an untreated group. A remarkable degradation of p62 was also noticed within treated cells compared to control. Furthermore, the immunofluorescence-based assay showed significant fold change in fluorescence intensity for alexa-647-LC3 and alexa-488-LC3, whereas p62 was degraded noticeably. Moreover, lysosomal biogenesis generation was elevated significantly in terms of LAMP1 and acidic vesicular organelles. As a result, PMC203-induced autophagy played a vital role in reducing M. tuberculosis burden within the macrophages in treated groups compared to untreated group. A colony -forming unit assay also revealed a significant reduction in M. tuberculosis in the treated cells over time. Additionally, the candidate strain significantly upregulated the expression of autophagy induction and lysosomal biogenesis genes. Together, these results could enrich our current knowledge of probiotics-mediated autophagy in tuberculosis and suggest its implications for innovatively managing tuberculosis.
Collapse
Affiliation(s)
- Md Abdur Rahim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Hoonhee Seo
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Sukyung Kim
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Indrajeet Barman
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Fatemeh Ghorbanian
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Mohammed Solayman Hossain
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Md Sarower Hossen Shuvo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Saebim Lee
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan, 31538, Republic of Korea.
| |
Collapse
|
2
|
López-Valverde N, López-Valverde A, Blanco Rueda JA. The role of probiotic therapy on clinical parameters and human immune response in peri-implant diseases: a systematic review and meta-analysis of randomized clinical studies. Front Immunol 2024; 15:1371072. [PMID: 38686378 PMCID: PMC11056541 DOI: 10.3389/fimmu.2024.1371072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Background Peri-implant diseases (peri-implant mucositis and peri-implantitis) are pathologies of an infectious-inflammatory nature of the mucosa around dental implants. Probiotics are microorganisms that regulate host immunomodulation and have shown positive results in the treatment of peri-implant diseases. The objective of the systematic review and meta-analysis was to evaluate the efficacy of probiotics in the treatment of peri-implant oral diseases. Methods According to the PRISMA guidelines, the research question was established: Are probiotics able to favorably modify clinical and immunological biomarkers determinants of peri-implant pathologies? and an electronic search of the databases MEDLINE/PubMed, Embase, Cochrane Central, Web of Science, (until December 2023) was performed. Inclusion criteria were established for intervention studies (RCTs), according to the PICOs strategy in subjects with peri-implant pathology (participants), treated with probiotics (intervention) compared to patients with conventional treatment or placebo (control) and evaluating the response to treatment (outcomes). Results- 1723 studies were obtained and 10 were selected. Risk of bias was assessed using the Cochrane Risk of Bias Tool and methodological quality using the Joanna Briggs Institute for RCTs. Two meta-analyses were performed, one to evaluate probiotics in mucositis and one for peri-implantitis. All subgroups were homogeneous (I2 = 0%), except in the analysis of IL-6 in mucositis (I2 = 65%). The overall effect was favorable to the experimental group in both pathologies. The analysis of the studies grouped in peri-implantitis showed a tendency to significance (p=0.09). Conclusion The use of probiotics, as basic or complementary treatment of peri-implant diseases, showed a statistically significant trend, but well-designed studies are warranted to validate the efficacy of these products in peri-implant pathologies.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Medicine and Medical Specialties, Faculty of Health Sciences, University of Alcalá de Henares, Madrid, Spain
| | - Antonio López-Valverde
- Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - José Antonio Blanco Rueda
- Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| |
Collapse
|
3
|
Khataybeh B, Jaradat Z, Ababneh Q. Anti-bacterial, anti-biofilm and anti-quorum sensing activities of honey: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116830. [PMID: 37400003 DOI: 10.1016/j.jep.2023.116830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Man has used honey to treat diseases since ancient times, perhaps even before the history of medicine itself. Several civilizations have utilized natural honey as a functional and therapeutic food to ward off infections. Recently, researchers worldwide have been focusing on the antibacterial effects of natural honey against antibiotic-resistant bacteria. AIM OF THE STUDY This review aims to summarize research on the use of honey properties and constituents with their anti-bacterial, anti-biofilm, and anti-quorum sensing mechanisms of action. Further, honey's bacterial products, including probiotic organisms and antibacterial agents which are produced to curb the growth of other competitor microorganisms is addressed. MATERIALS AND METHODS In this review, we have provided a comprehensive overview of the antibacterial, anti-biofilm, and anti-quorum sensing activities of honey and their mechanisms of action. Furthermore, the review addressed the effects of antibacterial agents of honey from bacterial origin. Relevant information on the antibacterial activity of honey was obtained from scientific online databases such as Web of Science, Google Scholar, ScienceDirect, and PubMed. RESULTS Honey's antibacterial, anti-biofilm, and anti-quorum sensing activities are mostly attributed to four key components: hydrogen peroxide, methylglyoxal, bee defensin-1, and phenolic compounds. The performance of bacteria can be altered by honey components, which impact their cell cycle and cell morphology. To the best of our knowledge, this is the first review that specifically summarizes every phenolic compound identified in honey along with their potential antibacterial mechanisms of action. Furthermore, certain strains of beneficial lactic acid bacteria such as Bifidobacterium, Fructobacillus, and Lactobacillaceae, as well as Bacillus species can survive and even grow in honey, making it a potential delivery system for these agents. CONCLUSION Honey could be regarded as one of the best complementary and alternative medicines. The data presented in this review will enhance our knowledge of some of honey's therapeutic properties as well as its antibacterial activities.
Collapse
Affiliation(s)
- Batool Khataybeh
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ziad Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Qutaiba Ababneh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
4
|
Dubey AK, Sharma M, Parul, Raut S, Gupta P, Khatri N. Healing wounds, defeating biofilms: Lactiplantibacillus plantarum in tackling MRSA infections. Front Microbiol 2023; 14:1284195. [PMID: 38116526 PMCID: PMC10728654 DOI: 10.3389/fmicb.2023.1284195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/01/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction Methicillin-resistant Staphylococcus aureus (MRSA) infections are well-known hospital-borne infections and are a major contributing factor to global health concerns of antimicrobial resistance due to the formation of biofilms. Probiotics are known to assist in the healing of wounds through immunomodulation and also possess anti-pathogen properties via competitive inhibition. The probiotic bacterium, Lactiplantibacillus plantarum MTCC 2621 and its cell-free supernatant (Lp2621) have previously been reported to have antibacterial, excellent antioxidant, and wound healing activity in in vitro conditions and wounds contaminated with S. aureus in mice. Methods In the current study, we evaluated its anti-MRSA, biofilm inhibition and eradication efficacy, immunomodulatory activity in THP-1 cells, and wound healing potential in wounds contaminated with MRSA infection in mice. Results In agar well diffusion assay, Lp2621 showed anti-MRSA activity and revealed dose-dependent inhibition and eradication of biofilm by crystal violet assay as well as by Confocal Scanning Laser Microscopy (CLSM) analysis. Further, Lp2621 showed immunomodulatory activity at varied concentrations as measured by IL-6 and IL-10 gene expression in THP-1 cells. Similar findings were observed in serum samples of mice after treatment of excision wound contaminated with MRSA infection by Lp2621 gel, as evident by expression of IL-6 (pro-inflammatory) and IL-10 (anti-inflammatory) cytokines. Conclusions Overall, our results show that Lp2621 has potent anti-MRSA and antioxidant properties and can prevent and eliminate biofilm formation. It also showed promise when applied to mice with MRSA-infected wounds.
Collapse
Affiliation(s)
- Ashish Kumar Dubey
- IMTech Centre for Animal Resources & Experimentation (iCARE), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Mohini Sharma
- IMTech Centre for Animal Resources & Experimentation (iCARE), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Parul
- IMTech Centre for Animal Resources & Experimentation (iCARE), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sachin Raut
- IMTech Centre for Animal Resources & Experimentation (iCARE), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Pawan Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Department of Molecular Biology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Neeraj Khatri
- IMTech Centre for Animal Resources & Experimentation (iCARE), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
5
|
Jain M, Stitt G, Son L, Enioutina EY. Probiotics and Their Bioproducts: A Promising Approach for Targeting Methicillin-Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococcus. Microorganisms 2023; 11:2393. [PMID: 37894051 PMCID: PMC10608974 DOI: 10.3390/microorganisms11102393] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Antibiotic resistance is a serious global health problem that poses a threat to the successful treatment of various bacterial infections, especially those caused by methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). Conventional treatment of MRSA and VRE infections is challenging and often requires alternative or combination therapies that may have limited efficacy, higher costs, and/or more adverse effects. Therefore, there is an urgent need to find new strategies to combat antibiotic-resistant bacteria. Probiotics and antimicrobial peptides (AMPs) are two promising approaches that have shown potential benefits in various diseases. Probiotics are live microorganisms that confer health benefits to the host when administered in adequate amounts. AMPs, usually produced with probiotic bacteria, are short amino acid sequences that have broad-spectrum activity against bacteria, fungi, viruses, and parasites. Both probiotics and AMPs can modulate the host immune system, inhibit the growth and adhesion of pathogens, disrupt biofilms, and enhance intestinal barrier function. In this paper, we review the current knowledge on the role of probiotics and AMPs in targeting multi-drug-resistant bacteria, with a focus on MRSA and VRE. In addition, we discuss future directions for the clinical use of probiotics.
Collapse
Affiliation(s)
| | | | | | - Elena Y. Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84108, USA; (M.J.); (G.S.); (L.S.)
| |
Collapse
|
6
|
Golchin A, Ranjbarvan P, Parviz S, Shokati A, Naderi R, Rasmi Y, Kiani S, Moradi F, Heidari F, Saltanatpour Z, Alizadeh A. The role of probiotics in tissue engineering and regenerative medicine. Regen Med 2023; 18:635-657. [PMID: 37492007 DOI: 10.2217/rme-2022-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) as an emerging field is a multidisciplinary science and combines basic sciences such as biomaterials science, biology, genetics and medical sciences to achieve functional TERM-based products to regenerate or replace damaged or diseased tissues or organs. Probiotics are useful microorganisms which have multiple effective functions on human health. They have some immunomodulatory and biocompatibility effects and improve wound healing. In this article, we describe the latest findings on probiotics and their pro-healing properties on various body systems that are useable in regenerative medicine. Therefore, this review presents a new perspective on the therapeutic potential of probiotics for TERM.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Parviz Ranjbarvan
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Shima Parviz
- Department of Tissue Engineering & Applied cell sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Amene Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Roya Naderi
- Neurophysiology Research center & Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Yousef Rasmi
- Cellular & Molecular Research Center & Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Samaneh Kiani
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, 48157-33971, Iran
| | - Faezeh Moradi
- Department of Tissue engineering, Medical Sciences Faculty, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - Fahimeh Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Zohreh Saltanatpour
- Pediatric Cell & Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Stem Cell & Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center & Department of Tissue Engineering & Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 35147-99422, Iran
| |
Collapse
|
7
|
Huffman J, Drouin P, Renaud JB, Dunière L, LaPointe G. Farm management practices and season dependent factors affect the microbial community and chemical profile of corn and grass-legume silages of farms in Ontario, Québec, and Northern New York. Front Microbiol 2023; 14:1214915. [PMID: 37538849 PMCID: PMC10394519 DOI: 10.3389/fmicb.2023.1214915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
The effects of farm management practices and seasonal variation on the microbial community and chemical composition of corn and grass-legume silage are largely understudied due to the advantages of controlled mini-silo experiments. This study aims to investigate the effects that some key farm factors (use of an inoculant, farm region, and bunker or tower silo) and seasonal variations have on corn and grass-legume silage from farms across Ontario, Quebec, and New York. The silage was either treated with a commercial inoculant (Lallemand Biotal Buchneri 500® or Chr Hansen SiloSolve FC®) or left untreated. The bacterial communities of silage were compared to those of raw bulk tank milk from the same farm to determine if they were similarly affected by management practices or seasonal variations. Family level analysis of the 16S rRNA V3-V4 gene amplicon bacterial community, the ITS1 amplicon fungal community, NMR water soluble metabolome, and mycotoxin LC-MS were performed on silage over a two-year period. Chemical compounds associated with the use of inoculants in corn and grass-legume silage were higher in inoculated corn (acetate, propane-1,2-diol, γ-aminobutyrate; p < 0.001) and grass-legume (propionate; p = 0.011). However, there was no significant difference in the relative abundance (RA) of Lactobacillaceae in either silage type. Leuconostocaceae was higher in non-inoculated corn (p < 0.001) and grass-legume (p < 0.001) silage than in inoculated silage. Tower silos had higher RA of Leuconostocaceae (p < 0.001) and higher pH (p < 0.001) in corn and grass-legume silage. The one farm that used liquid manure with no other fertilizer type had higher RA of Clostridiaceae (p = 0.045) and other rumen/fecal (p < 0.006) bacteria in grass-legume silage than all other farms. Seasonal variation affected most of the key silage microbial families, however the trends were rarely visible across both years. Few trends in microbial variation could be observed in both silage and bulk tank milk: two farms had higher Moraxellaceae (p < 0.001) in milk and either corn or grass-legume silage. In farms using an inoculant, lower Staphylococcaceae was observed in the raw bulk tank milk.
Collapse
Affiliation(s)
- Jesse Huffman
- Department of Food Science, Dairy at Guelph, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| | - Pascal Drouin
- Independent Researcher, Saint-Jean-sur-Richelieu, QC, Canada
| | - Justin B. Renaud
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Center, Ottawa, ON, Canada
| | | | - Gisèle LaPointe
- Department of Food Science, Dairy at Guelph, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Maslova E, Osman S, McCarthy RR. Using the Galleria mellonella burn wound and infection model to identify and characterize potential wound probiotics. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001350. [PMID: 37350463 PMCID: PMC10333784 DOI: 10.1099/mic.0.001350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
Burn wound infection is the leading cause of mortality among burn wound patients. One of the most commonly isolated bacterial burn wound pathogens is Pseudomonas aeruginosa, a notorious nosocomial multidrug-resistant pathogen. As a consequence of its recalcitrance to frontline antibiotic therapy, there is an urgent need to develop alternative treatment avenues to tackle this pathogen. One potential alternative infection prevention measure is to seed the wound bed with probiotic bacteria. Several species of Lactobacillus, a common commensal bacterium, have been previously reported to display growth inhibition activity against wound pathogens. Various species of this genus have also been shown to augment the wound healing process, which makes it a promising potential therapeutic agent. Due to the complexity of the burn wound trauma and burn wound infection, an in vivo model is required for the development of novel therapeutics. There are multiple in vivo models that are currently available, the most common among them being the murine model. However, mammalian burn wound infection models are logistically challenging, do not lend themselves to screening approaches and come with significant concerns around ethics and animal welfare. Recently, an invertebrate burn wound and infection model using G. mellonella has been established. This model addresses several of the challenges of more advanced animal models, such as affordability, maintenance and reduced ethical concerns. This study validates the capacity of this model to screen for potential wound probiotics by demonstrating that a variety of Lactobacillus spp. can limit P. aeruginosa burn wound infection and improve survival.
Collapse
Affiliation(s)
- Evgenia Maslova
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Shanga Osman
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Ronan R. McCarthy
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
9
|
Hammond EN, Kates AE, Putman-Buehler N, Watson L, Godfrey JJ, Brys N, Deblois C, Steinberger AJ, Cox MS, Skarlupka JH, Haleem A, Bentz ML, Suen G, Safdar N. A quality improvement study on the relationship between intranasal povidone-iodine and anesthesia and the nasal microbiota of surgery patients. PLoS One 2022; 17:e0278699. [PMID: 36490265 PMCID: PMC9733847 DOI: 10.1371/journal.pone.0278699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The composition of the nasal microbiota in surgical patients in the context of general anesthesia and nasal povidone-iodine decolonization is unknown. The purpose of this quality improvement study was to determine: (i) if general anesthesia is associated with changes in the nasal microbiota of surgery patients and (ii) if preoperative intranasal povidone-iodine decolonization is associated with changes in the nasal microbiota of surgery patients. MATERIALS AND METHODS One hundred and fifty-one ambulatory patients presenting for surgery were enrolled in a quality improvement study by convenience sampling. Pre- and post-surgery nasal samples were collected from patients in the no intranasal decolonization group (control group, n = 54). Pre-decolonization nasal samples were collected from the preoperative intranasal povidone-iodine decolonization group (povidone-iodine group, n = 97). Intranasal povidone-iodine was administered immediately prior to surgery and continued for 20 minutes before patients proceeded for surgery. Post-nasal samples were then collected. General anesthesia was administered to both groups. DNA from the samples was extracted for 16S rRNA sequencing on an Illumina MiSeq. RESULTS In the control group, there was no evidence of change in bacterial diversity between pre- and post-surgery samples. In the povidone-iodine group, nasal bacterial diversity was greater in post-surgery, relative to pre-surgery (Shannon's Diversity Index (P = 0.038), Chao's richness estimate (P = 0.02) and Inverse Simpson index (P = 0.027). Among all the genera, only the relative abundance of the genus Staphylococcus trended towards a decrease in patients after application (FDR adjusted P = 0.06). Abundant genera common to both povidone-iodine and control groups included Staphylococcus, Bradyrhizobium, Corynebacterium, Dolosigranulum, Lactobacillus, and Moraxella. CONCLUSIONS We found general anesthesia was not associated with changes in the nasal microbiota. Povidone-iodine treatment was associated with nasal microbial diversity and decreased abundance of Staphylococcus. Future studies should examine the nasal microbiota structure and function longitudinally in surgical patients receiving intranasal povidone-iodine.
Collapse
Affiliation(s)
- Eric N. Hammond
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, WI, United States of America
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Ashley E. Kates
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- William S. Middleton Memorial Veterans Hospital, Madison, WI, United States of America
| | - Nathan Putman-Buehler
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Lauren Watson
- SSM Health, St. Mary’s Hospital, Madison, WI, United States of America
| | - Jared J. Godfrey
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- William S. Middleton Memorial Veterans Hospital, Madison, WI, United States of America
| | - Nicole Brys
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Courtney Deblois
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Andrew J. Steinberger
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Madison S. Cox
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Joseph H. Skarlupka
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Ambar Haleem
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Michael L. Bentz
- Division of Plastic and Reconstructive Surgery and Urology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Nasia Safdar
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- William S. Middleton Memorial Veterans Hospital, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
10
|
Antibacterial Effect of Cell-Free Supernatant from Lactobacillus pentosus L-36 against Staphylococcus aureus from Bovine Mastitis. Molecules 2022; 27:molecules27217627. [DOI: 10.3390/molecules27217627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
Abstract
This study sought to analyze the main antibacterial active components of Lactobacillus pentosus (L. pentosus) L-36 cell-free culture supernatants (CFCS) in inhibiting the growth of Staphylococcus aureus (S. aureus), to explore its physicochemical properties and anti-bacterial mechanism. Firstly, the main antibacterial active substance in L-36 CFCS was peptides, which inferred by adjusting pH and enzyme treatment methods. Secondly, the physicochemical properties of the antibacterial active substances in L-36 CFCS were studied from heat, pH, and metal ions, respectively. It demonstrated good antibacterial activity when heated at 65 °C, 85 °C and 100 °C for 10 and 30 min, indicating that it had strong thermal stability. L-36 CFCS had antibacterial activity when the pH value was 2–6, and the antibacterial active substances became stable with the decrease in pH value. After 10 kinds of metal ions were treated, the antibacterial activity did not change significantly, indicating that it was insensitive to metal ions. Finally, scanning electron microscopy, transmission electron microscopy and fluorescence probe were used to reveal the antibacterial mechanism of S. aureus from the aspects of cell morphology and subcellular structure. The results demonstrated that L-36 CFCS could form 1.4–2.3 nm pores in the cell membrane of S. aureus, which increased the permeability of the bacterial cell membrane, resulting in the depolarization of cell membrane potential and leakage of nucleic acid protein and other cell contents. Meanwhile, a large number of ROS are produced and accumulated in the cells, causing damage to DNA, and with the increase in L-36 CFCS concentration, the effect is enhanced, and finally leads to the death of S. aureus. Our study suggests that the main antibacterial active substances of L-36 CFCS are peptides. L-36 CFCS are thermostable, active under acidic conditions, insensitive to metal ions, and exhibit antibacterial effects by damaging cell membranes, DNA and increasing ROS. Using lactic acid bacteria to inhibit S. aureus provides a theoretical basis for the discovery of new antibacterial substances, and will have great significance in the development of antibiotic substitutes, reducing bacterial resistance and ensuring animal food safety.
Collapse
|
11
|
Saha UB, Saroj SD. Lactic acid bacteria: prominent player in the fight against human pathogens. Expert Rev Anti Infect Ther 2022; 20:1435-1453. [PMID: 36154442 DOI: 10.1080/14787210.2022.2128765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The human microbiome is a unique repository of diverse bacteria. Over 1000 microbial species reside in the human gut, which predominantly influences the host's internal environment and plays a significant role in host health. Lactic acid bacteria have long been employed for multiple purposes, ranging from food to medicines. Lactobacilli, which are often used in commercial food fermentation, have improved to the point that they might be helpful in medical applications. AREAS COVERED This review summarises various clinical and experimental evidence on efficacy of lactobacilli in treating a wide range of infections. Both laboratory based and clinical studies have been discussed. EXPERT OPINION Lactobacilli are widely accepted as safe biological treatments and host immune modulators (GRAS- Generally regarded as safe) by the US Food and Drug Administration and Qualified Presumption of Safety. Understanding the molecular mechanisms of lactobacilli in the treatment and pathogenicity of bacterial infections can help with the prediction and development of innovative therapeutics aimed at pathogens which have gained resistance to antimicrobials. To formulate effective lactobacilli based therapy significant research on the effectiveness of different lactobacilli strains and its association with demographic distribution is required. Also, the side effects of such therapy needs to be evaluated.
Collapse
Affiliation(s)
- Ujjayni B Saha
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, India
| |
Collapse
|
12
|
He J, Yin Y, Shao Y, Zhang W, Lin Y, Qian X, Ren Q. Synthesis of a Rare Water-Soluble Silver(II)/Porphyrin and Its Multifunctional Therapeutic Effect on Methicillin-Resistant Staphylococcus aureus. Molecules 2022; 27:molecules27186009. [PMID: 36144746 PMCID: PMC9501820 DOI: 10.3390/molecules27186009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Porphyrin derivatives are popular photodynamic therapy (PDT) agents; however, their typical insolubility in water has made it challenging to separate cells of organisms in a liquid water environment. Herein, a novel water-soluble 5,10,15,20-tetrakis(4-methoxyphenyl-3-sulfonatophenyl) porphyrin (TMPPS) was synthesized with 95% yield by modifying the traditional sulfonation route. The reaction of TMPPS with AgNO3 afforded AgTMPPS an unusual Ag(II) oxidation state (97% yield). The free base and Ag(II) complex were characterized by matrix-assisted laser desorption ionization-mass spectroscopy, and 1H nuclear magnetic resonance, Fourier-transform infrared, UV-vis, fluorescence, and X-ray photolectron spectroscopies. Upon 460 nm laser irradiation, AgTMPPS generated a large amount of 1O2, whereas no ⦁OH was detected. Antibacterial experiments on methicillin-resistant Staphylococcus aureus (MRSA) revealed that the combined action of AgⅡ ions and PDT could endow AgTMPPS with a 100% bactericidal ratio for highly concentrated MRSA (108 CFU/mL) at a very low dosage (4 μM) under laser irradiation at 360 J/cm2. Another PDT response was demonstrated by photocatalytically oxidizing 1,4-dihydronicotinamide adenine dinucleotide to NAD+ with AgTMPPS. The structural features of the TMPPS and AgTMPPS molecules were investigated by density functional theory quantum chemical calculations to demonstrate the efficient chemical and photodynamical effects of AgTMPPS for non-invasive antibacterial therapy.
Collapse
Affiliation(s)
- Jiaqi He
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Yin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingjie Shao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenkai Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanling Lin
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiuping Qian
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (X.Q.); (Q.R.)
| | - Qizhi Ren
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (X.Q.); (Q.R.)
| |
Collapse
|
13
|
Jia Z, Zhang B, Sharma A, Kim NS, Purohit SM, Green MM, Roche MR, Holliday E, Chen H. Revelation of the sciences of traditional foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Abd Ellatif SA, Bouqellah NA, Abu-Serie MM, Razik ESA, Al-Surhanee AA, Askary AE, Daigham GE, Mahfouz AY. Assessment of probiotic efficacy and anticancer activities of Lactiplantibacillus plantarum ESSG1 (MZ683194.1) and Lactiplantibacillus pentosus ESSG2 (MZ683195.1) isolated from dairy products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39684-39701. [PMID: 35112259 DOI: 10.1007/s11356-022-18537-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Resistance to antibiotics is on the rise, and its indiscriminate usage has resulted in human and animal management constraints. In the research for an innovative treatment to diminish antimicrobial resistance, lactic acid bacteria (LAB) throw light on diminishing this problem in public health. As a result, this paper looked at the efficacy of LAB isolates and their active metabolites to combat pathogens, reduce antibiotic use in clinical settings, and explore the anticancer potential of 8 strains of LAB isolated from dairy products. Antifungal and antibacterial potential of LAB isolates against selected crop pathogenic fungi and food pathogenic bacteria had been estimated. Results revealed that all isolates exert antioxidant efficacy relating to DPPH, NO scavenging ability, reducing power, superoxide anion, hydroxyl radical, and anti-lipid peroxidation potential. Additionally, 12B isolate exert the highest anticancer upshot with IC50 values of 43.98 ± 0.4; 36.7 ± 0.6, 43.1 ± 0.8, and 35.1 ± 0.3 μg/ml, versus Caco-2, MCF-7, HepG-2, and PC3 cell lines respectively, whereas 13B isolate significantly had the highest selectivity index between peripheral blood mononuclear cells (PBMCs) and the tested human cancer cell lines compared to 5-fluorouracil. 13B was the most apoptosis-dependent death inducer for all human cancer cell lines besides exerting the lowest percentage of apoptosis against PBMCs suggesting its safety against PBMCs. The most promising strains 12B and 13B were identified by 16S rRNA sequencing as Lactiplantibacillus plantarum ESSG1 (MZ683194.1) and Lactiplantibacillus pentosus ESSG2 (MZ683195.1). LAB and their extracts are superb substitutive, safe, and efficient antimicrobial, antioxidant, and antitumor curative agents.
Collapse
Affiliation(s)
- Sawsan A Abd Ellatif
- Bioprocess development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technology Applications, New Borg El-Arab, 21934, Alexandria, Egypt
| | - Nahla Alsayed Bouqellah
- Science College, Biology Department, Taibah University, 42317- 8599, Al-Madinah Al-Munawara, Kingdom of Saudi Arabia
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), the City of Scientific Research and Technology Applications, New Borg El-Arab, 21934, Alexandria, Egypt
| | - Elsayed S Abdel Razik
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, 21934, Alexandria, Egypt
| | - Ameena A Al-Surhanee
- Biology Department, College of Science, Jouf University, Sakaka, 2014, Kingdom of Saudi Arabia
| | - Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ghadir E Daigham
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Amira Y Mahfouz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt.
| |
Collapse
|
15
|
Rahim MA, Seo H, Kim S, Tajdozian H, Barman I, Lee Y, Lee S, Song HY. In vitro anti-tuberculosis effect of probiotic Lacticaseibacillus rhamnosus PMC203 isolated from vaginal microbiota. Sci Rep 2022; 12:8290. [PMID: 35585245 PMCID: PMC9116076 DOI: 10.1038/s41598-022-12413-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb), the etiological agent of tuberculosis (TB), poses a severe challenge for public health and remains the number one cause of death as a single infectious agent. There are 10 million active cases of TB per year with 1.5 million deaths, and 2-3 billion people are estimated to harbor latent M. tb infection. Moreover, the emergence of multi-drug-resistant (MDR), extremely-drug-resistant (XDR), and the recent totally drug-resistant (TDR) M. tb is becoming a global issue that has fueled the need to find new drugs different from existing regimens. In these circumstances, probiotics can be a potential choice, so we focused on developing them as an anti-tuberculosis drug candidate. Here, we report the anti-tubercular activities of Lacticaseibacillus rhamnosus PMC203 isolated from the vaginal microbiota of healthy women. PMC203 exhibited a promising intracellular killing effect against both drug-sensitive and resistant M. tb infected murine macrophage cell line RAW 264.7 without showing any cytotoxicity. Additionally, it also inhibited the growth of M. tb under broth culture medium. PMC203 did not cause weight change or specific clinical symptoms in a 2-week repeated oral administration toxicity test in a guinea pig model. Here, we also found that PMC203 induces autophagy in a dose dependent manner by increasing the signal of well-known autophagy gene markers, suggesting a possible intracellular killing mechanism.
Collapse
Affiliation(s)
- Md Abdur Rahim
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea.,Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Chungnam, Korea
| | - Hoonhee Seo
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - Sukyung Kim
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - Hanieh Tajdozian
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea.,Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Chungnam, Korea
| | - Indrajeet Barman
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea.,Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Chungnam, Korea
| | - Youngkyoung Lee
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea.,Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Chungnam, Korea
| | - Saebim Lee
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - Ho-Yeon Song
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea. .,Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Chungnam, Korea.
| |
Collapse
|
16
|
Takáčová M, Bomba A, Tóthová C, Micháľová A, Turňa H. Any Future for Faecal Microbiota Transplantation as a Novel Strategy for Gut Microbiota Modulation in Human and Veterinary Medicine? Life (Basel) 2022; 12:723. [PMID: 35629390 PMCID: PMC9146664 DOI: 10.3390/life12050723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations in the composition of the intestinal microbiome, also known as dysbiosis, are the result of many factors such as diet, antibiotics, stress, diseases, etc. There are currently several ways to modulate intestinal microbiome such as dietary modulation, the use of antimicrobials, prebiotics, probiotics, postbiotics, and synbiotics. Faecal microbiota transplantation (FMT) represents one new method of gut microbiota modulation in humans with the aim of reconstructing the intestinal microbiome of the recipient. In human medicine, this form of bacteriotherapy is successfully used in cases of recurrent Clostridium difficile infection (CDI). FMT has been known in large animal medicine for several years. In small animal medicine, the use of FMT is not part of normal practice.
Collapse
Affiliation(s)
- Martina Takáčová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alojz Bomba
- Prebiotix s.r.o., 024 01 Kysucké Nové Mesto, Slovakia
| | - Csilla Tóthová
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alena Micháľová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Hana Turňa
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| |
Collapse
|
17
|
Antagonistic Activity of Lactic Acid Bacteria and Rosa rugosa Thunb. Pseudo-Fruit Extracts against Staphylococcus spp. Strains. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12084005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Staphylococcus bacteria are ubiquitous microorganisms. They occur in practically all environments. They also show the ability to colonize the skin and mucous membranes of humans and animals. The current trend is to look for new natural factors (e.g., plant extracts rich in polyphenols) limiting the growth of undesirable bacteria in food and cosmetics or use as an adjunct in antibiotic therapy. The aim of this study was to evaluate the effect of extracts from Rosa rugosa Thunb. on the antagonistic properties of selected lactic acid bacteria strains in relation to Staphylococcus spp. isolates. The biological material consisted of seven strains of lactic acid bacteria (LAB) and seven strains of bacteria of the Staphylococcus genus. The anti-staphylococcal properties of the Rosa rugosa Thunb. pomace extracts (the tested extracts were characterized by a high content of polyphenols, namely 8–34 g/100 g DM/dm) were tested using the well method. The conducted research showed that the pomace extracts of the pseudo-fruit (Rosa rugosa Thunb.) had the ability to inhibit the growth of Staphylococcus spp. bacteria. The minimum concentration of polyphenols inhibiting the growth of staphylococci was in the range of 0.156–0.625 mg/mL. The conducted research showed that combined lactic acid bacteria and extracts from the pomace from the pseudo-fruit Rosa rugosa Thunb. (LR systems) may be factors limiting the growth of Staphylococcus spp. bacteria. As a result of the research, two-component antagonist systems consisting of LAB cultures and extracts from Rosa rugosa Thunb. pomace were developed, which effectively limited the growth of the test strains of Staphylococcus spp. In 41% of all tested cases, the zone of inhibition of growth of bacteria of the genus Staphylococcus spp. after the use of two-component antagonist systems was higher than that as a result of the control culture (without the addition of extracts).
Collapse
|
18
|
Yaacob SN, Wahab RA, Misson M, Sabullah MK, Huyop F, Zin NM. Lactic acid bacteria and their bacteriocins: new potential weapons in the fight against methicillin-resistant Staphylococcus aureus. Future Microbiol 2022; 17:683-699. [PMID: 35414206 DOI: 10.2217/fmb-2021-0256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alternative solutions are eminently needed to combat the escalating number of infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Bacteriocins produced by lactic acid bacteria are promising candidates for next-generation antibiotics. Studies have found that these stable and nontoxic ribosomally synthesized antimicrobial peptides exhibit significant potency against other bacteria, including antibiotic-resistant strains. Here the authors review previous studies on bacteriocins that have been effectively employed to manage MRSA infections. The authors' review focuses on the beneficial traits of bacteriocins for further application as templates for the design of novel drugs. Treatments that combine bacteriocins with other antimicrobials to combat pervasive MRSA infections are also highlighted. In short, future studies should focus on the pharmacodynamics and pharmacokinetics of bacteriocins-antimicrobials to understand their interactions, as this aspect would likely determine their efficacy in MRSA inhibition.
Collapse
Affiliation(s)
- Syariffah Ns Yaacob
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Roswanira A Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Mailin Misson
- Biotechnology Research Institute, Jalan Universiti Malaysia Sabah, Kota Kinabalu, Sabah, 88400, Malaysia
| | - Mohd K Sabullah
- Faculty of Science and Natural Resources, Jalan Universiti Malaysia Sabah, Kota Kinabalu, Sabah, 88400, Malaysia
| | - Fahrul Huyop
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Noraziah M Zin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
19
|
Characterisation of Lactobacillus plantarum of Dairy-Product Origin for Probiotic Chèvre Cheese Production. Foods 2022; 11:foods11070934. [PMID: 35407020 PMCID: PMC8998100 DOI: 10.3390/foods11070934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Probiotics are increasingly used as functional food ingredients. The objectives of this study were to isolate and characterise probiotic bacteria from dairy and fermented foods and to use a selected strain for the production of probiotic chèvre cheese. Tolerance to acid (pH 2.0) and bile salt (0.4% (w/v)) were first investigated, and then other probiotic properties were determined. Out of 241 isolates, 35 showed high tolerance to acid and bile salt, and 6 were chosen for further characterisation. They were Lactobacillus plantarum and L. fermentum, and possessed antibacterial activities against foodborne pathogens such as Bacillus cereus, Staphylococcus aureus, Salmonella enterica and Escherichia coli O157:H7. L. plantarum (isolate AD73) showed the highest percentage of adhesion (81.74 ± 0.16%) and was nontoxic to Caco-2 cells at a concentration of 108 CFU/mL. This isolate was therefore selected for the production of probiotic chèvre cheese from goat’s milk and was prepared in a lyophilised form with a concentration of probiotic culture of 8.6 log CFU/g. The cheese had a shelf life of 8 days. On the expiry date, the probiotic, the starter and the yeast contents were 7.56 ± 0.05, 7.81 ± 0.03 and 5.64 log CFU/g, respectively. The level of the probiotics in this chèvre cheese was still sufficiently high to warrant its being a probiotic cheese.
Collapse
|
20
|
Bang WY, Kim H, Chae SA, Yang SY, Ban OH, Kim TY, Kwon HS, Jung YH, Yang J. A Quadruple Coating of Probiotics for Enhancing Intestinal Adhesion and Competitive Exclusion of Salmonella Typhimurium. J Med Food 2022; 25:213-218. [PMID: 35072526 DOI: 10.1089/jmf.2021.k.0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Previously, our group showed that a quadruple coating of probiotics resulted in higher survivability of probiotics under high acid, bile salt, and thermal stresses. In this study, we evaluated the effect of the quadruple coating of probiotics on adhesive properties as well as on competitive exclusion of Salmonella Typhimurium in Caco-2 cells. We found that the quadruple coating of probiotics exhibited an overall increased adhesion property (up to 10.8-fold) and increased competitive exclusion of Salmonella Typhimurium (up to 4.3-fold). Thus, this study has significant implications and can lead to the development of methods that can improve the adhesive ability of probiotics as well as the adhesive inhibition of pathogens.
Collapse
Affiliation(s)
| | - Hayoung Kim
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, Korea
| | - Seung A Chae
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, Korea
| | - Soo-Yeon Yang
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, Korea
| | - O-Hyun Ban
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, Korea.,School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Tae-Yoon Kim
- Ildong Pharmaceutical, Hwaseong-si, Gyeonggi-do, Korea
| | | | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Jungwoo Yang
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, Korea
| |
Collapse
|
21
|
Islam MI, Seo H, Redwan A, Kim S, Lee S, Siddiquee M, Song HY. In Vitro and In Vivo Anti- Clostridioides difficile Effect of a Probiotic Bacillus amyloliquefaciens Strain. J Microbiol Biotechnol 2022; 32:46-55. [PMID: 34675143 PMCID: PMC9628829 DOI: 10.4014/jmb.2107.07057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022]
Abstract
Clostridioides difficile infection (CDI) is a significant cause of hospital-acquired and antibiotic-mediated intestinal diseases and is a growing global public health concern. Overuse of antibiotics and their effect on normal intestinal flora has increased the incidence and severity of infections. Thus, the development of new, effective, and safe treatment options is a high priority. Here, we report a new probiotic strain, Bacillus amyloliquefaciens (BA PMC-80), and its in vitro/in vivo anti-C. difficile effect as a prospective novel candidate for replacing conventional antibiotics. BA PMC-80 showed a significant anti-C. difficile effect in coculture assay, and its cell-free supernatant (CFS) also exhibited a considerable anti-C. difficile effect with an 89.06 μg/ml 50% minimal inhibitory concentration (MIC) in broth microdilution assay. The CFS was stable and equally functional under different pHs, heat, and proteinase treatments. It also exhibited a high sensitivity against current antibiotics and no toxicity in subchronic toxicity testing in hamsters. Finally, BA PMC-80 showed a moderate effect in a hamster CDI model with reduced infection severity and delayed death. However, further studies are required to optimize the treatment condition of the hamster CDI model for better efficacy and identify the antimicrobial compound produced by BA PMC-80.
Collapse
Affiliation(s)
- Md Imtiazul Islam
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hoonhee Seo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Asma Redwan
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Sukyung Kim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Saebim Lee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Mashuk Siddiquee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea,Corresponding author Phone: +82-41-570-2412 Fax: +82-41-577-2415 E-mail:
| |
Collapse
|
22
|
Singh RP, Shadan A, Ma Y. Biotechnological Applications of Probiotics: A Multifarious Weapon to Disease and Metabolic Abnormality. Probiotics Antimicrob Proteins 2022; 14:1184-1210. [PMID: 36121610 PMCID: PMC9483357 DOI: 10.1007/s12602-022-09992-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 12/25/2022]
Abstract
Consumption of live microorganisms "Probiotics" for health benefits and well-being is increasing worldwide. Their use as a therapeutic approach to confer health benefits has fascinated humans for centuries; however, its conceptuality gradually evolved with methodological advancement, thereby improving our understanding of probiotics-host interaction. However, the emerging concern regarding safety aspects of live microbial is enhancing the interest in non-viable or microbial cell extracts, as they could reduce the risks of microbial translocation and infection. Due to technical limitations in the production and formulation of traditionally used probiotics, the scientific community has been focusing on discovering new microbes to be used as probiotics. In many scientific studies, probiotics have been shown as potential tools to treat metabolic disorders such as obesity, type-2 diabetes, non-alcoholic fatty liver disease, digestive disorders (e.g., acute and antibiotic-associated diarrhea), and allergic disorders (e.g., eczema) in infants. However, the mechanistic insight of strain-specific probiotic action is still unknown. In the present review, we analyzed the scientific state-of-the-art regarding the mechanisms of probiotic action, its physiological and immuno-modulation on the host, and new direction regarding the development of next-generation probiotics. We discuss the use of recently discovered genetic tools and their applications for engineering the probiotic bacteria for various applications including food, biomedical applications, and other health benefits. Finally, the review addresses the future development of biological techniques in combination with clinical and preclinical studies to explain the molecular mechanism of action, and discover an ideal multifunctional probiotic bacterium.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand India
| | - Afreen Shadan
- Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand India
| | - Ying Ma
- College of Resource and Environment, Southwest University, Chongqing, China
| |
Collapse
|
23
|
Yoon Y, Seo H, Kim S, Lee Y, Rahim MDA, Lee S, Song HY. Anti-Tuberculosis Activity of Pediococcus acidilactici Isolated from Young Radish Kimchi against Mycobacterium tuberculosis. J Microbiol Biotechnol 2021; 31:1632-1642. [PMID: 34584040 PMCID: PMC9705845 DOI: 10.4014/jmb.2107.07044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Tuberculosis is a highly contagious disease caused by Mycobacterium tuberculosis. It affects about 10 million people each year and is still one of the leading causes of death worldwide. About 2 to 3 billion people (equivalent to 1 in 3 people in the world) are infected with latent tuberculosis. Moreover, as the number of multidrug-resistant, extensively drug-resistant, and totally drug-resistant strains of M. tuberculosis continues to increase, there is an urgent need to develop new anti-tuberculosis drugs that are different from existing drugs to combat antibiotic-resistant M. tuberculosis. Against this background, we aimed to develop new anti-tuberculosis drugs using probiotics. Here, we report the anti-tuberculosis effect of Pediococcus acidilactici PMC202 isolated from young radish kimchi, a traditional Korean fermented food. Under coculture conditions, PMC202 inhibited the growth of M. tuberculosis. In addition, PMC202 inhibited the growth of drug-sensitive and -resistant M. tuberculosis- infected macrophages at a concentration that did not show cytotoxicity and showed a synergistic effect with isoniazid. In a 2-week, repeated oral administration toxicity study using mice, PMC202 did not cause weight change or specific clinical symptoms. Furthermore, the results of 16S rRNA-based metagenomics analysis confirmed that dysbiosis was not induced in bronchoalveolar lavage fluid after oral administration of PMC202. The anti-tuberculosis effect of PMC202 was found to be related to the reduction of nitric oxide. Our findings indicate that PMC202 could be used as an anti-tuberculosis drug candidate with the potential to replace current chemicalbased drugs. However, more extensive toxicity, mechanism of action, and animal efficacy studies with clinical trials are needed.
Collapse
Affiliation(s)
- Youjin Yoon
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Hoonhee Seo
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sukyung Kim
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Youngkyoung Lee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - MD Abdur Rahim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Saebim Lee
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea,Corresponding author Phone: +82-41-570-2412 Fax : +82-41-577-2415 E-mail:
| |
Collapse
|
24
|
KALAYCI YÜKSEK F, GÜMÜŞ D, BAYIRLI TURAN DBT, NAKİPOĞLU Y, ADALETİ R, KÜÇÜKER AM. Cell-free supernatants of lactobacilli inhibit methicilin-resistant staphylococcus aureus, vancomycin-resistant enterococcus and carbapenem-resistant klebsiella strains. EGE TIP DERGISI 2021. [DOI: 10.19161/etd.1037310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
Lee Y, Seo H, Kim S, Rahim MDA, Yoon Y, Jung J, Lee S, Beom Ryu C, Song HY. Activity of Lactobacillus crispatus isolated from vaginal microbiota against Mycobacterium tuberculosis. J Microbiol 2021; 59:1019-1030. [PMID: 34724180 DOI: 10.1007/s12275-021-1332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 10/19/2022]
Abstract
Tuberculosis, an infectious disease, is caused by Mycobacterium tuberculosis. It remains a significant public health issue around the globe, causing about 1.8 million deaths every year. Drug-resistant M. tuberculosis, including multi-drug-resistant (MDR), extremely-drug-resistant (XDR), and totally drug-resistant (TDR) M. tuberculosis, continues to be a threat to public health. In the case of antibiotic-resistant tuberculosis, the treatment effect of conventional antibiotics is low. Side effects caused by high doses over a long period are causing severe problems. To overcome these problems, there is an urgent need to develop a new anti-tuberculosis drug that is different from the existing compound-based antibiotics. Probiotics are defined as live microorganisms conferring health benefits. They can be potential therapeutic agents in this context as the effectiveness of probiotics against different infectious diseases has been well established. Here, we report that Lactobacillus crispatus PMC201 shows a promising effect on tuberculosis isolated from vaginal fluids of healthy Korean women. Lactobacillus crispatus PMC201 reduced M. tuberculosis H37Rv under co-culture conditions in broth and reduced M. tuberculosis H37Rv and XDR M. tuberculosis in macrophages. Lactobacillus crispatus PMC201 was not toxic to a guinea pig model and did not induce dysbiosis in a human intestinal microbial ecosystem simulator. Taken together, these results indicate that L. crispatus PMC201 can be a promising alternative drug candidate in the current tuberculosis drug regime. Further study is warranted to assess the in vivo efficacy and confirm the mode of action of L. crispatus PMC201.
Collapse
Affiliation(s)
- Youngkyoung Lee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hoonhee Seo
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Sukyung Kim
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - M D Abdur Rahim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Youjin Yoon
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Jehee Jung
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Saebim Lee
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Chang Beom Ryu
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Republic of Korea.
| |
Collapse
|
26
|
Fermentative production of alternative antimicrobial peptides and enzymes. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Potential probiotic lactic acid bacteria isolated from fermented gilaburu and shalgam beverages. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
McLoughlin IJ, Wright EM, Tagg JR, Jain R, Hale JDF. Skin Microbiome-The Next Frontier for Probiotic Intervention. Probiotics Antimicrob Proteins 2021; 14:630-647. [PMID: 34383234 DOI: 10.1007/s12602-021-09824-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 01/16/2023]
Abstract
The skin is the largest organ in the human body, and it orchestrates many functions that are fundamentally important for our survival. Although the skin might appear to present a relatively inhospitable or even hostile environment, a multitude of commensals and also some potentially pathogenic microorganisms have successfully adapted to survive and/or thrive within the diverse ecological niches created by the skin's topographical architecture. Dysbiosis within these microbial populations can result in the emergence and pathological progression of skin diseases. Unsurprisingly, this has led to a new focus of research both for the medical dermatology and cosmetic industries that is concerned with modulation of the skin microbiome to help address common microbially mediated or modulated conditions such as acne, body odour, and atopic dermatitis. This review presents an overview of our current understanding of the complex relationship of the skin with its microbiome and then introduces the concept of probiotic intervention for the management of microbial dysbiosis within the skin ecosystem.
Collapse
Affiliation(s)
| | - Eva M Wright
- School of Pharmacy, University of Otago, PO Box 56, Dunedin, New Zealand
| | - John R Tagg
- Blis Technologies, 81 Glasgow St, South Dunedin, 9012, Dunedin, New Zealand
| | - Rohit Jain
- Blis Technologies, 81 Glasgow St, South Dunedin, 9012, Dunedin, New Zealand
| | - John D F Hale
- Blis Technologies, 81 Glasgow St, South Dunedin, 9012, Dunedin, New Zealand.
| |
Collapse
|
29
|
Milner E, Stevens B, An M, Lam V, Ainsworth M, Dihle P, Stearns J, Dombrowski A, Rego D, Segars K. Utilizing Probiotics for the Prevention and Treatment of Gastrointestinal Diseases. Front Microbiol 2021; 12:689958. [PMID: 34434175 PMCID: PMC8381467 DOI: 10.3389/fmicb.2021.689958] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics are heavily advertised to promote a healthy gastrointestinal tract and boost the immune system. This review article summarizes the history and diversity of probiotics, outlines conventional in vitro assays and in vivo models, assesses the pharmacologic effects of probiotic and pharmaceutical co-administration, and the broad impact of clinical probiotic utilization for gastrointestinal disease indications.
Collapse
Affiliation(s)
- Erin Milner
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Benjamin Stevens
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Martino An
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Victoria Lam
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Michael Ainsworth
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Preston Dihle
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Jocelyn Stearns
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Andrew Dombrowski
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Daniel Rego
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Katharine Segars
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| |
Collapse
|
30
|
Trejo-González L, Gutiérrez-Carrillo AE, Rodríguez-Hernández AI, Del Rocío López-Cuellar M, Chavarría-Hernández N. Bacteriocins Produced by LAB Isolated from Cheeses within the Period 2009-2021: a Review. Probiotics Antimicrob Proteins 2021; 14:238-251. [PMID: 34342858 PMCID: PMC8329406 DOI: 10.1007/s12602-021-09825-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 12/18/2022]
Abstract
A survey is presented concerning original research articles published in well-reputed scientific journals on the isolation of lactic acid bacteria (LAB) from cheeses worldwide, where researchers evaluated the bacteriocin production by such isolates in searching for novel functional peptides that can exhibit potential for biotechnological applications. Seventy-one articles were published in the period of study, with contributions being American (45%), Asiatic (28%), and European (21%), being Brazil-USA-Mexico, Turkey-China, and France-Italy the countries that contributed the most for each said continent, respectively. Most of the isolated LAB belong to the genera Enterococcus (35%), Lactobacillus (30%), Lactococcus (14%), and Pediococcus (10%), coming from soft (64%), hard (27%), and semi-hard (9%) cheeses, predominantly. Also, scholars focused mainly on the food biopreservation (81%) and pharmaceutical field (18%) potential applications.
Collapse
Affiliation(s)
- Lorena Trejo-González
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo. Av, Universidad Km 1, Rancho Universitario, C.P. 43600, Tulancingo, Hidalgo, Mexico
| | - Ana-Estefanía Gutiérrez-Carrillo
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo. Av, Universidad Km 1, Rancho Universitario, C.P. 43600, Tulancingo, Hidalgo, Mexico
| | - Adriana-Inés Rodríguez-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo. Av, Universidad Km 1, Rancho Universitario, C.P. 43600, Tulancingo, Hidalgo, Mexico
| | - Ma Del Rocío López-Cuellar
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo. Av, Universidad Km 1, Rancho Universitario, C.P. 43600, Tulancingo, Hidalgo, Mexico
| | - Norberto Chavarría-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo. Av, Universidad Km 1, Rancho Universitario, C.P. 43600, Tulancingo, Hidalgo, Mexico.
| |
Collapse
|
31
|
Stanbro J, Park JM, Bond M, Stockelman MG, Simons MP, Watters C. Topical Delivery of Lactobacillus Culture Supernatant Increases Survival and Wound Resolution in Traumatic Acinetobacter baumannii Infections. Probiotics Antimicrob Proteins 2021; 12:809-818. [PMID: 31741312 DOI: 10.1007/s12602-019-09603-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Species of Lactobacillus have been proposed as potential candidates for treating wound infections due to their ability to lower pH, decrease inflammation, and release antimicrobial compounds. This study investigated the impact of lactobacilli (Lactobacillus acidophilus ATCC 4356, Lactobacillus casei ATCC 393, Lactobacillus reuteri ATCC 23272) secreted products on wound pathogens in vitro and in a murine wound infection model. Evaluation of 1-5 day lactobacilli conditioned media (CM) revealed maximal inhibition against wound pathogens using the 5-day CM. The minimum inhibitory concentration (MIC) of 5-day Lactobacillus CMs was tested by diluting CM in Mueller-Hinton (MH) broth from 0 to 25% and was found to be 12.5% for A. baumannii. Concentrating the CM to 10× with a 3 kDa centrifuge filter decreased the CM MIC to 6.25-12.5% for A. baumannii planktonic cells. Minimal impact of 5-day CMs was observed against bacterial biofilms. No toxicity was observed when these Lactobacillus CMs were injected into Galleria melonella waxworms. For the murine A. baumannii wound infection studies, improved survival was observed following topical treatment with L. acidophilus ATCC 4356 or L. reuteri ATCC 23272, while L. reuteri ATCC 23272 treatment alone improved wound resolution. Overall, this study suggests that the topical application of certain Lactobacillus species byproducts could be effective against gram-negative multi-drug resistant (MDR) wound pathogens, such as A. baumannii.
Collapse
Affiliation(s)
- Josh Stanbro
- Wound Infections Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Ju Me Park
- Wound Infections Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Matthew Bond
- Wound Infections Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Michael G Stockelman
- Wound Infections Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Mark P Simons
- Wound Infections Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Chase Watters
- Wound Infections Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| |
Collapse
|
32
|
A new, reliable, and high-throughput strategy to screen bacteria for antagonistic activity against Staphylococcus aureus. BMC Microbiol 2021; 21:189. [PMID: 34167492 PMCID: PMC8228506 DOI: 10.1186/s12866-021-02265-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/10/2021] [Indexed: 01/20/2023] Open
Abstract
Background Antibiotic-resistant Staphylococcus aureus clones have emerged globally over the last few decades. Probiotics have been actively studied as an alternative to antibiotics to prevent and treat S. aureus infections, but identifying new probiotic bacteria, that have antagonistic activity against S. aureus, is difficult since traditional screening strategies are time-consuming and expensive. Here, we describe a new plasmid-based method which uses highly stable plasmids to screen bacteria with antagonistic activity against S. aureus. Results We have created two recombinant plasmids (pQS1 and pQS3) which carry either gfpbk or mCherry under the control of a S. aureus quorum-sensing (QS) promoter (agrP3). Using this recombinant plasmid pair, we tested 81 bacteria isolated from Holstein dairy milk to identify bacteria that had growth-inhibiting activity against S. aureus and suggest potential explanations for the growth inhibition. The stability test illustrated that pQS1 and pQS3 remained highly stable for at least 24 h in batch culture conditions without selection pressure from antibiotics. This allowed co-culturing of S. aureus with other bacteria. Using the newly developed pQS plasmids, we found commensal bacteria, isolated from raw bovine milk, which had growth-inhibiting activity (n = 13) and quorum-quenching (QQ) activity (n = 13) towards both S. aureus Sa25 (CC97) and Sa27 (CC151). The pQS-based method is efficient and effective for simultaneously screening growth-inhibiting and QQ bacteria against S. aureus on agar media. Conclusions It was shown that growth-inhibiting and QQ activity toward pQS plasmid transformants of S. aureus can be simultaneously monitored by observing the zone of growth inhibition and reporter protein inhibition on agar plates. Newly identified antagonistic bacteria and their functional biomolecules are promising candidates for future development of probiotic drugs and prophylactics/therapeutics for bacterial infections including S. aureus. Furthermore, this new approach can be a useful method to find bacteria that can be used to prevent and treat S. aureus infections in both humans and animals. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02265-4.
Collapse
|
33
|
Brown HL, Clayton A, Stephens P. The role of bacterial extracellular vesicles in chronic wound infections: Current knowledge and future challenges. Wound Repair Regen 2021; 29:864-880. [PMID: 34132443 DOI: 10.1111/wrr.12949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022]
Abstract
Chronic wounds are a significant global problem with an increasing economic and patient welfare impact. How wounds move from an acute to chronic, non-healing, state is not well understood although it is likely that it is driven by a poorly regulated local inflammatory state. Opportunistic pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa are well known to stimulate a pro-inflammatory response and so their presence may further drive chronicity. Studies have demonstrated that host cell extracellular vesicles (hEVs), in particular exosomes, have multiple roles in both increasing and decreasing chronicity within wounds; however, the role of bacterial extracellular vesicles (bEVs) is still poorly understood. The aim of this review is to evaluate bEV biogenesis and function within chronic wound relevant bacterial species to determine what, if any, role bEVs may have in driving wound chronicity. We determine that bEVs drive chronicity by both increasing persistence of key pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa and stimulating a pro-inflammatory response by the host. Data also suggest that both bEVs and hEVs show therapeutic promise, providing vaccine candidates, decoy targets for bacterial toxins or modulating the bacterial species within chronic wound biofilms. Caution should, however, be used when interpreting findings to date as the bEV field is still in its infancy and as such lacks consistency in bEV isolation and characterization. It is of primary importance that this is addressed, allowing meaningful conclusions to be drawn and increasing reproducibility within the field.
Collapse
Affiliation(s)
- Helen L Brown
- School of Dentistry, Cardiff University, Cardiff, UK
| | - Aled Clayton
- Division of Cancer & Genetics, School of Medicine, Cardiff, UK
| | - Phil Stephens
- School of Dentistry, Cardiff University, Cardiff, UK
| |
Collapse
|
34
|
Antibiotic Resistance Crisis: An Update on Antagonistic Interactions between Probiotics and Methicillin-Resistant Staphylococcus aureus (MRSA). Curr Microbiol 2021; 78:2194-2211. [PMID: 33881575 DOI: 10.1007/s00284-021-02442-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance (AMR) havoc is a global multifaceted crisis endowing a significant challenge for the successful eradication of devastating pathogens. Methicillin-Resistant Staphylococcus aureus (MRSA) is an enduring superbug involved in causing devastating infections. Although MRSA is a frequent colonizer of human skin, wound, and anterior nares, the intestinal colonization of MRSA has greatly increased the risk of inducing MRSA-associated colitis besides creating a conducive environment for horizontal transfer of resistant genes to commensal microbes. On the other hand, staphylococcal resistance to last-resort antibiotics has urged the development of novel antimicrobial agents for the effective decolonization of MRSA. In response, probiotics and their metabolites (postbiotics) have been proposed as the adjunct therapeutic avenues. Probiotics exhibit a multitude of anti-MRSA actions (anti-bacterial, anti-biofilm, anti-virulence, anti-drug resistance, co-aggregation, and anti-quorum sensing) through the production of numerous antagonistic compounds such as organic acids, hydrogen peroxide, low molecular weight compounds, biosurfactants, bacteriocins, and bacteriocins like inhibitory substances. Besides, probiotics stabilize the epithelial barrier function and positively modulate the host immune system via regulating various signal transduction mechanisms. Preclinical and human intervention studies have suggested that probiotics outcompete with MRSA by exhibiting anti-colonization mechanisms via protective, competitive, and displacement mode. In this review, we aim to highlight the dynamics of MRSA associated virulence and drug resistance properties, and how probiotics antagonize MRSA through various mechanism of action.
Collapse
|
35
|
Developing Lactic Acid Bacteria as an Oral Healthy Food. Life (Basel) 2021; 11:life11040268. [PMID: 33805077 PMCID: PMC8064088 DOI: 10.3390/life11040268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Lactic acid bacteria have functions in immunoregulation, antagonism, and pathogen inhibition. The purpose of this study was to evaluate the effectiveness of lactic acid bacteria (LAB) in countering oral pathogens and develop related products. After a series of assays to 450 LAB strains, 8 heat-inactivated strains showed a strong inhibitory effect on a caries pathogen, Streptococcus mutans, and 308 heat-inactivated LAB strains showed a strong inhibitory effect on a periodontal pathogen, Porphyromonas gingivalis. The key reasons for inhibiting oral pathogens were bacteriocins produced by LAB and the coaggregation effect of the inactivated cells. We selected Lacticaseibacillus (Lb) paracasei 111 and Lb.paracasei 141, which had the strongest inhibitory effects on the above pathogens, was the main oral health food source. The optimal cultural conditions of Lb. paracasei 111 and Lb. paracasei 141 were studied. An oral tablet with a shelf life of 446 days made of the above strains was developed. A 40 volunteers' clinical study (CSMUH IRB number: CS05065) was conducted with this tablet in the Periodontological Department of the Stomatology Research Center, Affiliated Hospital of Chung Shan Medical University (Taiwan). After 8 weeks of testing, 95% and 78.9% of patients showed an effect on reducing periodontal pathogens and improving probing pocket depth, respectively, in the oral tablet group.
Collapse
|
36
|
Kalaycı Yüksek F, Gümüş D, Gündoğan Gİ, Anğ Küçüker M. Cell-Free Lactobacillus sp Supernatants Modulate Staphylococcus aureus Growth, Adhesion and Invasion to Human Osteoblast (HOB) Cells. Curr Microbiol 2020; 78:125-132. [PMID: 33108492 DOI: 10.1007/s00284-020-02247-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/09/2020] [Indexed: 11/24/2022]
Abstract
The increase of antibiotic resistance has become a problem. Probiotic bacteria play an important role in preventive/supportive medicine. Therefore, we examined the inhibitory effects of four different Lactobacillus species' (L. acidophilus-La, L. plantarum-Lp, L. fermentum-Lf and L. rhamnosus-Lr) cell-free supernatants (CFSs) on growth, adhesion, invasion, and biofilm formation of Staphylococcus aureus and effects of S. aureus, CFSs, and S. aureus-CFSs co-existence on human osteoblast (HOB) cell viability. Growth alterations were measured spectrophotometrically. Adhesive/invasive bacterial counts were detected by colony counting. Biofilm was evaluated using microtiter plate assay. The MTT assay was used for detection of HOB cell viability. The growth of MSSA significantly (P < 0.01) decreased in the presence of two CFSs (Lf and Lr) (P < 0.01); the growth of MRSA significantly (P < 0.05) reduced in the presence of La CFSs. All tested CFSs were found to reduce adhesion and invasion of MSSA (P < 0.0001). The adhesion of MRSA was enhanced (P < 0.0001) in the presence of all CFSs except La and the invasion of MRSA was decreased (P < 0.01) in the presence of Lr and Lf CFSs. All tested CFSs were shown to inhibit biofilm formation significantly (P < 0.0001). The reduction of S. aureus infected HOB cell viability and exposed to all CFSs except Lr that was found to be significant (P < 0.0001). The viability of HOB cell during co-incubation with MSSA and CFSs was shown to be decreased significantly. However co-existence of MRSA and CFSs did not alter HOB cell viability. These results suggested that lactobacilli as probiotics have low protective effects on MRSA-infected host cells.
Collapse
Affiliation(s)
- Fatma Kalaycı Yüksek
- Department of Medical Microbiology, Medical Faculty, Istanbul Yeni Yüzyıl University, Istanbul, Turkey.
| | - Defne Gümüş
- Department of Medical Microbiology, Medical Faculty, Istanbul Yeni Yüzyıl University, Istanbul, Turkey
| | - Gül İpek Gündoğan
- Department of Histology and Embryology, Medical Faculty, Istanbul Yeni Yüzyıl University, Istanbul, Turkey
| | - Mine Anğ Küçüker
- Department of Medical Microbiology, Medical Faculty, Istanbul Yeni Yüzyıl University, Istanbul, Turkey
| |
Collapse
|
37
|
Ołdak A, Zielińska D, Łepecka A, Długosz E, Kołożyn-Krajewska D. Lactobacillus plantarum Strains Isolated from Polish Regional Cheeses Exhibit Anti-Staphylococcal Activity and Selected Probiotic Properties. Probiotics Antimicrob Proteins 2020; 12:1025-1038. [PMID: 31463690 PMCID: PMC7456411 DOI: 10.1007/s12602-019-09587-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Twenty-nine Lactobacillus plantarum strains isolated from different types of Polish regional cheeses (Oscypek and Korycinski) were assessed for selected probiotic properties and anti-staphylococcal activity. Most of the tested L. plantarum strains were considered safe. Whole bacterial cultures (WBC) and cell-free supernatants (CFSs) of L. plantarum strains inhibited growth of Staphylococcus aureus (average inhibition growth zones were 2.8 mm ± 1.2 and 2.8 mm ± 1.1 respectively). Moreover, almost all neutralized, catalase-treated cell-free supernatants (CFN) of L. plantarum cultures also exhibited slight anti-staphylococcal activity in vitro. The most promising strains Os4 and Kor14 were selected for further study. Both strains were able to survive during digestive gastro-intestinal passage model. Live cells of L. plantarum Os4 and Kor14 caused the strongest inhibition of S. aureus adhesion to Caco-2 cells comparing with CFN and heat-killed bacterial cells. S. aureus and L. plantarum (Os4 or Kor14) co-cultured in skim milk resulted in growth inhibition of S. aureus in both 8 °C and 37 °C incubation temperatures. Observed abilities, demonstrated for L. plantarum Os4 and Kor14, confirms that these strains could be used in the food industry as protective cultures.
Collapse
Affiliation(s)
- Aleksandra Ołdak
- Department of Food Gastronomy and Food Hygiene, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Science - SGGW, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Science - SGGW, Nowoursynowska 159c, 02-776, Warsaw, Poland.
| | - Anna Łepecka
- Department of Food Gastronomy and Food Hygiene, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Science - SGGW, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Ewa Długosz
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Science - SGGW, Ciszewskiego 8, 02-776, Warsaw, Poland
| | - Danuta Kołożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Science - SGGW, Nowoursynowska 159c, 02-776, Warsaw, Poland
| |
Collapse
|
38
|
Moskovicz V, Gross A, Mizrahi B. Extrinsic Factors Shaping the Skin Microbiome. Microorganisms 2020; 8:E1023. [PMID: 32664353 PMCID: PMC7409027 DOI: 10.3390/microorganisms8071023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Human skin, our most environmentally exposed organ, is colonized by a vast array of microorganisms constituting its microbiome. These bacterial communities are crucial for the fulfillment of human physiological functions such as immune system modulation and epidermal development and differentiation. The structure of the human skin microbiome is established during the early life stages, starting even before birth, and continues to be modulated throughout the entire life cycle, by multiple host-related and environmental factors. This review focuses on extrinsic factors, ranging from cosmetics to the environment and antibacterial agents, as forces that impact the human skin microbiome and well-being. Assessing the impact of these factors on the skin microbiome will help elucidate the forces that shape the microbial populations we coexist with. Furthermore, we will gain additional insight into their tendency to stimulate a healthy environment or to increase the propensity for skin disorder development.
Collapse
Affiliation(s)
| | | | - Boaz Mizrahi
- Faculty of Biotechnology and Food Engineering, Technion, Haifa 3200003, Israel; (V.M.); (A.G.)
| |
Collapse
|
39
|
Onbas T, Osmanagaoglu O, Kiran F. Potential Properties of Lactobacillus plantarum F-10 as a Bio-control Strategy for Wound Infections. Probiotics Antimicrob Proteins 2020; 11:1110-1123. [PMID: 30523603 DOI: 10.1007/s12602-018-9486-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this study, Lactobacillus plantarum F-10, a promising probiotic strain isolated from fecal microbiota of healthy breastfed infant, was assessed as a bio-control strategy for wound infections. Pseudomonas aeruginosa PAO1/ATCC 27853, methicillin-resistant Staphylococcus aureus ATCC 43300, and their hospital-derived strains isolated from skin chronic wound samples were used as important skin pathogens. The cell-free extract (CFE) of the strain F-10 was shown to inhibit the growth of all pathogens tested, while no inhibition was observed when CFE was neutralized. The strain displayed no hemolysis and exhibited a strong auto-aggregating phenotype (51.48 ± 1.45%, 5 h) as well as co-aggregation. Antibiotic resistance profile was found to be safe according to the European Food Safety Authority. Biofilm formation was measured by crystal violet assay and visualized with scanning electron microscopy and confocal laser scanning microscopy. One hundred percent reduction in biofilm formation of all pathogens tested was obtained by sub-MIC value (12.5 mg/ml) of CFE following 24-h co-incubation. Inhibition of quorum sensing-controlled virulence factors (motility, protease and elastase activity, production of pyocyanin and rhamnolipid) of P. aeruginosa strains was also observed. DPPH radical scavenging activity of the CFE was determined as 88.57 ± 0.49%. In conclusion, our results suggest that L. plantarum F-10 may represent an alternative bio-control strategy against skin infections with its antimicrobial, anti-biofilm, anti-quorum sensing, and antioxidant activity.
Collapse
Affiliation(s)
- Tugce Onbas
- Faculty of Science, Department of Biology, Ankara University, Tandogan, 06100, Ankara, Turkey
| | - Ozlem Osmanagaoglu
- Faculty of Science, Department of Biology, Ankara University, Tandogan, 06100, Ankara, Turkey
| | - Fadime Kiran
- Faculty of Science, Department of Biology, Ankara University, Tandogan, 06100, Ankara, Turkey.
| |
Collapse
|
40
|
Shaaban M, Abd El-Rahman OA, Al-Qaidi B, Ashour HM. Antimicrobial and Antibiofilm Activities of Probiotic Lactobacilli on Antibiotic-Resistant Proteus mirabilis. Microorganisms 2020; 8:microorganisms8060960. [PMID: 32604867 PMCID: PMC7355612 DOI: 10.3390/microorganisms8060960] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/01/2022] Open
Abstract
The emergence of biofilm-forming, multi-drug-resistant (MDR) Proteus mirabilis infections is a serious threat that necessitates non-antibiotic therapies. Antibiotic susceptibility and biofilm-forming activity of P. mirabilis isolates from urine samples were assessed by disc diffusion and crystal violet assays, respectively. Antimicrobial activities of probiotic Lactobacilli were evaluated by agar diffusion. Antibiofilm and anti-adherence activities were evaluated by crystal violet assays. While most P. mirabilis isolates were antibiotic-resistant to varying degrees, isolate P14 was MDR (resistant to ceftazidime, cefotaxime, amoxicillin-clavulanic acid, imipenem, ciprofloxacin, and amikacin) and formed strong biofilms. Cultures and cell-free supernatants of Lactobacillus casei and Lactobacillus reuteri exhibited antimicrobial and antibiofilm activities. The 1/16 concentration of untreated supernatants of L. casei and L. reuteri significantly reduced mature biofilm formation and adherence of P14 by 60% and 72%, respectively (for L. casei), and by 73% each (for L. reuteri). The 1/8 concentration of pH-adjusted supernatants of L. casei and L. reuteri significantly reduced mature biofilm formation and adherence of P14 by 39% and 75%, respectively (for L. casei), and by 73% each (for L. reuteri). Scanning electron microscopy (SEM) confirmed eradication of P14’s biofilm by L. casei. L. casei and L. reuteri could be utilized to combat Proteus-associated urinary tract infections.
Collapse
Affiliation(s)
- Mona Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Ola A. Abd El-Rahman
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Bashair Al-Qaidi
- Madinah Maternity and Children Hospital, Madinah 42319, Saudi Arabia;
| | - Hossam M. Ashour
- Department of Biological Sciences, College of Arts and Sciences, University of South Florida St. Petersburg, St. Petersburg, FL 33701, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence:
| |
Collapse
|
41
|
Huang HC, Lee IJ, Huang C, Chang TM. Lactic Acid Bacteria and Lactic Acid for Skin Health and Melanogenesis Inhibition. Curr Pharm Biotechnol 2020; 21:566-577. [DOI: 10.2174/1389201021666200109104701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/26/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022]
Abstract
Lactic acid bacteria are beneficial to human health. Lactic acid bacteria have wide applications
in food, cosmetic and medicine industries due to being Generally Recognized As Safe (GRAS)
and a multitude of therapeutic and functional properties. Previous studies have reported the beneficial
effects of lactic acid bacteria, their extracts or ferments on skin health, including improvements in skin
conditions and the prevention of skin diseases. Lipoteichoic acid isolated from Lactobacillus plantarum
was reported to inhibit melanogenesis in B16F10 melanoma cells. In particular, lipoteichoic acid
also exerted anti-photoaging effects on human skin cells by regulating the expression of matrix metalloproteinase-
1. The oral administration of Lactobacillus delbrueckii and other lactic acid bacteria has
been reported to inhibit the development of atopic diseases. Additionally, the clinical and histologic
evidence indicates that the topical application of lactic acid is effective for depigmentation and improving
the surface roughness and mild wrinkling of the skin caused by environmental photo-damage. This
review discusses recent findings on the effects of lactic acid bacteria on skin health and their specific
applications in skin-whitening cosmetics.
Collapse
Affiliation(s)
- Huey-Chun Huang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - I. Jung Lee
- Department of Kampo Medicine, Yokohama University of Pharmacy, Yokohama, Japan
| | - Chen Huang
- Office of Paradigm Industrial- Academic R & D Headquarter, Hungkuang University, Taichung, Taiwan
| | - Tsong-Min Chang
- Department of Applied Cosmetology, Hungkuang University, Taichung City, Taiwan
| |
Collapse
|
42
|
Garcia-Gutierrez E, O'Connor PM, Colquhoun IJ, Vior NM, Rodríguez JM, Mayer MJ, Cotter PD, Narbad A. Production of multiple bacteriocins, including the novel bacteriocin gassericin M, by Lactobacillus gasseri LM19, a strain isolated from human milk. Appl Microbiol Biotechnol 2020; 104:3869-3884. [PMID: 32170384 PMCID: PMC7162838 DOI: 10.1007/s00253-020-10493-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 01/18/2023]
Abstract
Bacteriocins are antimicrobial peptides produced by bacteria, and their production is regarded as a desirable probiotic trait. We found that Lactobacillus gasseri LM19, a strain isolated from human milk, produces several bacteriocins, including a novel bacteriocin, gassericin M. These bacteriocins were purified from culture and synthesised to investigate their activity and potential synergy. L. gasseri LM19 was tested in a complex environment mimicking human colon conditions; it not only survived, but expressed the seven bacteriocin genes and produced short-chain fatty acids. Metagenomic analysis of these in vitro colon cultures showed that co-inoculation of L. gasseri LM19 with Clostridium perfringens gave 16S ribosomal RNA metagenomic profiles with more similarity to controls than to vessels inoculated with C. perfringens alone. These results indicate that L. gasseri LM19 could be an interesting candidate for maintaining homeostasis in the gut environment.
Collapse
Affiliation(s)
- Enriqueta Garcia-Gutierrez
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK.,Food Bioscience Department Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Paula M O'Connor
- Food Bioscience Department Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ian J Colquhoun
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | | | | | - Melinda J Mayer
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Paul D Cotter
- Food Bioscience Department Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Arjan Narbad
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| |
Collapse
|
43
|
Mousavi Khaneghah A, Abhari K, Eş I, Soares MB, Oliveira RB, Hosseini H, Rezaei M, Balthazar CF, Silva R, Cruz AG, Ranadheera CS, Sant’Ana AS. Interactions between probiotics and pathogenic microorganisms in hosts and foods: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Abstract
Scientific and commercial interest of probiotics, prebiotics and their effect on human health and disease has increased in the last decade. The aim of this review article is to evaluate the role of pro- and prebiotics on the normal function of healthy skin as well as their role in the prevention and therapy of skin disease. Lactobacilli and Bifidobacterium are the most commonly used probiotics and thought to mediate skin inflammation, treat atopic dermatitis (AD) and prevent allergic contact dermatitis (ACD). Probiotics are shown to decolonise skin pathogens (e.g., P. aeruginosa, S. aureus, A. Vulgaris, etc.) while kefir is also shown to support the immunity of the skin and treat skin pathogens through the production of antimicrobial substances and prebiotics. Finally, prebiotics (e.g., Fructo-oligosaccharides, galacto-oligosaccharides and konjac glucomannan hydrolysates) can contribute to the treatment of diseases including ACD, acne and photo aging primarily by enhancing the growth of probiotics.
Collapse
|
45
|
Bhola J, Bhadekar R. Invitro synergistic activity of lactic acid bacteria against multi-drug resistant staphylococci. Altern Ther Health Med 2019; 19:70. [PMID: 30890126 PMCID: PMC6425562 DOI: 10.1186/s12906-019-2470-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 03/01/2019] [Indexed: 12/17/2022]
Abstract
Background Multi-drug resistance in microorganisms is a serious problem at national as well as at a global level. Many researches have suggested alternatives to antibiotics with minimal or no major side effects. LAB is one of the most human-friendly probiotic strains known to mankind from times immemorial. With the objective to deal with progressing antibiotic resistance among microorganisms, the present work demonstrates the inhibitory activity of LAB consortium against MDR clinical isolates. Methods Total of nine hospital isolates of staphylococci were obtained and distinguished as S.aureus and coagulase-negative Staphylococcus (CoNS) based on their ability to ferment mannitol and form clumping with citrated plasma. All the test organisms were tested for antibiotic sensitivity with HiMedia (India) Octadisc Combi 92. Sets of L .plantarum, L .acidophilus and L.casei var. rhamnosus were prepared and tested against a standard culture of S.aureus NCIM 2129 by agar well diffusion method. To identify the primary source of substances responsible for inhibitory action, whole broth, cell-free supernatant, and cell lysate was prepared from the above-mentioned set. These were tested for their inhibitory action initially against standard S.aureus NCIM 2127, followed by clinical isolates. Results The antibiotic sensitivity profile revealed that all clinical isolates were multi-drug resistant. The maximum inhibitory potential was seen in a combination of the three LAB in the ratio 1:1:1. Highest antagonistic activity was observed with whole broth and cell lysate of LAB consortium. In liquid broth assay, the cell lysate of LAB consortium astoundingly exhibited up to 85% inhibition of multi-drug resistant Staphylococcus isolates. Conclusions Our results suggest antagonistic role of LAB metabolites against methicillin resistant staphylococci.
Collapse
|
46
|
Tavakoli M, Habibi Najafi MB, Mohebbi M. Effect of the milk fat content and starter culture selection on proteolysis and antioxidant activity of probiotic yogurt. Heliyon 2019; 5:e01204. [PMID: 30766933 PMCID: PMC6360988 DOI: 10.1016/j.heliyon.2019.e01204] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/20/2019] [Accepted: 01/30/2019] [Indexed: 11/17/2022] Open
Abstract
In this study, the effects of milk fat content (0%, 2% and 3.5%) and starter culture (autochthonous or commercial) on physicochemical properties, degree of proteolysis, antioxidant activity and viability of Lactobacillus acidophilus, within 21 days storage of probiotic yogurt at 5 ± 1 °C were investigated. Statistical analysis showed that the type of starter culture had a significant effect (P < 0.05) on proteolysis and antioxidant activity, in such a way that both of them were increased until the 14th day of storage but they decreased after this period. Similarly, the pH value of all samples decreased during storage time. It ranged from 3.84-4.34 and 4.18–4.43 for yogurt samples made by autochthonous and commercial starter culture, respectively. According to the results, the survival of Lactobacillus acidophilus decreased during storage time (P < 0.05), although it stood at recommended levels for health effects (at least 106 cfu/ml in traditional yogurt). Milk fat content did not have significant effect on the survival of probiotic organisms (P < 0/05).
Collapse
Affiliation(s)
- Maryam Tavakoli
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, P. O. Box 91775-1163, Mashhad, Iran
| | - Mohammad B Habibi Najafi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, P. O. Box 91775-1163, Mashhad, Iran
| | - Mohebbat Mohebbi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, P. O. Box 91775-1163, Mashhad, Iran
| |
Collapse
|
47
|
Mathew S, Smatti MK, Al Ansari K, Nasrallah GK, Al Thani AA, Yassine HM. Mixed Viral-Bacterial Infections and Their Effects on Gut Microbiota and Clinical Illnesses in Children. Sci Rep 2019; 9:865. [PMID: 30696865 PMCID: PMC6351549 DOI: 10.1038/s41598-018-37162-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023] Open
Abstract
Acute gastroenteritis remains a major cause of morbidity and mortality among young children worldwide. It accounts for approximately 1.34 million deaths annually in children younger than five years. Infection can be caused by viral, bacterial and/or parasitic microorganisms. Dysbiosis due to such infections could dramatically affect disease prognosis as well as development of chronic illness. The aim of this study was to analyze gut microbiome and clinical outcomes in young children suffering from viral or mixed viral-bacterial infection. We evaluated gut microbiota composition in children suffering from viral or mixed viral-bacterial infection with two major viruses rotavirus (RV) and norovirus (NoV) and two pathogenic bacteria [Enteroaggregative E. coli (EAEC), and Enteropathogenic E. coli (EPEC)]. We sequenced 16S ribosomal RNA (V4 region) genes using Illumina MiSeq in 70 hospitalized children suffering from gastroenteric infections plus nine healthy controls. The study summarized Operational Taxonomic Unit (OTU) abundances with the Bray-Curtis index and performed a non-metric multidimensional scaling analysis to visualize microbiome similarities. We used a permutational multivariate analyses of variance to test the significance of group differences. We also analyzed the correlation between microbiome changes and clinical outcomes. Our data demonstrated a significant increase in the severity score in children with viral-bacterial mixed infections compared to those with virus infections alone. Statistical analysis by overall relative abundance denoted lesser proportions of Bacteroides in the infected children, whereas Bifidobacteriaceae richness was more prominent in the bacterial-viral mixed infections. Pairwise differences of gut microbiota were significantly higher in RV + EAEC (P = 0.009) and NoV + EAEC (P = 0.009) co-infections, compared to EPEC mixed infection with both, RV (P = 0.045) and NoV (P = 0.188). Shannon diversity index showed considerable more variation in microbiome diversity in children infected with RV cohort compared to NoV cohort. Our results highlight that richness of Bifidobacteriaceae, which acts as probiotics, increased with the severity of the viral-bacterial mixed infections. As expected, significant reduction of relative numbers of Bacteroides was characterized in both RV and NoV infections, with more reduction observed in co-infection pathogenic E. coli. Although mixed infection with EAEC resulted in significant microbiota differences compared to viral infection only or mixed infection with EPEC, the clinical condition of the children were worsened with both pathogenic E.coli co-infections. Further, in comparison with RV cohort, augmented number of differential abundant pathogenic OTUs were peculiarly noticed only with NoV mixed infection.
Collapse
Affiliation(s)
- Shilu Mathew
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| | - Maria K Smatti
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| | - Khalid Al Ansari
- Pediatric Emergency Center, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar.,Department of Biomedical Science, College of Health Science, Qatar University, Doha, 2713, Qatar
| | - Asmaa A Al Thani
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar.,Department of Biomedical Science, College of Health Science, Qatar University, Doha, 2713, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar. .,Department of Biomedical Science, College of Health Science, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
48
|
Dodoo CC, Stapleton P, Basit AW, Gaisford S. Use of a water-based probiotic to treat common gut pathogens. Int J Pharm 2018; 556:136-141. [PMID: 30543889 DOI: 10.1016/j.ijpharm.2018.11.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 01/16/2023]
Abstract
This work reports the anti-pathogenic effect of a commercially available water-based probiotic suspension, Symprove™, against three commonly encountered infectious organisms; Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA) and Shigella sonnei. An isothermal calorimetric assay was used to the monitor growth of the species individually and in binary combinations, while colony plate counting was used to enumerate viable cell numbers. It was observed that all pathogenic species were faster growing than the probiotic bacteria in Symprove™ after inoculation into growth medium yet in all instances bacterial enumeration at the end of the experiments revealed a significant reduction in the pathogen population compared with the controls. A control population between 108 and 109 CFU/ml was obtained for E. coli and S. sonnei whilst approximately 106 CFU/ml was obtained for MRSA. Upon co-incubation for 48 h, no viable counts were obtained for E. coli; a 4-log reduction was obtained for S. sonnei whilst MRSA numbers were down to less than 10 cells/ml. The results show that Symprove™ has antipathogenic activity against E. coli, S. sonnei and MRSA.
Collapse
Affiliation(s)
- Cornelius C Dodoo
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Paul Stapleton
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Simon Gaisford
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
49
|
Biopreservation potential of antimicrobial protein producing Pediococcus spp. towards selected food samples in comparison with chemical preservatives. Int J Food Microbiol 2018; 291:189-196. [PMID: 30544035 DOI: 10.1016/j.ijfoodmicro.2018.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/11/2018] [Accepted: 12/06/2018] [Indexed: 01/30/2023]
Abstract
The present study elucidates biopreservation potential of an antimicrobial protein; bacteriocin, producing Pediococcus spp. isolated from dairy sample and enhancement of their shelf life in comparison with two chemical preservatives. The antimicrobial protein producing Pediococcus spp. was isolated from selected diary samples and characterised by standard microbiology and molecular biology protocols. The cell free supernatant of Pediococcus spp. was applied on the selected food samples and monitored on daily basis. Antimicrobial potential of the partially purified protein from this bacterium was tested against clinical isolates by well diffusion assay. The preservation efficiency of bacteriocin producing isolate at various concentrations was tested against selected food samples and compared with two chemical preservatives such as sodium sulphite and sodium benzoate. The bacteriocin was partially purified and the microbiological qualities of the biopreservative treated food samples were assessed. The present study suggested that 100 μg/l of bacteriocin extract demonstrated antimicrobial potential against E. coli and Shigella spp. The treatment with the Pediococcus spp. showed enhanced preservation at 15 mL/kg of selected samples for a period of 15 days in comparison with sodium sulphite and sodium benzoate. The microbiological quality of food samples treated with biopreservative showed lesser total bacterial count (CFU/g) in comparison with the food samples applied with chemicals (p ≤ 0.05). Thus, the present study suggests that bacteriocin producing Pediococcus probably provides enhanced shelf life to the selected food samples and can be used as biopreservatives.
Collapse
|
50
|
Li Z, Behrens AM, Ginat N, Tzeng SY, Lu X, Sivan S, Langer R, Jaklenec A. Biofilm-Inspired Encapsulation of Probiotics for the Treatment of Complex Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803925. [PMID: 30328144 DOI: 10.1002/adma.201803925] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/25/2018] [Indexed: 05/18/2023]
Abstract
The emergence of antimicrobial resistance poses a major challenge to healthcare. Probiotics offer a potential alternative treatment method but are often incompatible with antibiotics themselves, diminishing their overall therapeutic utility. This work uses biofilm-inspired encapsulation of probiotics to confer temporary antibiotic protection and to enable the coadministration of probiotics and antibiotics. Probiotics are encapsulated within alginate, a crucial component of pseudomonas biofilms, based on a simple two-step alginate cross-linking procedure. Following exposure to the antibiotic tobramycin, the growth and metabolic activity of encapsulated probiotics are unaffected by tobramycin, and they show a four-log survival advantage over free probiotics. This results from tobramycin sequestration on the periphery of alginate beads which prevents its diffusion into the core but yet allows probiotic byproducts to diffuse outward. It is demonstrated that this approach using tobramycin combined with encapsulated probiotic has the ability to completely eradicate methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in coculture, the two most widely implicated bacteria in chronic wounds.
Collapse
Affiliation(s)
- Zhihao Li
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street, Cambridge, MA, 02139, USA
| | - Adam M Behrens
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street, Cambridge, MA, 02139, USA
| | - Nitzan Ginat
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street, Cambridge, MA, 02139, USA
| | - Stephany Y Tzeng
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street, Cambridge, MA, 02139, USA
| | - Xueguang Lu
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street, Cambridge, MA, 02139, USA
| | - Sarit Sivan
- Department of Biotechnology Engineering, Ort Braude College, P.O. Box 78, Karmiel, 21982, Israel
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street, Cambridge, MA, 02139, USA
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street, Cambridge, MA, 02139, USA
| |
Collapse
|