1
|
Hurst V, Gerhold CB, Tarashev CVD, Challa K, Seeber A, Yamazaki S, Knapp B, Helliwell SB, Bodenmiller B, Harata M, Shimada K, Gasser SM. Loss of cytoplasmic actin filaments raises nuclear actin levels to drive INO80C-dependent chromosome fragmentation. Nat Commun 2024; 15:9910. [PMID: 39548059 DOI: 10.1038/s41467-024-54141-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Loss of cytosolic actin filaments upon TORC2 inhibition triggers chromosome fragmentation in yeast, which results from altered base excision repair of Zeocin-induced lesions. To find the link between TORC2 kinase and this yeast chromosome shattering (YCS) we performed phosphoproteomics. YCS-relevant phospho-targets included plasma membrane-associated regulators of actin polymerization, such as Las17, the yeast Wiscott-Aldrich Syndrome protein. Induced degradation of Las17 was sufficient to trigger YCS in presence of Zeocin, bypassing TORC2 inhibition. In yeast, Las17 does not act directly at damage, but instead its loss, like TORC2 inhibition, raises nuclear actin levels. Nuclear actin, in complex with Arp4, forms an essential subunit of several nucleosome remodeler complexes, including INO80C, which facilitates DNA polymerase elongation. Here we show that the genetic ablation of INO80C activity leads to partial YCS resistance, suggesting that elevated levels of nuclear G-actin may stimulate INO80C to increase DNA polymerase processivity and convert single-strand lesions into double-strand breaks.
Collapse
Affiliation(s)
- Verena Hurst
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Christian B Gerhold
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Bühlmann Laboratories AG, Baselstrasse 55, 4124, Schönenbuch, Switzerland
| | - Cleo V D Tarashev
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Kiran Challa
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Mechano-Genomic Group, Division of Biology and Chemistry, Paul-Scherrer Institute, Villigen, Switzerland
| | - Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Transition Bio Inc, 250 Arsenal St, Watertown, 02472, MA, USA
| | - Shota Yamazaki
- Lab. Molecular Biochemistry, Graduate School of Agricultural Science, Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai, 980-8572, Japan
| | - Britta Knapp
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Fabrikstrasse 22, 4056, Basel, Switzerland
| | - Stephen B Helliwell
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Fabrikstrasse 22, 4056, Basel, Switzerland
- Cellvie AG, Zurich, Switzerland
| | - Bernd Bodenmiller
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Masahiko Harata
- Lab. Molecular Biochemistry, Graduate School of Agricultural Science, Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai, 980-8572, Japan
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland.
- University of Lausanne, Department of Fundamental Microbiology, and Agora Cancer Center, ISREC Foundation, rue du Bugnon 25A, 1005, Lausanne, Switzerland.
| |
Collapse
|
2
|
Shimada K, Tarashev CVD, Bregenhorn S, Gerhold CB, van Loon B, Roth G, Hurst V, Jiricny J, Helliwell SB, Gasser SM. TORC2 inhibition triggers yeast chromosome fragmentation through misregulated Base Excision Repair of clustered oxidation events. Nat Commun 2024; 15:9908. [PMID: 39548071 DOI: 10.1038/s41467-024-54142-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Combinational therapies provoking cell death are of major interest in oncology. Combining TORC2 kinase inhibition with the radiomimetic drug Zeocin results in a rapid accumulation of double-strand breaks (DSB) in the budding yeast genome. This lethal Yeast Chromosome Shattering (YCS) requires conserved enzymes of base excision repair. YCS can be attenuated by eliminating three N-glycosylases or endonucleases Apn1/Apn2 and Rad1, which act to convert oxidized bases into abasic sites and single-strand nicks. Adjacent lesions must be repaired in a step-wise fashion to avoid generating DSBs. Artificially increasing nuclear actin by destabilizing cytoplasmic actin filaments or by expressing a nuclear export-deficient actin interferes with this step-wise repair and generates DSBs, while mutants that impair DNA polymerase processivity reduce them. Repair factors that bind actin include Apn1, RFA and the actin-dependent chromatin remodeler INO80C. During YCS, increased INO80C activity could enhance both DNA polymerase processivity and repair factor access to convert clustered lesions into DSBs.
Collapse
Affiliation(s)
- Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland
| | - Cleo V D Tarashev
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland
- Dynamics Group AG., Av. de Rumine 5, Lausanne, Switzerland
| | - Stephanie Bregenhorn
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; and Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Christian B Gerhold
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland
- BÜHLMANN Laboratories AG, Baselstrasse 55, Schönenbuch, Switzerland
| | - Barbara van Loon
- Norwegian University of Science and Technology; Department of Clinical and Molecular Medicine, Erling Skjalgssonsgatan, Trondheim, Norway
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland
| | - Verena Hurst
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland
| | - Josef Jiricny
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; and Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Stephen B Helliwell
- Novartis Institutes of Biomedical Research, Novartis Intl. AG, Basel, Switzerland
- Cellvie AG, Zurich, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland.
- University of Lausanne, Department of Fundamental Microbiology, and Agora Cancer Center, ISREC Foundation, rue du Bugnon 25A, Lausanne, Switzerland.
| |
Collapse
|
3
|
Kawaguchi T, Ishibashi Y, Matsuzaki M, Yamagata S, Tani M. Involvement of lipid-translocating exporter family proteins in determination of myriocin sensitivity in budding yeast. Biochem Biophys Rep 2024; 39:101785. [PMID: 39104838 PMCID: PMC11299556 DOI: 10.1016/j.bbrep.2024.101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Myriocin is an inhibitor of serine palmitoyltransferase involved in the initial biosynthetic step for sphingolipids, and causes potent growth inhibition in eukaryotic cells. In budding yeast, Rsb1, Rta1, Pug1, and Ylr046c are known as the Lipid-Translocating Exporter (LTE) family and believed to contribute to export of various cytotoxic lipophilic compounds. It was reported that Rsb1 is a transporter responsible for export of intracellularly accumulated long-chain bases, which alleviate the cytotoxicity. In this study, it was found that LTE family genes are involved in determination of myriocin sensitivity in yeast. Analyses of effects of deletion and overexpression of LTE family genes suggested that all LTEs contribute to suppression of cytotoxicity of myriocin. It was confirmed that RSB1 overexpression suppressed reduction in complex sphingolipid levels caused by myriocin treatment, possibly exporting myriocin to outside of the cell. These results suggested that LTE family genes function as a defense mechanism against myriocin.
Collapse
Affiliation(s)
- Takahiro Kawaguchi
- Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yohei Ishibashi
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Momoko Matsuzaki
- Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Satomi Yamagata
- Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Motohiro Tani
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
4
|
Tebbji F, Menon ACT, Khemiri I, St-Cyr DJ, Villeneuve L, Vincent AT, Sellam A. Small molecule inhibitors of fungal Δ(9) fatty acid desaturase as antifungal agents against Candida auris. Front Cell Infect Microbiol 2024; 14:1434939. [PMID: 39282497 PMCID: PMC11392922 DOI: 10.3389/fcimb.2024.1434939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Candida auris has emerged as a significant healthcare-associated pathogen due to its multidrug-resistant nature. Ongoing constraints in the discovery and provision of new antifungals create an urgent imperative to design effective remedies to this pressing global blight. Herein, we screened a chemical library and identified aryl-carbohydrazide analogs with potent activity against both C. auris and the most prevalent human fungal pathogen, C. albicans. SPB00525 [N'-(2,6-dichlorophenyl)-5-nitro-furan-2-carbohydrazide] exhibited potent activity against different strains that were resistant to standard antifungals. Using drug-induced haploinsufficient profiling, transcriptomics and metabolomic analysis, we uncovered that Ole1, a Δ(9) fatty acid desaturase, is the likely target of SPB00525. An analog of the latter, HTS06170 [N'-(2,6-dichlorophenyl)-4-methyl-1,2,3-thiadiazole-5-carbohydrazide], had a superior antifungal activity against both C. auris and C. albicans. Both SPB00525 and HTS06170 act as antivirulence agents and inhibited the invasive hyphal growth and biofilm formation of C. albicans. SPB00525 and HTS06170 attenuated fungal damage to human enterocytes and ameliorate the survival of Galleria mellonella larvae used as systemic candidiasis model. These data suggest that inhibiting fungal Δ(9) fatty acid desaturase activity represents a potential therapeutic approach for treating fungal infection caused by the superbug C. auris and the most prevalent human fungal pathogen, C. albicans.
Collapse
Affiliation(s)
- Faiza Tebbji
- Montreal Heart Institute/Institut de Cardiologie de Montréal, Université de Montréal, Montreal, QC, Canada
| | - Anagha C T Menon
- Montreal Heart Institute/Institut de Cardiologie de Montréal, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Inès Khemiri
- Montreal Heart Institute/Institut de Cardiologie de Montréal, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Daniel J St-Cyr
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Louis Villeneuve
- Montreal Heart Institute/Institut de Cardiologie de Montréal, Université de Montréal, Montreal, QC, Canada
| | - Antony T Vincent
- Department of Animal Sciences, Université Laval, Quebec City, QC, Canada
- Institute of Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
| | - Adnane Sellam
- Montreal Heart Institute/Institut de Cardiologie de Montréal, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
5
|
Kelty MT, Miron-Ocampo A, Beattie SR. A series of pyrimidine-based antifungals with anti-mold activity disrupt ER function in Aspergillus fumigatus. Microbiol Spectr 2024; 12:e0104524. [PMID: 38916314 PMCID: PMC11302339 DOI: 10.1128/spectrum.01045-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Fungal infections are a major contributor to morbidity and mortality among immunocompromised populations. Moreover, fungal disease caused by molds are difficult to treat and are associated with particularly high mortality. To address the need for new mold-active antifungal drugs, we performed a high-throughput screen with Aspergillus fumigatus, the most common pathogenic mold. We identified a novel, pyrimidine-based chemical scaffold with broad-spectrum antifungal activity including activity against several difficult-to-treat molds. A chemical genetics screen of Saccharomyces cerevisiae suggested that this compound may target the endoplasmic reticulum (ER) and perturb ER function and/or homeostasis. Consistent with this model, this compound induces the unfolded protein response and inhibits secretion of A. fumigatus collagenases. Initial cytotoxicity and pharmacokinetic studies show favorable features including limited mammalian cell toxicity and bioavailability in vivo. Together, these data support the further medicinal chemistry and pre-clinical development of this pyrimidine scaffold toward more effective treatments for life-threatening invasive mold infections.IMPORTANCEInvasive fungal diseases are life-threatening infections caused by fungi in immunocompromised individuals. Currently, there are only three major classes of antifungal drugs available to treat fungal infections; however, these options are becoming even more limited with the global emergence of antifungal drug resistance. To address the need for new antifungal therapies, we performed a screen of chemical compounds and identified a novel molecule with antifungal activity. Initial characterization of this compound shows drug-like features and broad-spectrum activity against medically important fungi. Together, our results support the continued development of this compound as a potential future therapy for these devastating fungal infections.
Collapse
Affiliation(s)
- Martin T. Kelty
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Aracely Miron-Ocampo
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Sarah R. Beattie
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Scholes AN, Stuecker TN, Hood SE, Locke CJ, Stacy CL, Zhang Q, Lewis JA. Natural variation in yeast reveals multiple paths for acquiring higher stress resistance. BMC Biol 2024; 22:149. [PMID: 38965504 PMCID: PMC11225312 DOI: 10.1186/s12915-024-01945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Organisms frequently experience environmental stresses that occur in predictable patterns and combinations. For wild Saccharomyces cerevisiae yeast growing in natural environments, cells may experience high osmotic stress when they first enter broken fruit, followed by high ethanol levels during fermentation, and then finally high levels of oxidative stress resulting from respiration of ethanol. Yeast have adapted to these patterns by evolving sophisticated "cross protection" mechanisms, where mild 'primary' doses of one stress can enhance tolerance to severe doses of a different 'secondary' stress. For example, in many yeast strains, mild osmotic or mild ethanol stresses cross protect against severe oxidative stress, which likely reflects an anticipatory response important for high fitness in nature. RESULTS During the course of genetic mapping studies aimed at understanding the mechanisms underlying natural variation in ethanol-induced cross protection against H2O2, we found that a key H2O2 scavenging enzyme, cytosolic catalase T (Ctt1p), was absolutely essential for cross protection in a wild oak strain. This suggested the absence of other compensatory mechanisms for acquiring H2O2 resistance in that strain background under those conditions. In this study, we found surprising heterogeneity across diverse yeast strains in whether CTT1 function was fully necessary for acquired H2O2 resistance. Some strains exhibited partial dispensability of CTT1 when ethanol and/or salt were used as mild stressors, suggesting that compensatory peroxidases may play a role in acquired stress resistance in certain genetic backgrounds. We leveraged global transcriptional responses to ethanol and salt stresses in strains with different levels of CTT1 dispensability, allowing us to identify possible regulators of these alternative peroxidases and acquired stress resistance in general. CONCLUSIONS Ultimately, this study highlights how superficially similar traits can have different underlying molecular foundations and provides a framework for understanding the diversity and regulation of stress defense mechanisms.
Collapse
Affiliation(s)
- Amanda N Scholes
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| | - Tara N Stuecker
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Stephanie E Hood
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Cader J Locke
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Carson L Stacy
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
- Department of Mathematical Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Qingyang Zhang
- Department of Mathematical Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Jeffrey A Lewis
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
7
|
Marmorale LJ, Jin H, Reidy TG, Palomino-Alonso B, Zysnarski CJ, Jordan-Javed F, Lahiri S, Duncan MC. Fast-evolving cofactors regulate the role of HEATR5 complexes in intra-Golgi trafficking. J Cell Biol 2024; 223:e202309047. [PMID: 38240799 PMCID: PMC10798858 DOI: 10.1083/jcb.202309047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024] Open
Abstract
The highly conserved HEATR5 proteins are best known for their roles in membrane traffic mediated by the adaptor protein complex-1 (AP1). HEATR5 proteins rely on fast-evolving cofactors to bind to AP1. However, how HEATR5 proteins interact with these cofactors is unknown. Here, we report that the budding yeast HEATR5 protein, Laa1, functions in two biochemically distinct complexes. These complexes are defined by a pair of mutually exclusive Laa1-binding proteins, Laa2 and the previously uncharacterized Lft1/Yml037c. Despite limited sequence similarity, biochemical analysis and structure predictions indicate that Lft1 and Laa2 bind Laa1 via structurally similar mechanisms. Both Laa1 complexes function in intra-Golgi recycling. However, only the Laa2-Laa1 complex binds to AP1 and contributes to its localization. Finally, structure predictions indicate that human HEATR5 proteins bind to a pair of fast-evolving interacting partners via a mechanism similar to that observed in yeast. These results reveal mechanistic insight into how HEATR5 proteins bind their cofactors and indicate that Laa1 performs functions besides recruiting AP1.
Collapse
Affiliation(s)
- Lucas J. Marmorale
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Huan Jin
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Thomas G. Reidy
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Brandon Palomino-Alonso
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Christopher J. Zysnarski
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Fatima Jordan-Javed
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Sagar Lahiri
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Mara C. Duncan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Pavesic MW, Gale AN, Nickels TJ, Harrington AA, Bussey M, Cunningham KW. Calcineurin-dependent contributions to fitness in the opportunistic pathogen Candida glabrata. mSphere 2024; 9:e0055423. [PMID: 38171022 PMCID: PMC10826367 DOI: 10.1128/msphere.00554-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/19/2023] [Indexed: 01/05/2024] Open
Abstract
The protein phosphatase calcineurin is vital for the virulence of the opportunistic fungal pathogen Candida glabrata. The host-induced stresses that activate calcineurin signaling are unknown, as are the targets of calcineurin relevant to virulence. To potentially shed light on these processes, millions of transposon insertion mutants throughout the genome of C. glabrata were profiled en masse for fitness defects in the presence of FK506, a specific inhibitor of calcineurin. Eighty-seven specific gene deficiencies depended on calcineurin signaling for full viability in vitro both in wild-type and pdr1∆ null strains lacking pleiotropic drug resistance. Three genes involved in cell wall biosynthesis (FKS1, DCW1, FLC1) possess co-essential paralogs whose expression depended on calcineurin and Crz1 in response to micafungin, a clinical antifungal that interferes with cell wall biogenesis. Interestingly, 80% of the FK506-sensitive mutants were deficient in different aspects of vesicular trafficking, such as endocytosis, exocytosis, sorting, and biogenesis of secretory proteins in the endoplasmic reticulum (ER). In response to the experimental antifungal manogepix that blocks GPI-anchor biosynthesis in the ER, calcineurin signaling increased and strongly prevented cell death independent of Crz1, one of its major targets. Comparisons between manogepix, micafungin, and the ER-stressing tunicamycin reveal a correlation between the degree of calcineurin signaling and the degree of cell survival. These findings suggest that calcineurin plays major roles in mitigating stresses of vesicular trafficking. Such stresses may arise during host infection and in response to antifungal therapies.IMPORTANCECalcineurin plays critical roles in the virulence of most pathogenic fungi. This study sheds light on those roles in the opportunistic pathogen Candida glabrata using a genome-wide analysis in vitro. The findings could lead to antifungal developments that also avoid immunosuppression.
Collapse
Affiliation(s)
- Matthew W. Pavesic
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew N. Gale
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Timothy J. Nickels
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Maya Bussey
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kyle W. Cunningham
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Gaikani HK, Stolar M, Kriti D, Nislow C, Giaever G. From beer to breadboards: yeast as a force for biological innovation. Genome Biol 2024; 25:10. [PMID: 38178179 PMCID: PMC10768129 DOI: 10.1186/s13059-023-03156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
The history of yeast Saccharomyces cerevisiae, aka brewer's or baker's yeast, is intertwined with our own. Initially domesticated 8,000 years ago to provide sustenance to our ancestors, for the past 150 years, yeast has served as a model research subject and a platform for technology. In this review, we highlight many ways in which yeast has served to catalyze the fields of functional genomics, genome editing, gene-environment interaction investigation, proteomics, and bioinformatics-emphasizing how yeast has served as a catalyst for innovation. Several possible futures for this model organism in synthetic biology, drug personalization, and multi-omics research are also presented.
Collapse
Affiliation(s)
- Hamid Kian Gaikani
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Monika Stolar
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Divya Kriti
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Guri Giaever
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Schikora-Tamarit MÀ, Gabaldón T. Recent gene selection and drug resistance underscore clinical adaptation across Candida species. Nat Microbiol 2024; 9:284-307. [PMID: 38177305 PMCID: PMC10769879 DOI: 10.1038/s41564-023-01547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
Understanding how microbial pathogens adapt to treatments, humans and clinical environments is key to infer mechanisms of virulence, transmission and drug resistance. This may help improve therapies and diagnostics for infections with a poor prognosis, such as those caused by fungal pathogens, including Candida. Here we analysed genomic variants across approximately 2,000 isolates from six Candida species (C. glabrata, C. auris, C. albicans, C. tropicalis, C. parapsilosis and C. orthopsilosis) and identified genes under recent selection, suggesting a highly complex clinical adaptation. These involve species-specific and convergently affected adaptive mechanisms, such as adhesion. Using convergence-based genome-wide association studies we identified known drivers of drug resistance alongside potentially novel players. Finally, our analyses reveal an important role of structural variants and suggest an unexpected involvement of (para)sexual recombination in the spread of resistance. Our results provide insights on how opportunistic pathogens adapt to human-related environments and unearth candidate genes that deserve future attention.
Collapse
Affiliation(s)
- Miquel Àngel Schikora-Tamarit
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain.
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Centro Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
11
|
Wacholder A, Carvunis AR. Biological factors and statistical limitations prevent detection of most noncanonical proteins by mass spectrometry. PLoS Biol 2023; 21:e3002409. [PMID: 38048358 PMCID: PMC10721188 DOI: 10.1371/journal.pbio.3002409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 12/14/2023] [Accepted: 10/30/2023] [Indexed: 12/06/2023] Open
Abstract
Ribosome profiling experiments indicate pervasive translation of short open reading frames (ORFs) outside of annotated protein-coding genes. However, shotgun mass spectrometry (MS) experiments typically detect only a small fraction of the predicted protein products of this noncanonical translation. The rarity of detection could indicate that most predicted noncanonical proteins are rapidly degraded and not present in the cell; alternatively, it could reflect technical limitations. Here, we leveraged recent advances in ribosome profiling and MS to investigate the factors limiting detection of noncanonical proteins in yeast. We show that the low detection rate of noncanonical ORF products can largely be explained by small size and low translation levels and does not indicate that they are unstable or biologically insignificant. In particular, proteins encoded by evolutionarily young genes, including those with well-characterized biological roles, are too short and too lowly expressed to be detected by shotgun MS at current detection sensitivities. Additionally, we find that decoy biases can give misleading estimates of noncanonical protein false discovery rates, potentially leading to false detections. After accounting for these issues, we found strong evidence for 4 noncanonical proteins in MS data, which were also supported by evolution and translation data. These results illustrate the power of MS to validate unannotated genes predicted by ribosome profiling, but also its substantial limitations in finding many biologically relevant lowly expressed proteins.
Collapse
Affiliation(s)
- Aaron Wacholder
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
12
|
Wacholder A, Carvunis AR. Biological Factors and Statistical Limitations Prevent Detection of Most Noncanonical Proteins by Mass Spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531963. [PMID: 36945638 PMCID: PMC10028962 DOI: 10.1101/2023.03.09.531963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Ribosome profiling experiments indicate pervasive translation of short open reading frames (ORFs) outside of annotated protein-coding genes. However, shotgun mass spectrometry experiments typically detect only a small fraction of the predicted protein products of this noncanonical translation. The rarity of detection could indicate that most predicted noncanonical proteins are rapidly degraded and not present in the cell; alternatively, it could reflect technical limitations. Here we leveraged recent advances in ribosome profiling and mass spectrometry to investigate the factors limiting detection of noncanonical proteins in yeast. We show that the low detection rate of noncanonical ORF products can largely be explained by small size and low translation levels and does not indicate that they are unstable or biologically insignificant. In particular, proteins encoded by evolutionarily young genes, including those with well-characterized biological roles, are too short and too lowly-expressed to be detected by shotgun mass spectrometry at current detection sensitivities. Additionally, we find that decoy biases can give misleading estimates of noncanonical protein false discovery rates, potentially leading to false detections. After accounting for these issues, we found strong evidence for four noncanonical proteins in mass spectrometry data, which were also supported by evolution and translation data. These results illustrate the power of mass spectrometry to validate unannotated genes predicted by ribosome profiling, but also its substantial limitations in finding many biologically relevant lowly-expressed proteins.
Collapse
|
13
|
Turco G, Chang C, Wang RY, Kim G, Stoops EH, Richardson B, Sochat V, Rust J, Oughtred R, Thayer N, Kang F, Livstone MS, Heinicke S, Schroeder M, Dolinski KJ, Botstein D, Baryshnikova A. Global analysis of the yeast knockout phenome. SCIENCE ADVANCES 2023; 9:eadg5702. [PMID: 37235661 PMCID: PMC11326039 DOI: 10.1126/sciadv.adg5702] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Genome-wide phenotypic screens in the budding yeast Saccharomyces cerevisiae, enabled by its knockout collection, have produced the largest, richest, and most systematic phenotypic description of any organism. However, integrative analyses of this rich data source have been virtually impossible because of the lack of a central data repository and consistent metadata annotations. Here, we describe the aggregation, harmonization, and analysis of ~14,500 yeast knockout screens, which we call Yeast Phenome. Using this unique dataset, we characterized two unknown genes (YHR045W and YGL117W) and showed that tryptophan starvation is a by-product of many chemical treatments. Furthermore, we uncovered an exponential relationship between phenotypic similarity and intergenic distance, which suggests that gene positions in both yeast and human genomes are optimized for function.
Collapse
Affiliation(s)
- Gina Turco
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Christie Chang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | - Griffin Kim
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | - Brianna Richardson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Vanessa Sochat
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Rust
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Rose Oughtred
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | - Fan Kang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Michael S Livstone
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Sven Heinicke
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Mark Schroeder
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kara J Dolinski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
14
|
Noel D, Hallsworth JE, Gelhaye E, Darnet S, Sormani R, Morel-Rouhier M. Modes-of-action of antifungal compounds: Stressors and (target-site-specific) toxins, toxicants, or Toxin-stressors. Microb Biotechnol 2023. [PMID: 37191200 DOI: 10.1111/1751-7915.14242] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 05/17/2023] Open
Abstract
Fungi and antifungal compounds are relevant to the United Nation's Sustainable Development Goals. However, the modes-of-action of antifungals-whether they are naturally occurring substances or anthropogenic fungicides-are often unknown or are misallocated in terms of their mechanistic category. Here, we consider the most effective approaches to identifying whether antifungal substances are cellular stressors, toxins/toxicants (that are target-site-specific), or have a hybrid mode-of-action as Toxin-stressors (that induce cellular stress yet are target-site-specific). This newly described 'toxin-stressor' category includes some photosensitisers that target the cell membrane and, once activated by light or ultraviolet radiation, cause oxidative damage. We provide a glossary of terms and a diagrammatic representation of diverse types of stressors, toxic substances, and Toxin-stressors, a classification that is pertinent to inhibitory substances not only for fungi but for all types of cellular life. A decision-tree approach can also be used to help differentiate toxic substances from cellular stressors (Curr Opin Biotechnol 2015 33: 228-259). For compounds that target specific sites in the cell, we evaluate the relative merits of using metabolite analyses, chemical genetics, chemoproteomics, transcriptomics, and the target-based drug-discovery approach (based on that used in pharmaceutical research), focusing on both ascomycete models and the less-studied basidiomycete fungi. Chemical genetic methods to elucidate modes-of-action currently have limited application for fungi where molecular tools are not yet available; we discuss ways to circumvent this bottleneck. We also discuss ecologically commonplace scenarios in which multiple substances act to limit the functionality of the fungal cell and a number of as-yet-unresolved questions about the modes-of-action of antifungal compounds pertaining to the Sustainable Development Goals.
Collapse
Affiliation(s)
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Eric Gelhaye
- Université de Lorraine, INRAE, IAM, Nancy, France
| | | | | | | |
Collapse
|
15
|
Taubenschmid-Stowers J, Orthofer M, Laemmerer A, Krauditsch C, Rózsová M, Studer C, Lötsch D, Gojo J, Gabler L, Dyczynski M, Efferth T, Hagelkruys A, Widhalm G, Peyrl A, Spiegl-Kreinecker S, Hoepfner D, Bian S, Berger W, Knoblich JA, Elling U, Horn M, Penninger JM. A whole-genome scan for Artemisinin cytotoxicity reveals a novel therapy for human brain tumors. EMBO Mol Med 2023; 15:e16959. [PMID: 36740985 DOI: 10.15252/emmm.202216959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 02/07/2023] Open
Abstract
The natural compound Artemisinin is the most widely used antimalarial drug worldwide. Based on its cytotoxicity, it is also used for anticancer therapy. Artemisinin and its derivates are endoperoxides that damage proteins in eukaryotic cells; their definite mechanism of action and host cell targets, however, have remained largely elusive. Using yeast and haploid stem cell screening, we demonstrate that a single cellular pathway, namely porphyrin (heme) biosynthesis, is required for the cytotoxicity of Artemisinins. Genetic or pharmacological modulation of porphyrin production is sufficient to alter its cytotoxicity in eukaryotic cells. Using multiple model systems of human brain tumor development, such as cerebral glioblastoma organoids, and patient-derived tumor spheroids, we sensitize cancer cells to dihydroartemisinin using the clinically approved porphyrin enhancer and surgical fluorescence marker 5-aminolevulinic acid, 5-ALA. A combination treatment of Artemisinins and 5-ALA markedly and specifically killed brain tumor cells in all model systems tested, including orthotopic patient-derived xenografts in vivo. These data uncover the critical molecular pathway for Artemisinin cytotoxicity and a sensitization strategy to treat different brain tumors, including drug-resistant human glioblastomas.
Collapse
Affiliation(s)
- Jasmin Taubenschmid-Stowers
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | | | - Anna Laemmerer
- Center for Cancer Research and Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Christian Krauditsch
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | | | | | - Daniela Lötsch
- Center for Cancer Research and Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lisa Gabler
- Center for Cancer Research and Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Vienna, Austria
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Astrid Hagelkruys
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University Linz, Linz, Austria
| | | | - Shan Bian
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Vienna, Austria
| | - Juergen A Knoblich
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Ulrich Elling
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | | | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Metal ion availability and homeostasis as drivers of metabolic evolution and enzyme function. Curr Opin Genet Dev 2022; 77:101987. [PMID: 36183585 DOI: 10.1016/j.gde.2022.101987] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 01/27/2023]
Abstract
Metal ions are potent catalysts and have been available for cellular biochemistry at all stages of evolution. Growing evidence suggests that metal catalysis was critical for the origin of the very first metabolic reactions. With approximately 80% of modern metabolic pathways being dependent on metal ions, metallocatalysis and homeostasis continue to be essential for intracellular metabolic networks and physiology. However, the genetic network that controls metal ion homeostasis and the impact of metal availability on metabolism is poorly understood. Here, we review recent work on gene and protein evolution relevant for better understanding metal ion biology and its role in metabolism. We highlight the importance of analysing the origin and evolution of enzyme catalysis in the context of catalytically relevant metal ions, summarise unanswered questions essential for developing a comprehensive understanding of metal ion homeostasis and advocate for the consideration of metal ion properties and availability in the design and directed evolution of novel enzymes and pathways.
Collapse
|
17
|
Prescott TAK, Anaissi-Afonso L, Fox KR, Maxwell A, Panaretou B, Machín F. A simplified and easy-to-use HIP HOP assay provides insights into chalcone antifungal mechanisms of action. FEBS Lett 2022; 596:3087-3102. [PMID: 36053795 PMCID: PMC10087691 DOI: 10.1002/1873-3468.14483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022]
Abstract
Elucidating the mechanism of action of an antifungal or cytotoxic compound is a time-consuming process. Yeast chemogenomic profiling provides a compelling solution to the problem but is experimentally complex. Here, we demonstrate the use of a highly simplified yeast chemical genetic assay comprising just 89 yeast deletion strains, each diagnostic for a specific mechanism of action. We use the assay to investigate the mechanism of action of two antifungal chalcone compounds, trans-chalcone and 4'-hydroxychalcone, and narrow down the mechanism to transcriptional stress. Crucially, the assay eliminates mechanisms of action such as topoisomerase I inhibition and membrane disruption that have been suggested for related chalcone compounds. We propose this simplified assay as a useful tool to rapidly identify common off-target mechanisms.
Collapse
Affiliation(s)
| | - Laura Anaissi-Afonso
- Unidad de Investigación, Hospital Universitario Ntra Sra de Candelaria, Santa Cruz de Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Tenerife, Spain
| | - Keith R Fox
- School of Biological Sciences, University of Southampton, UK
| | - Anthony Maxwell
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, UK
| | - Barry Panaretou
- School of Cancer and Pharmaceutical Sciences, King's College London, UK
| | - Félix Machín
- Unidad de Investigación, Hospital Universitario Ntra Sra de Candelaria, Santa Cruz de Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Tenerife, Spain.,Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
18
|
Cal BBF, Araújo LBN, Nunes BM, da Silva CR, Oliveira MBN, Soares BO, Leitão AAC, de Pádula M, Nascimento D, Chaves DSA, Gagliardi RF, Dantas FJS. Cytotoxicity of Extracts from Petiveria alliacea Leaves on Yeast. PLANTS (BASEL, SWITZERLAND) 2022; 11:3263. [PMID: 36501303 PMCID: PMC9741084 DOI: 10.3390/plants11233263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Petiveria alliacea L. is a plant used in traditional medicine harboring pharmacological properties with anti-inflammatory, antinociceptive, hypoglycemiant and anesthetic activities. This study assessed the potential cytotoxic, genotoxic and mutagenic effects of ethanolic extract of P. alliacea on Saccharomyces cerevisiae strains. S. cerevisiae FF18733 (wild type) and CD138 (ogg1) strains were exposed to fractioned ethanolic extracts of P. alliacea in different concentrations. Three experimental assays were performed: cellular inactivation, mutagenesis (canavanine resistance system) and loss of mitochondrial function (petites colonies). The chemical analyses revealed a rich extract with phenolic compounds such as protocatechuic acid, cinnamic and catechin epicatechin. A decreased cell viability in wild-type and ogg1 strains was demonstrated. All fractions of the extract exerted a mutagenic effect on the ogg1 strain. Only ethyl acetate and n-butanol fractions increased the rate of petites colonies in the ogg1 strain, but not in the wild-type strain. The results indicate that fractions of mid-polarity of the ethanolic extract, at the studied concentrations, can induce mutagenicity mediated by oxidative lesions in the mitochondrial and genomic genomes of the ogg1-deficient S. cerevisiae strain. These findings indicate that the lesions caused by the fractions of P. alliacea ethanolic extract can be mediated by reactive oxygen species and can reach multiple molecular targets to exert their toxicity.
Collapse
Affiliation(s)
- Bruna B. F. Cal
- Departamento de Biofísica e Biometria, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Luana B. N. Araújo
- Departamento de Biofísica e Biometria, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Brenno M. Nunes
- Departamento de Biofísica e Biometria, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Claudia R. da Silva
- Departamento de Biofísica e Biometria, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Marcia B. N. Oliveira
- Departamento de Biofísica e Biometria, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Bianka O. Soares
- Núcleo de Biotecnologia Vegetal, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-013, Brazil
| | - Alvaro A. C. Leitão
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Marcelo de Pádula
- Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Debora Nascimento
- Laboratório de Química de Bioativos Naturais, Departamento de Ciências Farmacêuticas, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Rio de Janeiro 23897-000, Brazil
| | - Douglas S. A. Chaves
- Laboratório de Química de Bioativos Naturais, Departamento de Ciências Farmacêuticas, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Rio de Janeiro 23897-000, Brazil
| | - Rachel F. Gagliardi
- Núcleo de Biotecnologia Vegetal, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-013, Brazil
| | - Flavio J. S. Dantas
- Departamento de Biofísica e Biometria, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| |
Collapse
|
19
|
Liang Z, Luo Z, Zhang W, Yu K, Wang H, Geng B, Yang Q, Ni Z, Zeng C, Zheng Y, Li C, Yang S, Ma Y, Dai J. Synthetic refactor of essential genes decodes functionally constrained sequences in yeast genome. iScience 2022; 25:104982. [PMID: 36093046 PMCID: PMC9460170 DOI: 10.1016/j.isci.2022.104982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 07/14/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Zhenzhen Liang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhouqing Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
- Corresponding author
| | - Weimin Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10011, USA
| | - Kang Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hui Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Binan Geng
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Qing Yang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zuoyu Ni
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cheng Zeng
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yihui Zheng
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chunyuan Li
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shihui Yang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Corresponding author
| |
Collapse
|
20
|
Pham T, Walden E, Huard S, Pezacki J, Fullerton MD, Baetz K. Fine tuning Acetyl-CoA Carboxylase 1 activity through localization: Functional genomics reveal a role for the lysine acetyltransferase NuA4 and sphingolipid metabolism in regulating Acc1 activity and localization. Genetics 2022; 221:6591204. [PMID: 35608294 PMCID: PMC9339284 DOI: 10.1093/genetics/iyac086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
Acetyl-CoA Carboxylase 1 catalyzes the conversion of acetyl-CoA to malonyl-CoA, the committed step of de novo fatty acid synthesis. As a master regulator of lipid synthesis, acetyl-CoA carboxylase 1 has been proposed to be a therapeutic target for numerous metabolic diseases. We have shown that acetyl-CoA carboxylase 1 activity is reduced in the absence of the lysine acetyltransferase NuA4 in Saccharomyces cerevisiae. This change in acetyl-CoA carboxylase 1 activity is correlated with a change in localization. In wild-type cells, acetyl-CoA carboxylase 1 is localized throughout the cytoplasm in small punctate and rod-like structures. However, in NuA4 mutants, acetyl-CoA carboxylase 1 localization becomes diffuse. To uncover mechanisms regulating acetyl-CoA carboxylase 1 localization, we performed a microscopy screen to identify other deletion mutants that impact acetyl-CoA carboxylase 1 localization and then measured acetyl-CoA carboxylase 1 activity in these mutants through chemical genetics and biochemical assays. Three phenotypes were identified. Mutants with hyper-active acetyl-CoA carboxylase 1 form 1 or 2 rod-like structures centrally within the cytoplasm, mutants with mid-low acetyl-CoA carboxylase 1 activity displayed diffuse acetyl-CoA carboxylase 1, while the mutants with the lowest acetyl-CoA carboxylase 1 activity (hypomorphs) formed thick rod-like acetyl-CoA carboxylase 1 structures at the periphery of the cell. All the acetyl-CoA carboxylase 1 hypomorphic mutants were implicated in sphingolipid metabolism or very long-chain fatty acid elongation and in common, their deletion causes an accumulation of palmitoyl-CoA. Through exogenous lipid treatments, enzyme inhibitors, and genetics, we determined that increasing palmitoyl-CoA levels inhibits acetyl-CoA carboxylase 1 activity and remodels acetyl-CoA carboxylase 1 localization. Together this study suggests yeast cells have developed a dynamic feed-back mechanism in which downstream products of acetyl-CoA carboxylase 1 can fine-tune the rate of fatty acid synthesis.
Collapse
Affiliation(s)
- Trang Pham
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, K1H 8M5 Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Canada
| | - Elizabeth Walden
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, K1H 8M5 Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Canada
| | - Sylvain Huard
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, K1H 8M5 Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Canada
| | - John Pezacki
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, K1H 8M5 Canada.,Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa K1N6N5 Canada
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Canada
| | - Kristin Baetz
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, K1H 8M5 Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Canada.,Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary T2N 1N4, Canada
| |
Collapse
|
21
|
A Chemogenomic Toolkit to Evaluate the "Ins and Outs" of Yeast Plasma Membrane Transporters. mBio 2022; 13:e0095522. [PMID: 35467415 PMCID: PMC9239070 DOI: 10.1128/mbio.00955-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over the years, there has been a lot of emphasis on the development of high-throughput platforms that help identify transporters of drugs and xenobiotics. However, major hinderances in these approaches include substrate promiscuity and functional redundancy of membrane transporters. To tackle such issues, Almeida and colleagues (L. D. Almeida, A. S. F. Silva, D. C. Mota, A. A. Vasconcelos, et al., mBio 12(6):e03221-21, 2021) elegantly used the power of yeast genetics and created a double gene deletion library for 122 nonessential plasma membrane transporters that facilitates high-throughput identification of drug/xenobiotic transporters. While examining a library of cytotoxic compounds, the authors identified a strong correlation between the chemical structure of azoles and possible import/export routes. Interestingly, the authors also identified the myo-inositol transporter Itr1 to be responsible for import of triazole and imidazole antifungal compounds and proposed a role for the ABC transporter Pdr5 in carbendazim uptake.
Collapse
|
22
|
Barazandeh M, Kriti D, Nislow C, Giaever G. The cellular response to drug perturbation is limited: comparison of large-scale chemogenomic fitness signatures. BMC Genomics 2022; 23:197. [PMID: 35277135 PMCID: PMC8915488 DOI: 10.1186/s12864-022-08395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/17/2022] [Indexed: 11/25/2022] Open
Abstract
Background Chemogenomic profiling is a powerful approach for understanding the genome-wide cellular response to small molecules. First developed in Saccharomyces cerevisiae, chemogenomic screens provide direct, unbiased identification of drug target candidates as well as genes required for drug resistance. While many laboratories have performed chemogenomic fitness assays, few have been assessed for reproducibility and accuracy. Here we analyze the two largest independent yeast chemogenomic datasets comprising over 35 million gene-drug interactions and more than 6000 unique chemogenomic profiles; the first from our own academic laboratory (HIPLAB) and the second from the Novartis Institute of Biomedical Research (NIBR). Results Despite substantial differences in experimental and analytical pipelines, the combined datasets revealed robust chemogenomic response signatures, characterized by gene signatures, enrichment for biological processes and mechanisms of drug action. We previously reported that the cellular response to small molecules is limited and can be described by a network of 45 chemogenomic signatures. In the present study, we show that the majority of these signatures (66%) are also found in the companion dataset, providing further support for their biological relevance as conserved systems-level, small molecule response systems. Conclusions Our results demonstrate the robustness of chemogenomic fitness profiling in yeast, while offering guidelines for performing other high-dimensional comparisons including parallel CRISPR screens in mammalian cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08395-x.
Collapse
|
23
|
Yeast Double Transporter Gene Deletion Library for Identification of Xenobiotic Carriers in Low or High Throughput. mBio 2021; 12:e0322121. [PMID: 34903049 PMCID: PMC8669479 DOI: 10.1128/mbio.03221-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The routes of uptake and efflux should be considered when developing new drugs so that they can effectively address their intracellular targets. As a general rule, drugs appear to enter cells via protein carriers that normally carry nutrients or metabolites. A previously developed pipeline that searched for drug transporters using Saccharomyces cerevisiae mutants carrying single-gene deletions identified import routes for most compounds tested. However, due to the redundancy of transporter functions, we propose that this methodology can be improved by utilizing double mutant strains in both low- and high-throughput screens. We constructed a library of over 14,000 strains harboring double deletions of genes encoding 122 nonessential plasma membrane transporters and performed low- and high-throughput screens identifying possible drug import routes for 23 compounds. In addition, the high-throughput assay enabled the identification of putative efflux routes for 21 compounds. Focusing on azole antifungals, we were able to identify the involvement of the myo-inositol transporter, Itr1p, in the uptake of these molecules and to confirm the role of Pdr5p in their export.
Collapse
|
24
|
Decourty L, Malabat C, Frachon E, Jacquier A, Saveanu C. Investigation of RNA metabolism through large-scale genetic interaction profiling in yeast. Nucleic Acids Res 2021; 49:8535-8555. [PMID: 34358317 PMCID: PMC8421204 DOI: 10.1093/nar/gkab680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 11/15/2022] Open
Abstract
Gene deletion and gene expression alteration can lead to growth defects that are amplified or reduced when a second mutation is present in the same cells. We performed 154 genetic interaction mapping (GIM) screens with query mutants related with RNA metabolism and estimated the growth rates of about 700 000 double mutant Saccharomyces cerevisiae strains. The tested targets included the gene deletion collection and 900 strains in which essential genes were affected by mRNA destabilization (DAmP). To analyze the results, we developed RECAP, a strategy that validates genetic interaction profiles by comparison with gene co-citation frequency, and identified links between 1471 genes and 117 biological processes. In addition to these large-scale results, we validated both enhancement and suppression of slow growth measured for specific RNA-related pathways. Thus, negative genetic interactions identified a role for the OCA inositol polyphosphate hydrolase complex in mRNA translation initiation. By analysis of suppressors, we found that Puf4, a Pumilio family RNA binding protein, inhibits ribosomal protein Rpl9 function, by acting on a conserved UGUAcauUA motif located downstream the stop codon of the RPL9B mRNA. Altogether, the results and their analysis should represent a useful resource for discovery of gene function in yeast.
Collapse
Affiliation(s)
- Laurence Decourty
- Unité de Génétique des Interactions Macromoléculaires, Département Génomes et Génétique, Institut Pasteur, 75015 Paris, France.,UMR3525, Centre national de la recherche scientifique (CNRS), 75015 Paris, France
| | - Christophe Malabat
- Hub Bioinformatique et Biostatistique, Département de Biologie Computationnelle, Institut Pasteur, 75015 Paris, France
| | - Emmanuel Frachon
- Plate-forme Technologique Biomatériaux et Microfluidique, Centre des ressources et recherches technologiques, Institut Pasteur, 75015 Paris, France
| | - Alain Jacquier
- Unité de Génétique des Interactions Macromoléculaires, Département Génomes et Génétique, Institut Pasteur, 75015 Paris, France.,UMR3525, Centre national de la recherche scientifique (CNRS), 75015 Paris, France
| | - Cosmin Saveanu
- Unité de Génétique des Interactions Macromoléculaires, Département Génomes et Génétique, Institut Pasteur, 75015 Paris, France.,UMR3525, Centre national de la recherche scientifique (CNRS), 75015 Paris, France
| |
Collapse
|
25
|
Maresh ME, Chen P, Hazbun TR, Trader DJ. A Yeast Chronological Lifespan Assay to Assess Activity of Proteasome Stimulators. Chembiochem 2021; 22:2553-2560. [PMID: 34043860 PMCID: PMC8478123 DOI: 10.1002/cbic.202100117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/26/2021] [Indexed: 11/10/2022]
Abstract
Aging is characterized by changes in several cellular processes, including dysregulation of proteostasis. Current research has shown long-lived rodents display elevated proteasome activity throughout life and proteasome dysfunction is linked to shorter lifespans in a transgenic mouse model. The ubiquitin proteasome system (UPS) is one of the main pathways leading to cellular protein clearance and quality maintenance. Reduction in proteasome activity is associated with aging and its related pathologies. Small molecule stimulators of the proteasome have been proposed to help alleviate cellular stress related to unwanted protein accumulation. Here we have described the development of techniques to monitor the impact of proteasome stimulation in wild-type yeast and a strain that has impaired proteasome expression. We validated our chronological lifespan assay using both types of yeast with a variety of small molecule stimulators at different concentrations. By modifying the media conditions for the yeast, molecules can be evaluated for their potential to increase chronological lifespan in five days. Additionally, our assay conditions can be used to monitor the activity of proteasome stimulators in modulating the degradation of a YFP-α-synuclein fusion protein produced by yeast. We anticipate these methods to be valuable for those wishing to study the impact of increasing proteasome-mediated degradation of proteins in a eukaryotic model organism.
Collapse
Affiliation(s)
- Marianne E. Maresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907
| | - Panyue Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907
| | - Tony R. Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907
| | - Darci J. Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907
| |
Collapse
|
26
|
Schrevens S, Sanglard D. Hijacking Transposable Elements for Saturation Mutagenesis in Fungi. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:633876. [PMID: 37744130 PMCID: PMC10512250 DOI: 10.3389/ffunb.2021.633876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/15/2021] [Indexed: 09/26/2023]
Abstract
Transposable elements are present in almost all known genomes, these endogenous transposons have recently been referred to as the mobilome. They are now increasingly used in research in order to make extensive mutant libraries in different organisms. Fungi are an essential part of our lives on earth, they influence the availability of our food and they live inside our own bodies both as commensals and pathogenic organisms. Only few fungal species have been studied extensively, mainly due to the lack of appropriate molecular genetic tools. The use of transposon insertion libraries can however help to rapidly advance our knowledge of (conditional) essential genes, compensatory mutations and drug target identification in fungi. Here we give an overview of some recent developments in the use of different transposons for saturation mutagenesis in different fungi.
Collapse
Affiliation(s)
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
27
|
Tavella TA, da Silva NSM, Spillman N, Kayano ACAV, Cassiano GC, Vasconcelos AA, Camargo AP, da Silva DCB, Fontinha D, Salazar Alvarez LC, Ferreira LT, Peralis Tomaz KC, Neves BJ, Almeida LD, Bargieri DY, Lacerda MVGD, Lemos Cravo PV, Sunnerhagen P, Prudêncio M, Andrade CH, Pinto Lopes SC, Carazzolle MF, Tilley L, Bilsland E, Borges JC, Maranhão Costa FT. Violacein-Induced Chaperone System Collapse Underlies Multistage Antiplasmodial Activity. ACS Infect Dis 2021; 7:759-776. [PMID: 33689276 PMCID: PMC8042658 DOI: 10.1021/acsinfecdis.0c00454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antimalarial drugs with novel modes of action and wide therapeutic potential are needed to pave the way for malaria eradication. Violacein is a natural compound known for its biological activity against cancer cells and several pathogens, including the malaria parasite, Plasmodium falciparum (Pf). Herein, using chemical genomic profiling (CGP), we found that violacein affects protein homeostasis. Mechanistically, violacein binds Pf chaperones, PfHsp90 and PfHsp70-1, compromising the latter's ATPase and chaperone activities. Additionally, violacein-treated parasites exhibited increased protein unfolding and proteasomal degradation. The uncoupling of the parasite stress response reflects the multistage growth inhibitory effect promoted by violacein. Despite evidence of proteotoxic stress, violacein did not inhibit global protein synthesis via UPR activation-a process that is highly dependent on chaperones, in agreement with the notion of a violacein-induced proteostasis collapse. Our data highlight the importance of a functioning chaperone-proteasome system for parasite development and differentiation. Thus, a violacein-like small molecule might provide a good scaffold for development of a novel probe for examining the molecular chaperone network and/or antiplasmodial drug design.
Collapse
Affiliation(s)
- Tatyana Almeida Tavella
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Noeli Soares Melo da Silva
- Biochemistry and Biophysics of Proteins Group−São Carlos Institute of Chemistry−IQSC, University of São Paulo, Trabalhador Sancarlense Avenue, 400, BQ1, S27, São Carlos, SP 13566-590, Brazil
| | - Natalie Spillman
- Department of Biochemistry, Bio 21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, Melbourne,VIC 3052, Australia
| | - Ana Carolina Andrade Vitor Kayano
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Gustavo Capatti Cassiano
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Adrielle Ayumi Vasconcelos
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Antônio Pedro Camargo
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Djane Clarys Baia da Silva
- Leônidas & Maria Deane Institute, Fundação Oswaldo Cruz−FIOCRUZ, Manaus , AM 69057070, Brazil
- Fundação de Medicina Tropical−Dr. Heitor Vieira Dourado, Manaus, AM 69040-000, Brazil
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Luis Carlos Salazar Alvarez
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Letícia Tiburcio Ferreira
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Kaira Cristina Peralis Tomaz
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Bruno Junior Neves
- Laboratory of Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74605-170, Brazil
- LabChem−Laboratory of Cheminformatics, Centro Universitário de Anápolis−UniEVANGÉLICA, Anápolis, GO 75083-515, Brazil
| | - Ludimila Dias Almeida
- Synthetic Biology Laboratory, Department of Structural and Functional Biology, Institute of Biology, UNICAMP, Campinas, SP Brazil
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Cidade Universitária “Armando Salles Oliveira”, São Paulo 05508-000, Brazil
| | | | - Pedro Vitor Lemos Cravo
- LabChem−Laboratory of Cheminformatics, Centro Universitário de Anápolis−UniEVANGÉLICA, Anápolis, GO 75083-515, Brazil
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Carolina Horta Andrade
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
- Laboratory of Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74605-170, Brazil
| | - Stefanie Costa Pinto Lopes
- Leônidas & Maria Deane Institute, Fundação Oswaldo Cruz−FIOCRUZ, Manaus , AM 69057070, Brazil
- Fundação de Medicina Tropical−Dr. Heitor Vieira Dourado, Manaus, AM 69040-000, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Leann Tilley
- Department of Biochemistry, Bio 21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, Melbourne,VIC 3052, Australia
| | - Elizabeth Bilsland
- Synthetic Biology Laboratory, Department of Structural and Functional Biology, Institute of Biology, UNICAMP, Campinas, SP Brazil
| | - Júlio César Borges
- Biochemistry and Biophysics of Proteins Group−São Carlos Institute of Chemistry−IQSC, University of São Paulo, Trabalhador Sancarlense Avenue, 400, BQ1, S27, São Carlos, SP 13566-590, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| |
Collapse
|
28
|
Parikh SB, Castilho Coelho N, Carvunis AR. LI Detector: a framework for sensitive colony-based screens regardless of the distribution of fitness effects. G3-GENES GENOMES GENETICS 2021; 11:6161305. [PMID: 33693606 PMCID: PMC8022918 DOI: 10.1093/g3journal/jkaa068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022]
Abstract
Microbial growth characteristics have long been used to investigate fundamental questions of biology. Colony-based high-throughput screens enable parallel fitness estimation of thousands of individual strains using colony growth as a proxy for fitness. However, fitness estimation is complicated by spatial biases affecting colony growth, including uneven nutrient distribution, agar surface irregularities, and batch effects. Analytical methods that have been developed to correct for these spatial biases rely on the following assumptions: (1) that fitness effects are normally distributed, and (2) that most genetic perturbations lead to minor changes in fitness. Although reasonable for many applications, these assumptions are not always warranted and can limit the ability to detect small fitness effects. Beneficial fitness effects, in particular, are notoriously difficult to detect under these assumptions. Here, we developed the linear interpolation-based detector (LI Detector) framework to enable sensitive colony-based screening without making prior assumptions about the underlying distribution of fitness effects. The LI Detector uses a grid of reference colonies to assign a relative fitness value to every colony on the plate. We show that the LI Detector is effective in correcting for spatial biases and equally sensitive toward increase and decrease in fitness. LI Detector offers a tunable system that allows the user to identify small fitness effects with unprecedented sensitivity and specificity. LI Detector can be utilized to develop and refine gene-gene and gene-environment interaction networks of colony-forming organisms, including yeast, by increasing the range of fitness effects that can be reliably detected.
Collapse
Affiliation(s)
- Saurin Bipin Parikh
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Nelson Castilho Coelho
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
29
|
Schirle M, Jenkins JL. Contemporary Techniques for Target Deconvolution and Mode of Action Elucidation. PHENOTYPIC DRUG DISCOVERY 2020. [DOI: 10.1039/9781839160721-00083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The elucidation of the cellular efficacy target and mechanism of action of a screening hit remain key steps in phenotypic drug discovery. A large number of experimental and in silico approaches have been introduced to address these questions and are being discussed in this chapter with a focus on recent developments. In addition to practical considerations such as throughput and technological requirements, these approaches differ conceptually in the specific compound characteristic that they are focusing on, including physical and functional interactions, cellular response patterns as well as structural features. As a result, different approaches often provide complementary information and we describe a multipronged strategy that is frequently key to successful identification of the efficacy target but also other epistatic nodes and off-targets that together shape the overall cellular effect of a bioactive compound.
Collapse
Affiliation(s)
- Markus Schirle
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research Cambridge MA 02139 USA
| | - Jeremy L. Jenkins
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research Cambridge MA 02139 USA
| |
Collapse
|
30
|
The Path towards Predicting Evolution as Illustrated in Yeast Cell Polarity. Cells 2020; 9:cells9122534. [PMID: 33255231 PMCID: PMC7760196 DOI: 10.3390/cells9122534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 01/14/2023] Open
Abstract
A bottom-up route towards predicting evolution relies on a deep understanding of the complex network that proteins form inside cells. In a rapidly expanding panorama of experimental possibilities, the most difficult question is how to conceptually approach the disentangling of such complex networks. These can exhibit varying degrees of hierarchy and modularity, which obfuscate certain protein functions that may prove pivotal for adaptation. Using the well-established polarity network in budding yeast as a case study, we first organize current literature to highlight protein entrenchments inside polarity. Following three examples, we see how alternating between experimental novelties and subsequent emerging design strategies can construct a layered understanding, potent enough to reveal evolutionary targets. We show that if you want to understand a cell’s evolutionary capacity, such as possible future evolutionary paths, seemingly unimportant proteins need to be mapped and studied. Finally, we generalize this research structure to be applicable to other systems of interest.
Collapse
|
31
|
Identification of Essential Genes and Fluconazole Susceptibility Genes in Candida glabrata by Profiling Hermes Transposon Insertions. G3-GENES GENOMES GENETICS 2020; 10:3859-3870. [PMID: 32819971 PMCID: PMC7534453 DOI: 10.1534/g3.120.401595] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Within the budding yeasts, the opportunistic pathogen Candida glabrata and other members of the Nakaseomyces clade have developed virulence traits independently from C. albicans and C. auris. To begin exploring the genetic basis of C. glabrata virulence and its innate resistance to antifungals, we launched the Hermes transposon from a plasmid and sequenced more than 500,000 different semi-random insertions throughout the genome. With machine learning, we identified 1278 protein-encoding genes (25% of total) that could not tolerate transposon insertions and are likely essential for C. glabrata fitness in vitro. Interestingly, genes involved in mRNA splicing were less likely to be essential in C. glabrata than their orthologs in S. cerevisiae, whereas the opposite is true for genes involved in kinetochore function and chromosome segregation. When a pool of insertion mutants was challenged with the first-line antifungal fluconazole, insertions in several known resistance genes (e.g., PDR1, CDR1, PDR16, PDR17, UPC2A, DAP1, STV1) and 15 additional genes (including KGD1, KGD2, YHR045W) became hypersensitive to fluconazole. Insertions in 200 other genes conferred significant resistance to fluconazole, two-thirds of which function in mitochondria and likely down-regulate Pdr1 expression or function. Knockout mutants of KGD2 and IDH2, which consume and generate alpha-ketoglutarate in mitochondria, exhibited increased and decreased resistance to fluconazole through a process that depended on Pdr1. These findings establish the utility of transposon insertion profiling in forward genetic investigations of this important pathogen of humans.
Collapse
|
32
|
Computational Chemogenomics Drug Repositioning Strategy Enables the Discovery of Epirubicin as a New Repurposed Hit for Plasmodium falciparum and P. vivax. Antimicrob Agents Chemother 2020; 64:AAC.02041-19. [PMID: 32601162 PMCID: PMC7449180 DOI: 10.1128/aac.02041-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Among the seven drugs identified as promising antimalarial candidates, the anthracycline epirubicin was selected for further experimental validation. Epirubicin was shown to be potent in vitro against sensitive and multidrug-resistant P. falciparum strains and P. vivax field isolates in the nanomolar range, as well as being effective against an in vivo murine model of Plasmodium yoelii. Transmission-blocking activity was observed for epirubicin in vitro and in vivo. Finally, using yeast-based haploinsufficiency chemical genomic profiling, we aimed to get insights into the mechanism of action of epirubicin. Beyond the target predicted in silico (a DNA gyrase in the apicoplast), functional assays suggested a GlcNac-1-P-transferase (GPT) enzyme as a potential target. Docking calculations predicted the binding mode of epirubicin with DNA gyrase and GPT proteins. Epirubicin is originally an antitumoral agent and presents associated toxicity. However, its antiplasmodial activity against not only P. falciparum but also P. vivax in different stages of the parasite life cycle supports the use of this drug as a scaffold for hit-to-lead optimization in malaria drug discovery.
Collapse
|
33
|
Pais P, Califórnia R, Galocha M, Viana R, Ola M, Cavalheiro M, Takahashi-Nakaguchi A, Chibana H, Butler G, Teixeira MC. Candida glabrata Transcription Factor Rpn4 Mediates Fluconazole Resistance through Regulation of Ergosterol Biosynthesis and Plasma Membrane Permeability. Antimicrob Agents Chemother 2020; 64:e00554-20. [PMID: 32571817 PMCID: PMC7449212 DOI: 10.1128/aac.00554-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/13/2020] [Indexed: 01/05/2023] Open
Abstract
The ability to acquire azole resistance is an emblematic trait of the fungal pathogen Candida glabrata Understanding the molecular basis of azole resistance in this pathogen is crucial for designing more suitable therapeutic strategies. This study shows that the C. glabrata transcription factor (TF) CgRpn4 is a determinant of azole drug resistance. RNA sequencing during fluconazole exposure revealed that CgRpn4 regulates the expression of 212 genes, activating 80 genes and repressing, likely in an indirect fashion, 132 genes. Targets comprise several proteasome and ergosterol biosynthesis genes, including ERG1, ERG2, ERG3, and ERG11 The localization of CgRpn4 to the nucleus increases upon fluconazole stress. Consistent with a role in ergosterol and plasma membrane homeostasis, CgRpn4 is required for the maintenance of ergosterol levels upon fluconazole stress, which is associated with a role in the upkeep of cell permeability and decreased intracellular fluconazole accumulation. We provide evidence that CgRpn4 directly regulates ERG11 expression through the TTGCAAA binding motif, reinforcing the relevance of this regulatory network in azole resistance. In summary, CgRpn4 is a new regulator of the ergosterol biosynthesis pathway in C. glabrata, contributing to plasma membrane homeostasis and, thus, decreasing azole drug accumulation.
Collapse
Affiliation(s)
- Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Raquel Califórnia
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Mónica Galocha
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Romeu Viana
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Mihaela Ola
- School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, Dublin, Ireland
| | - Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | | | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Geraldine Butler
- School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, Dublin, Ireland
| | - Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| |
Collapse
|
34
|
Fu Y, Estoppey D, Roggo S, Pistorius D, Fuchs F, Studer C, Ibrahim AS, Aust T, Grandjean F, Mihalic M, Memmert K, Prindle V, Richard E, Riedl R, Schuierer S, Weber E, Hunziker J, Petersen F, Tao J, Hoepfner D. Jawsamycin exhibits in vivo antifungal properties by inhibiting Spt14/Gpi3-mediated biosynthesis of glycosylphosphatidylinositol. Nat Commun 2020; 11:3387. [PMID: 32636417 PMCID: PMC7341893 DOI: 10.1038/s41467-020-17221-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/11/2020] [Indexed: 12/21/2022] Open
Abstract
Biosynthesis of glycosylphosphatidylinositol (GPI) is required for anchoring proteins to the plasma membrane, and is essential for the integrity of the fungal cell wall. Here, we use a reporter gene-based screen in Saccharomyces cerevisiae for the discovery of antifungal inhibitors of GPI-anchoring of proteins, and identify the oligocyclopropyl-containing natural product jawsamycin (FR-900848) as a potent hit. The compound targets the catalytic subunit Spt14 (also referred to as Gpi3) of the fungal UDP-glycosyltransferase, the first step in GPI biosynthesis, with good selectivity over the human functional homolog PIG-A. Jawsamycin displays antifungal activity in vitro against several pathogenic fungi including Mucorales, and in vivo in a mouse model of invasive pulmonary mucormycosis due to Rhyzopus delemar infection. Our results provide a starting point for the development of Spt14 inhibitors for treatment of invasive fungal infections.
Collapse
Affiliation(s)
- Yue Fu
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA
| | - David Estoppey
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056, Basel, Switzerland
| | - Silvio Roggo
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056, Basel, Switzerland
| | - Dominik Pistorius
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056, Basel, Switzerland
| | - Florian Fuchs
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056, Basel, Switzerland
| | - Christian Studer
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056, Basel, Switzerland
| | - Ashraf S Ibrahim
- The Lundquist Institute for Biomedical Innovations at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, 90502, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Thomas Aust
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056, Basel, Switzerland
| | - Frederic Grandjean
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056, Basel, Switzerland
| | - Manuel Mihalic
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056, Basel, Switzerland
| | - Klaus Memmert
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056, Basel, Switzerland
| | - Vivian Prindle
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA
| | - Etienne Richard
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056, Basel, Switzerland
| | - Ralph Riedl
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056, Basel, Switzerland
| | - Sven Schuierer
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056, Basel, Switzerland
| | - Eric Weber
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056, Basel, Switzerland
| | - Jürg Hunziker
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056, Basel, Switzerland
| | - Frank Petersen
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056, Basel, Switzerland
| | - Jianshi Tao
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA.
| | - Dominic Hoepfner
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056, Basel, Switzerland.
| |
Collapse
|
35
|
Caldara M, Marmiroli N. Known Antimicrobials Versus Nortriptyline in Candida albicans: Repositioning an Old Drug for New Targets. Microorganisms 2020; 8:microorganisms8050742. [PMID: 32429222 PMCID: PMC7284794 DOI: 10.3390/microorganisms8050742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Candida albicans has the capacity to develop resistance to commonly used antimicrobials, and to solve this problem, drug repositioning and new drug combinations are being studied. Nortriptyline, a tricyclic antidepressant, was shown to have the capacity to inhibit biofilm and hyphae formation, along with the ability to efficiently kill cells in a mature biofilm. To use nortriptyline as a new antimicrobial, or in combination with known drugs to increase their actions, it is important to characterize in more detail the effects of this drug on the target species. In this study, the Candida albicans GRACE™ collection and a Haplo insufficiency profiling were employed to identify the potential targets of nortriptyline, and to classify, in a parallel screening with amphotericin B, caspofungin, and fluconazole, general multi-drug resistance genes. The results identified mutants that, during biofilm formation and upon treatment of a mature biofilm, are sensitive or tolerant to nortriptyline, or to general drug treatments. Gene ontology analysis recognized the categories of ribosome biogenesis and spliceosome as enriched upon treatment with the tricyclic antidepressant, while mutants in oxidative stress response and general stress response were commonly retrieved upon treatment with any other drug. The data presented suggest that nortriptyline can be considered a “new” antimicrobial drug with large potential for application to in vivo infection models.
Collapse
Affiliation(s)
- Marina Caldara
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy;
- Correspondence: ; Tel.: +39-0521-905658
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy;
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| |
Collapse
|
36
|
Avelar-Rivas JA, Munguía-Figueroa M, Juárez-Reyes A, Garay E, Campos SE, Shoresh N, DeLuna A. An Optimized Competitive-Aging Method Reveals Gene-Drug Interactions Underlying the Chronological Lifespan of Saccharomyces cerevisiae. Front Genet 2020; 11:468. [PMID: 32477409 PMCID: PMC7240105 DOI: 10.3389/fgene.2020.00468] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/16/2020] [Indexed: 12/23/2022] Open
Abstract
The chronological lifespan of budding yeast is a model of aging and age-related diseases. This paradigm has recently allowed genome-wide screening of genetic factors underlying post-mitotic viability in a simple unicellular system, which underscores its potential to provide a comprehensive view of the aging process. However, results from different large-scale studies show little overlap and typically lack quantitative resolution to derive interactions among different aging factors. We previously introduced a sensitive, parallelizable approach to measure the chronological-lifespan effects of gene deletions based on the competitive aging of fluorescence-labeled strains. Here, we present a thorough description of the method, including an improved multiple-regression model to estimate the association between death rates and fluorescent signals, which accounts for possible differences in growth rate and experimental batch effects. We illustrate the experimental procedure-from data acquisition to calculation of relative survivorship-for ten deletion strains with known lifespan phenotypes, which is achieved with high technical replicability. We apply our method to screen for gene-drug interactions in an array of yeast deletion strains, which reveals a functional link between protein glycosylation and lifespan extension by metformin. Competitive-aging screening coupled to multiple-regression modeling provides a powerful, straight-forward way to identify aging factors in yeast and their interactions with pharmacological interventions.
Collapse
Affiliation(s)
- J. Abraham Avelar-Rivas
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Michelle Munguía-Figueroa
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Alejandro Juárez-Reyes
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Erika Garay
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Sergio E. Campos
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Noam Shoresh
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Alexander DeLuna
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| |
Collapse
|
37
|
Tranter D, Filipuzzi I, Lochmann T, Knapp B, Kellosalo J, Estoppey D, Pistorius D, Meissner A, Paavilainen VO, Hoepfner D. Kendomycin Cytotoxicity against Bacterial, Fungal, and Mammalian Cells Is Due to Cation Chelation. JOURNAL OF NATURAL PRODUCTS 2020; 83:965-971. [PMID: 32182062 PMCID: PMC7497661 DOI: 10.1021/acs.jnatprod.9b00826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Kendomycin is a small-molecule natural product that has gained significant attention due to reported cytotoxicity against pathogenic bacteria and fungi as well as a number of cancer cell lines. Despite significant biomedical interest and attempts to reveal its mechanism of action, the cellular target of kendomycin remains disputed. Herein it is shown that kendomycin induces cellular responses indicative of cation stress comparable to the effects of established iron chelators. Furthermore, addition of excess iron and copper attenuated kendomycin cytotoxicity in bacteria, yeast, and mammalian cells. Finally, NMR analysis demonstrated a direct interaction with cations, corroborating a close link between the observed kendomycin polypharmacology across different species and modulation of iron and/or copper levels.
Collapse
Affiliation(s)
- Dale Tranter
- Institute
of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - Ireos Filipuzzi
- Novartis
Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Thomas Lochmann
- Novartis
Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Britta Knapp
- Novartis
Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Juho Kellosalo
- Institute
of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - David Estoppey
- Novartis
Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Dominik Pistorius
- Novartis
Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Axel Meissner
- Novartis
Institutes for BioMedical Research, 4056 Basel, Switzerland
| | | | - Dominic Hoepfner
- Novartis
Institutes for BioMedical Research, 4056 Basel, Switzerland
| |
Collapse
|
38
|
Harvey ZH, Chakravarty AK, Futia RA, Jarosz DF. A Prion Epigenetic Switch Establishes an Active Chromatin State. Cell 2020; 180:928-940.e14. [PMID: 32109413 PMCID: PMC7195540 DOI: 10.1016/j.cell.2020.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/10/2019] [Accepted: 02/05/2020] [Indexed: 01/24/2023]
Abstract
Covalent modifications to histones are essential for development, establishing distinct and functional chromatin domains from a common genetic sequence. Whereas repressed chromatin is robustly inherited, no mechanism that facilitates inheritance of an activated domain has been described. Here, we report that the Set3C histone deacetylase scaffold Snt1 can act as a prion that drives the emergence and transgenerational inheritance of an activated chromatin state. This prion, which we term [ESI+] for expressed sub-telomeric information, is triggered by transient Snt1 phosphorylation upon cell cycle arrest. Once engaged, the prion reshapes the activity of Snt1 and the Set3C complex, recruiting RNA pol II and interfering with Rap1 binding to activate genes in otherwise repressed sub-telomeric domains. This transcriptional state confers broad resistance to environmental stress, including antifungal drugs. Altogether, our results establish a robust means by which a prion can facilitate inheritance of an activated chromatin state to provide adaptive benefit.
Collapse
Affiliation(s)
- Zachary H Harvey
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anupam K Chakravarty
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Raymond A Futia
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Alqahtani FM, Arivett BA, Taylor ZE, Handy ST, Farone AL, Farone MB. Chemogenomic profiling to understand the antifungal action of a bioactive aurone compound. PLoS One 2019; 14:e0226068. [PMID: 31825988 PMCID: PMC6905557 DOI: 10.1371/journal.pone.0226068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Every year, more than 250,000 invasive candidiasis infections are reported with 50,000 deaths worldwide. The limited number of antifungal agents necessitates the need for alternative antifungals with potential novel targets. The 2-benzylidenebenzofuran-3-(2H)-ones have become an attractive scaffold for antifungal drug design. This study aimed to determine the antifungal activity of a synthetic aurone compound and characterize its mode of action. Using the broth microdilution method, aurone SH1009 exhibited inhibition against C. albicans, including resistant isolates, as well as C. glabrata, and C. tropicalis with IC50 values of 4-29 μM. Cytotoxicity assays using human THP-1, HepG2, and A549 human cell lines showed selective toxicity toward fungal cells. The mode of action for SH1009 was characterized using chemical-genetic interaction via haploinsufficiency (HIP) and homozygous (HOP) profiling of a uniquely barcoded Saccharomyces cerevisiae mutant collection. Approximately 5300 mutants were competitively treated with SH1009 followed by DNA extraction, amplification of unique barcodes, and quantification of each mutant using multiplexed next-generation sequencing. Barcode post-sequencing analysis revealed 238 sensitive and resistant mutants that significantly (FDR P values ≤ 0.05) responded to aurone SH1009. The enrichment analysis of KEGG pathways and gene ontology demonstrated the cell cycle pathway as the most significantly enriched pathway along with DNA replication, cell division, actin cytoskeleton organization, and endocytosis. Phenotypic studies of these significantly enriched responses were validated in C. albicans. Flow cytometric analysis of SH1009-treated C. albicans revealed a significant accumulation of cells in G1 phase, indicating cell cycle arrest. Fluorescence microscopy detected abnormally interrupted actin dynamics, resulting in enlarged, unbudded cells. RT-qPCR confirmed the effects of SH1009 in differentially expressed cell cycle, actin polymerization, and signal transduction genes. These findings indicate the target of SH1009 as a cell cycle-dependent organization of the actin cytoskeleton, suggesting a novel mode of action of the aurone compound as an antifungal inhibitor.
Collapse
Affiliation(s)
- Fatmah M. Alqahtani
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Brock A. Arivett
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Zachary E. Taylor
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Scott T. Handy
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Anthony L. Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Mary B. Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| |
Collapse
|
40
|
Vincent BM, Tardiff DF, Piotrowski JS, Aron R, Lucas MC, Chung CY, Bacherman H, Chen Y, Pires M, Subramaniam R, Doshi DB, Sadlish H, Raja WK, Solís EJ, Khurana V, Le Bourdonnec B, Scannevin RH, Rhodes KJ. Inhibiting Stearoyl-CoA Desaturase Ameliorates α-Synuclein Cytotoxicity. Cell Rep 2019; 25:2742-2754.e31. [PMID: 30517862 DOI: 10.1016/j.celrep.2018.11.028] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/19/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
The lack of disease-modifying treatments for neurodegenerative disease stems in part from our rudimentary understanding of disease mechanisms and the paucity of targets for therapeutic intervention. Here we used an integrated discovery paradigm to identify a new therapeutic target for diseases caused by α-synuclein (α-syn), a small lipid-binding protein that misfolds and aggregates in Parkinson's disease and other disorders. Using unbiased phenotypic screening, we identified a series of compounds that were cytoprotective against α-syn-mediated toxicity by inhibiting the highly conserved enzyme stearoyl-CoA desaturase (SCD). Critically, reducing the levels of unsaturated membrane lipids by inhibiting SCD reduced α-syn toxicity in human induced pluripotent stem cell (iPSC) neuronal models. Taken together, these findings suggest that inhibition of fatty acid desaturation has potential as a therapeutic approach for the treatment of Parkinson's disease and other synucleinopathies.
Collapse
Affiliation(s)
- Benjamin M Vincent
- Yumanity Therapeutics, 790 Memorial Drive, Suite 2C, Cambridge, MA 02139, USA
| | - Daniel F Tardiff
- Yumanity Therapeutics, 790 Memorial Drive, Suite 2C, Cambridge, MA 02139, USA.
| | - Jeff S Piotrowski
- Yumanity Therapeutics, 790 Memorial Drive, Suite 2C, Cambridge, MA 02139, USA
| | - Rebecca Aron
- Yumanity Therapeutics, 790 Memorial Drive, Suite 2C, Cambridge, MA 02139, USA
| | - Matthew C Lucas
- Yumanity Therapeutics, 790 Memorial Drive, Suite 2C, Cambridge, MA 02139, USA
| | - Chee Yeun Chung
- Yumanity Therapeutics, 790 Memorial Drive, Suite 2C, Cambridge, MA 02139, USA
| | - Helene Bacherman
- Yumanity Therapeutics, 790 Memorial Drive, Suite 2C, Cambridge, MA 02139, USA
| | - YiQun Chen
- Yumanity Therapeutics, 790 Memorial Drive, Suite 2C, Cambridge, MA 02139, USA
| | - Michelle Pires
- Yumanity Therapeutics, 790 Memorial Drive, Suite 2C, Cambridge, MA 02139, USA
| | - Radha Subramaniam
- Yumanity Therapeutics, 790 Memorial Drive, Suite 2C, Cambridge, MA 02139, USA
| | - Dimple B Doshi
- Yumanity Therapeutics, 790 Memorial Drive, Suite 2C, Cambridge, MA 02139, USA
| | - Heather Sadlish
- Yumanity Therapeutics, 790 Memorial Drive, Suite 2C, Cambridge, MA 02139, USA
| | - Waseem K Raja
- Yumanity Therapeutics, 790 Memorial Drive, Suite 2C, Cambridge, MA 02139, USA
| | - Eric J Solís
- Yumanity Therapeutics, 790 Memorial Drive, Suite 2C, Cambridge, MA 02139, USA
| | - Vikram Khurana
- Yumanity Therapeutics, 790 Memorial Drive, Suite 2C, Cambridge, MA 02139, USA; Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Robert H Scannevin
- Yumanity Therapeutics, 790 Memorial Drive, Suite 2C, Cambridge, MA 02139, USA
| | - Kenneth J Rhodes
- Yumanity Therapeutics, 790 Memorial Drive, Suite 2C, Cambridge, MA 02139, USA
| |
Collapse
|
41
|
Morgens DW, Chan C, Kane AJ, Weir NR, Li A, Dubreuil MM, Tsui CK, Hess GT, Lavertu A, Han K, Polyakov N, Zhou J, Handy EL, Alabi P, Dombroski A, Yao D, Altman RB, Sello JK, Denic V, Bassik MC. Retro-2 protects cells from ricin toxicity by inhibiting ASNA1-mediated ER targeting and insertion of tail-anchored proteins. eLife 2019; 8:48434. [PMID: 31674906 PMCID: PMC6858068 DOI: 10.7554/elife.48434] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
The small molecule Retro-2 prevents ricin toxicity through a poorly-defined mechanism of action (MOA), which involves halting retrograde vesicle transport to the endoplasmic reticulum (ER). CRISPRi genetic interaction analysis revealed Retro-2 activity resembles disruption of the transmembrane domain recognition complex (TRC) pathway, which mediates post-translational ER-targeting and insertion of tail-anchored (TA) proteins, including SNAREs required for retrograde transport. Cell-based and in vitro assays show that Retro-2 blocks delivery of newly-synthesized TA-proteins to the ER-targeting factor ASNA1 (TRC40). An ASNA1 point mutant identified using CRISPR-mediated mutagenesis abolishes both the cytoprotective effect of Retro-2 against ricin and its inhibitory effect on ASNA1-mediated ER-targeting. Together, our work explains how Retro-2 prevents retrograde trafficking of toxins by inhibiting TA-protein targeting, describes a general CRISPR strategy for predicting the MOA of small molecules, and paves the way for drugging the TRC pathway to treat broad classes of viruses known to be inhibited by Retro-2.
Collapse
Affiliation(s)
- David W Morgens
- Department of Genetics, Stanford University, Stanford, United States
| | - Charlene Chan
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Andrew J Kane
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Nicholas R Weir
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Amy Li
- Department of Genetics, Stanford University, Stanford, United States
| | | | - C Kimberly Tsui
- Department of Genetics, Stanford University, Stanford, United States
| | - Gaelen T Hess
- Department of Genetics, Stanford University, Stanford, United States
| | - Adam Lavertu
- Biomedical Informatics Training Program, Stanford University, Stanford, United States
| | - Kyuho Han
- Department of Genetics, Stanford University, Stanford, United States
| | - Nicole Polyakov
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Jing Zhou
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Emma L Handy
- Department of Chemistry, Brown University, Providence, United States
| | - Philip Alabi
- Department of Chemistry, Brown University, Providence, United States
| | - Amanda Dombroski
- Department of Chemistry, Brown University, Providence, United States
| | - David Yao
- Department of Genetics, Stanford University, Stanford, United States
| | - Russ B Altman
- Department of Genetics, Stanford University, Stanford, United States.,Bioengineering, Stanford University, Stanford, United States
| | - Jason K Sello
- Department of Chemistry, Brown University, Providence, United States
| | - Vladimir Denic
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, United States.,Program in Cancer Biology, Stanford University, Stanford, United States.,Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, United States
| |
Collapse
|
42
|
Ferreira L, Venancio VP, Kawano T, Abrão LCC, Tavella TA, Almeida LD, Pires GS, Bilsland E, Sunnerhagen P, Azevedo L, Talcott ST, Mertens-Talcott SU, Costa FTM. Chemical Genomic Profiling Unveils the in Vitro and in Vivo Antiplasmodial Mechanism of Açaí ( Euterpe oleracea Mart.) Polyphenols. ACS OMEGA 2019; 4:15628-15635. [PMID: 31572864 PMCID: PMC6761757 DOI: 10.1021/acsomega.9b02127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Malaria remains a major detrimental parasitic disease in the developing world, with more than 200 million cases annually. Widespread drug-resistant parasite strains push for the development of novel antimalarial drugs. Plant-derived natural products are key sources of antimalarial molecules. Euterpe oleracea Martius ("açaí") originates from Brazil and has anti-inflammatory and antineoplasic properties. Here, we evaluated the antimalarial efficacy of three phenolic fractions of açaí; total phenolics (1), nonanthocyanin phenolics (2), and total anthocyanins (3). In vitro, fraction 2 moderately inhibited parasite growth in chloroquine-sensitive (HB3) and multiresistant (Dd2) Plasmodium falciparum strains, while none of the fractions was toxic to noncancer cells. Despite the limited activity in vitro, the oral treatment with 20 mg/kg of fraction 1 reduced parasitemia by 89.4% in Plasmodium chabaudi-infected mice and prolonged survival. Contrasting in vitro and in vivo activities of 1 suggest key antiplasmodial roles for polyphenol metabolites rather than the fraction itself. Finally, we performed haploinsufficiency chemical genomic profiling (HIP) utilizing heterozygous Saccharomyces cerevisiae deletion mutants to identify molecular mechanisms of açaí fractions. HIP results indicate proteostasis as the main cellular pathway affected by fraction 2. These results open avenues to develop açaí polyphenols as potential new antimalarial candidates.
Collapse
Affiliation(s)
- Letícia
T. Ferreira
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacintho da
Silva, Department of Genetics, Evolution, Microbiology and Immunology and Synthetic Biology Laboratory, Department of Structural and Functional
Biology, Institute of Biology, University
of Campinas—UNICAMP, Campinas, SP 13083-970, Brazil
| | - Vinícius P. Venancio
- Department
of Nutrition and Food Science, Texas A&M
University, College
Station, Texas 77843, United States
| | - Taila Kawano
- Department
of Nutrition and Food Science, Texas A&M
University, College
Station, Texas 77843, United States
- Faculty
of Pharmaceutical Sciences, Federal University
of Alfenas, Alfenas, MG 37130-001, Brazil
| | - Lailah C. C. Abrão
- Department
of Nutrition and Food Science, Texas A&M
University, College
Station, Texas 77843, United States
- Faculty
of Pharmaceutical Sciences, Federal University
of Alfenas, Alfenas, MG 37130-001, Brazil
| | - Tatyana A. Tavella
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacintho da
Silva, Department of Genetics, Evolution, Microbiology and Immunology and Synthetic Biology Laboratory, Department of Structural and Functional
Biology, Institute of Biology, University
of Campinas—UNICAMP, Campinas, SP 13083-970, Brazil
| | - Ludimila D. Almeida
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacintho da
Silva, Department of Genetics, Evolution, Microbiology and Immunology and Synthetic Biology Laboratory, Department of Structural and Functional
Biology, Institute of Biology, University
of Campinas—UNICAMP, Campinas, SP 13083-970, Brazil
| | - Gabriel S. Pires
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacintho da
Silva, Department of Genetics, Evolution, Microbiology and Immunology and Synthetic Biology Laboratory, Department of Structural and Functional
Biology, Institute of Biology, University
of Campinas—UNICAMP, Campinas, SP 13083-970, Brazil
| | - Elizabeth Bilsland
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacintho da
Silva, Department of Genetics, Evolution, Microbiology and Immunology and Synthetic Biology Laboratory, Department of Structural and Functional
Biology, Institute of Biology, University
of Campinas—UNICAMP, Campinas, SP 13083-970, Brazil
| | - Per Sunnerhagen
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Luciana Azevedo
- Laboratory
of Nutritional and Toxicological Analysis in Vivo—LANTIN, Faculty
of Nutrition, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Stephen T. Talcott
- Department
of Nutrition and Food Science, Texas A&M
University, College
Station, Texas 77843, United States
| | - Susanne U. Mertens-Talcott
- Department
of Nutrition and Food Science, Texas A&M
University, College
Station, Texas 77843, United States
| | - Fabio T. M. Costa
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacintho da
Silva, Department of Genetics, Evolution, Microbiology and Immunology and Synthetic Biology Laboratory, Department of Structural and Functional
Biology, Institute of Biology, University
of Campinas—UNICAMP, Campinas, SP 13083-970, Brazil
| |
Collapse
|
43
|
Zhou FL, Li SC, Zhu Y, Guo WJ, Shao LJ, Nelson J, Simpkins S, Yang DH, Liu Q, Yashiroda Y, Xu JB, Fan YY, Yue JM, Yoshida M, Xia T, Myers CL, Boone C, Wang MW. Integrating yeast chemical genomics and mammalian cell pathway analysis. Acta Pharmacol Sin 2019; 40:1245-1255. [PMID: 31138898 PMCID: PMC6786357 DOI: 10.1038/s41401-019-0231-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/14/2019] [Indexed: 12/27/2022] Open
Abstract
Chemical genomics has been applied extensively to evaluate small molecules that modulate biological processes in Saccharomyces cerevisiae. Here, we use yeast as a surrogate system for studying compounds that are active against metazoan targets. Large-scale chemical-genetic profiling of thousands of synthetic and natural compounds from the Chinese National Compound Library identified those with high-confidence bioprocess target predictions. To discover compounds that have the potential to function like therapeutic agents with known targets, we also analyzed a reference library of approved drugs. Previously uncharacterized compounds with chemical-genetic profiles resembling existing drugs that modulate autophagy and Wnt/β-catenin signal transduction were further examined in mammalian cells, and new modulators with specific modes of action were validated. This analysis exploits yeast as a general platform for predicting compound bioactivity in mammalian cells.
Collapse
Affiliation(s)
- Fu-Lai Zhou
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheena C Li
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 3510198, Japan
| | - Yue Zhu
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan-Jing Guo
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Jun Shao
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Justin Nelson
- Bioinformatics and Computational Biology Program, University of Minnesota-Twin Cities, Minneapolis, Minnesota, 55455, USA
| | - Scott Simpkins
- Bioinformatics and Computational Biology Program, University of Minnesota-Twin Cities, Minneapolis, Minnesota, 55455, USA
| | - De-Hua Yang
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Qing Liu
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 3510198, Japan
| | - Jin-Biao Xu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yao-Yue Fan
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian-Min Yue
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 3510198, Japan
- Department of Biology, The University of Tokyo, Bunkyo-ku, Tokyo, 1138657, Japan
- Collaborative Research for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, 1138657, Japan
| | - Tian Xia
- Department of Electronics and Information Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chad L Myers
- Bioinformatics and Computational Biology Program, University of Minnesota-Twin Cities, Minneapolis, Minnesota, 55455, USA.
| | - Charles Boone
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 3510198, Japan.
- Donnelly Centre and Department of Molecular Genetics, University of Toronto, Ontario, M5S 3E1, Canada.
| | - Ming-Wei Wang
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
44
|
Abstract
The polarisome comprises a network of proteins that organizes polar growth in yeast and filamentous fungi. The yeast formin Bni1 and the actin nucleation-promoting factor Bud6 are subunits of the polarisome that together catalyze the formation of actin cables below the tip of yeast cells. We identified YFR016c (Aip5) as an interaction partner of Bud6 and the polarisome scaffold Spa2. Yeast cells lacking Aip5 display a reduced number of actin cables. Aip5 binds with its N-terminal region to Spa2 and with its C-terminal region to Bud6. Both interactions collaborate to localize Aip5 at bud tip and neck, and are required to stimulate the formation of actin cables. Our experiments characterize Aip5 as a novel subunit of a complex that regulates the number of actin filaments at sites of polar growth.
Collapse
Affiliation(s)
- Oliver Glomb
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Lara Bareis
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| |
Collapse
|
45
|
Xie B, Becker E, Stuparevic I, Wery M, Szachnowski U, Morillon A, Primig M. The anti-cancer drug 5-fluorouracil affects cell cycle regulators and potential regulatory long non-coding RNAs in yeast. RNA Biol 2019; 16:727-741. [PMID: 30760080 PMCID: PMC6546400 DOI: 10.1080/15476286.2019.1581596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/16/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022] Open
Abstract
5-fluorouracil (5-FU) was isolated as an inhibitor of thymidylate synthase, which is important for DNA synthesis. The drug was later found to also affect the conserved 3'-5' exoribonuclease EXOSC10/Rrp6, a catalytic subunit of the RNA exosome that degrades and processes protein-coding and non-coding transcripts. Work on 5-FU's cytotoxicity has been focused on mRNAs and non-coding transcripts such as rRNAs, tRNAs and snoRNAs. However, the effect of 5-FU on long non-coding RNAs (lncRNAs), which include regulatory transcripts important for cell growth and differentiation, is poorly understood. RNA profiling of synchronized 5-FU treated yeast cells and protein assays reveal that the drug specifically inhibits a set of cell cycle regulated genes involved in mitotic division, by decreasing levels of the paralogous Swi5 and Ace2 transcriptional activators. We also observe widespread accumulation of different lncRNA types in treated cells, which are typically present at high levels in a strain lacking EXOSC10/Rrp6. 5-FU responsive lncRNAs include potential regulatory antisense transcripts that form double-stranded RNAs (dsRNAs) with overlapping sense mRNAs. Some of these transcripts encode proteins important for cell growth and division, such as the transcription factor Ace2, and the RNA exosome subunit EXOSC6/Mtr3. In addition to revealing a transcriptional effect of 5-FU action via DNA binding regulators involved in cell cycle progression, our results have implications for the function of putative regulatory lncRNAs in 5-FU mediated cytotoxicity. The data raise the intriguing possibility that the drug deregulates lncRNAs/dsRNAs involved in controlling eukaryotic cell division, thereby highlighting a new class of promising therapeutical targets.
Collapse
Affiliation(s)
- Bingning Xie
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Rennes, France
| | - Emmanuelle Becker
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Rennes, France
- Univ Rennes, Inria, CNRS, IRISA F-35000, Rennes, France
| | - Igor Stuparevic
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Rennes, France
| | - Maxime Wery
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL UniversityCNRS UMR 3244, Université Pierre et Marie Curie, Paris, France
| | - Ugo Szachnowski
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL UniversityCNRS UMR 3244, Université Pierre et Marie Curie, Paris, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL UniversityCNRS UMR 3244, Université Pierre et Marie Curie, Paris, France
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Rennes, France
| |
Collapse
|
46
|
Abstract
Haploinsufficiency describes the decrease in organismal fitness observed when a single copy of a gene is deleted in diploids. We investigated the origin of haploinsufficiency by creating a comprehensive dosage sensitivity data set for genes under their native promoters. We demonstrate that the expression of haploinsufficient genes is limited by the toxicity of their overexpression. We further show that the fitness penalty associated with excess gene copy number is not the only determinant of haploinsufficiency. Haploinsufficient genes represent a unique subset of genes sensitive to copy number increases, as they are also limiting for important cellular processes when present in one copy instead of two. The selective pressure to decrease gene expression due to the toxicity of overexpression, combined with the pressure to increase expression due to their fitness-limiting nature, has made haploinsufficient genes extremely sensitive to changes in gene expression. As a consequence, haploinsufficient genes are dosage stabilized, showing much more narrow ranges in cell-to-cell variability of expression compared with other genes in the genome. We propose a dosage-stabilizing hypothesis of haploinsufficiency to explain its persistence over evolutionary time.
Collapse
|
47
|
Simpkins SW, Deshpande R, Nelson J, Li SC, Piotrowski JS, Ward HN, Yashiroda Y, Osada H, Yoshida M, Boone C, Myers CL. Using BEAN-counter to quantify genetic interactions from multiplexed barcode sequencing experiments. Nat Protoc 2019; 14:415-440. [PMID: 30635653 DOI: 10.1038/s41596-018-0099-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The construction of genome-wide mutant collections has enabled high-throughput, high-dimensional quantitative characterization of gene and chemical function, particularly via genetic and chemical-genetic interaction experiments. As the throughput of such experiments increases with improvements in sequencing technology and sample multiplexing, appropriate tools must be developed to handle the large volume of data produced. Here, we describe how to apply our approach to high-throughput, fitness-based profiling of pooled mutant yeast collections using the BEAN-counter software pipeline (Barcoded Experiment Analysis for Next-generation sequencing) for analysis. The software has also successfully processed data from Schizosaccharomyces pombe, Escherichia coli, and Zymomonas mobilis mutant collections. We provide general recommendations for the design of large-scale, multiplexed barcode sequencing experiments. The procedure outlined here was used to score interactions for ~4 million chemical-by-mutant combinations in our recently published chemical-genetic interaction screen of nearly 14,000 chemical compounds across seven diverse compound collections. Here we selected a representative subset of these data on which to demonstrate our analysis pipeline. BEAN-counter is open source, written in Python, and freely available for academic use. Users should be proficient at the command line; advanced users who wish to analyze larger datasets with hundreds or more conditions should also be familiar with concepts in analysis of high-throughput biological data. BEAN-counter encapsulates the knowledge we have accumulated from, and successfully applied to, our multiplexed, pooled barcode sequencing experiments. This protocol will be useful to those interested in generating their own high-dimensional, quantitative characterizations of gene or chemical function in a high-throughput manner.
Collapse
Affiliation(s)
- Scott W Simpkins
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Raamesh Deshpande
- Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Justin Nelson
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sheena C Li
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Jeff S Piotrowski
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.,Yumanity Therapeutics, Cambridge, MA, USA
| | - Henry Neil Ward
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Charles Boone
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.,Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Chad L Myers
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota Twin Cities, Minneapolis, MN, USA. .,Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA.
| |
Collapse
|
48
|
Unbiased Forward Genetic Screening with Chemical Mutagenesis to Uncover Drug-Target Interactions. Methods Mol Biol 2019. [PMID: 30912013 DOI: 10.1007/978-1-4939-9145-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The steadily increasing throughput in next-generation sequencing technologies is revolutionizing a number of fields in biology. One application requiring massive parallel sequencing is forward genetic screening based on chemical mutagenesis. Such screens interrogate the entire genome in an entirely unbiased fashion and can be applied to a number of research questions. CRISPR/Cas9-based screens, which are largely limited to a gene's loss of function, have already been very successful in identifying drug targets and pathways related to the drug's mode of action. By inducing single nucleotide changes using an alkylating reagent, it is possible to generate amino acid changes that perturb the interaction between a drug and its direct target, resulting in drug resistance. This chemogenomic approach combined with latest sequencing technologies allows deconvolution of drug targets and characterization of drug-target binding interfaces at amino acid resolution, therefore nicely complementing existing biochemical approaches. Here we describe a general protocol for a chemical mutagenesis-based forward genetic screen applicable for drug-target deconvolution.
Collapse
|
49
|
Costanzo M, Kuzmin E, van Leeuwen J, Mair B, Moffat J, Boone C, Andrews B. Global Genetic Networks and the Genotype-to-Phenotype Relationship. Cell 2019; 177:85-100. [PMID: 30901552 PMCID: PMC6817365 DOI: 10.1016/j.cell.2019.01.033] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 01/25/2023]
Abstract
Genetic interactions identify combinations of genetic variants that impinge on phenotype. With whole-genome sequence information available for thousands of individuals within a species, a major outstanding issue concerns the interpretation of allelic combinations of genes underlying inherited traits. In this Review, we discuss how large-scale analyses in model systems have illuminated the general principles and phenotypic impact of genetic interactions. We focus on studies in budding yeast, including the mapping of a global genetic network. We emphasize how information gained from work in yeast translates to other systems, and how a global genetic network not only annotates gene function but also provides new insights into the genotype-to-phenotype relationship.
Collapse
Affiliation(s)
- Michael Costanzo
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada.
| | - Elena Kuzmin
- Goodman Cancer Research Centre, McGill University, Montreal QC, Canada
| | | | - Barbara Mair
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada
| | - Jason Moffat
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada; Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto ON, Canada
| | - Charles Boone
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada; Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto ON, Canada.
| | - Brenda Andrews
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada; Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto ON, Canada.
| |
Collapse
|
50
|
Auxin-Inducible Depletion of the Essentialome Suggests Inhibition of TORC1 by Auxins and Inhibition of Vrg4 by SDZ 90-215, a Natural Antifungal Cyclopeptide. G3-GENES GENOMES GENETICS 2019; 9:829-840. [PMID: 30670608 PMCID: PMC6404609 DOI: 10.1534/g3.118.200748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gene knockout and knockdown strategies have been immensely successful probes of gene function, but small molecule inhibitors (SMIs) of gene products allow much greater time resolution and are particularly useful when the targets are essential for cell replication or survival. SMIs also serve as lead compounds for drug discovery. However, discovery of selective SMIs is costly and inefficient. The action of SMIs can be modeled simply by tagging gene products with an auxin-inducible degron (AID) that triggers rapid ubiquitylation and proteasomal degradation of the tagged protein upon exposure of live cells to auxin. To determine if this approach is broadly effective, we AID-tagged over 750 essential proteins in Saccharomyces cerevisiae and observed growth inhibition by low concentrations of auxin in over 66% of cases. Polytopic transmembrane proteins in the plasma membrane, Golgi complex, and endoplasmic reticulum were efficiently depleted if the AID-tag was exposed to cytoplasmic OsTIR1 ubiquitin ligase. The auxin analog 1-napthylacetic acid (NAA) was as potent as auxin on AID-tags, but surprisingly NAA was more potent than auxin at inhibiting target of rapamycin complex 1 (TORC1) function. Auxin also synergized with known SMIs when acting on the same essential protein, indicating that AID-tagged strains can be useful for SMI screening. Auxin synergy, resistance mutations, and cellular assays together suggest the essential GMP/GDP-mannose exchanger in the Golgi complex (Vrg4) as the target of a natural cyclic peptide of unknown function (SDZ 90-215). These findings indicate that AID-tagging can efficiently model the action of SMIs before they are discovered and can facilitate SMI discovery.
Collapse
|