1
|
Mahjoubi M, Cherif H, Aliyu H, Chouchane H, Cappello S, Neifar M, Mapelli F, Souissi Y, Borin S, Cowan DA, Cherif A. Brucella pituitosa strain BU72, a new hydrocarbonoclastic bacterium through exopolysaccharide-based surfactant production. Int Microbiol 2025; 28:299-313. [PMID: 38867105 DOI: 10.1007/s10123-024-00540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/22/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024]
Abstract
Hydrocarbon and heavy metal pollution are amongst the most severe and prevalent environmental problems due to their toxicity and persistence. Bioremediation using microorganisms is considered one of the most effective ways to treat polluted sites. In the present study, we unveil the bioremediation potential of Brucella pituitosa strain BU72. Besides its ability to grow on multiple hydrocarbons as the sole carbon source and highly tolerant to several heavy metals, BU72 produces different exopolysaccharide-based surfactants (EBS) when grown with glucose or with crude oil as sole carbon source. These EBS demonstrated particular and specific functional groups as determined by Fourier transform infrared (FTIR) spectral analysis that showed a strong absorption peak at 3250 cm-1 generated by the -OH group for both EBS. The FTIR spectra of the produced EBS revealed major differences in functional groups and protein content. To better understand the EBS production coupled with the degradation of hydrocarbons and heavy metal resistance, the genome of strain BU72 was sequenced. Annotation of the genome revealed multiple genes putatively involved in EBS production pathways coupled with resistance to heavy metals genes such as arsenic tolerance and cobalt-zinc-cadmium resistance. The genome sequence analysis showed the potential of BU72 to synthesise secondary metabolites and the presence of genes involved in plant growth promotion. Here, we describe the physiological, metabolic, and genomic characteristics of Brucella pituitosa strain BU72, indicating its potential as a bioremediation agent.
Collapse
Affiliation(s)
- Mouna Mahjoubi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Hanene Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Habibu Aliyu
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Habib Chouchane
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Simone Cappello
- Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM)-CNR of Messina., Sp. San Raineri, 86, 98122, Messina, Italy
| | - Mohamed Neifar
- Common Services Unit "Bioreactor Coupled With an Ultrafilter"; APVA‑LR16ES20; ENIS, University of Sfax, Sfax, Tunisia
| | | | - Yasmine Souissi
- Department of Engineering, German University of Technology in Oman, P.O. Box 1816, PC 130, Muscat, Sultanate of Oman
| | - Sara Borin
- Common Services Unit "Bioreactor Coupled With an Ultrafilter"; APVA‑LR16ES20; ENIS, University of Sfax, Sfax, Tunisia
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0002, South Africa
| | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia.
| |
Collapse
|
2
|
Du C, Fikhman DA, Obeng EE, Can SN, Dong KS, Leavitt ET, Saldanha LV, Hall M, Satalin J, Kollisch-Singule M, Monroe MBB. Vanillic acid-based pro-coagulant hemostatic shape memory polymer foams with antimicrobial properties against drug-resistant bacteria. Acta Biomater 2024; 189:254-269. [PMID: 39343289 DOI: 10.1016/j.actbio.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Uncontrolled bleeding is the primary cause of trauma-related death. For patients that are brought to the hospital in time to receive treatment, there is a great risk of contracting drug-resistant bacterial wound infections. Therefore, low-cost hemostatic agents with procoagulant and antibacterial properties are essential to reduce morbidity and mortality in patients with traumatic wounds. To that end, we introduced vanillic acid (VA) into shape memory polymer (SMP) foams through a dual incorporation mechanism to make dual vanillic acid (DVA) foams. The dual mechanism increases VA loading while allowing burst and sustained delivery of VA from foams. DVA foams exhibit antimicrobial and antibiofilm properties against native and drug-resistant Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis. Also, DVA foams inhibit the growth rate of both methicillin-sensitive and -resistant S. aureus colonies to limit their size and promote small colony variants. DVA SMP foams induced primary and secondary hemostasis in in vitro blood interaction studies. As a proof of concept, we demonstrated easy delivery and rapid clotting in a porcine liver injury model, indicating DVA foam feasibility for use as a hemostatic dressing. Thus, the inexpensive production of DVA SMP foams could enable a cost-effective procoagulant hemostatic dressing that is resistant to bacterial colonization to improve short- and long-term outcomes for hemorrhage control in traumatically injured patients. STATEMENT OF SIGNIFICANCE: Uncontrolled bleeding is the primary cause of preventable death on the battlefield. Of patients that survive, ∼40 % develop polymicrobial infections within 5 days of injury. Drug-resistant infections are anticipated to cause more deaths than all cancers combined by 2050. Therefore, novel non-drug-based biomaterials strategies for infection control in wound care are increasingly important. To that end, we developed hemostatic polyurethane foams that include antimicrobial and pro-coagulant vanillic acid, a plant-based antimicrobial species. These foams provide excellent protection against native and drug-resistant bacteria and enhanced coagulation while remaining cytocompatible. In a pilot porcine liver injury model, vanillic acid-containing foams stabilized a bleed within <5 min. These biomaterials provide a promising solution for both hemorrhage and infection control in wound care.
Collapse
Affiliation(s)
- Changling Du
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, United States
| | - David Anthony Fikhman
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, United States
| | - Ernest Emmanuel Obeng
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, United States
| | - Sevde Nur Can
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, United States
| | - Katheryn Shi Dong
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, United States
| | - Eden Tess Leavitt
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, United States
| | - Leo Vikram Saldanha
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, United States
| | - Michaela Hall
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | | | - Mary Beth B Monroe
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, United States.
| |
Collapse
|
3
|
Pal S, Chatterjee N, Sinha Roy S, Chattopadhyay B, Acharya K, Datta S, Dhar P. Valorization of oil refinery by-products: production of sophorolipids utilizing fatty acid distillates and their potential antibacterial, anti-biofilm, and antifungal activities. World J Microbiol Biotechnol 2024; 40:344. [PMID: 39384621 DOI: 10.1007/s11274-024-04144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/14/2024] [Indexed: 10/11/2024]
Abstract
Starmerella bombicola is a native yeast strain producing sophorolipids as secondary metabolites. This study explores the production, characterization, and biological activities of sophorolipids and investigates the antimicrobial, anti-biofilm, and antifungal properties of sophorolipids produced from oil refinery wastes by the yeast Starmerella bombicola. The present work demonstrated that S. bombicola MTCC 1910 when grown in oil refinery wastes namely palm fatty acid distillates and soy fatty acid distillates enhanced the rate of sophorolipids production drastically in comparison to vegetable oil, sunflower oil used as hydrophobic feedstock. Sophorolipid yields were 18.14, 37.21, and 46.1 g/L with sunflower oil, palm, and soy fatty acid distillates respectively. The crude biosurfactants were characterized using TLC, FTIR, and HPLC revealing to be acetylated sophorolipids containing both the acidic and lactonic isomeric forms. The surface lowering and emulsifying properties of the sophorolipids from refinery wastes were significantly higher than the sunflower oil-derived sophorolipids. Also, all the sophorolipids exhibited strong antibacterial properties (minimum inhibitory concentrations were between 50 and 200 µg mL-1) against Salmonella typhimurium, Bacillus cereus, and Staphylococcus epidermidis and were validated with morphological analysis by Scanning electron microscopy. All the sophorolipids were potent biofilm inhibitors and eradicators (minimum biofilm inhibitory and eradication concentrations were between 12.5 to 1000 µg mL-1) for all the tested organisms. Furthermore, antifungal activities were also found to exhibit about 16-56% inhibition at 1 mg mL-1 for fungal mycelial growth. Therefore, this endeavour of sophorolipids production using palm and soy fatty acid distillates not only opens up a window for the bioconversion of industrial wastes into productive biosurfactants but also concludes that sophorolipids from oil refinery wastes are potent antimicrobial, anti-biofilm, and antifungal agents, highlighting their potential in biotechnological and medical applications.
Collapse
Affiliation(s)
- Srija Pal
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, 700027, West Bengal, India
- Department of Chemical Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Rajabazar, Machuabazar, Kolkata, 700009, West Bengal, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, 700027, West Bengal, India
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata, 700 098, West Bengal, India
| | - Sagnik Sinha Roy
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata, 700032, West Bengal, India
| | - Brajadulal Chattopadhyay
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata, 700032, West Bengal, India
| | - Krishnendu Acharya
- Department of Botany, University of Calcutta, 35, Ballygunge Circular Rd, Ballygunge, Kolkata, 700019, West Bengal, India
| | - Sriparna Datta
- Department of Chemical Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Rajabazar, Machuabazar, Kolkata, 700009, West Bengal, India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, 700027, West Bengal, India.
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata, 700 098, West Bengal, India.
| |
Collapse
|
4
|
Zhang Y, Wang N, Wan J, Jousset A, Jiang G, Wang X, Wei Z, Xu Y, Shen Q. Exploring the antibiotic resistance genes removal dynamics in chicken manure by composting. BIORESOURCE TECHNOLOGY 2024; 410:131309. [PMID: 39159726 DOI: 10.1016/j.biortech.2024.131309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Prolonged antibiotic usage in livestock farming leads to the accumulation of antibiotic resistance genes in animal manure. Composting has been shown as an effective way of removing antibiotic resistance from manures, but the specific mechanisms remain unclear. This study used time-series sampling and metagenomics to analyse the resistome types and their bacterial hosts in chicken manures. Composting significantly altered the physicochemical properties and microbiome composition, reduced antibiotic resistance genes by 65.71 %, mobile genetic elements by 68.15 % and horizontal gene transfer frequency. Source tracking revealed that Firmicutes, Actinobacteria, and Proteobacteria are the major bacterial hosts involved in the resistome and gene transfer events. Composting reduces the resistome risk by targeting pathogens such as Staphylococcus aureus. Structural equation modelling confirmed that composting reduces resistome risk by changing pH and pathogen abundance. This study demonstrates that composting is an effective strategy for mitigating resistome risk in chicken manure, thereby supporting the One Health initiative.
Collapse
Affiliation(s)
- Yaozhong Zhang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ningqi Wang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinxing Wan
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Alexandre Jousset
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Gaofei Jiang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaofang Wang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhong Wei
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangchun Xu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Vandana, Das S. Deciphering the molecular interaction of extracellular polymeric substances of a marine bacterium Pseudomonas furukawaii PPS-19 with petroleum hydrocarbons and development of bioadsorbent. CHEMOSPHERE 2024; 364:143023. [PMID: 39117086 DOI: 10.1016/j.chemosphere.2024.143023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/23/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Petroleum hydrocarbon contamination is a serious hazard to marine environments, affecting ecosystems and marine life. However, extracellular polymeric substances (EPS) of marine bacteria constituting various hydrophilic and hydrophobic functional groups sequester petroleum hydrocarbons (PHs). In this study, interaction of EPS of Pseudomonas furukawaii PPS-19 with PHs such as crude oil, n-dodecane, and pyrene and its impact on PHs adsorption was investigated. Protein component of EPS was increased after treatment with PHs. Red shift of UV-Vis spectra implied change in molecular structure of EPS. Functional groups of proteins (CO, NH2) and polysaccharides (C-C, C-OH, C-O-C) predominantly interacted with PHs. Interaction with PHs affected secondary structure of EPS. Change in binding energies of corresponding functionalities of C 1s, O 1s, and N 1s confirmed the interaction. Disruption of crystalline peaks led to increased pore size in EPS primarily due to the increase in surface electronegativity. Static quenching mechanism unveils formation of complex between fulvic acid of EPS and PHs. Relative expression of alg8 gene was significantly increased in the presence of n-dodecane (6.31 fold) (P < 0.05; One way ANOVA). n-dodecane and pyrene adsorption capacity of Immobilized EPS was significantly higher (356.5 and 338.2 mg g-1, respectively) (P < 0.001; One way ANOVA) than control. Adsorption rate fits into the pseudo-second-order kinetic model. This study establishes that interaction of PHs causes structural and physical changes in EPS and EPS could be used as an adsorbent material for the sequestration of PHs pollution.
Collapse
Affiliation(s)
- Vandana
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
6
|
Master NG, Markande AR. Importance of microbial amphiphiles: interaction potential of biosurfactants, amyloids, and other exo-polymeric-substances. World J Microbiol Biotechnol 2023; 39:320. [PMID: 37747579 DOI: 10.1007/s11274-023-03751-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Microorganisms produce a diverse group of biomolecules having amphipathic nature (amphiphiles). Microbial amphiphiles, including amyloids, bio-surfactants, and other exo-polymeric substances, play a crucial role in various biological processes and have gained significant attention recently. Although diverse in biochemical composition, these amphiphiles have been reported for common microbial traits like biofilm formation and pathogenicity due to their ability to act as surface active agents with active interfacial properties essential for microbes to grow in various niches. This enables microbes to reduce surface tension, emulsification, dispersion, and attachment at the interface. In this report, the ecological importance and biotechnological usage of important amphiphiles have been discussed. The low molecular weight amphiphiles like biosurfactants, siderophores, and peptides showing helical and antimicrobial activities have been extensively reported for their ability to work as quorum-sensing mediators. While high molecular weight amphiphiles make up amyloid fibers, exopolysaccharides, liposomes, or magnetosomes have been shown to have a significant influence in deciding microbial physiology and survival. In this report, we have discussed the functional similarities and biochemical variations of several amphipathic biomolecules produced by microbes, and the present report shows these amphiphiles showing polyphyletic and ecophysiological groups of microorganisms and hence can `be replaced in biotechnological applications depending on the compatibility of the processes.
Collapse
Affiliation(s)
- Nishita G Master
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India
| | - Anoop R Markande
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India.
| |
Collapse
|
7
|
Molecular Characterization and Biocompatibility of Exopolysaccharide Produced by Moderately Halophilic Bacterium Virgibacillus dokdonensis from the Saltern of Kumta Coast. Polymers (Basel) 2022; 14:polym14193986. [PMID: 36235941 PMCID: PMC9570845 DOI: 10.3390/polym14193986] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
The use of natural polysaccharides as biomaterials is gaining importance in tissue engineering due to their inherent biocompatibility. In this direction, the present study aims to explore the structure and biocompatibility of the EPS produced by Virgibacillus dokdonensis VITP14. This marine bacterium produces 17.3 g/L of EPS at 96 h of fermentation. The EPS was purified using ion exchange and gel permeation chromatographic methods. The porous web-like structure and elemental composition (C, O, Na, Mg, P, S) of the EPS were inferred from SEM and EDX analysis. AFM analysis revealed spike-like lumps with a surface roughness of 84.85 nm. The zeta potential value of −10 mV indicates the anionic nature of the EPS. Initial molecular characterization showed that the EPS is a heteropolysaccharide composed of glucose (25.8%), ribose (18.6%), fructose (31.5%), and xylose (24%), which are the monosaccharide units in the HPLC analysis. The FTIR spectrum indicates the presence of functional groups/bonds typical of EPSs (O-H, C-H, C-O-H, C-O, S=O, and P=O). The polymer has an average molecular weight of 555 kDa. Further, NMR analysis revealed the monomer composition, the existence of two α- and six β-glycosidic linkages, and the branched repeating unit as → 1)[α-D-Xylp-(1 → 2)-α-D-Glcp-(1 → 6)-β-D-Glcp-(1 → 5)]-β-D-Frup-(2 → 2)[β-D-Xylp-(1 → 4)]-β-D-Xylp-(1 → 6)-β-D-Fruf-(2 → 4)-β-D-Ribp-(1 →. The EPS is thermally stable till 251.4 °C. X-ray diffraction analysis confirmed the semicrystalline (54.2%) nature of the EPS. Further, the EPS exhibits significant water solubility (76.5%), water-holding capacity (266.8%), emulsifying index (66.8%), hemocompatibility (erythrocyte protection > 87%), and cytocompatibility (cell viability > 80% on RAW264.7 and keratinocyte HaCaT cells) at higher concentrations and prolongs coagulation time in APTT and PT tests. Our research unveils the significant biocompatibility of VITP14 EPS for synthesizing a variety of biomaterials.
Collapse
|
8
|
|
9
|
Singh S, Datta S, Narayanan KB, Rajnish KN. Bacterial exo-polysaccharides in biofilms: role in antimicrobial resistance and treatments. J Genet Eng Biotechnol 2021; 19:140. [PMID: 34557983 PMCID: PMC8460681 DOI: 10.1186/s43141-021-00242-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/04/2021] [Indexed: 12/18/2022]
Abstract
Background Bacterial biofilms are aggregation or collection of different bacterial cells which are covered by self-produced extracellular matrix and are attached to a substratum. Generally, under stress or in unfavorable conditions, free planktonic bacteria transform themselves into bacterial biofilms and become sessile. Main body Various mechanisms involving interaction between antimicrobial and biofilm matrix components, reduced growth rates, and genes conferring antibiotic resistance have been described to contribute to enhanced resistance. Quorum sensing and multi-drug resistance efflux pumps are known to regulate the internal environment within the biofilm as well as biofilm formation; they also protect cells from antibiotic attack or immune attacks. This review summarizes data supporting the importance of exopolysaccharides during biofilm formation and its role in antibiotic resistance. Conclusions Involvement of quorum sensing and efflux pumps in antibiotic resistance in association with exopolysaccharides. Also, strategies to overcome or attack biofilms are provided.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Saptashwa Datta
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280, Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - K Narayanan Rajnish
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
10
|
Roy P, Bhat VS, Saha S, Sengupta D, Das S, Datta S, Hegde G. Mesoporous carbon nanospheres derived from agro-waste as novel antimicrobial agents against gram-negative bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13552-13561. [PMID: 33185797 DOI: 10.1007/s11356-020-11587-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Porous carbon nanospheres were synthesized from agro-waste garlic peels by a one-pot facile and easy to scale-up pyrolysis method. Surface morphology and structural features of the nanospheres have been studied by field emission scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and Raman spectroscopy. Fourier transform infrared spectroscopy (FTIR) and N2 adsorption desorption experiments were explored to detect surface functionality, surface area, and porosity. Average particle diameter of the synthesized nanospheres was 31 ± 6.3 nm and zeta potential of - 25.2 mV ± 1.75 mV. Nanoscale carbon was mesoporous in nature with type IV isotherms, mean pore diameter of 15.2 nm, and total pore volume of 0.032 cm3/g. Minimum inhibitory concentration and minimum bactericidal concentration values of carbon nanospheres against Escherichia coli are 480 ± 0.5 μg/ml and 495 ± 0.5 μg/ml, respectively. Synthesized nanospheres exhibited gram-selective antimicrobial action against Escherichia coli probably linked to membrane deformity due to interaction of nanocarbon with the bacterial membrane. Carbon nanospheres resulting from waste to wealth transformation emerged as promising candidates for antibacterial application. Graphical abstract.
Collapse
Affiliation(s)
- Partha Roy
- Department of Pharmaceutical Technology, Adamas University, Barasat - Barrackpore Road, 24 Parganas North, Jagannathpur, Kolkata, West Bengal, 700126, India
| | - Vinay S Bhat
- Centre for Nano-materials & Displays, B.M.S. College of Engineering, Basavangudi, Bangalore, 560019, India
| | - Sumana Saha
- Department of Pharmaceutical Technology, Adamas University, Barasat - Barrackpore Road, 24 Parganas North, Jagannathpur, Kolkata, West Bengal, 700126, India
| | - Dipanjan Sengupta
- Department of Chemical Technology, Rajabazar Science College Campus, University of Calcutta, 92, Acharya Prafulla Chandra Road, Rajabazar, Machuabazar, Kolkata, West Bengal, 700009, India
| | - Suvadra Das
- Basic Science and Humanities Department, University of Engineering and Management, Kolkata, University Area, Plot No. III-B/5, Newtown, Action Area III, Kolkata, West Bengal, 700156, India
| | - Sriparna Datta
- Department of Chemical Technology, Rajabazar Science College Campus, University of Calcutta, 92, Acharya Prafulla Chandra Road, Rajabazar, Machuabazar, Kolkata, West Bengal, 700009, India
| | - Gurumurthy Hegde
- Centre for Nano-materials & Displays, B.M.S. College of Engineering, Basavangudi, Bangalore, 560019, India.
| |
Collapse
|
11
|
Mohd Nadzir M, Nurhayati RW, Idris FN, Nguyen MH. Biomedical Applications of Bacterial Exopolysaccharides: A Review. Polymers (Basel) 2021; 13:530. [PMID: 33578978 PMCID: PMC7916691 DOI: 10.3390/polym13040530] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
Bacterial exopolysaccharides (EPSs) are an essential group of compounds secreted by bacteria. These versatile EPSs are utilized individually or in combination with different materials for a broad range of biomedical field functions. The various applications can be explained by the vast number of derivatives with useful properties that can be controlled. This review offers insight on the current research trend of nine commonly used EPSs, their biosynthesis pathways, their characteristics, and the biomedical applications of these relevant bioproducts.
Collapse
Affiliation(s)
- Masrina Mohd Nadzir
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia;
| | - Retno Wahyu Nurhayati
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia;
- Stem Cell and Tissue Engineering Research Cluster, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta 10430, Indonesia
| | - Farhana Nazira Idris
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia;
| | - Minh Hong Nguyen
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam;
- Bioresource Research Center, Phenikaa University, Hanoi 12116, Vietnam
| |
Collapse
|