1
|
Sathya C, Karmegam N, Lalitha S. Mitigation of heavy metal toxicity in pigeon pea by plant growth promoting Pseudomonas alcaliphila strain PAS1 isolated from contaminated environment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:439. [PMID: 39316275 DOI: 10.1007/s10653-024-02220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
The risk of arsenic contamination is rising globally, and it has negative impacts on the physiological processes and growth of plants. Metal removal from contaminated soils can be accomplished affordably and effectively with plant growth promoting rhizobacteria (PGPR)-based microbial management. From this angle, this research evaluated the mitigation of arsenic toxicity using the bacteria isolated from contaminated site, Mettur, Salem district, South India. The newly isolated bacterial strain was screened for plant growth promotion potential and arsenic tolerance such as (100 ppm, 250 ppm, 500 ppm, 800 ppm and 1200 ppm). The metal tolerant rhizobacteria was identified using 16S rRNA gene sequence analysis as Pseudomonas alcaliphila strain PAS1 (GenBank accession number: OQ804624). Pigeon pea (Cajanus cajan) plants were used in pot culture experiments with varying concentrations of arsenic, (5 ppm, 10 ppm and 25 ppm) both with and without bacterial culture, for a period of 45 days. At the concentration of 25 ppm after the application of PAS1 enhanced the plant growth, protein and carbohydrate by 35.69%, 18.31% respectively. Interestingly, P. alcaliphila strain PAS1 significantly reduced the stress-induced elevated levels of proline, flavonoid, phenol and antioxidant enzyme in pigeon pea plants was 40%, 31.11%, 27.80% and 20.12%, respectively. Consequently, PAS1 may significantly reduce the adverse effects that arsenic causes to plant development in acidic soils, improve plant uptake of nutrients, and increase plant production. The findings of this study reveal that P. alcaliphila PAS1 is intrinsic for phytoremediation by reducing arsenic accumulation in the root and shoot.
Collapse
Affiliation(s)
- Chinnadurai Sathya
- Soil Biology and PGPR Lab, Department of Botany, School of Life Science, Periyar University, Salem, Tamil Nadu, 636 011, India
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, Tamil Nadu, 636 007, India
| | - Sundaram Lalitha
- Soil Biology and PGPR Lab, Department of Botany, School of Life Science, Periyar University, Salem, Tamil Nadu, 636 011, India.
| |
Collapse
|
2
|
Kumar P, Dwivedi P, Upadhyay SK. Optimization of polyamine and mycorrhiza in sorghum plant for removal of hazardous cadmium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108846. [PMID: 38945095 DOI: 10.1016/j.plaphy.2024.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/02/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
Eco-friendly and sustainable practices must be followed while using the right plants and microbes to remove harmful heavy metals from the soil. The goal of the current study was to ascertain how effectively sorghum plants removed cadmium (Cd) from the soil using polyamines and mycorrhiza. Plant-biochemicals such as free amino acids, ascorbic acids, anthocyanin, proline, and catalase, APX, peroxidase activities were considered as markers in this study which revealed the adverse plant growth performance under 70 and 150 ppm of Cd concentration (w/w) after 30,60, and 90 days of treatment. The plants showed a mitigating effect against high Cd-concentration with exogenous use of mycorrhiza and putrescine. The treatment T17 (mycorrhiza +5 mM putrescine) showed a substantial decrease in the content of total free amino acid, ascorbic acid, catalase, APX, peroxidase by 228.36%, 39.79%, 59.06%, 182.79% 106.97%, respectively after 90 days as compared to T12 (150 ppm Cd). Anthocyanin content was negatively correlated (-0.503, -0.556, and -0.613) at p < 0.01 with other studied markers, with an increase by 10.52% in T17 treated plant as compared to T12. The concentration of Cd in root increased by 49.6% (141 ppm) and decreased in the shoot by 71% (17.8 ppm) in T17 treated plant as compared to T12 after 90 days. The application of mycorrhiza and putrescine significantly increased BCF (>1) and decreased TF (<1) for Cd translocation. The administration of mycorrhiza and putrescine boosted the Cd removal efficiency of sorghum plants, according to FTIR, XRD, and DSC analysis. As a result, this study demonstrates novel approaches for induced phytoremediation activity of plants via mycorrhiza and putrescine augmentation, which can be a promising option for efficient bioremediation in contaminated sites.
Collapse
Affiliation(s)
- Prasann Kumar
- Department of Agronomy, School of Agriculture, Lovely Professional University, Jalandhar, Punjab, 144411, India; Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221 005, India.
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| |
Collapse
|
3
|
Haris M, Hussain T, Khan A, Upadhyay SK, Khan AA. Optimization and utilization of emerging waste (fly ash) for growth performance of chickpea (Cicer arietinum L.) plant and mitigation of root-knot nematode (Meloidogyne incognita) stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50225-50242. [PMID: 39088174 DOI: 10.1007/s11356-024-34498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
The sustainable management of large amounts of fly ash (FA) is a concern for researchers, and we aim to determine the FA application in plant development and nematicidal activity in the current study. A pot study is therefore performed to assess the effects of adding different, FA-concentrations to soil (w/w) on the infection of chickpea plants with the root-knot nematode Meloidogyne incognita. Sequence characteristic amplified region (SCAR) and internal transcribed spacer (ITS) region-based-markers were used to molecularly confirm M. incognita. With better plant growth and chickpea yield performance, FA enhanced the nutritious components of the soil. When compared with untreated, uninoculated control (UUC) plants, the inoculation of M. incognita dramatically reduced chickpea plant growth, yield biomass, and metabolism. The findings showed that the potential of FA to lessen the root-knot nematode illness in respect of galls, egg-masses, and reproductive attributes may be used to explain the mitigating effect of FA. Fascinatingly, compared with the untreated, inoculated control (UIC) plants, the FA treatment, primarily at 20%, considerably (p ≤ 0.05) boosted plant growth, yield biomass, and pigment content. Additionally, when the amounts of FA rose, the activity of antioxidants like superoxide dismutase-SOD, catalase-CAT, and peroxidase-POX as well as osmo-protectants like proline gradually increased. Therefore, our findings imply that 20% FA can be successfully applied as a potential strategy to increase biomass yield and plant growth while simultaneously reducing M. incognita infection in chickpea plants.
Collapse
Affiliation(s)
- Mohammad Haris
- Section of Plant Pathology and Environmental Botany, Department of Botany, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Touseef Hussain
- Section of Plant Pathology and Environmental Botany, Department of Botany, Aligarh Muslim University, Aligarh, U.P., 202002, India.
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Amir Khan
- Section of Plant Pathology and Environmental Botany, Department of Botany, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V. B. S. Purvanchal University, Jaunpur, 222003, India
| | - Abrar Ahmad Khan
- Section of Plant Pathology and Environmental Botany, Department of Botany, Aligarh Muslim University, Aligarh, U.P., 202002, India
| |
Collapse
|
4
|
Ebsa G, Gizaw B, Admassie M, Desalegn A, Alemu T. Screening, characterization and optimization of potential dichlorodiphenyl trichloroethane (DDT) degrading fungi. Heliyon 2024; 10:e33289. [PMID: 39022069 PMCID: PMC11253139 DOI: 10.1016/j.heliyon.2024.e33289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/21/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Dichlorodiphenyltrichloroethane is an organo-chlorine insecticide used for malaria and agricultural pest control, but it is the most persistent pollutant, endangering both human and environmental health. The primary aim of the research is to screen, characterize, and assess putative fungi that degrade DDT for mycoremediation. Samples of soil and wastewater were gathered from Addis Ababa, Koka, and Ziway. Fungi were isolated and purified using potato dextrose media. Matrix-Assisted Laser Desorption, Ionization, and Flight Duration The technique of mass spectrometry was employed to identify fungi. It was found that the finally selected isolate, AS1, was Aspergillus niger. Based on growth factor optimization at DDT concentrations (0, 3500, and 7000 ppm), temperatures (25, 30, and 35 °C), and pH levels (4, 7, and 10), the potential DDT-tolerant fungal isolates were investigated. A Box-Behnken experimental design was used to analyze and optimize fungal biomass and sporulation. The highest biomass (0.981 ± 0.22 g) and spore count (5.60 ± 0.32 log/mL) of A. niger were found through optimization assessment, and this fungus was chosen as a potential DDT-degrader. For DDT degradation investigations by A. niger in DDT-amended liquid media, gas chromatograph-electron capture detector technology was employed. DDT and its main metabolites, DDE and DDD, were eliminated from both media to the tune of 96-99 % at initial DDT concentrations of 1750, 3500, 5250, and 7000 ppm. In conclusion, it is a promising candidate for detoxifying and/or removing DDT and its breakdown products from contaminated environments.
Collapse
Affiliation(s)
- Girma Ebsa
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P. O. Box: 1176, Addis Ababa, Ethiopia
| | - Birhanu Gizaw
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P. O. Box: 1176, Addis Ababa, Ethiopia
| | - Mesele Admassie
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P. O. Box: 1176, Addis Ababa, Ethiopia
| | - Asnake Desalegn
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P. O. Box: 1176, Addis Ababa, Ethiopia
| | - Tesfaye Alemu
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P. O. Box: 1176, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Pathak HK, Chauhan PK, Seth CS, Dubey G, Upadhyay SK. Mechanistic and future prospects in rhizospheric engineering for agricultural contaminants removal, soil health restoration, and management of climate change stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172116. [PMID: 38575037 DOI: 10.1016/j.scitotenv.2024.172116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Climate change, food insecurity, and agricultural pollution are all serious challenges in the twenty-first century, impacting plant growth, soil quality, and food security. Innovative techniques are required to mitigate these negative outcomes. Toxic heavy metals (THMs), organic pollutants (OPs), and emerging contaminants (ECs), as well as other biotic and abiotic stressors, can all affect nutrient availability, plant metabolic pathways, agricultural productivity, and soil-fertility. Comprehending the interactions between root exudates, microorganisms, and modified biochar can aid in the fight against environmental problems such as the accumulation of pollutants and the stressful effects of climate change. Microbes can inhibit THMs uptake, degrade organic pollutants, releases biomolecules that regulate crop development under drought, salinity, pathogenic attack and other stresses. However, these microbial abilities are primarily demonstrated in research facilities rather than in contaminated or stressed habitats. Despite not being a perfect solution, biochar can remove THMs, OPs, and ECs from contaminated areas and reduce the impact of climate change on plants. We hypothesized that combining microorganisms with biochar to address the problems of contaminated soil and climate change stress would be effective in the field. Despite the fact that root exudates have the potential to attract selected microorganisms and biochar, there has been little attention paid to these areas, considering that this work addresses a critical knowledge gap of rhizospheric engineering mediated root exudates to foster microbial and biochar adaptation. Reducing the detrimental impacts of THMs, OPs, ECs, as well as abiotic and biotic stress, requires identifying the best root-associated microbes and biochar adaptation mechanisms.
Collapse
Affiliation(s)
- Himanshu K Pathak
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, India
| | - Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, India
| | | | - Gopal Dubey
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, India.
| |
Collapse
|
6
|
Sharma A, Verma K, Kumar A, Rani S, Chauhan K, Battan B, Kumar R. Delineating the role of host plants in regulating the water and salinity stress induced changes in sandalwood roots. 3 Biotech 2024; 14:133. [PMID: 38660477 PMCID: PMC11035507 DOI: 10.1007/s13205-024-03979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The interaction of root hemi-parasite (sandalwood) with its hosts is crucial for establishing successful plantations under abiotic stresses. In the present study, we explored the best possible host for sandalwood along with its effect on sandalwood physiology in terms of water and nutrients. Interactive effects of host species (Alternanthera sp., Azadirachta indica, Dalbergia sissoo, Melia dubia, and Aquilaria malaccensis) with sandalwood were observed under eight treatments {100% best available water (BAW); 100% BAW + nutrient medium; 50% water deficit; 50% water deficit + nutrient medium; 100% saline water (ECiw 8ds/m); 100% saline water (ECiw 8ds/m) + nutrient medium; 50% water deficit + saline water (ECiw 8ds/m); and 50% water deficit + saline water (ECiw 8ds/m) + nutrient medium}. A significant change in morpho-physiological traits of sandalwood roots was observed under different stress conditions, which were slightly improved through external supply of nutrient medium. Dalbergia sissoo (Shisham) and Melia dubia (Dek) seemed to be the best host plants providing better environment for sandalwood growth and development, i.e., higher plant height (59.7 and 53.68 cm) and collar diameter (3.24 and 3.07 mm) under stresses by maintaining water and ionic balance. Root length is an important parameter that was reduced by 27.58%, 19.22%, and 36.3% under water deficit, salinity, and combined stress of water deficit and salinity. Sandalwood grown with D. sissoo and M. dubia maintained the lowest Ψw (- 1.38 MPa) and Ψs (- 1.47 and - 1.48 MPa), respectively. In addition, sandalwood cultivated with D. sissoo and A. indica had higher accumulation of soluble proteins (0.48 and 0.42 mg/g) and soluble sugars (98.56 and 91.04 mg/g) in their roots. Results also showed that sandalwood roots had higher K+/Na+ with compatible host, i.e., with A. indica (1.85) and D. sissoo (1.83) than other studied hosts. It was also observed that sandalwood plants could not grow and survive alone under stress conditions even with application of nutrient medium. Based on the morphological traits, it was observed that sandalwood grown with hosts, Dalbergia sissoo and Melia dubia, was able to tolerate stress conditions better than other studied hosts. We can further recommend growing sandalwood with D. sissoo and M. dubia as a viable option to endure adverse environmental conditions.
Collapse
Affiliation(s)
- Aarju Sharma
- Kurukshetra University, Kurukshetra, 136119 India
- ICAR–Central Soil salinity Research Institute, Karnal, 132001 India
| | - Kamlesh Verma
- ICAR–Central Soil salinity Research Institute, Karnal, 132001 India
| | - Ashwani Kumar
- ICAR–Central Soil salinity Research Institute, Karnal, 132001 India
| | - Sulekha Rani
- Kurukshetra University, Kurukshetra, 136119 India
| | | | - Bindu Battan
- Kurukshetra University, Kurukshetra, 136119 India
| | - Raj Kumar
- ICAR–Central Soil salinity Research Institute, Karnal, 132001 India
| |
Collapse
|
7
|
Chauhan PK, Pathak HK, Dubey G, Sharma H, Upadhyay SK. Impact of Bacillus cereus SPB-10 on Growth Promotion of Wheat (Triticum aestivum L.) Under Arsenic-Contaminated Soil. Curr Microbiol 2024; 81:153. [PMID: 38652152 DOI: 10.1007/s00284-024-03673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
This study investigates the impact of bacteria on arsenic reduction in wheat plants, highlighting the potential of microbe-based eco-friendly strategies for plant growth. In the present study, bacterial isolate SPB-10 was survived at high concentration against both form of arsenic (As3+ and As5+). SPB-10 produced 5.2 g/L and 11.3 g/L of exo-polysaccharide at 20 ppm of As3+ and As5+, respectively, whereas qualitative examination revealed the highest siderophores ability. Other PGP attributes such as IAA production were recorded 52.12 mg/L and 95.82 mg/L, phosphate solubilization was 90.23 mg/L and 129 mg/L at 20 ppm of As3+ and As5+, respectively. Significant amount of CAT, APX, and Proline was also observed at 20 ppm of As3+ and As5+ in SPB-10. Isolate SPB-10 was molecularly identified as Bacillus cereus through 16S rRNA sequencing. After 42 days, wheat plants inoculated with SPB-10 had a 25% increase in shoot length and dry weight, and 26% rise in chlorophyll-a pigment under As5+ supplemented T4 treatment than control. Reducing sugar content was increased by 24% in T6-treated plants compared to control. Additionally, SPB-10 enhanced the content of essential nutrients (NPK), CAT, and APX in plant's-leaf under both As3+ and As5+ stressed conditions after 42 days. The study found that arsenic uptake in plant roots and shoots decreased in SPB-10-inoculated plants, with the maximum reduction observed in As5+ treated plants. Bio-concentration factor-BCF was reduced by 90.89% in SPB-10-inoculated treatment T4 after 42 days. This suggests that Bacillus cereus-SPB-10 may be beneficial for plant growth in arsenic-contaminated soil.
Collapse
Affiliation(s)
- Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Himanshu K Pathak
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Gopal Dubey
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Hritik Sharma
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India.
| |
Collapse
|
8
|
Wang T, Hussain I, Ma L, Zhong Y, Zhang W, Yang G. Rational synthesis of two isostructural thiophene-containing metal-organic frameworks toward photocatalytic degradation of organic pollutants. J Colloid Interface Sci 2024; 660:681-691. [PMID: 38271804 DOI: 10.1016/j.jcis.2024.01.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
In this work, thiophene moieties (as the crucial functional groups) have been successfully incorporated into the skeleton of metal-organic frameworks (MOFs) by using thienyl-substituted triazole ligands. Reaction of AgCF3SO3 with 3-phenyl-5-(2-thienyl)-1,2,4-triazole (PTTzH) or 3,5-bis(2-thienyl)-1,2,4-triazole (BTTzH) afforded two isostructural MOFs (AgTz-3 and AgTz-4) in gram-scale. AgTz-4 with higher thiophene content showed significantly stronger photocatalytic activity than AgTz-3 with lower thiophene content. Noteworthy, the photodegradation rate constants of AgTz-4 were 0.055 mg·L-1·min-1 for rhodamine B and 0.24 min-1 for salazosulfapyridine, which is comparable or even higher than some MOF-based materials reported in the literature. More importantly, AgTz-4 demonstrated good reusability and stability after four cycles of photodegradation. Our experimental results revealed that the enhanced photodegradation efficiency can be attributed to the increased light absorption capacity and optimized band structure of Ag-MOFs resulting from the introduction of thiophene groups into MOF structures.
Collapse
Affiliation(s)
- Tian Wang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001 Zhengzhou, Henan, PR China
| | - Imtiaz Hussain
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001 Zhengzhou, Henan, PR China
| | - Limin Ma
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001 Zhengzhou, Henan, PR China
| | - Yujin Zhong
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001 Zhengzhou, Henan, PR China
| | - Wenhua Zhang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001 Zhengzhou, Henan, PR China.
| | - Guang Yang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001 Zhengzhou, Henan, PR China.
| |
Collapse
|
9
|
Thi Yein W, Wang Q, Kim DS. Piezoelectric catalytic driven advanced oxidation process using two-dimensional metal dichalcogenides for wastewater pollutants remediation. CHEMOSPHERE 2024; 353:141524. [PMID: 38403122 DOI: 10.1016/j.chemosphere.2024.141524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
The public and society have increasingly recognized numerous grave environmental issues, including water pollution, attributed to the rapid expansion of industrialization and agriculture. Renewable energy-driven catalytic advanced oxidation processes (AOPs) represent a green, sustainable, and environmentally friendly approach to meet the demands of environmental remediation. In this context, 2D transition metal dichalcogenides (TMDCs) piezoelectric materials, with their non-centrosymmetric crystal structure, exhibit unique features. They create dipole polarization, inducing a built-in electric field that generates polarized holes and electrons and triggers redox reactions, thereby facilitating the generation of reactive oxygen species for wastewater pollutant remediation. A broad spectrum of 2D TMDCs piezoelectric materials have been explored in self-integrated Fenton-like processes and persulfate activation processes. These materials offer a more simplistic and practical method than traditional approaches. Consequently, this review highlights recent advancements in 2D TMDCs piezoelectric catalysts and their roles in wastewater pollutant remediation through piezocatalytic-driven AOPs, such as Fenton-like processes and sulfate radicals-based oxidation processes.
Collapse
Affiliation(s)
- Win Thi Yein
- Department of Environmental Science and Engineering, Ewha Womans University, New 11-1, Daehyeon-dong, Seodaemun-gu, Seoul, 120-750, Republic of Korea; Department of Industrial Chemistry, University of Yangon, Republic of the Union of Myanmar, Myanmar
| | - Qun Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Dong-Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, New 11-1, Daehyeon-dong, Seodaemun-gu, Seoul, 120-750, Republic of Korea.
| |
Collapse
|