1
|
Wan D, Shen Z, Shi N, Wang J, Zhang W, Shi Y, Wang P, He Q. S 0-dependent bio-reduction for antimonate detoxification from wastewater by an autotrophic bioreactor with internal recirculation. Biodegradation 2024; 36:1. [PMID: 39441247 DOI: 10.1007/s10532-024-10099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Elemental sulfur (S0) autotrophic reduction is a promising approach for antimonate [Sb(V)] removal from water; however, it is hard to achieve effective removal of total antimony (TSb). This study established internal recirculation in an S0 autotrophic bioreactor (SABIR) to enhance TSb removal from Sb(V)-contaminated water. Complete Sb(V) reduction (10 mg/L) with bare residual Sb(III) (< 0.26 mg/L) was achieved at hydraulic retention time (HRT) = 8 h. Shortening HRT adversely affected the removal efficiencies of Sb(V) and TSb; meanwhile, an increased reflux ratio was conducive to Sb(V) and TSb removal at the same HRT. Sulfur disproportionation occurred in the SABIR and was the primary source for SO42- generation and alkalinity consumption. The alkalinity consumption decreased with the shortening HRT and increased with an increased reflux ratio at the same HRT. The generated SO42- was significantly higher (50-100 times) than the theoretical value for Sb(V) reduction. Coefficient of variation (CV), first-order kinetic models, and osmolality analyses showed that internal recirculation did not significantly affect the stability of SABIR but contributed to enhancing TSb removal by increasing mass transfer and reflowing generated sulfide back to the SABIR. SEM-EDS, Raman spectroscopy, XRD and XPS analyses identified that the precipitates in the SABIR were Sb2S3 and Sb-S compounds. In addition, high-throughput sequencing analysis revealed the microbial community structure's temporal and spatial distribution in the SABIR. Dominant genera, including unclassified-Proteobacteria (18.72-38.99%), Thiomonas (0.94-4.87%) and Desulfitobacterium (1.18-2.75%) might be responsible for Sb(V) bio-reduction and removal. This study provides a strategy to remove Sb from water effectively and supports the theoretical basis for the practical application of the SABIR in Sb(V)-contaminated wastewater.
Collapse
Affiliation(s)
- Dongjin Wan
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan, China
- Zhengzhou Key Laboratory of Water Safety and Water Ecology Technology, Zhengzhou, 450001, Henan, China
| | - Zhan Shen
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Naiyuan Shi
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jiekai Wang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Weichao Zhang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yahui Shi
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Panting Wang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Qiaochong He
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China.
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan, China.
- Zhengzhou Key Laboratory of Water Safety and Water Ecology Technology, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
2
|
He P, Yang Q, Gu C, Liu M, Li P, Luo T, Chen J, Chen J, Zhu J, Gan M. Synergistic promotion of antimony transformation in the interaction of Acidithiobacillus ferrooxidans and pyrite by driving the formation of reactive oxygen species and secondary minerals. CHEMOSPHERE 2024; 363:142955. [PMID: 39069100 DOI: 10.1016/j.chemosphere.2024.142955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
As one of the important microorganisms in the mining area, the role of iron-sulfur oxidizing microorganisms in antimony (element symbolized as Sb) migration and transformation in mining environments has been largely neglected for a long time. Therefore, the processes of the typical iron-sulfur oxidizing bacterium Acidithiobacillus ferrooxidans (A. ferrooxidans) and pyrite interaction coupled with the migration and transformation of Sb were investigated in this paper. The bio-oxidation process of pyrite by A. ferrooxidans not only accelerates the oxidation rate of Sb(III) to Sb(V) (62.93% of 10 mg L-1 within 4 h), but also promotes the adsorption and precipitation of Sb (32.89 % of 10 mg L-1 within 96 h), and changes in the dosage of minerals, Sb concentration, and pH value affect the conversion of Sb. The characterization results show that the interaction between A. ferrooxidans and pyrite produces a variety of reactive species, such as H2O2 and •OH, resulting in the oxidation of Sb(III). In addition, A. ferrooxidans mediates the formation of stereotyped iron-sulfur secondary minerals that can act as a major driver of Sb (especially Sb(V)) adsorption or co-precipitation. This study contributes to the further understanding of the diversified biogeochemical processes of iron-sulfur oxidizing bacteria-iron-sulfur minerals-toxic metals in mining environments and provides ideas for the development of in-situ treatment technologies for Sb.
Collapse
Affiliation(s)
- Peng He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Quanliu Yang
- Guizhou Academy of Tobacco Sciences, Guiyang, 550011, China
| | - Chunyao Gu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Mengfei Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Penghui Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Ting Luo
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Jiancheng Chen
- Urban Geological Survey and Monitoring Institute of Hunan, Geological Bureau of Hunan Province, Changsha, 410014, China
| | - Junwen Chen
- Urban Geological Survey and Monitoring Institute of Hunan, Geological Bureau of Hunan Province, Changsha, 410014, China
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
3
|
Jabłońska-Czapla M, Rachwał M, Grygoyć K, Wawer-Liszka M. Application of soil magnetometry and geochemical methods to investigate soil contamination with antimony. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:287. [PMID: 38970741 PMCID: PMC11227468 DOI: 10.1007/s10653-024-02086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/18/2024] [Indexed: 07/08/2024]
Abstract
The aim of the study was an assessment of the pollution level and identification of the antimony sources in soils in areas subjected to industrial anthropopressure from: transport, metallurgy and electrical waste recycling. The combination of soil magnetometry, chemical analyzes using atomic spectrometry (ICP-OES and ICP-MS), Sb fractionation analysis, statistical analysis (Pearson's correlation matrix, factor analysis) as well as Geoaccumulation Index, Pollution Load Index, and Sb/As factor allowed not only the assessment of soil contamination degree, but also comprehensive identification of different Sb sources. The results indicate that the soil in the vicinity of the studied objects was characterized by high values of magnetic susceptibility and thus, high contents of potentially toxic elements. The most polluted area was in the vicinity of electrical waste processing plants. Research has shown that the impact of road traffic and wearing off brake blocks, i.e. traffic anthropopression in general, has little effect on the surrounding soil in terms of antimony content. Large amounts of Pb, Zn, As and Cd were found in the soil collected in the vicinity of the heap after the processing of zinc-lead ores, the average antimony (11.31 mg kg-1) content was lower in the vicinity of the heap than in the area around the electrical and electronic waste processing plant, but still very high. Antimony in the studied soils was demobilized and associated mainly with the residual fraction.
Collapse
Affiliation(s)
- Magdalena Jabłońska-Czapla
- Institute of Environmental Engineering of the Polish Academy of Sciences, 34 M. Skłodowska-Curie Street, 41-819, Zabrze, Poland
| | - Marzena Rachwał
- Institute of Safety Engineering, Fire University, 52/54 Slowackiego St., 01-629, Warsaw, Poland
| | - Katarzyna Grygoyć
- Institute of Environmental Engineering of the Polish Academy of Sciences, 34 M. Skłodowska-Curie Street, 41-819, Zabrze, Poland
| | - Małgorzata Wawer-Liszka
- Institute of Environmental Engineering of the Polish Academy of Sciences, 34 M. Skłodowska-Curie Street, 41-819, Zabrze, Poland.
| |
Collapse
|
4
|
Xiong Q, Ma X, Zhao L, Lv D, Xie L, Jiang L, He J, Zhu H, Wang J. Facile synthesis of Bi 3O(OH)(AsO 4) 2 and simultaneous photocatalytic oxidation and adsorption of Sb(III) from wastewater. CHEMOSPHERE 2024; 359:142308. [PMID: 38734246 DOI: 10.1016/j.chemosphere.2024.142308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Antimony (Sb) decontamination in water is necessary owing to the worsening pollution which seriously threatens human life safety. Designing bismuth-based photocatalysts with hydroxyls have attracted growing interest because of the broad bandgap and enhanced separation efficiency of photogenerated electron/hole pairs. Until now, the available photocatalysis information regarding bismuth-based photocatalysts with hydroxyls has remained scarce and the contemporary report has been largely limited to Bi3O(OH)(PO4)2 (BOHP). Herein, Bi3O(OH)(AsO4)2 (BOHAs), a novel ultraviolet photocatalyst, was fabricated via the co-precipitation method for the first time, and developed to simultaneous photocatalytic oxidation and adsorption of Sb(III). The rate constant of Sb(III) removal by the BOHAs was 32.4, 3.0, and 4.3 times higher than those of BiAsO4, BOHP, and TiO2, respectively, indicating that the introduction of hydroxyls could increase the removal of Sb(III). Additionally, the crucial operational parameters affecting the adsorption performance (catalyst dosage, concentration, pH, and common anions) were investigated. The BOHAs maintained 85% antimony decontamination of the initial yield after five successive cycles of photocatalysis. The Sb(III) removal involved photocatalytic oxidation of adsorbed Sb(III) and subsequent adsorption of the yielded Sb(V). With the acquired knowledge, we successfully applied the photocatalyst for antimony removal from industrial wastewater. In addition, BOHAs could also be powerful photocatalysts in the photodegradation of organic pollutants studies of which are ongoing. It reveals an effective strategy for synthesizing bismuth-based photocatalysts with hydroxyls and enhancing pollutants' decontamination.
Collapse
Affiliation(s)
- Qi Xiong
- School of Chemical Sciences and Technology, School of Materials and Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Engineering, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming, 650091, PR China; Institute of Frontier Technologies in Water Treatment Co., Ltd., Kunming, 650503, PR China
| | - Xiaoqian Ma
- School of Chemical Sciences and Technology, School of Materials and Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Engineering, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming, 650091, PR China; Institute of Frontier Technologies in Water Treatment Co., Ltd., Kunming, 650503, PR China
| | - Lixia Zhao
- School of Chemical Sciences and Technology, School of Materials and Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Engineering, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming, 650091, PR China; Institute of Frontier Technologies in Water Treatment Co., Ltd., Kunming, 650503, PR China
| | - Die Lv
- School of Chemical Sciences and Technology, School of Materials and Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Engineering, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming, 650091, PR China; Institute of Frontier Technologies in Water Treatment Co., Ltd., Kunming, 650503, PR China
| | - Lanxin Xie
- School of Chemical Sciences and Technology, School of Materials and Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Engineering, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming, 650091, PR China; Institute of Frontier Technologies in Water Treatment Co., Ltd., Kunming, 650503, PR China
| | - Liang Jiang
- School of Chemical Sciences and Technology, School of Materials and Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Engineering, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming, 650091, PR China; Institute of Frontier Technologies in Water Treatment Co., Ltd., Kunming, 650503, PR China
| | - Jiao He
- School of Chemical Sciences and Technology, School of Materials and Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Engineering, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming, 650091, PR China; Institute of Frontier Technologies in Water Treatment Co., Ltd., Kunming, 650503, PR China
| | - Huaiyong Zhu
- School of Chemical Sciences and Technology, School of Materials and Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Engineering, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming, 650091, PR China; Institute of Frontier Technologies in Water Treatment Co., Ltd., Kunming, 650503, PR China
| | - Jiaqiang Wang
- School of Chemical Sciences and Technology, School of Materials and Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Engineering, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming, 650091, PR China; Institute of Frontier Technologies in Water Treatment Co., Ltd., Kunming, 650503, PR China.
| |
Collapse
|
5
|
Liu C, Huang D, Sheng X, Zhu J, Dong S, Chen S, Wang Y, Tang A, Duan R, Yang Z, Bai J, Zheng Y. Integrated physiological, intestinal microbiota, and metabolomic responses of adult zebrafish (Danio rerio) to subacute exposure to antimony at environmentally relevant concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116326. [PMID: 38640800 DOI: 10.1016/j.ecoenv.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
The available information regarding the impact of antimony (Sb), a novel environmental pollutant, on the intestinal microbiota and host health is limited. In this study, we conducted physiological characterizations to investigate the response of adult zebrafish to different environmental concentrations (0, 30, 300, and 3000 µg/L) of Sb over a period of 14 days. Biochemical and pathological changes demonstrated that Sb effectively compromised the integrity of the intestinal physical barrier and induced inflammatory responses as well as oxidative stress. Analysis of both intestinal microbial community and metabolome revealed that exposure to 0 and 30 µg/L of Sb resulted in similar microbiota structures; however, exposure to 300 µg/L altered microbial communities' composition (e.g., a decline in genus Cetobacterium and an increase in Vibrio). Furthermore, exposure to 300 µg/L significantly decreased levels of bile acids and glycerophospholipids while triggering intestinal inflammation but activating self-protective mechanisms such as antibiotic presence. Notably, even exposure to 30 µg/L of Sb can trigger dysbiosis of intestinal microbiota and metabolites, potentially impacting fish health through the "microbiota-intestine-brain axis" and contributing to disease initiation. This study provides valuable insights into toxicity-related information concerning environmental impacts of Sb on aquatic organisms with significant implications for developing management strategies.
Collapse
Affiliation(s)
- Can Liu
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Dongmei Huang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Xiangquan Sheng
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jianzhong Zhu
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Si Dong
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Song Chen
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Yaying Wang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Ao Tang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Renyan Duan
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Zeliang Yang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jing Bai
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China.
| | - Yu Zheng
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China.
| |
Collapse
|
6
|
Kambara R, Yamamura S, Amachi S. Identification of bacterial dissimilatory antimonate reductase AnrA: genes and proteins involved in antimonate respiration and resistance in Geobacter sp. strain SVR. Appl Environ Microbiol 2024; 90:e0172923. [PMID: 38411083 PMCID: PMC11206593 DOI: 10.1128/aem.01729-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/27/2024] [Indexed: 02/28/2024] Open
Abstract
Geobacter sp. strain SVR uses antimonate [Sb(V)] as a terminal electron acceptor for anaerobic respiration. Here, we visualized a possible key enzyme, periplasmic Sb(V) reductase (Anr), via active staining and non-denaturing gel electrophoresis. Liquid chromatography-tandem mass spectrometry analysis revealed that a novel dimethyl sulfoxide (DMSO) reductase family protein, WP_173201954.1, is involved in Anr. This protein was closely related with AnrA, a protein suggested to be the catalytic subunit of a respiratory Sb(V) reductase in Desulfuribacillus stibiiarsenatis. The anr genes of strain SVR (anrXSRBAD) formed an operon-like structure, and their transcription was upregulated under Sb(V)-respiring conditions. The expression of anrA gene was induced by more than 1 µM of antimonite [Sb(III)]; however, arsenite [As(III)] did not induce the expression of anrA gene. Tandem mass tag-based proteomic analysis revealed that, in addition to Anr proteins, proteins in the following categories were upregulated under Sb(V)-respiring conditions: (i) Sb(III) efflux systems such as Ant and Ars; (ii) antioxidizing proteins such as ferritin, rubredoxin, and thioredoxin; (iii) protein quality control systems such as HspA, HslO, and DnaK; and (iv) DNA repair proteins such as UspA and UvrB. These results suggest that strain SVR copes with antimony stress by modulating pleiotropic processes to resist and actively metabolize antimony. To the best of our knowledge, this is the first report to demonstrate the involvement of AnrA in Sb(V) respiration at the protein level. Furthermore, this is the first example to show high expression of the Ant system proteins in the Sb(V)-respiring bacterium.IMPORTANCEAntimony (Sb) exists mainly as antimonite [Sb(III)] or antimonate [Sb(V)] in the environment, and Sb(III) is more toxic than Sb(V). Recently, microbial involvement in Sb redox reactions has received attention. Although more than 90 Sb(III)-oxidizing bacteria have been reported, information on Sb(V)-reducing bacteria is limited. Especially, the enzyme involved in dissimilatory Sb(V) reduction, or Sb(V) respiration, is unclear, despite this pathway being very important for the circulation of Sb in nature. In this study, we demonstrated that the Sb(V) reductase (Anr) of an Sb(V)-respiring bacterium (Geobacter sp. SVR) is a novel member of the dimethyl sulfoxide (DMSO) reductase family. In addition, we found that strain SVR copes with Sb stress by modulating pleiotropic processes, including the Ant and Ars systems, and upregulating the antioxidant and quality control protein levels. Considering the abundance and diversity of putative anr genes in the environment, Anr may play a significant role in global Sb cycling in both marine and terrestrial environments.
Collapse
Affiliation(s)
- Ryoya Kambara
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Shigeki Yamamura
- Center for Regional Environmental Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Seigo Amachi
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| |
Collapse
|
7
|
Chen H, Li J, Dai Z, Ai Y, Jia Y, Han L, Zhang W, Chen M. In-situ immobilization of arsenic and antimony containing acid mine drainage through chemically forming layered double hydroxides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166601. [PMID: 37634714 DOI: 10.1016/j.scitotenv.2023.166601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Acid mine drainage (AMD) rich in arsenic (As) and antimony (Sb) is considered as a significant environmental challenge internationally. However, simultaneous removal of As and Sb from AMD is still inadequately studied. In this study, a highly effective and simple approach was proposed for mitigating As and Sb-rich AMD, which involves in-situ formation of layered double hydroxides (LDHs). Following the treatment, the residual concentrations of iron (Fe), magnesium (Mg), sulfate, As and Sb in field AMD were decreased from their initial concentrations of 1690, 1524, 2055, 7.8 and 10.6 mg L-1, respectively, to 1.3, 12.4, 623, 0.006 and 0.004 mg L-1, respectively. Chemical formula of the resulting As and Sb-loaded LDHs can be identified as Mg4.226Fe2.024OH2SO4AsSb0.006∙mH2O. The dissolution rates of metal(loid)s in As and Sb-loaded LDH were lower than 1% under strongly acidic and alkaline environments. In presence of the mixed adsorbates, the As immobilization capacity by LDHs was significantly decreased, with an apparent intervention from Sb. However, As did not have a significant effect on the immobilization of Sb by LDH. As was immobilized by LDHs through anion exchange and complexation with -OH groups, while Sb was captured by anion exchange and complexation with [Formula: see text] . Density functional theory (DFT) calculations further proved the above conclusions. This novel approach is effective and can be applied for in-situ AMD treatment from abandoned mines.
Collapse
Affiliation(s)
- Hongping Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jing Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhengbo Dai
- Zhejiang Environmental Monitoring Engineering Co Ltd, Hangzhou 310012, China
| | - Yulu Ai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufei Jia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Han
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenying Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mengfang Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
8
|
Ma S, Ji J, Mou Y, Shen X, Xu S. Enhanced adsorption for trivalent antimony by nano-zero-valent iron-loaded biochar: performance, mechanism, and sustainability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112536-112547. [PMID: 37831269 DOI: 10.1007/s11356-023-30299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
The discharge of tailing leachate and metallurgical wastewater has led to an increasing trend of water pollution. In this study, nZVI-modified low-temperature biochar was used to adsorb Sb(III) from water. The adsorption capacity and speed of nZVI-BC were better than those of BC, and the best adsorption effect was observed for 4nZVI-BC, with 93.60 mg·g-1 maximum adsorptive capacity, which was 208.61% higher than the original BC. The Langmuir and Temkin models were well fitted (R2 ≥ 0.99), and PSO was more in line with the 4nZVI-BC adsorption process, indicating that the adsorption was a monolayer physico-chemical adsorption. The combination of XRD, FTIR, and XPS characterization demonstrated that the adsorption mechanism predominantly included redox reactions, complexation, and electrostatic interactions. The thermodynamic results demonstrated that 4nZVI-BC adsorption on Sb(III) was a spontaneous endothermic process. Additionally, the order of the influence of interfering ions on 4nZVI-BC was CO32- > H2PO4- > SO42- > Cl-. After three repeated uses and adsorption-desorption, the adsorption ratio of Sb(III) by 4nZVI-BC was still as high as 90% and 65%, respectively. This study provides a theoretical reference for the exploration and development of Sb(III) removal technologies for aquatic environments.
Collapse
Affiliation(s)
- Siyi Ma
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, GuizhouGuiyang, 550025, China
- College of Resources and Environmental Engineering, Guizhou University, GuizhouGuiyang, 550025, China
| | - Jianghao Ji
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yizhen Mou
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, GuizhouGuiyang, 550025, China
- College of Resources and Environmental Engineering, Guizhou University, GuizhouGuiyang, 550025, China
| | - Xueyi Shen
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, GuizhouGuiyang, 550025, China
- College of Resources and Environmental Engineering, Guizhou University, GuizhouGuiyang, 550025, China
| | - Siqin Xu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, GuizhouGuiyang, 550025, China.
- College of Resources and Environmental Engineering, Guizhou University, GuizhouGuiyang, 550025, China.
| |
Collapse
|
9
|
Jia X, Majzlan J, Ma L, Liu P, Fan P, Li W, Zhou J, Wen B. Novel insights into the mechanisms for Sb mobilization in groundwater in a mining area: A colloid field study. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132212. [PMID: 37579718 DOI: 10.1016/j.jhazmat.2023.132212] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Colloids may play an important role in the geochemical cycle of antimony (Sb). However, the controlling behaviors of colloids on Sb fate in contaminated groundwater are not available. To investigate the effects of colloids on Sb mobility, groundwater samples from Xikuangshan Sb Mine's two main aquifers (the D3s2 aquifer and the D3x4 aquifer) were successively (ultra)filtered through progressively decreasing pore sizes (0.45 µm, 100 kDa, 50 kDa and 5 kDa). The results showed that 0.1-84.1% of Sb was adsorbed or carried by colloids, which corresponded to Sb concentration ranging between 0 and 2973 μg/L in the colloids (0.45 µm - 5 kDa). In both aquifers, Sb was closely associated with organic colloids (r = 0.72 p < 0.05 for the D3x4 aquifer, r = 0.94 p < 0.01 for the D3s2 aquifer). Parallel factor analysis of the three-dimensional fluorescence spectra determined that the protein-like substances in the D3x4 aquifer and the humus-like substances in the D3s2 aquifer controlled Sb behavior. X-ray absorption spectroscopy confirmed Sb complexing with organic substances. Competitive adsorption of As and Sb suppressed the complexation of colloids with Sb, particularly in the D3x4 aquifer (r = -0.71, p < 0.05). Sb mobility was also influenced by the redox of the groundwater system. As the oxidation-reduction potential and dissolved oxygen increased, Sb in the colloidal fractions decreased. These findings provide new insights into the mechanisms involved in Sb fate affected by colloids, establishing the theoretical basis for developing effective Sb and even metalloid pollution remediation strategies.
Collapse
Affiliation(s)
- Xiaocen Jia
- School of Environmental Studies, China University of Geosciences, 430078 Wuhan, PR China
| | - Juraj Majzlan
- Institute of Geosciences, Friedrich Schiller University Jena, 07749 Jena, Germany
| | - Liyuan Ma
- School of Environmental Studies, China University of Geosciences, 430078 Wuhan, PR China
| | - Peng Liu
- School of Environmental Studies, China University of Geosciences, 430078 Wuhan, PR China
| | - Peikuan Fan
- School of Environmental Studies, China University of Geosciences, 430078 Wuhan, PR China
| | - Wanyu Li
- School of Environmental Studies, China University of Geosciences, 430078 Wuhan, PR China
| | - Jianwei Zhou
- School of Environmental Studies, China University of Geosciences, 430078 Wuhan, PR China; Key Laboratory of Mine Ecological Effects and System Restoration, Ministry of Natural Resources, 100081 Beijing, PR China.
| | - Bing Wen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, 210042 Nanjing, PR China.
| |
Collapse
|
10
|
Wang Q, Nie Y, Wu Z, Yang Y. Speciation of trace amounts of Sb(III) and Sb(V) in environmental water using inductively coupled plasma mass spectrometry after magnetic solid-phase extraction with rGO/Fe 3O 4. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4758-4766. [PMID: 37694569 DOI: 10.1039/d3ay01185b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
We developed an approach of magnetic dispersive solid-phase extraction (MSPE) based on magnetic graphene nanocomposite rGO/Fe3O4 for the determination of trace Sb(III) and Sb(V) using inductively coupled plasma mass spectrometry (ICP-MS). Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the sorbent. The adsorption behavior of Sb(III) and Sb(V) on rGO/Fe3O4 was investigated. The results showed that the adsorption capacity of Sb(V) was nearly zero at pH = 9, while Sb(III) could be well adsorbed on rGO/Fe3O4. The magnetic SPE parameters including pH, adsorbent dosage, eluent type, and volume were optimized. The detection limit of Sb(III) under ideal conditions was 6 ng L-1, and the relative standard deviation was 7.6% (c = 1 g L-1, n = 7). The technique was used to identify Sb(III) at trace levels in environmental water samples, and its validity was examined by recovery experiments and the examination of an approved reference material.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
| | - Yulin Nie
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China.
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
11
|
Long J, Zhou D, Wang J, Huang B, Luo Y, Zhang G, Liu Z, Lei M. Repeated inoculation of antimony resistant bacterium reduces antimony accumulation in rice plants. CHEMOSPHERE 2023; 327:138335. [PMID: 36948256 DOI: 10.1016/j.chemosphere.2023.138335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Applying beneficial bacteria in rice rhizosphere to manage heavy metal behaviour in soil-plant system is a promising strategy. However, colonization/domination of exogenous bacteria in rhizosphere soils remains a challenge. In this study, a bacterium Ochrobactrum anthropi, which showed the potential of transforming soluble SbIII into Sb2O3 mineral, was repeatedly inoculated into the rice rhizosphere weekly throughout the rice growth period, and the colonization of this bacterium in rice rhizosphere soils and its effect on Sb accumulation in rice plants were investigated. Results showed that repeated inoculants changed the native bacterial community in rhizosphere soils in comparison with the control, but the inoculated O. anthropi was not identified as an abundant species. With weekly inoculation, the decrease in Sb in rice roots and straws was maintained throughout the rice growth period, with decrease percentages ranging from 36 to 49% and 33-35%. In addition, decrease percentages of Sb in husks and grains at the maturing stage obtained 34 and 37%, respectively. Furthermore, the XRD identified the formation of valentinite (Sb2O3) on rice root in inoculation treatment, and the decrease percentages in aqueous SbIII in rhizosphere were 53-100% through the growth period. It demonstrated that weekly inoculants performed their temporary activity of valentinite formation, and reduced Sb accumulation in rice plants efficiently. This study suggests that regardless of successful colonization, repeated inoculation of beneficial bacteria is an option to facilitate the positive effects of inoculated bacteria in the management of heavy metal behaviour.
Collapse
Affiliation(s)
- Jiumei Long
- Hunan Key Laboratory for Conservation & Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, 421008, PR China
| | - Dongsheng Zhou
- Hunan Key Laboratory for Conservation & Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, 421008, PR China
| | - Jing Wang
- Hunan Key Laboratory for Conservation & Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, 421008, PR China
| | - Binyan Huang
- Hunan Key Laboratory for Conservation & Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, 421008, PR China
| | - Yuanlai Luo
- Hunan Key Laboratory for Conservation & Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, 421008, PR China
| | - Guocheng Zhang
- Hunan Key Laboratory for Conservation & Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, 421008, PR China
| | - Zui Liu
- Hunan Key Laboratory for Conservation & Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, 421008, PR China
| | - Ming Lei
- Hunan Engineering Research Center for Safe & High-Efficient Utilization of Heavy Metal Pollution Farmland, College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China.
| |
Collapse
|
12
|
Yao Q, Yang A, Hu X, Zou H, Chen J, Li Q, Lv S, Yu X, Li C. Effects of antimony exposure on DNA damage and genome-wide variation in zebrafish (Danio rerio) liver. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106524. [PMID: 37031539 DOI: 10.1016/j.aquatox.2023.106524] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023]
Abstract
Antimony (Sb) is a potentially toxic and carcinogenic cumulative contaminant that poses a serious threat to aquatic ecosystems. To better clarify the genotoxicity of Sb and its mechanism of action. In this study, we investigated DNA damage and genome-wide variation in the liver of a model organism, zebrafish (Danio rerio), under subacute Sb exposure and explored its potential toxicological mechanisms. The results showed that medium and high concentrations of Sb significantly reduced the total antioxidant capacity and increased the content of reactive oxygen species in zebrafish liver, and further studies revealed that it increased oxidative DNA damage and DNA-DNA cross-link (DDC), but had little effect on DNA-protein cross-link (DPC). The result of resequencing showed that the mutation sites of the genes with high concentrations of Sb were higher than those with medium concentrations, and the mutation was mainly a single nucleotide. The pathways significantly enriched for nonsynonymous single nucleotide polymorphisms (SNPs) and insertion/deletion mutations (InDels) variant genes in the coding regions of both the medium and high Sb-treated groups were ECM-receptor interactions, and the high Sb-treated group also included lysine degradation, hematopoietic cell lineage, and cytokine-cytokine receptor interactions. This suggests that ECM-receptor interactions play an important role in the mechanism of antimony toxicity to the liver of zebrafish.
Collapse
Affiliation(s)
- Qin Yao
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Aijiang Yang
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China.
| | - Xia Hu
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China
| | - HaiTao Zou
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Jiangfeng Chen
- The College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Qing Li
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Shenghan Lv
- Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550025, PR China
| | - Xuegang Yu
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Cixing Li
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
13
|
Silva-Gigante M, Hinojosa-Reyes L, Rosas-Castor JM, Quero-Jiménez PC, Pino-Sandoval DA, Guzmán-Mar JL. Heavy metals and metalloids accumulation in common beans (Phaseolus vulgaris L.): A review. CHEMOSPHERE 2023:139010. [PMID: 37236281 DOI: 10.1016/j.chemosphere.2023.139010] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/30/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
This review focuses on evaluating the accumulation and translocation of As, Cd, Hg, and Pb in Phaseolus vulgaris L. plants and on the possible effects of these elements on the growth of Phaseolus vulgaris L. in soil contaminated with these elements. Heavy metals (HMs) and metalloids (Ms) such as arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) represent serious environmental threats due to their wide abundance and high toxicity. HMs and Ms contamination in water and soils from natural or anthropogenic sources, is of great concern in agricultural production due to their toxic effects on plants, adversely affecting food safety and plant growth. The uptake of HMs and Ms by Phaseolus vulgaris L. plants depends on several factors including soil properties such as pH, phosphate, and organic matter. High concentrations of HMs and Ms could be toxic to plants due to the increased generation of ROS such as (O2•-), (•OH), (H2O2), and (1O2) and oxidative stress due to an imbalance between ROS generation and antioxidant enzyme activity. To minimize the effects of ROS, plants have developed a complex defense mechanism based on the activity of antioxidant enzymes such as SOD, CAT, GPX, etc., and phytohormones, especially salicylic acid (SA) that can reduce the toxicity of HMs and Ms in the factors that affect the uptake of these elements by bean plants, and in addition, defense mechanisms under oxidative stress caused by the presence of As, Cd, Hg, and Pb.
Collapse
Affiliation(s)
- M Silva-Gigante
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, San Nicolás de Los Garza, Nuevo León, 66455, Mexico
| | - L Hinojosa-Reyes
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, San Nicolás de Los Garza, Nuevo León, 66455, Mexico
| | - J M Rosas-Castor
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, San Nicolás de Los Garza, Nuevo León, 66455, Mexico
| | - P C Quero-Jiménez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, San Nicolás de Los Garza, Nuevo León, 66455, Mexico
| | - D A Pino-Sandoval
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, San Nicolás de Los Garza, Nuevo León, 66455, Mexico
| | - J L Guzmán-Mar
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, San Nicolás de Los Garza, Nuevo León, 66455, Mexico.
| |
Collapse
|
14
|
Mao L, Ren W, Liu X, He M, Zhang BT, Lin C, Ouyang W. Mercury contamination in the water and sediments of a typical inland river - Lake basin in China: Occurrence, sources, migration and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130724. [PMID: 36610344 DOI: 10.1016/j.jhazmat.2023.130724] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
In the area affected by non-ferrous metal mining activities, mercury (Hg) contamination in the water and sediments posed potential risks to ecology and human health. In this study, river water and sediment samples were collected in the Zijiang river - South Dongting Lake basin to analyze Hg residues, identify potential Hg sources and evaluate the ecological and health risks posed by Hg contamination. In this study, the average concentrations of THg, PHg, DHg and DMeHg in river water were 38.05 ± 27.13 ng/L, 25.18 ± 26.83 ng/L, 12.88 ± 9.64 ng/L and 0.29 ± 0.07 ng/L, respectively. The THg and MeHg contents in sediments were 234.24 ± 152.93 µg/kg and 0.48 ± 0.16 µg/kg, respectively. The more enrichment of Hg in sediments was observed in the Zijiang River than in the South Dongting Lake, especially in the upstream and midstream regions. Two potential Hg sources in the basin were identified by correlation matrix, principal component analysis (PCA) and positive matrix factorization (PMF) model. The comparable Hg flux with other rivers worldwide was found in the Zijiang River (0.53 Mg/y). Furthermore, it was found by the delayed geochemical hazard (DGH) model that the ecological risk of Hg was more significant in the Zijiang River with more frequent transformation pathways. For different populations, the health risk values caused by Hg were all lower than the USEPA's guideline value. This study provided sound evidence for further control of Hg contamination.
Collapse
Affiliation(s)
- Lulu Mao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wenbo Ren
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bo-Tao Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
15
|
Wen B, Zhou J, Tang P, Jia X, Zhou W, Huang J. Antimony (Sb) isotopic signature in water systems from the world's largest Sb mine, central China: Novel insights to trace Sb source and mobilization. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130622. [PMID: 36580776 DOI: 10.1016/j.jhazmat.2022.130622] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The Xikuangshan (XKS) mine, the world's largest antimony (Sb) mine, was chosen for a detailed Sb isotopic signature study owing to its historical Sb contamination of water systems. Hydrochemical data, in particularδ123Sb values, were analyzed to identify the Sb source and predominant geochemical processes that affect Sb mobilization in different waters. The δ123Sb values of waters from the XKS Sb mine range from - 0.20‰ to + 0.73‰. In particular, the δ123Sb values of the main Feishuiyan stream do not significantly vary (+0.19‰-+0.24‰), while those of groundwater in different aquifers (-0.08‰ to +0.73‰) and mine water in different adits (-0.20‰ to +0.37‰) vary over a wide range. The relationships between δ123Sb values and Sb concentrations indicate that a simple dilution of Sb and a weak Sb adsorption onto Fe/Mn suspended particles and sediments in the Feishuiyan stream may occur, oxidative weathering and leaching infiltration of Sb-containing waste rocks and slags may cause variations in the δ123Sb values in groundwater, and Sb mobilization in the mine water is influenced by a combination of processes (oxidative dissolution, adsorption of Fe/Mn (hydr)oxides, and mixing). A conceptual hydrogeochemical model was summarized to elucidate the Sb source and mobilization in water systems from the XKS Sb mine.
Collapse
Affiliation(s)
- Bing Wen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, 210042 Nanjing, People's Republic of China
| | - Jianwei Zhou
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, People's Republic of China; Key Laboratory of Mine Ecological Effects and System Restoration, Ministry of Natural Resources, 100081 Beijing, People's Republic of China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, 430000 Wuhan, People's Republic of China.
| | - Peidong Tang
- Shanxi Transportation Planning Survey and Design Institute Co., Ltd., 030032 Taiyuan, People's Republic of China
| | - Xiaocen Jia
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, People's Republic of China
| | - Weiqing Zhou
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, People's Republic of China
| | - Jianbo Huang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, 210042 Nanjing, People's Republic of China
| |
Collapse
|
16
|
Chen W, Liu P, Luo Y, Li B, Peng J, Jin X. Behavior of Sb and As in the hydrogeochemistry of adjacent karst underground river systems and the responses of such systems to mining activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159411. [PMID: 36243076 DOI: 10.1016/j.scitotenv.2022.159411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Through the investigation of Qinglong mining area and adjacent karst underground river system, mining activities and water-rock interactions are found to control the hydrogeochemical evolution of karst underground water. Along the flow direction of the karst underground river, the hydro-chemical type is converted from HCO3-Ca type to SO4-Ca type. The concentrations of Sb and As also gradually decrease. Using PHREEQC to calculate the SI shows that: in the karst underground river system, both gypsum and fluorite are unsaturated, indicating a high degree of water-rock interaction. LogPCO2 is negatively correlated with pH, indicating that the karst underground river systems are both open systems. The dissolution of carbonate minerals and the alternate adsorption of ions are the main water-rock interactions that lead to the rapid decline of Sb and As concentrations. This research also applies principal component analysis to identify the types of pollution in adjacent karst underground river systems. The results show that the LongBaiwei underground river was mainly affected by coal mining activities, and Fe was more prominent; the ShuiYa underground river was more significantly affected by the leachate from the antimony tailings yard. This study provides a scientific basis for the evolution of the water environment as well as strategies for pollution prevention and control in typical karst underground river systems owing to the influence of mining activities.
Collapse
Affiliation(s)
- Weixiao Chen
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Pu Liu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Ying Luo
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Bo Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jichao Peng
- Bureau of Natural Resources of Qianxinan Prefecture, Xingyi 562400, China
| | - Xuejiao Jin
- Guizhou Province Research Institute of Coal Mine Design Co., Ltd, Guiyang 550025, China
| |
Collapse
|
17
|
Liu H, Zeng W, He M, Lin C, Ouyang W, Liu X. Occurrence, distribution, and migration of antimony in the Zijiang River around a superlarge antimony deposit zone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120520. [PMID: 36306886 DOI: 10.1016/j.envpol.2022.120520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Under the environmental changes associated with mine tributaries entering mainstream rivers, differences in the distributions and migration behaviors of metal(loid)s can be found, but the behavior of antimony (Sb) is still poorly understood in this regard. We analyzed the occurrence, distribution, migration, and influencing factors of the Sb concentration in the water body of the Zijiang River (ZR) around a superlarge Sb deposit zone. The total Sb concentrations were 1.45-15.66 μg/L, 3.16-133.63 mg/kg, and 0.83-41.82 μg/L in the ZR surface waters, sediments, and pore waters, respectively; Sb(V) was the predominant form of Sb found in the surface waters. Mining and smelting were the main sources of Sb in the ZR. Spatially, the Sb concentration showed a decreasing trend from the tributaries to the ZR mainstream. In the ZR, the surface-water Sb concentration showed an increasing trend from the upstream to the downstream, while in the sediments and pore waters, the midstream Sb concentrations were higher than the upstream and downstream concentrations; this finding was related to the sediment retention and accumulation behaviors of reservoirs and dams resulting in the secondary release of Sb in sediments. Sb tended to be bound to the solid phase, dominated by amorphous iron (Fe)/aluminum (Al) oxides and calcium in sediments. This study highlights that, based on current Sb migration patterns, the accumulation of sediments carried by tributaries near Sb mines in the midstream ZR and the Sb pollution caused by sediment release will be long-term, and the related environmental consequences need to be further predicted.
Collapse
Affiliation(s)
- Huiji Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Zeng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
18
|
Xie Q, Ren B. Pollution and risk assessment of heavy metals in rivers in the antimony capital of Xikuangshan. Sci Rep 2022; 12:14393. [PMID: 35999241 PMCID: PMC9399248 DOI: 10.1038/s41598-022-18584-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Xikuangshan (XKS) is the world's largest antimony mining region, and its exploitation for hundreds of years has also resulted in serious soil erosion, fragile ecology, contaminated water, and shortage water. Through systematic and scientific collection samples from the rivers in XKS, the Nemerow index (NI), modified heavy metal pollution index (m-HPI), ecological risk index, and health risk indexeswere used to evaluate and analyze the water quality, pollution levels and risks of heavy metals (Sb, As, Mn, Pb, Zn, Hg, Cd) to ecology and humans in XKS. The results showed that the average concentrations of TN, TP, Sb, As and Hg in surface water were 0.48 mg/L (0–4.34 mg/L), 2.58 mg/L (0–4.34 mg/L), 1.05 mg/L (0.0009–5.33 mg/L), 1.06 mg/L (BDL–19.60 mg/L) and 0.00084 mg/L (LDBL–0.0036 mg/L), respectively, exceeding the limits of the Chinese surface water quality standards. Based on the m-HPI method, only 8.57% of the sampling points are classified as the worst water quality. However, according to the NI method, about 7.14% and 87.16% of the sampling points in the study area are moderately and severely polluted, respectively. The results of heavy metal pollution based on the NI evaluation is were more serious than that on the m-HPI method. The values of ecological risk assessment varied from 22.69 to 7351.20, revealed that heavy metals pose a very serious risk to the surface water ecosystem at more than 50% of the sampling sites, and Sb and As are the main pollutants, followed by Hg. The total non-carcinogenic risk index (TCR) for adults and children were 47.70 and 90.10 respectively, Sb and As is the main non-carcinogenic risk factor. For adults and children, the average carcinogenic risk (CR) of As was 6.49 × 10–3 and 1.05 × 10–2, respectively, and exceeded the threshold of 1 × 10–4, indicating a high carcinogenic risk.
Collapse
Affiliation(s)
- Qing Xie
- School of Resources, Environment and Safe Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Bozhi Ren
- School of Resources, Environment and Safe Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| |
Collapse
|
19
|
He Q, Liu Y, Wan D, Liu Y, Xiao S, Wang Y, Shi Y. Enhanced biological antimony removal from water by combining elemental sulfur autotrophic reduction and disproportionation. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128926. [PMID: 35452992 DOI: 10.1016/j.jhazmat.2022.128926] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Antimony (Sb), a toxic metalloid, has serious negative effects on human health and its pollution has become a global environmental problem. Bio-reduction of Sb(V) is an effective Sb-removal approach. This work, for the first time, demonstrates the feasibility of autotrophic Sb(V) bio-reduction and removal coupled to anaerobic oxidation of elemental sulfur (S0). In the S0-based biological system, Sb(V) was reduced to Sb(III) via autotrophic bacteria by using S0 as electron donor. Meanwhile, S0 disproportionation reaction occurred under anaerobic condition, generating sulfide and SO42- in the bio-systems. Subsequently, Sb(III) reacted with sulfide and formed Sb(III)-S precipitate, achieving an effective total Sb removal. The precipitate was identified as Sb2S3 by SEM-EDS, XPS, XRD and Raman spectrum analyses. In addition, it was found that co-existing nitrate inhibited the Sb removal, as nitrate is the favored electron acceptor over Sb(V). In contrast, the bio-reduction of co-existing SO42- enhanced sulfide generation, followed by promoting Sb(V) reduction and precipitation. Illumina high-throughput sequencing analysis revealed that Metallibacterium, Citrobacter and Thiobacillus might be responsible for Sb(V) reduction and S0 disproportionation. This study provides a promising approach for the remediation of Sb(V)-contaminated water.
Collapse
Affiliation(s)
- Qiaochong He
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| | - Yang Liu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Dongjin Wan
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China.
| | - Yongde Liu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shuhu Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yiduo Wang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yahui Shi
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
20
|
Li L, Liao L, Wang B, Li W, Liu T, Wu P, Xu Q, Liu S. Effective Sb(V) removal from aqueous solution using phosphogypsum-modified biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119032. [PMID: 35217137 DOI: 10.1016/j.envpol.2022.119032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Antimonate is the dominant form of antimony (Sb) in Sb mine water. The treatment of high-Sb mine water essentially reduces the discharge of antimonate oxyanions ([Sb(OH)6]-) in it. Biochar obtained from phosphogypsum-modified anaerobic digested distillers' grain (PADC) can effectively adsorb antimonate from water. In this work, using batch adsorption experiments, mathematical models, and characterization methods, the mechanism of Sb(V) adsorption by PADC was studied. Compared with pristine biochar, PADC biochar showed abundant lamellar and vesicular structures with significant calcium ion loading on the surface. The kinetics data of the adsorption of Sb(V) on the PADC biochar followed the Elovich equation (R2 = 0.992), indicating that heterogeneous adsorption had occurred. The results also showed that intraparticle diffusion played an important role in controlling Sb(V) adsorption by PADC biochar. The Redlich-Peterson model best fit the Sb(V) adsorption isotherm (R2 = 0.997), indicating that the adsorption was a combination of the Langmuir and Freundlich models. The maximum adsorption capacity of PADC biochar for Sb(V) is 8123 mg/kg, which is more than twice that of the pristine biochar (3487 mg/kg) and is sufficient for Sb(V) treatment in most mine water. Fourier transform infrared (FTIR) spectra, X-ray photoelectron spectroscopy (XPS), X-ray diffractometry (XRD), and Transmission electron microscopy with energy dispersive X-ray spectroscopy (TEM-EDS) analyses revealed that the dominant mechanism of Sb(V) removal by PADC biochar was the formation of Ca-O-Sb complexes or amorphous surface precipitation as well as electrostatic adsorption. This work demonstrated the potential of PADC biochar in the treatment of Sb-contaminated mine water.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Lu Liao
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Bing Wang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Wei Li
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Taoze Liu
- College of Eco-Environmental Engineering, Institute of Karst Wetland Ecology, Guizhou Minzu University, Guiyang, 550025, China
| | - Pan Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
| | - Qingya Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; College of Eco-Environmental Engineering, Institute of Karst Wetland Ecology, Guizhou Minzu University, Guiyang, 550025, China
| | - Shirong Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
21
|
Sheng L, Hao C, Guan S, Huang Z. Spatial distribution, geochemical behaviors and risk assessment of antimony in rivers around the antimony mine of Xikuangshan, Hunan Province, China. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1141-1154. [PMID: 35228359 DOI: 10.2166/wst.2022.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pollutants derived from antimony (Sb) mining can easily cause pollution of surrounding water bodies. However, qualitative source analysis of river pollution is mostly conducted, and quantitative source analysis is still lacking. A total of 21 water samples were collected to analyze the pollution status of the heavy metal element Sb, explore the Xikuangshan (XKS) area river heavy metals pollution mechanism, undertake quantitative analysis of the sources of pollution, and carry out irrigation water suitability assessment and potential ecological risk assessment. The results showed that, compared with the mining non-affected area, the maximum excess multiple of Sb in surface water and rivers in Hunan XKS area is 411.31. When the river fluid flows through the mining-affected area, the heavy metal element Sb content increases rapidly, and then decreases due to dilution process. Positive matrix factorization (PMF) source analysis showed that the main source of Sb pollution in the rivers is the impact of mining and smelting (83.60%), followed by the role of waste rock leaching (16.40%). After irrigation, 27.78% of the river water had strong ecological risks, and 16.67% had extremely strong ecological risks. This achievement provides a theoretical basis and technical guarantee for protecting and using the local water body of the mining area.
Collapse
Affiliation(s)
- Linlin Sheng
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Chunming Hao
- North China Institute of Science and Technology, Hebei 065201, P.R. China E-mail:
| | - Shengdi Guan
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Zhanbin Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| |
Collapse
|
22
|
Xiang L, Liu C, Liu D, Ma L, Qiu X, Wang H, Lu X. Antimony transformation and mobilization from stibnite by an antimonite oxidizing bacterium Bosea sp. AS-1. J Environ Sci (China) 2022; 111:273-281. [PMID: 34949357 DOI: 10.1016/j.jes.2021.03.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 06/14/2023]
Abstract
Soils and waters are heavily contaminated by antimony in Xikuangshan (XKS) mine area. It is widely accepted that oxidative dissolution of sulfide minerals and aqueous dissolution are the most prevalent geochemical mechanisms for the release of Sb to the environment. Bosea sp. AS-1 is an antimonite-oxidizer isolated from the mine slag in Xikuangshan Sb mine. Whole genome sequencing revealed the presence of multiple sulfur-oxidizing genes, antimony (Sb) metabolism genes and carbon fixation genes in AS-1's genome. We therefore hypothesized that under oxic conditions, AS-1 could mediate the oxidation of sulfide and Sb(III) in stibnite (Sb2S3) and lead to the release of Sb. Indeed, strain AS-1 was discovered as an autotrophic Sb(III)-oxidizer. Antimony mobilization studies conducted with strain AS-1 showed significantly enhanced mobilization of Sb, and complete oxidation of released Sb and sulfur to Sb(V) and sulfate. In addition, AS-1 induced a faster release of Sb under heterotrophic condition, and new acicular minerals might form. These findings support the hypothesis that microorganisms play an important role in the mobilization and transformation of Sb in XKS mine area and may contribute to our further understanding of the Sb biogeochemical redox cycle in natural environment.
Collapse
Affiliation(s)
- Li Xiang
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Chaoyang Liu
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Deng Liu
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Liyuan Ma
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Xuan Qiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Hongmei Wang
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Xiaolu Lu
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China.
| |
Collapse
|
23
|
Bolan N, Kumar M, Singh E, Kumar A, Singh L, Kumar S, Keerthanan S, Hoang SA, El-Naggar A, Vithanage M, Sarkar B, Wijesekara H, Diyabalanage S, Sooriyakumar P, Vinu A, Wang H, Kirkham MB, Shaheen SM, Rinklebe J, Siddique KHM. Antimony contamination and its risk management in complex environmental settings: A review. ENVIRONMENT INTERNATIONAL 2022; 158:106908. [PMID: 34619530 DOI: 10.1016/j.envint.2021.106908] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Antimony (Sb) is introduced into soils, sediments, and aquatic environments from various sources such as weathering of sulfide ores, leaching of mining wastes, and anthropogenic activities. High Sb concentrations are toxic to ecosystems and potentially to public health via the accumulation in food chain. Although Sb is poisonous and carcinogenic to humans, the exact mechanisms causing toxicity still remain unclear. Most studies concerning the remediation of soils and aquatic environments contaminated with Sb have evaluated various amendments that reduce Sb bioavailability and toxicity. However, there is no comprehensive review on the biogeochemistry and transformation of Sb related to its remediation. Therefore, the present review summarizes: (1) the sources of Sb and its geochemical distribution and speciation in soils and aquatic environments, (2) the biogeochemical processes that govern Sb mobilization, bioavailability, toxicity in soils and aquatic environments, and possible threats to human and ecosystem health, and (3) the approaches used to remediate Sb-contaminated soils and water and mitigate potential environmental and health risks. Knowledge gaps and future research needs also are discussed. The review presents up-to-date knowledge about the fate of Sb in soils and aquatic environments and contributes to an important insight into the environmental hazards of Sb. The findings from the review should help to develop innovative and appropriate technologies for controlling Sb bioavailability and toxicity and sustainably managing Sb-polluted soils and water, subsequently minimizing its environmental and human health risks.
Collapse
Affiliation(s)
- Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia.
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Ekta Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Aman Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - S Keerthanan
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Son A Hoang
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya 70140, Sri Lanka
| | - Saranga Diyabalanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Prasanthi Sooriyakumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea.
| | - Kadambot H M Siddique
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
24
|
Implications of Soil Potentially Toxic Elements Contamination, Distribution and Health Risk at Hunan’s Xikuangshan Mine. Processes (Basel) 2021. [DOI: 10.3390/pr9091532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A field survey was conducted to determine the pollution grade, sources, potential ecological risk, and health risk of soil potentially toxic elements (PTEs) in Xikuangshan Mine (XKS), the largest antimony (Sb) deposit in the world. A total of 106 topsoil samples were collected from 6 sites in XKS to measure the concentrations of PTEs Cr, Zn, Cd, Pb, As, Hg, and Sb. The results show that the average concentrations of these elements at all six sites were generally greater than their corresponding background values in Hunan province, especially Sb, Hg, and As. Correlation and principal component analyses suggested that Cd, Zn, Pb, Hg, and Sb were primarily released from mining and other industrial and human activities, while Cr and As were mainly impacted by the parent material from pedogenesis. A risk index analysis showed that, overall, sites were at very high ecological risk, and Sb is the highest ecological risk factor, followed by Cd and Hg. According to health risk assessment, oral ingestion is the main non-carcinogenic and carcinogenic risk exposure route. The higher potentially non-carcinogenic and carcinogenic risks happen to the local children who live in the vicinity of mining area. It revealed that the mining and smelting processes of XKS have negatively influenced the local people, therefore, we should pay increasing attention to this practical issue and take effective measures to protect the ecology of XKS.
Collapse
|
25
|
Guo W, Zhang Z, Wang H, Qin H, Fu Z. Exposure characteristics of antimony and coexisting arsenic from multi-path exposure in typical antimony mine area. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112493. [PMID: 33823409 DOI: 10.1016/j.jenvman.2021.112493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/07/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
In this study, samples of daily foods, drinking waters, surface waters, and soils were collected and screened to investigate the external exposure of Sb and As from various intake pathways in typical Sb mining area. Biomarker samples of residents were analyzed to monitor internal exposure characteristic of Sb and As in human body. Exposure dosages of As and Sb and transfer of Sb and As from environment to human body were estimated based on the external and internal exposure. The following results were obtained: daily intakes of food accounted for major intakes of both Sb and As, and highlighted the significance of foods intakes from rice and vegetable. The results of Monte Carlo simulations showed that total daily intake of Sb(n = 1444)and As(n = 1131) approximately reached 1.08 × 10-2 mg/kg/d and 1.19 × 10-3 mg/kg/d, in which 98.82% and 63.07% of residents have exceeded the threshold dosages of Sb and As. The contaminants contents in biomarkers indicated that Sb exhibited the similar internal exposure as As, while the total transfer rate of Sb from environment to human were estimated as approximately 2.04-2.40 times lower than As. This study also suggested that drinking water is another important pathway with high bioavailability and male resident may present higher priority than female in uptake of Sb and As. The paper suggested the similarity and difference on bioavailability existed in Sb and its group V elements, As, that would provide the essential information on exposure of Sb and As in the typical Sb mine area.
Collapse
Affiliation(s)
- Wenjing Guo
- Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Zhiyong Zhang
- Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Hao Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Hongjie Qin
- Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Zhiyou Fu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
26
|
Zhu Y, Yang J, Wang L, Lin Z, Dai J, Wang R, Yu Y, Liu H, Rensing C, Feng R. Factors influencing the uptake and speciation transformation of antimony in the soil-plant system, and the redistribution and toxicity of antimony in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140232. [PMID: 32806353 DOI: 10.1016/j.scitotenv.2020.140232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Antimony (Sb) is not an essential element for humans and plants although it can be used to treat some human diseases, such as schistosomiasis. Sb contamination has been documented in many regions around the world, particularly in China. The Sb contamination in the environment often stems from anthropogenic activities such as mining, smelting, and shooting. Within the latest decade, great progress has been made in research examining the physiochemical behavior of Sb in the environment, including 1) the extent of Sb pollution around the world particularly in China; 2) the mechanisms and factors influencing Sb migration in soils, especially the adsorption/desorption of Sb by minerals or organic materials; 3) the transformations influencing speciation catalyzed by soil microbes; 4) to a lesser extent, the toxicity of Sb to plants and soil animals. In this review, we highlighted the current knowledge with respect to 1) how soil physicochemical properties (including water regimes, pH, organic materials and Eh), and soil organisms will affect the soil bioavailability of Sb, and subsequently the uptake of Sb by plants; 2) the uptake pathway of antimonite and antimonate, the translocation of Sb from roots to shoots, and the redistribution and toxicity of Sb in plants.
Collapse
Affiliation(s)
- YanMing Zhu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - JiGang Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - LiZhen Wang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZiTing Lin
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - JiaXin Dai
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - RenJie Wang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - YanShuang Yu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - RenWei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| |
Collapse
|
27
|
Chen S, Liu Y, Wang C, Yan J, Lu D. Determination of Antimony Speciation in Cow Milk Using Dispersive Micro-solid Phase Extraction Based on Fibrous TiO2@g-C3N4 Nanocomposites and ICP-MS After Sample Pretreatment by Artificial Gastric Juice. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01818-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Guo W, Fu Z, Zhang Z, Wang H, Liu S, Feng W, Zhao X, Giesy JP. Synthesis of Fe 3O 4 magnetic nanoparticles coated with cationic surfactants and their applications in Sb(V) removal from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136302. [PMID: 31927285 DOI: 10.1016/j.scitotenv.2019.136302] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/03/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Antimony (Sb) pollution was an emerging environmental risk in several contaminated waters, whereas its removal still presented as a severe challenge due to the lack of efficient adsorbent and its further removal mechanism. In this study, synthesized absorbents, Fe3O4 magnetic nanoparticles (Fe-MNPs) modified and dispersed with commonly used cationic surfactants, were applied to remove Sb contamination in real surface waters, its synthesized conditions, removal performance and mechanism were investigated by using batch experiments and characterization analyses. Optimum conditions on Sb(V) (the dominant form is Sb(OH)6-) removal by modified adsorbents were obtained as: cetylpyridinium chloride (CPC) coated on Fe-MNPs, mass ratio of Fe-MNPs: CPC = 4:1 and pH = 3-5. Magnetic properties of synthesized adsorbent were not affected, dispersibility was enhanced after fabrication of CPC, that indicated the Fe-MNPs@CPC could be separated and reused with external magnetic field. The adsorption efficiency of this low-cost adsorbent coated with CPC was superior than several traditional adsorbents. The practical application of Fe-MNPs@CPC in five types real waters from the Xikuangshan (XKS) Sb mine area and regeneration experiments by 1 M (mol/L) NaOH solution further confirm its practicability and reusability. Removal experiment results, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR) spectra suggested that electrostatic attraction and surface bonding might responsible for the Sb(V) removal by Fe-MNPs modified with cationic surfactants.
Collapse
Affiliation(s)
- Wenjing Guo
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhiyou Fu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhiyong Zhang
- Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hao Wang
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Shasha Liu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weiying Feng
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - John P Giesy
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
29
|
Ferreira SL, Junior JBP, Almeida LC, Santos LB, Lemos VA, Novaes CG, de Oliveira OM, Queiroz AF. Strategies for inorganic speciation analysis employing spectrometric techniques–Review. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Risk Assessment of Potentially Toxic Elements Pollution from Mineral Processing Steps at Xikuangshan Antimony Plant, Hunan, China. Processes (Basel) 2019. [DOI: 10.3390/pr8010029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We evaluated the direct release to the environment of a number of potentially toxic elements (PTEs) from various processing nodes at Xikuangshan Antimony Mine in Hunan Province, China. Sampling wastewater, processing dust, and solid waste and characterizing PTE content (major elements Sb, As, Zn, and associated Hg, Pb, and Cd) from processing activities, we extrapolated findings to assess wider environmental significance using the pollution index and the potential ecological risk index. The Sb, As, and Zn in wastewater from the antimony benefication industry and a wider group of PTEs in the fine ore bin were significantly higher than their reference values. The content of Sb, As, and Zn in tailings were relatively high, with the average value being 2674, 1040, and 590 mg·kg−1, respectively. The content of PTEs in the surface soils surrounding the tailings was similar to that in tailings, and much higher than the background values. The results of the pollution index evaluation of the degree of pollution by PTEs showed that while dominated by Sb, some variation in order of significance was seen namely for: (1) The ore processing wastewater Sb > Pb > As > Zn > Hg > Cd, (2) in dust Sb > As > Cd > Pb > Hg > Zn, and (3) surface soil (near tailings) Sb > Hg > Cd > As > Zn > Pb. From the assessment of the potential ecological risk index, the levels were most significant at the three dust generation nodes and in the soil surrounding the tailings reservoir.
Collapse
|
31
|
Li L, Tu H, Zhang S, Wu L, Wu M, Tang Y, Wu P. Geochemical behaviors of antimony in mining-affected water environment (Southwest China). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2397-2411. [PMID: 30972516 DOI: 10.1007/s10653-019-00285-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Antimony (Sb) is a harmful element, and Sb pollution is one of the typical environmental issues in China, meaning that understanding of the geochemical behaviors of Sb is the key to control the fate of environmental Sb pollution. Sb tends to migrate in soluble form in the water-sediment system, but the fate of dissolved Sb is poorly known. Duliujiang river basin, located in southwest China, provided us with a natural aqueous environment to study the transport of Sb because of its unique geological and geographical characteristics. Physicochemical properties (pH, EC, Eh, DO, Flux), trace elements (Sb, As, Sr) and main ions (Ca2+, Mg2+, SO42-) concentrations in mining-impacted waters were measured in order to determine their distribution and migration potential. There are three types of water samples; they are main stream waters (pH of 7.33-8.43), tributary waters (pH of 6.85-9.12) and adit waters with pH values ranging from 7.57 to 9.76, respectively. Results showed that adit waters contained elevated concentrations of Sb reaching up to 13350 µg L-1 from the abandoned Sb mines, and mine wastes contained up to 8792 mg kg-1 Sb from the historical mine dumps are the important sources of Sb pollution in the Duliujiang river basin. Dissolved Sb had strong migration ability in streams, while its attenuation mainly depended on the dilution of tributary water with large flow rate. In the exit section of the Duliujiang river basin, which had only 10 µg L-1 of average Sb concentration. The simple deionized water extraction was designed to investigate the ability of Sb likely to dissolve from the mine wastes. The results indicated that a greater solubility of Sb in alkaline (pH of 7.11-8.16) than in acid (pH of 3.03-4.45) mine wastes, suggesting that mine wastes contained high Sb concentrations, could release Sb into solution in the natural river waters. Furthermore, the fate of Sb pollution depends on the comprehensive treatment of abandoned adit waters and mine wastes in the upper reaches of the drainage basin.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou, China.
| | - Han Tu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Karst Environment and Geohazard, Ministry of Land and Resources, Guiyang, 550025, Guizhou, China
| | - Shui Zhang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Karst Environment and Geohazard, Ministry of Land and Resources, Guiyang, 550025, Guizhou, China
| | - Linna Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Min Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yang Tang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou, China
| | - Pan Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China.
- Key Laboratory of Karst Environment and Geohazard, Ministry of Land and Resources, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
32
|
New two-step extraction method in antimony speciation using HPLC-ICP-MS technique in inhalable particulate matter (PM2.5). Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Ren M, Wang D, Ding S, Yang L, Xu S, Yang C, Wang Y, Zhang C. Seasonal mobility of antimony in sediment-water systems in algae- and macrophyte-dominated zones of Lake Taihu (China). CHEMOSPHERE 2019; 223:108-116. [PMID: 30772589 DOI: 10.1016/j.chemosphere.2019.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/02/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Differences in trophic status can lead to different water quality and sediment geochemistry characteristics, influencing antimony (Sb) mobility in sediments and its release into the water column. In this study, seasonal sampling was conducted in algal- and macrophyte-dominated zones of Lake Taihu, China. High-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) techniques were used to measure soluble Sb and DGT-labile Sb in the sediment-water profiles at a 4 mm vertical resolution. Results showed that total Sb in sediments from the two zones were on average 3.50 mg/kg and 3.21 mg/kg in the algal- and macrophyte-dominated zones, respectively, with the residual fraction being 96.3% and 95.4% of the total Sb contents in the two zones. In winter, soluble Sb concentrations in both zones increased. This was probably due to the oxidation of Sb(III) to Sb(V) by Mn and Fe oxides. In summer and autumn, soluble Sb concentrations in the algal-dominated region remained low. This is attributed to the dominance of insoluble Sb(III) in sediments under anoxic conditions under eutrophic environments. In contrast, soluble Sb concentrations in the macrophyte-dominated zone were significantly high in summer and were 4.15-times higher than limits set by the World Health Organization (WHO). This likely resulted from the photochemical and rhizospheric oxidation of insoluble Sb(III) compounds. It is suggested that Sb contamination in the sediment-water system of the macrophyte-dominated zone deserves additional attention.
Collapse
Affiliation(s)
- Minyi Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Wang
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai 200120, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Liyuan Yang
- School of Resources and Environment, University of Jinan, Jinan 250022, China
| | - Shiwei Xu
- Central Laboratory, Jiangsu Academy of Agricultural Science, Nanjing 210008, China
| | - Chenye Yang
- Central Laboratory, Jiangsu Academy of Agricultural Science, Nanjing 210008, China
| | - Yan Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Nanjing EasySensor Environmental Technology Co., Ltd, Nanjing 210018, China
| | - Chaosheng Zhang
- International Network for Environment and Health, School of Geography and Archaeology & Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
34
|
Jabłońska-Czapla M, Zerzucha P. Metal(loid) speciation in a river subjected to industrial anthropopressure: chemometric and environmental studies. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:810-825. [PMID: 30929561 DOI: 10.1080/10934529.2019.1596700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/04/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
High-performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was applied to the speciation of arsenic [As(III), As(V), and AsB (arsenobetaine)], MMA (monomethylarsonic acid), DMA (dimethylarsinic acid), antimony [Sb(III) and Sb(V)], and chromium [Cr(III) and Cr(VI)] in water and bottom sediment samples collected from the urban Bytomka River (Poland). The main objective of the study was the research of As, Cr and Sb species in the Bytomka River, as well as the simplified three-stage sequential chemical extraction of bottom sediments according to the Institute for Reference Materials and Measurements (BCR). The contents of V, Mn, Co, Ni, Cu, Zn, Rb, Sr, Ag, Cd, Te, Ba, Tl, Pb, Fe, Ga, and U in the water and bottom sediments were tested using the ICP-MS technique. The risk assessment code (RAC) indicated a medium risk for As and a high risk for Sb to the environment. Sequential chemical extraction of bottom sediments showed that As and Cr were strongly demobilized. Sb was mainly bound with the ion-exchange fraction and posed a serious threat to the environment. Chemometric analysis with the (dis)similarity analysis and principal component analysis (PCA) allowed for visualization of the variability and correlations of the analyzed elements.
Collapse
Affiliation(s)
| | - Piotr Zerzucha
- b Faculty of Philosophy , The Pontifical University of John Paul II , Kraków , Poland
| |
Collapse
|
35
|
Magnetic solid-phase extraction and determination of ultra-trace amounts of antimony in aqueous solutions using maghemite nanoparticles. Food Chem 2019; 287:382-389. [PMID: 30857715 DOI: 10.1016/j.foodchem.2019.02.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 02/05/2019] [Accepted: 02/23/2019] [Indexed: 11/21/2022]
Abstract
A magnetic solid-phase extraction method was developed using maghemite as an efficient sorbent for the separation and preconcentration of antimony prior to its determination by ET-AAS. Maghemite was synthesized through a simple method and characterized by XRD, FT-IR and SEM. Various factors affecting maghemite synthesis, separation and preconcentration of antimony such as desorption solvent type, concentration and volume, desorption temperature and time, sample pH, amount of sorbent, and extraction temperature and time were optimized. The effects of interfering ions were also investigated. Under optimized conditions, the method exhibited good linearity (r2 > 0.9960). The sorption capacity and enrichment factor (EF) of the method were 37.5 mg g-1 and 242, respectively. The limit of detection (LOD) was 0.03 ng mL-1. The intraday, interday, and batch-to-batch relative standard deviations (%RSDs) were quite reasonable. The proposed method was applied to various real samples and the relative recoveries found were between 95.8 and 104.0 %.
Collapse
|
36
|
Mao L, Ye H, Li F, Yang M, Tao H, Wen H. Enrichment assessment of Sb and trace metals in sediments with significant variability of background concentration in detailed scale. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2794-2805. [PMID: 30488244 DOI: 10.1007/s11356-018-3836-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Variability of background concentration of toxic trace metal(loid)s in sediments can often lead to under/over-report of contamination level, even in detailed scale. In this study, both surface (5-10 cm) and subsurface (> 10 cm) sediments were collected at many sites in a small lake (0.528 km2) with multi-function (irrigation, aquaculture, and watercourse) in an industrial area. Total concentration of trace metal(loid)s (Cd, Cr, Co, Cu, Ni, Sb, Pb, and Zn) and potential reference elements (Ti, Zr, Rb, and Li) were analyzed. The results showed that although the trace metal(loid)s were mainly lithogenic in subsurface sediments, the variability of baseline concentration was significant. For Sb, this variability was a result of alteration in hydrological parameters as well as sediment properties including Fe/Mn oxide contents, particle size distribution, and organic matter contents. Comparison of the normalized Sb concentration in samples from two sediment cores indicated that Ti is the best reference element for normalizing Sb to reduce the impact from particle size and natural source. Enrichment assessment using modified EFs (Ti as reference element) and Igeo index (measured baseline concentration) suggested that about 70% of the surface sediments were at least moderately polluted by Sb in the lake, as a result of recent anthropogenic input, mainly from nearby industries, e.g., concrete factory and textile factory. Modified EFs should be used, instead of Igeo index, when Sb enrichment was relatively low in sediment. The anomalies of Sb background concentration may need regulator attention when assessing the level of sediment contamination.
Collapse
Affiliation(s)
- Lingchen Mao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hua Ye
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Feipeng Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Meng Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hong Tao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Haifeng Wen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
37
|
Costa Ferreira SL, dos Anjos JP, Assis Felix CS, da Silva Junior MM, Palacio E, Cerda V. Speciation analysis of antimony in environmental samples employing atomic fluorescence spectrometry – Review. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Zhang Z, Lu Y, Li H, Tu Y, Liu B, Yang Z. Assessment of heavy metal contamination, distribution and source identification in the sediments from the Zijiang River, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:235-243. [PMID: 30029107 DOI: 10.1016/j.scitotenv.2018.07.026] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 05/14/2023]
Abstract
In this study, the contents of 10 heavy metals (Sb, Cd, Cr, Mn, Co, Ni, Cu, Zn, As, and Pb) in 49 sediment samples from the Zijiang River were determined by using inductively coupled plasma-optical emission spectrometry. Contamination indexes including geoaccumulation index, modified degree of contamination, sediment quality guidelines, potential ecological risk index, together with potential ecological risk factor were used to assess heavy metal contamination in the sediments of the Zijiang River. Pearson's correlation analysis and principal component analysis were used to identify the sources of heavy metals. The results indicated that the mean values of heavy metals in the Zijiang River's sediments were found to be significantly higher than the corresponding background values. But when comparing with that in other rivers in the world, they were at medium levels except for Sb. Furthermore, a comparison of the heavy metal concentrations and the consensus-based sediment quality guidelines showed that the heavy metal pollutions (Cd, Cr, Ni, Cu, Zn, As, and Pb) tended to occasionally pose harmful impacts on the ecosystem. The values of contamination indexes revealed that serious heavy metal contamination and relatively high potential ecological risks were mainly existed in the downstream of antimony mining and smelting factories (S23-S49). In addition, high potential ecological risks of Sb were observed in sampling sites that were close to those factories (S23, S24, S25, and S27), and high potential ecological risks of Cd were observed in the downstream (S37-S49). Basing on the Pearson's correlation analysis and principal component analysis, three main sources were identified. Co, Zn, Cd, and Cu contaminants were mainly derived from agricultural activities; As, Sb, Mn, and Pb mainly came from mining and smelting activities; Cr and Ni were mainly from natural sources.
Collapse
Affiliation(s)
- Zhaoxue Zhang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, PR China.
| | - Yi Tu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Boyu Liu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, PR China.
| |
Collapse
|
39
|
Release and Biomethylation of Antimony in Shooting Range Soils upon Flooding. SOIL SYSTEMS 2018. [DOI: 10.3390/soilsystems2020034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|