1
|
García-Cansino L, García MÁ, Marina ML, Câmara JS, Pereira JA. Simultaneous microextraction of pesticides from wastewater using optimized μSPEed and μQuEChERS techniques for food contamination analysis. Heliyon 2023; 9:e16742. [PMID: 37287615 PMCID: PMC10241853 DOI: 10.1016/j.heliyon.2023.e16742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023] Open
Abstract
Food contamination with pesticides poses significant risks to consumer safety and undermines confidence in food supply chains. Detecting pesticides in food samples is a challenging task that requires efficient extraction techniques. This study aims to compare and validate two microextraction techniques, μSPEed and μQuEChERS-dSPE, for the simultaneous extraction of eight pesticides (paraquat, thiabendazole, asulam, picloram, ametryn, atrazine, linuron, and cymoxanil) from wastewater samples. A good analytical performance was obtained for both methodologies, with selectivity, linearity in the range 0.5-150 mg L-1 with coefficients of determination up to 0.9979, limits of detection (LODs) and limits of quantification (LOQs) ranging from 0.02 to 0.05 mg L-1 and from 0.06 to 0.17 mg L-1, respectively, precision below 14.7 mg L-1, and recoveries from wastewater samples in the range of 66.1-99.9%. The developed methodologies are simpler, faster, and require less sample and solvent volumes than conventional methodologies, having a lower impact on the environment. Nevertheless, the μSPEed approach was found to be more efficient, easier to perform, and with a higher greener profile. This study highlights the potential of microextraction techniques for the analysis of pesticide residues in food and environmental samples. Overall, it presents a fast and efficient method for the analysis of pesticides in wastewater samples, which can be useful for monitoring and controlling pesticide contamination in the environment.
Collapse
Affiliation(s)
- Laura García-Cansino
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
- CQM-UMa, Centro de Química da Madeira, Campus Universitário da Penteada, 9000-390, Funchal, Portugal
| | - María Ángeles García
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
- Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
| | - María Luisa Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
- Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
| | - José S. Câmara
- CQM-UMa, Centro de Química da Madeira, Campus Universitário da Penteada, 9000-390, Funchal, Portugal
- Faculdade de Ciências Exatas e Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9000-390, Funchal, Portugal
| | - Jorge A.M. Pereira
- CQM-UMa, Centro de Química da Madeira, Campus Universitário da Penteada, 9000-390, Funchal, Portugal
| |
Collapse
|
2
|
Andrade C, Perestrelo R, Câmara JS. Bioactive Compounds and Antioxidant Activity from Spent Coffee Grounds as a Powerful Approach for Its Valorization. Molecules 2022; 27:molecules27217504. [PMID: 36364330 PMCID: PMC9654447 DOI: 10.3390/molecules27217504] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Coffee is one of the world’s most popular beverages, and its consumption generates copious amounts of waste. The most relevant by-product of the coffee industry is the spent coffee grounds, with 6 million tons being produced worldwide per year. Although generally treated as waste, spent coffee grounds are a rich source of several bioactive compounds with applications in diverse industrial fields. The present work aimed at the analysis of spent coffee grounds from different geographical origins (Guatemala, Colombia, Brazil, Timor, and Ethiopia) for the identification of bioactive compounds with industrial interest. For this purpose, the identification and quantification of the bioactive compounds responsible for the antioxidant activity attributed to the spent coffee grounds were attempted using miniaturized solid-phase extraction (µ-SPEed), combined with ultrahigh-performance liquid chromatography with photodiode array detection (UHPLC-PDA). After validation of the µ-SPEed/UHPLC-PDA method, this allowed us to conclude that caffeine and 5-caffeoylquinic acid (5-CQA) are the most abundant bioactive compounds in all samples studied. The total phenolic content (TPC) and antioxidant activity are highest in Brazilian samples. The results obtained show that spent coffee grounds are a rich source of bioactive compounds, supporting its bioprospection based on the circular economy concept closing the loop of the coffee value chain, toward the valorization of coffee by-products.
Collapse
Affiliation(s)
- Carolina Andrade
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - José S. Câmara
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Correspondence: ; Tel.: +351-291-705-112
| |
Collapse
|
3
|
Anticona M, Lopez-Malo D, Frigola A, Esteve MJ, Blesa J. Comprehensive analysis of polyphenols from hybrid Mandarin peels by SPE and HPLC-UV. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Miniaturized and modified QuEChERS method with mesostructured silica as clean-up sorbent for pyrrolizidine alkaloids determination in aromatic herbs. Food Chem 2022; 380:132189. [DOI: 10.1016/j.foodchem.2022.132189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/22/2021] [Accepted: 01/16/2022] [Indexed: 11/19/2022]
|
5
|
Izcara S, Perestrelo R, Morante-Zarcero S, Câmara JS, Sierra I. High throughput analytical approach based on μQuEChERS combined with UHPLC-PDA for analysis of bioactive secondary metabolites in edible flowers. Food Chem 2022; 393:133371. [PMID: 35661599 DOI: 10.1016/j.foodchem.2022.133371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
Mallow blue (Malva sylvestris L.), hibiscus (Hibiscus rosa-sinensis L.) and nasturtium (Tropaeolum majus L.), are common edible flowers rich in bioactive secondary metabolites (BASMs) whose use in sophisticated gastronomy present currently as increasing trend. In this study the BASMs profile of these edible flowers was established using an emerging green extraction technique, μQuEChERS followed by ultra-high performance liquid chromatography coupled to a photodiode array detection system (UHPLC-PDA). After validation the μQuEChERS/UHPLC-PDA methodology allow to identify that apigenin and epigallocatechin gallate are the most abundant BASMs in mallow blue flowers, while catechin and dicaffeoylquinic acid are predominant in hibiscus flowers, and myricitrin and dicaffeoylquinic acid in nasturtium flowers. Total polyphenol content is the highest in the extract of hibiscus. Nasturtium shows the greatest radical scavenging activity. The results revealed that these flowers constitute a potential source of BASMs with different bioactive properties suggesting its use in design of new functional foods.
Collapse
Affiliation(s)
- Sergio Izcara
- ESCET- Escuela Superior de Ciencias Experimentales y Tecnología, Departamento de Tecnología Química y Ambiental, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain; CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Sonia Morante-Zarcero
- ESCET- Escuela Superior de Ciencias Experimentales y Tecnología, Departamento de Tecnología Química y Ambiental, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Isabel Sierra
- ESCET- Escuela Superior de Ciencias Experimentales y Tecnología, Departamento de Tecnología Química y Ambiental, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain.
| |
Collapse
|
6
|
Câmara JS, Perestrelo R, Berenguer CV, Andrade CFP, Gomes TM, Olayanju B, Kabir A, M. R. Rocha C, Teixeira JA, Pereira JAM. Green Extraction Techniques as Advanced Sample Preparation Approaches in Biological, Food, and Environmental Matrices: A Review. Molecules 2022; 27:2953. [PMID: 35566315 PMCID: PMC9101692 DOI: 10.3390/molecules27092953] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Green extraction techniques (GreETs) emerged in the last decade as greener and sustainable alternatives to classical sample preparation procedures aiming to improve the selectivity and sensitivity of analytical methods, simultaneously reducing the deleterious side effects of classical extraction techniques (CETs) for both the operator and the environment. The implementation of improved processes that overcome the main constraints of classical methods in terms of efficiency and ability to minimize or eliminate the use and generation of harmful substances will promote more efficient use of energy and resources in close association with the principles supporting the concept of green chemistry. The current review aims to update the state of the art of some cutting-edge GreETs developed and implemented in recent years focusing on the improvement of the main analytical features, practical aspects, and relevant applications in the biological, food, and environmental fields. Approaches to improve and accelerate the extraction efficiency and to lower solvent consumption, including sorbent-based techniques, such as solid-phase microextraction (SPME) and fabric-phase sorbent extraction (FPSE), and solvent-based techniques (μQuEChERS; micro quick, easy, cheap, effective, rugged, and safe), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE), in addition to supercritical fluid extraction (SFE) and pressurized solvent extraction (PSE), are highlighted.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
| | - Cristina V. Berenguer
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
| | - Carolina F. P. Andrade
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
| | - Telma M. Gomes
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
| | - Basit Olayanju
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (B.O.); (A.K.)
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (B.O.); (A.K.)
- Department of Pharmacy, Faculty of Allied Health Science, Daffodil International University, Dhaka 1207, Bangladesh
| | - Cristina M. R. Rocha
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.M.R.R.); (J.A.T.)
- LABBELS–Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - José António Teixeira
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.M.R.R.); (J.A.T.)
- LABBELS–Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
| |
Collapse
|
7
|
A μ-QuEChERS method combined with UHPLC-MS/MS for the analysis of phenolic compounds in red pepper varieties. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Application of the QuEChERS Strategy as a Useful Sample Preparation Tool for the Multiresidue Determination of Pyrrolizidine Alkaloids in Food and Feed Samples: A Critical Overview. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094325] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The identification of concerning high levels of pyrrolizidine alkaloids (PAs) in a wide variety of food products has raised the occurrence of these natural toxins as one of the main current issues of the food safety field. Consequently, a regulation with maximum concentration levels of these alkaloids has recently been published to monitor their occurrence in several foodstuffs. According to legislation, the analytical methodologies developed for their determination must include multiresidue extractions with high selectivity and sensitivity, as a set of 21 + 14 PAs should be simultaneously monitored. However, the multiresidue extraction of these alkaloids is a difficult task due to the high complexity of food and feed samples. Accordingly, although solid-phase extraction is still the technique most widely used for sample preparation, the QuEChERS method can be a suitable alternative for the simultaneous determination of multiple analytes, providing green extraction and clean-up of samples in a quick and cost-effective way. Hence, this review proposes an overview about the QuEChERS concept and its evolution through different modifications that have broadened its applicability over time, focusing mainly on its application regarding the determination of PAs in food and feed, including the revision of published works within the last 11 years.
Collapse
|
9
|
Marques SPD, Owen RW, da Silva AMA, Alves Neto ML, Trevisan MTS. QuEChERS extraction for quantitation of bitter acids and xanthohumol in hops by HPLC-UV. Food Chem 2022; 388:132964. [PMID: 35447586 DOI: 10.1016/j.foodchem.2022.132964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 03/27/2022] [Accepted: 04/10/2022] [Indexed: 11/26/2022]
Abstract
We hypothesised that QuEChERS could be successfully applied to the extraction of bitter acids and xanthohumol from hops, which would be less time consuming, cheaper, and more eco-friendly by the severe reduction of solvent use. High performance liquid chromatography was used to separate the compounds after extraction and quantitation was evaluated against standard calibration curves for bitter acids prepared from an International calibration extract (ICE-4) and an authentic standard of xanthohumol. The standard QuEChERS method was compared to mini and micro-versions including clean-up and spiking procedures. The quantitative analyzes indicate the applicability of the QuEChERS method for the quantitation of bitter acids compared to Soxhlet extraction. The statistical data confirm reproducibility of the total alpha- and beta- acids measured by the standard method and the modified mini- and micro-QuEChERS procedures. Our hypothesis is supported by the data described and is consistent with other previous methods described in the literature.
Collapse
Affiliation(s)
- Samuel Pedro Dantas Marques
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Departamento de Química, Av. José de Freitas Queiroz, 5000, Quixadá, CE CEP: 63902-580, Brazil; Programa de Pós-graduação em Química, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici - Bloco 935 superior - Laboratório de Produtos Naturais e Biotecnologia (LPNBio), CP: 60451-970 Fortaleza, CE, Brazil.
| | - Robert Wyn Owen
- Programa de Pós-graduação em Química, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici - Bloco 935 superior - Laboratório de Produtos Naturais e Biotecnologia (LPNBio), CP: 60451-970 Fortaleza, CE, Brazil
| | - Ana Maria Amaral da Silva
- Universidade Federal do Ceará, Departamento de Pós-Graduação em Química, Campus do Pici - Bloco 940 - Cx. Postal: 6021, CEP: 60455-760 Fortaleza, CE, Brazil
| | - Manoel Lourenço Alves Neto
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará 60455-760, Brazil.
| | - Maria Teresa Salles Trevisan
- Programa de Pós-graduação em Química, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici - Bloco 935 superior - Laboratório de Produtos Naturais e Biotecnologia (LPNBio), CP: 60451-970 Fortaleza, CE, Brazil.
| |
Collapse
|
10
|
Pereira JAM, Casado N, Porto-Figueira P, Câmara JS. The Potential of Microextraction Techniques for the Analysis of Bioactive Compounds in Food. Front Nutr 2022; 9:825519. [PMID: 35257008 PMCID: PMC8897005 DOI: 10.3389/fnut.2022.825519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
For a long time, the importance of sample preparation and extraction in the analytical performance of the most diverse methodologies have been neglected. Cumbersome techniques, involving high sample and solvent volumes have been gradually miniaturized from solid-phase and liquid-liquid extractions formats and microextractions approaches are becoming the standard in different fields of research. In this context, this review is devoted to the analysis of bioactive compounds in foods using different microextraction approaches reported in the literature since 2015. But microextraction also represents an opportunity to mitigate the environmental impact of organic solvents usage, as well as lab equipment. For this reason, in the recent literature, phenolics and alkaloids extraction from fruits, medicinal herbs, juices, and coffee using different miniaturized formats of solid-phase extraction and liquid-liquid microextraction are the most popular applications. However, more ambitious analytical limits are continuously being reported and emergent sorbents based on carbon nanotubes and magnetic nanoparticles will certainly contribute to this trend. Additionally, ionic liquids and deep eutectic solvents constitute already the most recent forefront of innovation, substituting organic solvents and further improving the current microextraction approaches.
Collapse
Affiliation(s)
- Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Natalia Casado
- Departamento de Tecnología Química y Ambiental, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Madrid, Spain
| | | | - José S. Câmara
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
11
|
Sik B, Székelyhidi R, Lakatos E, Kapcsándi V, Ajtony Z. Analytical procedures for determination of phenolics active herbal ingredients in fortified functional foods: an overview. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03908-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractFortification of foods with phenolic compounds is becoming increasingly popular due to their beneficial physiological effects. The biological activities reported include antioxidant, anticancer, antidiabetic, anti-inflammatory, or neuroprotective effects. However, the analysis of polyphenols in functional food matrices is a difficult task because of the complexity of the matrix. The main challenge is that polyphenols can interact with other food components, such as carbohydrates, proteins, or lipids. The chemical reactions that occur during the baking technologies in the bakery and biscuit industry may also affect the results of measurements. The analysis of polyphenols found in fortified foods can be done by several techniques, such as liquid chromatography (HPLC and UPLC), gas chromatography (GC), or spectrophotometry (TPC, DPPH, FRAP assay etc.). This paper aims to review the available information on analytical methods to fortified foodstuffs while as presenting the advantages and limitations of each technique.
Collapse
|
12
|
Lourenção Zomer AP, Rodrigues CA, Rotta EM, Vilela Junqueira NT, Visentainer JV, Maldaner L. An improved analytical strategy based on the QuEChERS method for piceatannol analysis in seeds of Passiflora species. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2022.2057533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | | | | | | | - Liane Maldaner
- Chemistry Department, State University of Maringá (UEM), Maringá-PR, Brazil
| |
Collapse
|
13
|
Manzoor M, Singh J, Gani A, Noor N. Valorization of natural colors as health-promoting bioactive compounds: Phytochemical profile, extraction techniques, and pharmacological perspectives. Food Chem 2021; 362:130141. [PMID: 34091168 DOI: 10.1016/j.foodchem.2021.130141] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 01/17/2023]
Abstract
Color is the prime attribute with a large impact on consumers' perception, selection, and acceptance of foods. However, the belief in bio-safety protocols, health benefits, and the nutritional importance of food colors had focused the attention of the scientific community across the globe towards natural colorants that serve to replace their synthetic toxic counterparts. Moreover, multi-disciplinary applications of greener extraction techniques and their hyphenated counterparts for selective extraction of bioactive compounds is a hot topic focusing on process intensification, waste valorization, and retention of highly stable bioactive pigments from natural sources. In this article, we have reviewed available literature to provide all possible information on various aspects of natural colorants, including their sources, photochemistry and associated biological activities explored under in-vitro and in-vivo animal and human studies. However a particular focus is given on innovative technological approaches for the effective extraction of natural colors for nutraceutical and pharmaceutical applications.
Collapse
Affiliation(s)
- Mehnaza Manzoor
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu 180009, India.
| | - Jagmohan Singh
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu 180009, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.
| | - Nairah Noor
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu 180009, India
| |
Collapse
|
14
|
Kamal El-Deen A, Shimizu K. Modified μ-QuEChERS coupled to diethyl carbonate-based liquid microextraction for PAHs determination in coffee, tea, and water prior to GC-MS analysis: An insight to reducing the impact of caffeine on the GC-MS measurement. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1171:122555. [PMID: 33756450 DOI: 10.1016/j.jchromb.2021.122555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
A fast, sensitive and eco-friendly method was developed for the determination of fifteen polycyclic aromatic hydrocarbons (PAHs) in different environmental matrices through gas chromatography mass spectrometry (GC-MS). The method utilizes a modified and miniaturized quick easy cheap effective rugged and safe (QuEChERS) clean up procedure coupled to an air-assisted dispersive liquid-liquid microextraction (AA-DLLME) for the enrichment of the concerned compounds. The AA-DLLME uses diethyl carbonate (DEC) as a green bio-based solvent for the microextraction. DEC is considered as biodegradable (with octanol/water coefficient < 3, resulting in low potential of bioaccumulation), classified as a green solvent and considered as one of the recommended solvent alternatives based on SSG results. The AA-DLLME procedure was optimized by One-Variable-at-A-Time (OVAT) succeeded by experimental design applying Central Composite Face-centered (CCF) design. The method linear calibration was found in the range of 10-120 µg/Kg for Benzo[a]pyrene and 5-100 µg/Kg for all other PAHs with low detection limits ranging from 0.01 to 2.10 µg/Kg. It could enrich the PAHs up to 166-folds. The combination of modified μ-QuEChERS with the green AA-DLLME could sharply decrease the caffeine amount on the final extract injected to the GC-MS instrument. The method was successfully applied to coffee, tea, and water samples with acceptable % recovery (>90%). Finally, the impact of our procedure to the environment from green analytical chemistry view was assessed by a novel metric system called AGREE, proving the greenness of our procedure.
Collapse
Affiliation(s)
- Asmaa Kamal El-Deen
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395 Fukuoka, Japan; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395 Fukuoka, Japan.
| |
Collapse
|
15
|
Câmara JS, Albuquerque BR, Aguiar J, Corrêa RCG, Gonçalves JL, Granato D, Pereira JAM, Barros L, Ferreira ICFR. Food Bioactive Compounds and Emerging Techniques for Their Extraction: Polyphenols as a Case Study. Foods 2020; 10:foods10010037. [PMID: 33374463 PMCID: PMC7823739 DOI: 10.3390/foods10010037] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Experimental studies have provided convincing evidence that food bioactive compounds (FBCs) have a positive biological impact on human health, exerting protective effects against non-communicable diseases (NCD) including cancer and cardiovascular (CVDs), metabolic, and neurodegenerative disorders (NDDs). These benefits have been associated with the presence of secondary metabolites, namely polyphenols, glucosinolates, carotenoids, terpenoids, alkaloids, saponins, vitamins, and fibres, among others, derived from their antioxidant, antiatherogenic, anti-inflammatory, antimicrobial, antithrombotic, cardioprotective, and vasodilator properties. Polyphenols as one of the most abundant classes of bioactive compounds present in plant-based foods emerge as a promising approach for the development of efficacious preventive agents against NCDs with reduced side effects. The aim of this review is to present comprehensive and deep insights into the potential of polyphenols, from their chemical structure classification and biosynthesis to preventive effects on NCDs, namely cancer, CVDs, and NDDS. The challenge of polyphenols bioavailability and bioaccessibility will be explored in addition to useful industrial and environmental applications. Advanced and emerging extraction techniques will be highlighted and the high-resolution analytical techniques used for FBCs characterization, identification, and quantification will be considered.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Correspondence: (J.S.C.); (L.B.); Tel.: +351-29170-5112 (J.S.C.); +351-2-7333-0901 (L.B.)
| | - Bianca R. Albuquerque
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
- REQUIMTE—Science Chemical Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira N° 228, 4050-313 Porto, Portugal
| | - Joselin Aguiar
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
| | - Rúbia C. G. Corrêa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
- Program of Master in Clean Technologies, Cesumar Institute of Science Technology and Innovation (ICETI), Cesumar University—UniCesumar, Parana 87050-390, Brazil
| | - João L. Gonçalves
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
| | - Daniel Granato
- Food Processing and Quality, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland;
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
- Correspondence: (J.S.C.); (L.B.); Tel.: +351-29170-5112 (J.S.C.); +351-2-7333-0901 (L.B.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
| |
Collapse
|
16
|
Ruiz P, Ares AM, Nozal MJ, Martín MT, Bernal J. Simultaneous determination of spinetoram J and L in bee pollen by liquid chromatography-mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Silva JM, Azcárate FJ, Knobel G, Sosa JS, Carrizo DB, Boschetti CE. Multiple response optimization of a QuEChERS extraction and HPLC analysis of diclazuril, nicarbazin and lasalocid in chicken liver. Food Chem 2020; 311:126014. [PMID: 31864181 DOI: 10.1016/j.foodchem.2019.126014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
A method for the simultaneous determination of three commonly used coccidiostats in chicken liver was developed, comprising a multi-residue QuEChERS (quick, easy, cheap, effective, rugged and safe) extraction step, and a liquid chromatography-ultra violet-fluorescence (HPLC-UV/FL) analysis. The QuEChERS extraction was optimized using an experimental design approach that includes a screening step to obtain the critical variables, an optimization step using multiple response surface analysis and the calculation of a desirability parameter. The optimized method was validated with fortified samples, reaching an average recovery of 91% and an overall precision of 5.5% (mean of three analytes at three levels). Limits of detection calculated on fortified samples were 20 µg kg-1 for lasalocid, 15 µg kg-1 for nicarbazin and 120 µg kg-1 for diclazuril. These values resulted at least one order of magnitude lower than the maximum allowed residue limit (MRL) of the studied coccidiostats for chicken liver.
Collapse
Affiliation(s)
- Juan Manuel Silva
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ - CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Federico José Azcárate
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ - CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Gaston Knobel
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ - CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Jesica Soledad Sosa
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ - CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Daiana Belén Carrizo
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ - CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Carlos Eugenio Boschetti
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ - CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina.
| |
Collapse
|
18
|
Aguiar J, Gonçalves JL, Alves VL, Câmara JS. Chemical Fingerprint of Free Polyphenols and Antioxidant Activity in Dietary Fruits and Vegetables Using a Non-Targeted Approach Based on QuEChERS Ultrasound-Assisted Extraction Combined with UHPLC-PDA. Antioxidants (Basel) 2020; 9:antiox9040305. [PMID: 32283793 PMCID: PMC7222190 DOI: 10.3390/antiox9040305] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023] Open
Abstract
Fruits and vegetables are considered a good source of antioxidants, which are beneficial in protecting the human body against damage induced by free radicals and other reactive oxygen (ROS) and nitrogen (RNS) species. In this work, we aimed to evaluate the integral antioxidant activity (AOA) and determine individual polyphenols in fruits and vegetables of frequent consumption. For this purpose, an innovative and high throughput analytical approach based on original QuEChERS assisted by ultrasound extraction (USAE), instead of the manual agitation used in the classical procedure, was optimized and implemented for the isolation of polyphenols. The total phenolic content (TPC), flavonoids, anthocyanins, and betalains were evaluated using different spectrophotometric assays. In addition, free radical scavenging by methods 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) were used to estimate the AOA of the investigated fruit and vegetable extracts. Red onion, tamarillo, and beetroot were the samples with the highest AOA. The quantification and identification of free low molecular weight polyphenols from QuEChERS-USAE extracts was carried out by ultra-high-pressure liquid chromatography equipped with a photodiode array detection system (UHPLC-PDA). Catechin was the most abundant polyphenol, followed by gentisic and ferulic acids, mainly in the watercress sample. In relation to flavonols, quercetin and kaempferol were found mostly in onion samples, and in small quantities in tomato and watercress. The improved analytical approach, QuEChERS-USAE/UHPLC-PDA, offers an attractive alternative for the analysis of polyphenols from fruit and vegetable samples, providing several advantages over traditional extraction techniques, in terms of reproducibility, simplicity, low cost, analysis speed, and analytical performance.
Collapse
Affiliation(s)
- Joselin Aguiar
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (V.L.A.)
| | - João L. Gonçalves
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (V.L.A.)
| | - Vera L. Alves
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (V.L.A.)
| | - José S. Câmara
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (V.L.A.)
- Faculdade de Ciências Exactas e da Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Correspondence: ; Tel.: +351-291705112; Fax: +351-291705149
| |
Collapse
|
19
|
Casado N, Morante-Zarcero S, Pérez-Quintanilla D, Câmara JS, Sierra I. Two novel strategies in food sample preparation for the analysis of dietary polyphenols: Micro-extraction techniques and new silica-based sorbent materials. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2018.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Casado N, Perestrelo R, Silva CL, Sierra I, Câmara JS. Comparison of high-throughput microextraction techniques, MEPS and μ-SPEed, for the determination of polyphenols in baby food by ultrahigh pressure liquid chromatography. Food Chem 2019; 292:14-23. [PMID: 31054658 DOI: 10.1016/j.foodchem.2019.04.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
Abstract
In this study, two different high-throughput microextraction techniques, microextraction by packed sorbents (MEPS) and micro solid phase extraction (μ-SPEed®), were evaluated and compared, regarding the performance criteria, for the isolation of polyphenols from baby foods prior to their determination by ultrahigh pressure liquid chromatography (UHPLC). To achieve the best performance, influential parameters affecting extraction efficiency (including type of sorbent, number of extraction cycles, pH, elution solvent and elution volume) were systematically studied and optimized. To enable an effective comparison, selectivity, linear dynamic range, method detection (LODs) and quantification limits (LOQs), accuracy, precision and extraction yields, were determined and discussed for both techniques. Both methods provided the analytical selectivity required for the analysis of polyphenols in baby foods. However, μ-SPEed® sample treatment in combination with UHPLC-PDA has demonstrated to be more sensitive, selective and efficient than MEPS. Appropriate linearity in solvent and matrix-based calibrations, very low LODs and LOQs, ranging between 1.37 and 13.57 μg kg-1 and 4.57 - 45.23 μg kg-1, respectively, suitable recoveries (from 67 to 97%) and precision (RSD values < 5%) were achieved for the selected analytes by μ-SPEed®/UHPLC-PDA. Finally, the validated methodologies were applied to different commercial baby foods. Gallic acid, chlorogenic acid, epicatechin, ferulic acid, rutin, naringenin and myricetin are the most dominant polyphenols present in the studied baby food samples. The proposed methodology revealed a promising approach to evaluate the nutritional quality of this kind of products.
Collapse
Affiliation(s)
- Natalia Casado
- Departamento de Tecnología Química y Energética, Tecnología Química y Ambiental, Tecnología Mecánica y Química Analítica, E.S.C.E.T, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Catarina L Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Isabel Sierra
- Departamento de Tecnología Química y Energética, Tecnología Química y Ambiental, Tecnología Mecánica y Química Analítica, E.S.C.E.T, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; Departamento de Química, Faculdade de Ciências Exactas e Engenharia da Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
21
|
Perestrelo R, Silva P, Porto-Figueira P, Pereira JAM, Silva C, Medina S, Câmara JS. QuEChERS - Fundamentals, relevant improvements, applications and future trends. Anal Chim Acta 2019; 1070:1-28. [PMID: 31103162 DOI: 10.1016/j.aca.2019.02.036] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/16/2019] [Accepted: 02/24/2019] [Indexed: 12/15/2022]
Abstract
The Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method is a simple and straightforward extraction technique involving an initial partitioning followed by an extract clean-up using dispersive solid-phase extraction (d-SPE). Originally, the QuEChERS approach was developed for recovering pesticide residues from fruits and vegetables, but rapidly gained popularity in the comprehensive isolation of analytes from different matrices. According to PubMed, since its development in 2003 up to November 2018, about 1360 papers have been published reporting QuEChERS as extraction method. Several papers have reported different improvements and modifications to the original QuEChERS protocol to ensure more efficient extractions of pH-dependent analytes and to minimize the degradation of labile analytes. This analytical approach shows several advantages over traditional extraction techniques, requiring low sample and solvent volumes, as well as less time for sample preparation. Furthermore, most of the published studies show that the QuEChERS protocol provides higher recovery rate and a better analytical performance than conventional extraction procedures. This review proposes an updated overview of the most recent developments and applications of QuEChERS beyond its original application to pesticides, mycotoxins, veterinary drugs and pharmaceuticals, forensic analysis, drugs of abuse and environmental contaminants. Their pros and cons will be discussed, considering the factors influencing the extraction efficiency. Whenever possible, the performance of the QuEChERS is compared to other extraction approaches. In addition to the evolution of this technique, changes and improvements to the original method are discussed.
Collapse
Affiliation(s)
- Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Pedro Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Priscilla Porto-Figueira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Jorge A M Pereira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Catarina Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Sonia Medina
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal; Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
22
|
Medina S, Perestrelo R, Silva P, Pereira JA, Câmara JS. Current trends and recent advances on food authenticity technologies and chemometric approaches. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.01.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|