• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4613410)   Today's Articles (7584)   Subscriber (49386)
For: Yi W, Li Z, Dong C, Li HW, Li J. Electrochemical detection of chloramphenicol using palladium nanoparticles decorated reduced graphene oxide. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Number Cited by Other Article(s)
1
Daie-Naseri SM, Ghasemi S, Hosseini SR, Mousavi F. MOF-derived Co2CuS4 nanoparticles with gold-decorated reduced graphene oxide for electrochemical determination of chloramphenicol in real samples. Food Chem 2024;457:140026. [PMID: 38924909 DOI: 10.1016/j.foodchem.2024.140026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
2
Sukonthachat J, Bubpamala T, Poo-Arporn RP, Pholpabu P. Validation of electrochemical device setup for detection of dual antibiotic drug release from hydrogel. J Pharm Biomed Anal 2024;245:116165. [PMID: 38701534 DOI: 10.1016/j.jpba.2024.116165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/05/2024]
3
Zhang R, Zhang Q, Yang J, Yu S, Yang X, Luo X, He Y. Ultrasensitive detection strategy for CAP by molecularity imprinted SERS sensor based on multiple synergistic enhancement of SiO2@AuAg with MOFs@Au signal carrier. Food Chem 2024;445:138717. [PMID: 38354642 DOI: 10.1016/j.foodchem.2024.138717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
4
Sakaleshpur Kumar G, Ballur Prasanna S, Lokesh Marenahalli B, Shadakshari S, Arehalli Shivamurthy S, Rajabathar JR, Chimatahalli Shanthakumar K, Han YK. Flake-like structure of SrTiO3 nanoparticles dispersed on graphene oxide: A selective and sensitive electrochemical sensor for determination of chloramphenicol in milk and honey samples. Food Chem 2024;444:138637. [PMID: 38341918 DOI: 10.1016/j.foodchem.2024.138637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
5
Huang H, Wen G, Liang A, Jiang Z. A new SERS quantitative analysis strategy for ultratrace chloramphenicol with Fe3O4@MIP nanocatalytic probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024;322:124732. [PMID: 38971083 DOI: 10.1016/j.saa.2024.124732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
6
Dong Y, Feng N, Liu P, Wei Q, Peng X, Jiang F, Chen Y. Dual-Track Multifunctional Bimetallic Metal-Organic Frameworks for Antibiotic Enrichment and Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024;20:e2309075. [PMID: 38597772 DOI: 10.1002/smll.202309075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Indexed: 04/11/2024]
7
Mishra S, Budania Y, Tyagi A, Pratap Singh S, Kumar P, Singh S. Copper Oxide Anchored Carbon Nanofibers: A Versatile Platform for Multiplex Detection of Antibiotics, Heavy Metals and Pesticides. Chem Asian J 2024;19:e202400241. [PMID: 38441388 DOI: 10.1002/asia.202400241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Indexed: 05/18/2024]
8
Yang Z, Zhu A, Adade SYSS, Ali S, Chen Q, Wei J, Chen X, Jiao T, Chen Q. Ag@Au core-shell nanoparticle-based surface-enhanced Raman scattering coupled with chemometrics for rapid determination of chloramphenicol residue in fish. Food Chem 2024;438:138026. [PMID: 37983993 DOI: 10.1016/j.foodchem.2023.138026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
9
Fringu I, Anghel D, Fratilescu I, Epuran C, Birdeanu M, Fagadar-Cosma E. Nanomaterials Based on 2,7,12,17-Tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine Exhibiting Bifunctional Sensitivity for Monitoring Chloramphenicol and Co2. Biomedicines 2024;12:770. [PMID: 38672126 PMCID: PMC11047853 DOI: 10.3390/biomedicines12040770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024]  Open
10
Determination of chloramphenicol in food using nanomaterial-based electrochemical and optical sensors-A review. Food Chem 2023;410:135434. [PMID: 36641911 DOI: 10.1016/j.foodchem.2023.135434] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
11
Lai T, Shu H, Yao B, Lai S, Chen T, Xiao X, Wang Y. A Highly Selective Electrochemical Sensor Based on Molecularly Imprinted Copolymer Functionalized with Arginine for the Detection of Chloramphenicol in Honey. BIOSENSORS 2023;13:bios13050505. [PMID: 37232866 DOI: 10.3390/bios13050505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
12
Shen L, Dong J, Wen B, Wen X, Li J. Facile Synthesis of Hollow Fe3O4-rGO Nanocomposites for the Electrochemical Detection of Acetaminophen. NANOMATERIALS (BASEL, SWITZERLAND) 2023;13:nano13040707. [PMID: 36839075 PMCID: PMC9964092 DOI: 10.3390/nano13040707] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 05/27/2023]
13
Zhang H, Kang Z, Zhu H, Lin H, Yang DP. ZnO/C nanocomposite grafted molecularly imprinted polymers as photoelectrochemical sensing interface for ultrasensitive and selective detection of chloramphenicol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;859:160284. [PMID: 36403831 DOI: 10.1016/j.scitotenv.2022.160284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
14
Jia L, Hao J, Yang L, Wang J, Huang L, Liu K. A Pyridine Diketopyrrolopyrrole-Grafted Graphene Oxide Nanocomposite for the Sensitive Detection of Chloramphenicol by a Direct Electrochemical Method. NANOMATERIALS (BASEL, SWITZERLAND) 2023;13:392. [PMID: 36770354 PMCID: PMC9921031 DOI: 10.3390/nano13030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
15
Electrochemical Aptasensor Based on Au Nanoparticles Decorated Porous Carbon Derived from Metal-Organic Frameworks for Ultrasensitive Detection of Chloramphenicol. Molecules 2022;27:molecules27206842. [DOI: 10.3390/molecules27206842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022]  Open
16
Fang Y, Chang H, Li J, Li Z, Zhang D. Recent Advances in Metal Nanocomposite-Based Electrochemical (Bio)Sensors for Pharmaceutical Analysis. Crit Rev Anal Chem 2022:1-27. [PMID: 36201181 DOI: 10.1080/10408347.2022.2128633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
17
Mishra S, Mishra S, Patel SS, Singh SP, Kumar P, Khan MA, Awasthi H, Singh S. Carbon nanomaterials for the detection of pesticide residues in food: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022;310:119804. [PMID: 35926736 DOI: 10.1016/j.envpol.2022.119804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/02/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
18
K J A, Reddy S, Acharya S, B L, Deepak K, Naveen CS, Harish KN, Ramakrishna S. A review on nanomaterial-based electrodes for the electrochemical detection of chloramphenicol and furazolidone antibiotics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022;14:3228-3249. [PMID: 35997206 DOI: 10.1039/d2ay00941b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
19
Bu L, Chen X, Song Q, Jiang D, Shan X, Wang W, Chen Z. Supersensitive detection of chloramphenicol with an EIS method based on molecularly imprinted polypyrrole at UiO-66 and CDs modified electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
20
Fluorescence determination of chloramphenicol in milk powder using carbon dot decorated silver metal-organic frameworks. Mikrochim Acta 2022;189:272. [PMID: 35790600 DOI: 10.1007/s00604-022-05377-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/17/2022] [Indexed: 10/17/2022]
21
Yang B, Shao M, Xu Y, Du Y, Yang H, Bin D, Liu B, Lu H. Core‐shell ZIF‐8@ZIF‐67‐Derived Co Nanoparticle in situ‐grown N‑doped Carbon Nanotube Polyhedron for Ultrasensitive Electrochemical Detection of Chloramphenicol. ChemElectroChem 2022. [DOI: 10.1002/celc.202200438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
22
Lv X, Li Y, Cui B, Fang Y, Wang L. Electrochemiluminescent sensor based on an aggregation-induced emission probe for bioanalytical detection. Analyst 2022;147:2338-2354. [PMID: 35510524 DOI: 10.1039/d2an00349j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
23
Li Z, Shen F, Mishra RK, Wang Z, Zhao X, Zhu Z. Advances of Drugs Electroanalysis Based on Direct Electrochemical Redox on Electrodes: A Review. Crit Rev Anal Chem 2022;54:269-314. [PMID: 35575782 DOI: 10.1080/10408347.2022.2072679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
24
David IG, Buleandra M, Popa DE, Cheregi MC, Iorgulescu EE. Past and Present of Electrochemical Sensors and Methods for Amphenicol Antibiotic Analysis. MICROMACHINES 2022;13:mi13050677. [PMID: 35630144 PMCID: PMC9143398 DOI: 10.3390/mi13050677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 12/30/2022]
25
Chen Y, He J, Jiang P, Pang H, Hu X, Zhang J, Zhang W. New insight into degradation of chloramphenicol using a nanoporous Pd/Co3O4cathode: characterization and pathways analysis. NANOTECHNOLOGY 2022;33:210001. [PMID: 35134791 DOI: 10.1088/1361-6528/ac530c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
26
Dong J, Chen F, Xu L, Yan P, Qian J, Chen Y, Yang M, Li H. Fabrication of sensitive photoelectrochemical aptasensor using Ag nanoparticles sensitized bismuth oxyiodide for determination of chloramphenicol. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107317] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
27
Chang C, Wang Q, Xue Q, Liu F, Hou L, Pu S. Highly efficient detection of chloramphenicol in water using Ag and TiO2 nanoparticles modified laser-induced graphene electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
28
Palpandi K, Bhuvaneswari C, Babu SG, Raman N. Rational design of ruddlesden–popper phase Mn2SnO4 for ultra-sensitive and highly selective detection of chloramphenicol in real-life samples. NEW J CHEM 2022. [DOI: 10.1039/d2nj00813k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
29
Gopi PK, Srinithi S, Chen SM, Hunsur Ravikumar C. Simple construction of GdBiVO4 assembled on reduced graphene oxide for selective and sensitive electrochemical detection of chloramphenicol in food samples. NEW J CHEM 2022. [DOI: 10.1039/d1nj04457e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
30
Najafi A, Farajmand B, Sharafi HR, Yaftian MR. A fast and sensitive detection of low-level chloramphenicol in food samples using the IMS/homogenizer assisted DLPME combination. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
31
Pakapongpan S, Poo-Arporn Y, Tuantranont A, Poo-Arporn RP. A facile one-pot synthesis of magnetic iron oxide nanoparticles embed N-doped graphene modified magnetic screen printed electrode for electrochemical sensing of chloramphenicol and diethylstilbestrol. Talanta 2022;241:123184. [PMID: 35032900 DOI: 10.1016/j.talanta.2021.123184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 10/19/2022]
32
David IG, Buleandră M, Popa DE, Bercea AM, Ciucu AA. Simple Electrochemical Chloramphenicol Assay at a Disposable Pencil Graphite Electrode by Square Wave Voltammetry and Linear Sweep Voltammetry. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.2012480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
33
An improving aqueous dispersion of polydopamine functionalized vapor grown carbon fiber for the effective sensing electrode fabrication to chloramphenicol drug detection in food samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106675] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
34
Vinothkumar V, Abinaya M, Chen SM. Ultrasonic assisted preparation of CoMoO4 nanoparticles modified electrochemical sensor for chloramphenicol determination. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
35
Wang XT, Jiang YR, Huang LY, Gu YX, Huang XQ, Wang AJ, Yuan PX, Feng JJ. The electrochemiluminescence coreactant accelerator of metal-organic frameworks grafted with N-(aminobutyl)-N-(ethylisoluminol) for the ultrasensitive detection of chloramphenicol. Analyst 2021;146:5995-6004. [PMID: 34505605 DOI: 10.1039/d1an01077h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
36
Li HK, Ye HL, Zhao XX, Sun XL, Zhu QQ, Han ZY, Yuan R, He H. Artful union of a zirconium-porphyrin MOF/GO composite for fabricating an aptamer-based electrochemical sensor with superb detecting performance. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
37
Graphene-based sensors for small molecule determination in real samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
38
Barveen NR, Wang TJ, Chang YH. Photochemical decoration of silver nanoparticles on silver vanadate nanorods as an efficient SERS probe for ultrasensitive detection of chloramphenicol residue in real samples. CHEMOSPHERE 2021;275:130115. [PMID: 33984904 DOI: 10.1016/j.chemosphere.2021.130115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
39
Niu X, Bo X, Guo L. MOF-derived hollow NiCo2O4/C composite for simultaneous electrochemical determination of furazolidone and chloramphenicol in milk and honey. Food Chem 2021;364:130368. [PMID: 34242879 DOI: 10.1016/j.foodchem.2021.130368] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/24/2021] [Accepted: 06/12/2021] [Indexed: 11/19/2022]
40
Kesavan G, Chen S. Manganese oxide anchored on carbon modified halloysite nanotubes: An electrochemical platform for the determination of chloramphenicol. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126243] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
41
Zhu Y, Li X, Xu Y, Wu L, Yu A, Lai G, Wei Q, Chi H, Jiang N, Fu L, Ye C, Lin CT. Intertwined Carbon Nanotubes and Ag Nanowires Constructed by Simple Solution Blending as Sensitive and Stable Chloramphenicol Sensors. SENSORS (BASEL, SWITZERLAND) 2021;21:1220. [PMID: 33572293 PMCID: PMC7915990 DOI: 10.3390/s21041220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022]
42
Wang Q, Xue Q, Chen T, Li J, Liu Y, Shan X, Liu F, Jia J. Recent advances in electrochemical sensors for antibiotics and their applications. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
43
Ali MR, Bacchu MS, Al-Mamun MR, Ahommed MS, Saad Aly MA, Khan MZH. N-Hydroxysuccinimide crosslinked graphene oxide–gold nanoflower modified SPE electrode for sensitive detection of chloramphenicol antibiotic. RSC Adv 2021;11:15565-15572. [PMID: 35481161 PMCID: PMC9029409 DOI: 10.1039/d1ra02450g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022]  Open
44
A simple chemical approach for synthesis of Sr2Co2O5 nanoparticles and its application in the detection of chloramphenicol and in energy storage systems. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114911] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
45
Dinh NX, Pham TN, Huy TQ, Trung DQ, Tuan PA, Khue VQ, Van Quy N, Le VP, Lam VD, Le AT. Ultrasensitive determination of chloramphenicol in pork and chicken meat samples using a portable electrochemical sensor: effects of 2D nanomaterials on the sensing performance and stability. NEW J CHEM 2021. [DOI: 10.1039/d1nj00582k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
46
Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid Using a Novel Electrochemical Sensor Based on Palladium Nanoparticles/Reduced Graphene Oxide Nanocomposite. Int J Anal Chem 2020;2020:8812443. [PMID: 33381184 PMCID: PMC7759412 DOI: 10.1155/2020/8812443] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023]  Open
47
Talebizadehsardari P, Aramesh-Boroujeni Z, Foroughi M, Eyvazian A, Jahani S, Faramarzpour H, Borhani F, Ghazanfarabadi M, Shabani M, Nazari A. Synthesis of carnation-like Ho3+/Co3O4 nanoflowers as a modifier for electrochemical determination of chloramphenicol in eye drop. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
48
Qian L, Durairaj S, Prins S, Chen A. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens Bioelectron 2020;175:112836. [PMID: 33272868 DOI: 10.1016/j.bios.2020.112836] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/13/2023]
49
Vilian ATE, Oh SY, Rethinasabapathy M, Umapathi R, Hwang SK, Oh CW, Park B, Huh YS, Han YK. Improved conductivity of flower-like MnWO4 on defect engineered graphitic carbon nitride as an efficient electrocatalyst for ultrasensitive sensing of chloramphenicol. JOURNAL OF HAZARDOUS MATERIALS 2020;399:122868. [PMID: 32531674 DOI: 10.1016/j.jhazmat.2020.122868] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
50
Silva AD, Paschoalino WJ, Damasceno JPV, Kubota LT. Structure, Properties, and Electrochemical Sensing Applications of Graphene‐Based Materials. ChemElectroChem 2020. [DOI: 10.1002/celc.202001168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA