1
|
Hsiao WWW, Selvi SV, Alagumalai K. Fabrication of MnSnO 2 intercalated TA-rGO modified sensor for selective electrochemical detection of chloramphenicol in real samples. Food Chem 2025; 464:141474. [PMID: 39427617 DOI: 10.1016/j.foodchem.2024.141474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024]
Abstract
Chloramphenicol (CAP), a potent antibiotic capable of inhibiting protein synthesis, presents significant challenges related to long-term dosing and its persistent leaching into the environment, raising concerns about environmental contamination and resistance development. To address this issue, we developed a reliable, low-cost, and biocompatible nanocomposite material comprising tannic acid (TA)-reduced graphene oxide (rGO) intercalated into manganese-doped tin oxide nanoparticles (MnSnO₂ NPs). The structural formation and catalytic activity of the MnSnO₂ NPs/TA-rGO nanocomposite were characterized using field emission-scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical techniques. This material exhibits robust interfacial interactions and synergistic effects, resulting in an admirable electrocatalytic reduction response for CAP sensing. The presence of co-interference molecules improved the selectivity performance of the MnSnO2 NPs/TA-rGO-modified glassy carbon electrode. The fabricated exhibited a two linear determination range (0.011-103.43 μmol L-1 and 103.43-1924.16 μmol L-1), with a detection limit (LOD) is 6.7 nmol L-1 and limit of quantification (LOQ) is 12.3 nmol L-1. Furthermore, this sensor demonstrated good sensitivity, admirable reproducibility, repeatability, and storage stability. Finally, the practicability of the fabricated MnSnO2 NPs/TA-rGO glassy carbon electrode sensor was evaluated by analyzing the CAP content in milk, honey, eye drops, biofluids (human serum and urine), and river water, and satisfactory recovery rates of 95.4 %-100.3 % were noted.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan.
| | - Subash Vetri Selvi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| | | |
Collapse
|
2
|
Dong Y, Feng N, Liu P, Wei Q, Peng X, Jiang F, Chen Y. Dual-Track Multifunctional Bimetallic Metal-Organic Frameworks for Antibiotic Enrichment and Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309075. [PMID: 38597772 DOI: 10.1002/smll.202309075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Indexed: 04/11/2024]
Abstract
The improper use and overuse of antibiotics have led to significant burdens and detrimental effects on the environment, food supply, and human health. Herein, a magnetic solid-phase extraction program and an optical immunosensor based on bimetallic Ce/Zr-UiO 66 for the detection of antibiotics are developed. A magnetic Fe3O4@SiO2@Ce/Zr-UiO 66 metal-organic framework (MOF) is prepared to extract and enrich chloramphenicol from fish, wastewater, and urine samples, and a horseradish peroxidase (HRP)-Ce/Zr-UiO 66@bovine serum protein-chloramphenicol probe is used for the sensitive detection of chloramphenicol based on the dual-effect catalysis of Ce and HRP. In this manner, the application of Ce/Zr-UiO 66 in integrating sample pretreatment and antibiotic detection is systematically investigated and the associated mechanisms are explored. It is concluded that Ce/Zr-UiO 66 is a versatile dual-track material exhibiting high enrichment efficiency (6.37 mg g-1) and high sensitivity (limit of detection of 51.3 pg mL-1) for chloramphenicol detection and serving as a multifunctional MOF for safeguarding public health and hygiene.
Collapse
Affiliation(s)
- Yiming Dong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Niu Feng
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Puyue Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qiaoling Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xuewen Peng
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Feng Jiang
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, Hubei, 430075, China
| | - Yiping Chen
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
3
|
Abedi-Firoozjah R, Alizadeh-Sani M, Zare L, Rostami O, Azimi Salim S, Assadpour E, Azizi-Lalabadi M, Zhang F, Lin X, Jafari SM. State-of-the-art nanosensors and kits for the detection of antibiotic residues in milk and dairy products. Adv Colloid Interface Sci 2024; 328:103164. [PMID: 38703455 DOI: 10.1016/j.cis.2024.103164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Antibiotic resistance is increasingly seen as a future concern, but antibiotics are still commonly used in animals, leading to their accumulation in humans through the food chain and posing health risks. The development of nanomaterials has opened up possibilities for creating new sensing strategies to detect antibiotic residues, resulting in the emergence of innovative nanobiosensors with different benefits like rapidity, simplicity, accuracy, sensitivity, specificity, and precision. Therefore, this comprehensive review provides pertinent and current insights into nanomaterials-based electrochemical/optical sensors for the detection of antibitic residues (ANBr) across milk and dairy products. Here, we first discuss the commonly used ANBs in real products, the significance of ANBr, and also their binding/biological properties. Then, we provide an overview of the role of using different nanomaterials on the development of advanced nanobiosensors like fluorescence-based, colorimetric, surface-enhanced Raman scattering, surface plasmon resonance, and several important electrochemical nanobiosensors relying on different kinds of electrodes. The enhancement of ANB electrochemical behavior for detection is also outlined, along with a concise overview of the utilization of (bio)recognition units. Ultimately, this paper offers a perspective on the future concepts of this research field and commercialized nanomaterial-based sensors to help upgrade the sensing techniques for ANBr in dairy products.
Collapse
Affiliation(s)
- Reza Abedi-Firoozjah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmood Alizadeh-Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Zare
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Omid Rostami
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shamimeh Azimi Salim
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Maryam Azizi-Lalabadi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran..
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
4
|
Bayrak S, Gergeroglu H. Graphene-based biosensors in milk analysis: A review of recent developments. Food Chem 2024; 440:138257. [PMID: 38154279 DOI: 10.1016/j.foodchem.2023.138257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Cow's milk, an excellent source of fat, protein, amino acids, vitamins and minerals, is currently one of the most consumed products worldwide. Contaminations originating from diverse sources, such as biological, chemical, and physical, cause dairy product quality problems and thus dairy-related disorders, raising public health issues. For this reason, legal authorities have deemed it necessary to classify certain contaminations in commercial milk and keep them within particular limitations; therefore, it is urgent to develop next-generation detection systems that can accurately identify just the contaminants of concern to human health. This review presents a detailed investigation of biosensors based on graphene and its derivatives, which offer superior sensitivity and selectivity, by classifying the contaminants under the headings biological, chemical, and physical, in cow's milk according to their sources. We reviewed the current status of graphene-based biosensor (GBs) technology for milk or dairy analysis, highlighting its strengths and weaknesses with the help of comparative studies, tables, and charts, and we put forward a novel perspective to handle future challenges.
Collapse
Affiliation(s)
- Sule Bayrak
- Department of Food Engineering, Ege University, 35040 Izmir, Turkey.
| | - Hazal Gergeroglu
- CIC nanoGUNE, Tolosa Hiribidea 76, E-20018 Donostia - San Sebastian, Spain
| |
Collapse
|
5
|
Determination of chloramphenicol in food using nanomaterial-based electrochemical and optical sensors-A review. Food Chem 2023; 410:135434. [PMID: 36641911 DOI: 10.1016/j.foodchem.2023.135434] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Chloramphenicol (CAP) is a widely used antibiotic for the treatment of sick animals owing to its potent action and low cost. However, the accumulation of CAP in the human body can cause irreversible aplastic anemia and hematopoietic toxicity. Accordingly, development of various analytical techniques for the rapid detection of CAP in animal products and the related processed foods is necessary. Among these analytical techniques, electrochemical and optical sensors offer many advantages for CAP detection, including high sensitivity, simple operation and fast analysis speed. In this review, we summarize recent application of carbon nanomaterials, metal nanoparticles, metal oxide nanoparticles and metal organic framework in the development of electrochemical and optical sensors for CAP detection (2010-2022). Based on the advantages and disadvantages of nanomaterials, electrochemical and optical sensors are summarized in this review. The preparation and synthesis of electrochemical and optical sensors and nanomaterials in the field of rapid detection are prospected.
Collapse
|
6
|
Lai T, Shu H, Yao B, Lai S, Chen T, Xiao X, Wang Y. A Highly Selective Electrochemical Sensor Based on Molecularly Imprinted Copolymer Functionalized with Arginine for the Detection of Chloramphenicol in Honey. BIOSENSORS 2023; 13:bios13050505. [PMID: 37232866 DOI: 10.3390/bios13050505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Developing an efficient method for chloramphenicol (CAP) detection is of great significance for food safety. Arginine (Arg) was selected as a functional monomer. Benefiting from its excellent electrochemical performance, which is different from traditional functional monomers, it can be combined with CAP to form a highly selective molecularly imprinted polymer (MIP) material. It overcomes the shortcoming of poor MIP sensitivity faced by traditional functional monomers, and achieves high sensitivity detection without compounding other nanomaterials, greatly reducing the preparation difficulty and cost investment of the sensor. The possible binding sites between CAP and Arg molecules were calculated by molecular electrostatic potential (MEP). A low-cost, non-modified MIP electrochemical sensor was developed for the high-performance detection of CAP. The prepared sensor has a wide linear range from 1 × 10-12 mol L-1 to 5 × 10-4 mol L-1, achieves a very low concentration CAP detection, and the detection limit is 1.36 × 10-13 mol L-1. It also exhibits excellent selectivity, anti-interference, repeatability, and reproducibility. The detection of CAP in actual honey samples was achieved, which has important practical value in food safety.
Collapse
Affiliation(s)
- Tingrun Lai
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
| | - Hui Shu
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
| | - Bo Yao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
| | - Siying Lai
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
| | - Ting Chen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuechun Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
| | - Yude Wang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, Yunnan University, Kunming 650504, China
| |
Collapse
|
7
|
Silva RM, da Silva AD, Camargo JR, de Castro BS, Meireles LM, Silva PS, Janegitz BC, Silva TA. Carbon Nanomaterials-Based Screen-Printed Electrodes for Sensing Applications. BIOSENSORS 2023; 13:bios13040453. [PMID: 37185528 PMCID: PMC10136782 DOI: 10.3390/bios13040453] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Electrochemical sensors consisting of screen-printed electrodes (SPEs) are recurrent devices in the recent literature for applications in different fields of interest and contribute to the expanding electroanalytical chemistry field. This is due to inherent characteristics that can be better (or only) achieved with the use of SPEs, including miniaturization, cost reduction, lower sample consumption, compatibility with portable equipment, and disposability. SPEs are also quite versatile; they can be manufactured using different formulations of conductive inks and substrates, and are of varied designs. Naturally, the analytical performance of SPEs is directly affected by the quality of the material used for printing and modifying the electrodes. In this sense, the most varied carbon nanomaterials have been explored for the preparation and modification of SPEs, providing devices with an enhanced electrochemical response and greater sensitivity, in addition to functionalized surfaces that can immobilize biological agents for the manufacture of biosensors. Considering the relevance and timeliness of the topic, this review aimed to provide an overview of the current scenario of the use of carbonaceous nanomaterials in the context of making electrochemical SPE sensors, from which different approaches will be presented, exploring materials traditionally investigated in electrochemistry, such as graphene, carbon nanotubes, carbon black, and those more recently investigated for this (carbon quantum dots, graphitic carbon nitride, and biochar). Perspectives on the use and expansion of these devices are also considered.
Collapse
Affiliation(s)
- Rafael Matias Silva
- Department of Chemistry, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | | | - Jéssica Rocha Camargo
- Laboratory of Sensors, Nanomedicine, and Nanostructured Materials, Federal University of São Carlos, Araras 13600-970, SP, Brazil
| | | | - Laís Muniz Meireles
- Federal Center for Technological Education of Minas Gerais, Timóteo 35180-008, MG, Brazil
| | | | - Bruno Campos Janegitz
- Laboratory of Sensors, Nanomedicine, and Nanostructured Materials, Federal University of São Carlos, Araras 13600-970, SP, Brazil
| | - Tiago Almeida Silva
- Department of Chemistry, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| |
Collapse
|
8
|
Yin J, Ouyang H, Li W, Long Y. An Effective Electrochemical Platform for Chloramphenicol Detection Based on Carbon-Doped Boron Nitride Nanosheets. BIOSENSORS 2023; 13:116. [PMID: 36671951 PMCID: PMC9855874 DOI: 10.3390/bios13010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Currently, accurate quantification of antibiotics is a prerequisite for health care and environmental governance. The present work demonstrated a novel and effective electrochemical strategy for chloramphenicol (CAP) detection using carbon-doped hexagonal boron nitride (C-BN) as the sensing medium. The C-BN nanosheets were synthesized by a molten-salt method and fully characterized using various techniques. The electrochemical performances of C-BN nanosheets were studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results showed that the electrocatalytic activity of h-BN was significantly enhanced by carbon doping. Carbon doping can provide abundant active sites and improve electrical conductivity. Therefore, a C-BN-modified glassy carbon electrode (C-BN/GCE) was employed to determine CAP by differential pulse voltammetry (DPV). The sensor showed convincing analytical performance, such as a wide concentration range (0.1 µM-200 µM, 200 µM-700 µM) and low limit of detection (LOD, 0.035 µM). In addition, the proposed method had high selectivity and desired stability, and can be applied for CAP detection in actual samples. It is believed that defect-engineered h-BN nanomaterials possess a wide range of applications in electrochemical sensors.
Collapse
Affiliation(s)
- Jingli Yin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123, China
| | - Huiying Ouyang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123, China
| | - Weifeng Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yumei Long
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Feng H, Li J, Liu Y, Xu Z, Cui Y, Liu M, Liu X, He L, Jiang J, Qian D. Cubic MnSe2 nanoparticles dispersed on multi-walled carbon nanotubes: A robust electrochemical sensing platform for chloramphenicol. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Shibu MC, Benoy MD, Shanavas S, Haija MA, Duraimurugan J, Kumar GS, Ahamad T, Maadeswaran P, Van Le Q. White LED active α-Fe 2O 3/rGO photocatalytic nanocomposite for an effective degradation of tetracycline and ibuprofen molecules. ENVIRONMENTAL RESEARCH 2022; 212:113301. [PMID: 35483412 DOI: 10.1016/j.envres.2022.113301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 05/27/2023]
Abstract
The formation of phase pure magnetically separable α-Fe2O3 and α-Fe2O3/rGO nanostructures were achieved through a simple hydrothermal technique. The properties of synthesized materials were investigated through different analytical techniques. The formation of phase pure FO and FO/rGO nanostructures were confirmed by XRD analysis with crystallite size of about ∼42 nm and ∼65 nm, respectively. The morphological analysis reveals the formation of sphere-like nanoparticles with high agglomeration. The UV-DRS analysis clearly shows the enhanced visible-light activity of FO/rGO nanoparticles. The BET analysis revealed the mesoporous property of FO/rGO nanocomposite. The enhancement in the photoinduced charge transfer process is observed after including rGO nanoparticles with FO. The photocatalytic efficiency of nanomaterials was analyzed using tetracycline and ibuprofen as model organic pollutants under white LED irradiation. The enhanced photocatalytic degradation ability of FO/rGO nanocomposite is studied against both tetracycline and ibuprofen molecules.
Collapse
Affiliation(s)
- M C Shibu
- Research and Development Centre, Bharathiar University, Coimbatore, 46, Tamil Nadu, India.
| | - M D Benoy
- Postgraduate & Research Department of Physics, Mar Athanasius College (Autonomous), Kothamangalam, Kerala, India
| | - S Shanavas
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Mohammad Abu Haija
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separations, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - J Duraimurugan
- Department of Energy Science and Technology, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - G Suresh Kumar
- Department of Physics, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, 637 215, Tamil Nadu, India
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - P Maadeswaran
- Department of Energy Science and Technology, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| |
Collapse
|
11
|
Akram R, Almohaimeed ZM, Bashir A, Ikram M, Qadir KW, Zafar Q. Synthesis and characterization of pristine and strontium-doped zinc oxide nanoparticles for methyl green photo-degradation application. NANOTECHNOLOGY 2022; 33:295702. [PMID: 35504008 DOI: 10.1088/1361-6528/ac6760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Herein we describe an effective route for the degradation of methyl green (MG) dye under visible light illumination by pristine and strontium (Sr)-doped zinc oxide (ZnO) photocatalysts (synthesized by the simple chemical precipitation method). The x-ray diffraction structural analysis has confirmed that both photocatalysts exhibit the hexagonal wurtzite structure; without any additional phase formation in Sr-doped ZnO, in particular. The optical properties of the synthesized photocatalysts have been investigated using UV-vis absorption spectroscopy in the wavelength range of 250-800 nm. Through Tauc's plot, the slight decrease from 3.3 to 3.2 eV in band gap energy has been elucidated (in the case of Sr-doped ZnO), which has been further confirmed by the quenching in the intensity of Photoluminescence (PL) emission spectrum. This may be due to sub-band level formation between valence and conduction band, caused by the impregnation of Sr2+ions into ZnO host. The morphological study has also been performed using Field Emission Scanning Electron Microscope, which indicates nanoparticles (NPs) based surface texture for both photocatalysts. During the photocatalytic activity study, after 30 min irradiation of visible light, ∼65.7% and ∼84.8% photocatalytic degradation of MG dye has been achieved for pristine and Sr-doped (2 wt%) ZnO photocatalysts, respectively. The rate of photocatalytic reaction (K) has been observed to be ∼0.06399 min-1for Sr-doped (2 wt%), whereas nearly half magnitude ∼0.03403 min-1has been observed for pristine ZnO, respectively. The significantly improved photodegradation activity may be ascribed to the relatively broader optical absorption capability, surface defects and the enhanced charge separation efficiency of the Sr-doped ZnO photocatalyst.
Collapse
Affiliation(s)
- Rizwan Akram
- Department of Electrical Engineering, College of Engineering, Qassim University, PO Box 6677-Buraydah, 51452, Saudi Arabia
| | - Ziyad M Almohaimeed
- Department of Electrical Engineering, College of Engineering, Qassim University, PO Box 6677-Buraydah, 51452, Saudi Arabia
| | - Adeela Bashir
- Department of Physics, University of Management and Technology, 54000-Lahore, Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University, 54000-Lahore, Pakistan
| | - Karwan Wasman Qadir
- Computation Nanotechnology Research Lab (CNRL), Department of Physics, College of Education, Salahaddin University-Erbil, 44002-Erbil, Kurdistan Region, Iraq
| | - Qayyum Zafar
- Department of Physics, University of Management and Technology, 54000-Lahore, Pakistan
| |
Collapse
|
12
|
David IG, Buleandra M, Popa DE, Cheregi MC, Iorgulescu EE. Past and Present of Electrochemical Sensors and Methods for Amphenicol Antibiotic Analysis. MICROMACHINES 2022; 13:mi13050677. [PMID: 35630144 PMCID: PMC9143398 DOI: 10.3390/mi13050677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 12/30/2022]
Abstract
Amphenicols are broad-spectrum antibiotics. Despite their benefits, they also present toxic effects and therefore their presence in animal-derived food was regulated. Various analytical methods have been reported for their trace analysis in food and environmental samples, as well as in the quality control of pharmaceuticals. Among these methods, the electrochemical ones are simpler, more rapid and cost-effective. The working electrode is the core of any electroanalytical method because the selectivity and sensitivity of the determination depend on its surface activity. Therefore, this review offers a comprehensive overview of the electrochemical sensors and methods along with their performance characteristics for chloramphenicol, thiamphenicol and florfenicol detection, with a focus on those reported in the last five years. Electrode modification procedures and analytical applications of the recently described devices for amphenicol electroanalysis in various matrices (pharmaceuticals, environmental, foods), together with the sample preparation methods were discussed. Therefore, the information and the concepts contained in this review can be a starting point for future new findings in the field of amphenicol electrochemical detection.
Collapse
|
13
|
Arumugam B, Nagarajan V, Nattamai Perumal K, Annaraj J, Kannan Ramaraj S. Fabrication of wurtzite ZnO embedded functionalized carbon black as sustainable electrocatalyst for detecting endocrine disruptor trichlorophenol. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Li J, Bo X. Laser-enabled flexible electrochemical sensor on finger for fast food security detection. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127014. [PMID: 34461543 DOI: 10.1016/j.jhazmat.2021.127014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Today's rampant abuse of antibiotics and lean meat powder disturbs environment and threatens public human health. Therefore, fast in-site detection of antibiotics or lean meat powder residue could avoid potential risks. In this work, flexible graphene electrodes (FGE) were easily and facilely patterned and prepared by CO2 laser at room environment, which was coupled with a portable electrochemical analyzer for electronic signal transmission. Laser-enabled flexible electrochemical sensor on finger can be used for rapid real-time in-site electrochemical identification of chloramphenicol (CAP), clenbuterol (CLB) and ractopamine (RAC) in meat. The electrochemical response of CAP, CLB and RAC is investigated with the limit of detection of 2.70, 1.29 and 7.81 μM and the linear range of 10-200, 5-80 and 25-250 μM in phosphate buffer saline (PBS) pH 7.0, correspondingly. The minimum detection concentrations of CAP, CLB and RAC were 20, 10 and 30 μM, respectively, in actual samples of pork. And the minimum detection concentrations of CAP, CLB and RAC were 10, 5 and 25 μM in milk, respectively. Such an integrated sensing platform enriches application of sensors on finger in food security and provides information that prevents drug containments from entering food chain.
Collapse
Affiliation(s)
- Jiajia Li
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
15
|
Chang C, Wang Q, Xue Q, Liu F, Hou L, Pu S. Highly efficient detection of chloramphenicol in water using Ag and TiO2 nanoparticles modified laser-induced graphene electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Chang JH, Shen SY, Dong CD, Shkir M, Kumar M. Morphology-dependent MoO 3/Ni-F nanostructures with enhanced electrochemical hydrogen peroxide detection. CHEMOSPHERE 2022; 287:131960. [PMID: 34438213 DOI: 10.1016/j.chemosphere.2021.131960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
The present report investigates the various MoO3 morphologies prepared via different approaches such as morphologies are cubic sheet, ribbon, and hexagonal sheet. These prepared nanostructures are modified as a MoO3/Ni-F electrode used to detect hydrogen peroxide (H2O2). The influence of the morphology on the microstructural, morphological, electronic state, optical and electrochemical properties of MoO3 nanostructures are systematically studied. The recorded XRD spectra confirmed that the good crystalline nature with the orthorhombic crystal structure. The FESEM analysis shows that preparation approaches strongly influenced the MoO3 morphology. The elemental mapping and XPS analysis confirm the formation of MoO3. The obtained optical band gap values show that the MoO3 morphology-based bandgap values are 3.38, 3.17, and 2.94 eV. The modified MoO3/Ni-F electrode electrochemical impedance spectra show the CP-MoO3 has good conductivity. Moreover, the CP-MoO3/Ni-F electrode has a wide detection window, long-term stability, reproducibility, and a low detection limit is 1.2 μM. Hence, the CP-MoO3/Ni-F electrode electrochemical results suggest that the modified electrode has offered a good matrix for toxic contaminants sensing applications.
Collapse
Affiliation(s)
- Jih-Hsing Chang
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan
| | - Shan-Yi Shen
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Mohd Shkir
- Advanced Functional Materials & Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O Box-9004, Abha, 61413, Saudi Arabia
| | - Mohanraj Kumar
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan.
| |
Collapse
|
17
|
David IG, Buleandră M, Popa DE, Bercea AM, Ciucu AA. Simple Electrochemical Chloramphenicol Assay at a Disposable Pencil Graphite Electrode by Square Wave Voltammetry and Linear Sweep Voltammetry. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.2012480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Iulia Gabriela David
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Mihaela Buleandră
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Dana Elena Popa
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Ana Maria Bercea
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Anton Alexandru Ciucu
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| |
Collapse
|
18
|
Selvi SV, Rajaji U, Chen SM, Jebaranjitham JN. Floret-like manganese doped tin oxide anchored reduced graphene oxide for electrochemical detection of dimetridazole in milk and egg samples. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Han S, Zhang X, Sun H, Wei J, Wang H, Wang S, Jin J, Zhang Z. Electrochemical Behavior and Voltammetric Determination of Chloramphenicol and Doxycycline Using a Glassy Carbon Electrode Modified with Single‐walled Carbon Nanohorns. ELECTROANAL 2021. [DOI: 10.1002/elan.202100354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shuang Han
- Shenyang Economic and Technological Development Zone Shenyang University of Chemical Technology 11th Street 110142 Shenyang China
| | - Xuan Zhang
- Shenyang Economic and Technological Development Zone Shenyang University of Chemical Technology 11th Street 110142 Shenyang China
| | - Hongda Sun
- Shenyang Economic and Technological Development Zone Shenyang University of Chemical Technology 11th Street 110142 Shenyang China
| | - Jinping Wei
- Shenyang Economic and Technological Development Zone Shenyang University of Chemical Technology 11th Street 110142 Shenyang China
| | - Hui Wang
- Shenyang Economic and Technological Development Zone Shenyang University of Chemical Technology 11th Street 110142 Shenyang China
| | - Shuangyu Wang
- Shenyang Economic and Technological Development Zone Shenyang University of Chemical Technology 11th Street 110142 Shenyang China
| | - Jing Jin
- Shenyang Economic and Technological Development Zone Shenyang University of Chemical Technology 11th Street 110142 Shenyang China
| | - Zhichao Zhang
- Shenyang Economic and Technological Development Zone Shenyang University of Chemical Technology 11th Street 110142 Shenyang China
| |
Collapse
|
20
|
Anh NT, Dinh NX, Pham TN, Vinh LK, Tung LM, Le AT. Enhancing the chloramphenicol sensing performance of Cu-MoS 2 nanocomposite-based electrochemical nanosensors: roles of phase composition and copper loading amount. RSC Adv 2021; 11:30544-30559. [PMID: 35479872 PMCID: PMC9041121 DOI: 10.1039/d1ra06100c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
The rational design of nanomaterials for electrochemical nanosensors from the perspective of structure–property–performance relationships is a key factor in improving the analytical performance toward residual antibiotics in food. We have investigated the effects of the crystalline phase and copper loading amount on the detection performance of Cu–MoS2 nanocomposite-based electrochemical sensors for the antibiotic chloramphenicol (CAP). The phase composition and copper loading amount on the MoS2 nanosheets can be controlled using a facile electrochemical method. Cu and Cu2O nanoparticle-based electrochemical sensors showed a higher CAP electrochemical sensing performance as compared to CuO nanoparticles due to their higher electrocatalytic activity and conductivity. Moreover, the design of Cu–MoS2 nanocomposites with appropriate copper loading amounts could significantly improve their electrochemical responses for CAP. Under optimized conditions, Cu–MoS2 nanocomposite-based electrochemical nanosensor showed a remarkable sensing performance for CAP with an electrochemical sensitivity of 1.74 μA μM−1 cm−2 and a detection limit of 0.19 μM in the detection range from 0.5–50 μM. These findings provide deeper insight into the effects of nanoelectrode designs on the analytical performance of electrochemical nanosensors. In this work, we clarify the roles of phase composition and copper loading amount on the CAP sensing performance of Cu–MoS2 nanocomposite-based electrochemical nanosensors.![]()
Collapse
Affiliation(s)
- Nguyen Tuan Anh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Ngo Xuan Dinh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Tuyet Nhung Pham
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Le Khanh Vinh
- Institute of Physics at Ho Chi Minh City, Vietnam Academy of Science and Technology (VAST) Ho Chi Minh 70000 Vietnam
| | - Le Minh Tung
- Department of Physics, Tien Giang University My Tho City Tien Giang Province Vietnam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam .,Faculty of Materials Science and Engineering, Phenikaa University Hanoi 12116 Vietnam
| |
Collapse
|
21
|
de Faria LV, Lisboa TP, Campos NDS, Alves GF, Matos MAC, Matos RC, Munoz RAA. Electrochemical methods for the determination of antibiotic residues in milk: A critical review. Anal Chim Acta 2021; 1173:338569. [PMID: 34172150 DOI: 10.1016/j.aca.2021.338569] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/03/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022]
Abstract
Several antibiotics have been applied to veterinary medicine due to their broad-spectrum of antibacterial activity and prophylactic power. Residues of these antibiotics can be accumulated in dairy cattle, in addition to promoting contamination of the environment and, in more serious cases, in milk, causing a public health problem. Different regulatory agencies establish maximum residue limits for these antibiotics in milk, so it becomes important to develop sensitive analytical methods for monitoring these compounds. Electrochemical techniques are important analytical tools in analytical chemistry because they present low cost, simplicity, high sensitivity, and adequate analytical frequency (sample throughput) for routine analyses. In this sense, this review summarizes the state of the art of the main electrochemical sensors and biosensors, instrumental techniques, and sample preparation used for the development of analytical methods, published in the last five years, for the monitoring of different classes of antibiotics: aminoglycosides, amphenicols, beta-lactams, fluoroquinolones, sulfonamides, and tetracyclines, in milk samples. The different strategies to develop electrochemical sensors and biosensors are critically compared considering their analytical features. The mechanisms of electrochemical oxidation/reduction of the antibiotics are revised and discussed considering strategies to improve the selectivity of the method. In addition, current challenges and future prospects are discussed.
Collapse
Affiliation(s)
- Lucas Vinícius de Faria
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Thalles Pedrosa Lisboa
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Náira da Silva Campos
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Guilherme Figueira Alves
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | | | - Renato Camargo Matos
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil.
| | | |
Collapse
|
22
|
Zhu Y, Li X, Xu Y, Wu L, Yu A, Lai G, Wei Q, Chi H, Jiang N, Fu L, Ye C, Lin CT. Intertwined Carbon Nanotubes and Ag Nanowires Constructed by Simple Solution Blending as Sensitive and Stable Chloramphenicol Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:1220. [PMID: 33572293 PMCID: PMC7915990 DOI: 10.3390/s21041220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022]
Abstract
Chloramphenicol (CAP) is a harmful compound associated with human hematopathy and neuritis, which was widely used as a broad-spectrum antibacterial agent in agriculture and aquaculture. Therefore, it is significant to detect CAP in aquatic environments. In this work, carbon nanotubes/silver nanowires (CNTs/AgNWs) composite electrodes were fabricated as the CAP sensor. Distinguished from in situ growing or chemical bonding noble metal nanomaterials on carbon, this CNTs/AgNWs composite was formed by simple solution blending. It was demonstrated that CNTs and AgNWs both contributed to the redox reaction of CAP in dynamics, and AgNWs was beneficial in thermodynamics as well. The proposed electrochemical sensor displayed a low detection limit of up to 0.08 μM and broad linear range of 0.1-100 μM for CAP. In addition, the CNTs/AgNWs electrodes exhibited good performance characteristics of repeatability and reproducibility, and proved suitable for CAP analysis in real water samples.
Collapse
Affiliation(s)
- Yangguang Zhu
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China;
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China;
| | - Yuting Xu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (Y.X.); (L.F.)
| | - Lidong Wu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing 100141, China;
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
| | - Guosong Lai
- Department of Chemistry, Hubei Normal University, Huangshi 435002, China;
| | - Qiuping Wei
- School of Materials Science and Engineering, Central South University, Changsha 410083, China;
| | - Hai Chi
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China;
| | - Nan Jiang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (Y.X.); (L.F.)
| | - Chen Ye
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|