1
|
Li D, Huang W, Huang R. Analysis of environmental pollutants using ion chromatography coupled with mass spectrometry: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131952. [PMID: 37399723 DOI: 10.1016/j.jhazmat.2023.131952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
The rise of emerging pollutants in the current environment and requirements of trace analysis in complex substrates pose challenges to modern analytical techniques. Ion chromatography coupled with mass spectrometry (IC-MS) is the preferred tool for analyzing emerging pollutants due to its excellent separation ability for polar and ionic compounds with small molecular weight and high detection sensitivity and selectivity. This paper reviews the progress of sample preparation and ion-exchange IC-MS methods in the analysis of several major categories of environmental polar and ionic pollutants including perchlorate, inorganic and organic phosphorus compounds, metalloids and heavy metals, polar pesticides, and disinfection by-products in past two decades. The comparison of various methods to reduce the influence of matrix effect and improve the accuracy and sensitivity of analysis are emphasized throughout the process from sample preparation to instrumental analysis. Furthermore, the human health risks of these pollutants in the environment with natural concentration levels in different environmental medias are also briefly discussed to raise public attention. Finally, the future challenges of IC-MS for analysis of environmental pollutants are briefly discussed.
Collapse
Affiliation(s)
- Dazhen Li
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weixiong Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, China.
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Zhang H, Dou J, Miao R, Hu J, Huo Z, Zhang F, Ji W. An analytical method for the determination of glyphosate and aminomethylphosphoric acid using an anionic polar pesticide column and the application in urine and serum from glyphosate poisoning patients. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1668-1673. [PMID: 36920225 DOI: 10.1039/d3ay00039g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
An analytical method for the determination of glyphosate (GLY) and aminomethylphosphoric acid (AMPA) in biological fluid samples (serum and urine) from poisoning patients using liquid chromatography-tandem mass spectrometry (LC-MS/MS) is established. After the sample pretreatment, including protein precipitation and a modified liquid-liquid extraction method, the chromatographic separation was conducted on a trifunctional modified hydrophilic column. The mobile phases in the gradient program were 2.5% formic acid aqueous solution and acetonitrile. The multiple reaction monitoring (MRM) models and the isotope-labeled internal standards were used in the acquisition process. Good linearities and satisfying recovery rates were obtained in two sample matrices with good RSDs. The detection limits of GLY and AMPA were <2 μg L-1, which were close to those obtained in our previous research. The established method was applied to biological samples from five patients with glyphosate intoxication. The analysis of the trend for the concentration of GLY and AMPA in two biological samples was investigated, and the difference in the downward trend of AMPA in urine was found in patients with a relatively higher concentration of GLY in serum.
Collapse
Affiliation(s)
- Hao Zhang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.
| | - Jianrui Dou
- Yangzhou Center for Disease Control and Prevention, Yangzhou, China
| | - Runfeng Miao
- Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jiacai Hu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.
| | - Feng Zhang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wenliang Ji
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.
| |
Collapse
|
3
|
Moldovan H, Imre S, Duca RC, Farczádi L. Methods and Strategies for Biomonitoring in Occupational Exposure to Plant Protection Products Containing Glyphosate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3314. [PMID: 36834010 PMCID: PMC9960360 DOI: 10.3390/ijerph20043314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 05/26/2023]
Abstract
Glyphosate, and the ever growing reliance on its use in agriculture, has been a point of contention for many years. There have been debates regarding the risk and safety of using glyphosate-based herbicides as well as the effects of occupational, accidental, or systematic. Although there have been a number of studies conducted, the biomonitoring of glyphosate poses a series of challenges. Researchers attempting to determine the occupational exposure face questions regarding the most appropriate analytical techniques and sampling procedures. The present review aims to summarize and synthetize the analytical methodologies available and suitable for the purpose of glyphosate biomonitoring studies as well as discuss the advantages and disadvantages of each analytical technique, from the most modern to more well-established and older ones. The most relevant publications that have described analytical methods and published within the last 12 years were studied. Methods were compared, and the advantages and disadvantages of each methods were discussed. A total of 35 manuscripts describing analytical methods for glyphosate determination were summarized and discussed, with the most relevant one being compared. For methods that were not intended for biological samples, we discussed if they could be used for biomonitoring and approaches to adapt these methods for this purpose.
Collapse
Affiliation(s)
- Horațiu Moldovan
- Department of Occupational Medicine, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureş, Romania
| | - Silvia Imre
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureş, Romania
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureş, Romania
| | - Radu Corneliu Duca
- Environmental Hygiene and Biological Monitoring Unit, Department of Health Protection, National Health Laboratory (LNS), 3555 Dudelange, Luxembourg
| | - Lénárd Farczádi
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureş, Romania
| |
Collapse
|
4
|
Fama F, Feltracco M, Moro G, Barbaro E, Bassanello M, Gambaro A, Zanardi C. Pesticides monitoring in biological fluids: Mapping the gaps in analytical strategies. Talanta 2023; 253:123969. [PMID: 36191513 DOI: 10.1016/j.talanta.2022.123969] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/13/2022]
Abstract
Pesticides play a key-role in the development of the agrifood sector allowing controlling pest growth and, thus, improving the production rates. Pesticides chemical stability is responsible of their persistency in environmental matrices leading to bioaccumulation in animal tissues and hazardous several effects on living organisms. The studies regarding long-term effects of pesticides exposure and their toxicity are still limited to few studies focusing on over-exposed populations, but no extensive dataset is currently available. Pesticides biomonitoring relies mainly on chromatographic techniques coupled with mass spectrometry, whose large-scale application is often limited by feasibility constraints (costs, time, etc.). On the contrary, chemical sensors allow rapid, in-situ screening. Several sensors were designed for the detection of pesticides in environmental matrices, but their application in biological fluids needs to be further explored. Aiming at contributing to the implementation of pesticides biomonitoring methods, we mapped the main gaps between screening and chromatographic methods. Our overview focuses on the recent advances (2016-2021) in analytical methods for the determination of commercial pesticides in human biological fluids and provides guidelines for their application.
Collapse
Affiliation(s)
- Francesco Fama
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy
| | - Matteo Feltracco
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy
| | - Giulia Moro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy.
| | - Elena Barbaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Istituto di Scienze Polari (ISP-CNR), Via Torino 155, 30172, Venezia, Italy
| | - Marco Bassanello
- Health Direction Monastier di Treviso Hospital, Via Giovanni XXIII 7, 31050, Treviso, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Istituto di Scienze Polari (ISP-CNR), Via Torino 155, 30172, Venezia, Italy.
| | - Chiara Zanardi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Institute for the Organic Synthesis and Photosynthesis, Research National Council, 40129, Bologna, Italy
| |
Collapse
|
5
|
Zhang F, Zhang Q, Liu X, Gao M, Li X, Wang Y, Chang Y, Zhang X, Huo Z, Zhang L, Shan J, Zhu B, Yao W. Human serum lipidomics analysis revealed glyphosate may lead to lipid metabolism disorders and health risks. ENVIRONMENT INTERNATIONAL 2023; 171:107682. [PMID: 36495677 DOI: 10.1016/j.envint.2022.107682] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate-based herbicides (GBH) are one of the most widely used pesticides worldwide. Industrial workers in glyphosate-based herbicides manufacture are the populations who experience long-term exposure to high glyphosate levels. The impacts of glyphosate on human health are the important public health problem of great concern. Up to date, the potential adverse effects of glyphosate on humans or other mammals have been reported in multiple studies. However, limited research is available on lipid alternations related to human exposure to glyphosate. In fact, the perturbations in some lipid metabolisms have been found in industrial workers in previous work. This study aims to explore the serum lipidomic characterization and to understand the underlying mechanisms of health risks associated with glyphosate exposure. A nontargeted lipidomics study was conducted to investigate the 391 serum samples from the general population and chemical factory workers. It was demonstrated that glyphosate caused significant perturbations of 115 differentially expressed lipids. The main manifestations were the elevation of circulating diacylglycerols (DG), cholesteryl esters (CE), ceramides (Cer), sphingomyelins (SM), lysophosphatidylethanolamines (LPE) and phosphatidylcholines (PC), and the decrease of ysophosphatidylcholines (LPC), triacylglycerols (TG), fatty acids (FA) and phosphatidylethanolamines (PE). A total of 88 lipids were further screened as potential lipid biomarkers associated closely with glyphosate using partial correlation analysis, and five of which (including PC 16:0/18:2; O, PC 18:0/18:2; O, PC 18:0/20:4; O, PC O-40:9 and CE 18:3) showed excellent superior performance (AUC = 1) to evaluate and monitor health risks due to glyphosate exposure. The present work discovered glyphosate-induced potential health risks, including chronic hepatic and renal dysfunction, atherosclerosis, cardiovascular disease and neurodegenerative diseases from a lipidomic perspective, and could inform the identification of early indicators and interpretation of biological mechanisms to detect health risks of the glyphosate-exposed populations as early as possible.
Collapse
Affiliation(s)
- Feng Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China; Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China
| | - Qiulan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Xin Liu
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China
| | - Mengting Gao
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Xin Li
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Yifei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Yueyue Chang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Xuemeng Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Zongli Huo
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China
| | - Li Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Baoli Zhu
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China.
| | - Weifeng Yao
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China.
| |
Collapse
|
6
|
Zhang Q, Liu X, Gao M, Li X, Wang Y, Chang Y, Zhang X, Huo Z, Zhang L, Shan J, Zhang F, Zhu B, Yao W. The study of human serum metabolome on the health effects of glyphosate and early warning of potential damage. CHEMOSPHERE 2022; 298:134308. [PMID: 35302001 DOI: 10.1016/j.chemosphere.2022.134308] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Glyphosate is one of the most widely used herbicide with high efficiency, low toxicity and broad-spectrum. In recent decades, increasing evidence suggests that glyphosate may cause adverse health effects on human beings. However, until now, there is little data on the human metabolic changes. Since occupational workers are under greater health risks than ordinary people, the understanding regarding the health effects of glyphosate on occupational workers is very important for the early warning of potential damage. In this study, serum metabolic alterations in workers from three chemical factories were analyzed by gas chromatography-mass spectrometry (GC-MS) to assess the potential health risks caused by glyphosate at the molecular level. It was found that the levels of 27 metabolites changed significantly in the exposed group compared to the controls. The altered metabolic pathways, including amino acid metabolism, energy metabolism (glycolysis and TCA cycle) and glutathione metabolism (oxidative stress), etc., indicated a series of changes occur in health profile of the human body after glyphosate exposure, and the suboptimal health status of human may further evolve into various diseases, such as Parkinson's disease, renal and liver dysfunction, hepatocellular carcinoma, and colorectal cancer. Subsequently, 4 biomarkers (i.e., benzoic acid, 2-ketoisocaproic acid, alpha-ketoglutarate, and monoolein) were identified as potential biomarkers related to glyphosate exposure based on the partial correlation analyses, linear regression analyses, and FDR correction. Receiver-operating curve (ROC) analyses manifested that these potential biomarkers and their combinational pattern had good performance and potential clinical value to assess the potential health risk associated with glyphosate exposure while retaining high accuracy. Our findings provided new insights on mechanisms of health effects probably induced by glyphosate, and may be valuable for the health risk assessment of glyphosate exposure.
Collapse
Affiliation(s)
- QiuLan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Liu
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, China
| | - MengTing Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - YiFei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - YueYue Chang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - XueMeng Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - ZongLi Huo
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, China
| | - Li Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - JinJun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatics, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Feng Zhang
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, China.
| | - BaoLi Zhu
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, China.
| | - WeiFeng Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|