1
|
Feng Y, Sun J, Zhang T, Zhang L, Li L, Guan A, Wang L, Huang X, Li W, Lu R. Selective and sensitive detection of dimethyl phthalate in water using ferromagnetic nanomaterial-based molecularly imprinted polymers and SERS. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125064. [PMID: 39213805 DOI: 10.1016/j.saa.2024.125064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
To overcome the complicated pretreatment, low selectivity and low sensitivity detection associated with the detection of dimethyl phthalate (DMP), this study synthesized ferromagnetic nanomaterials that coupled with surface enhanced Raman scattering (SERS) and molecular imprinting polymers (MIPs). The pretreatment process can be simplified by ferromagnetic nanomaterials, then Fe3O4@SiO2@Ag@MIPs selectively adsorbing DMP can be achieved, and SERS can be applied for DMP detection with high sensitivity. As a control, the non-imprinted polymers (NIPs) Fe3O4@SiO2@Ag@NIPs were synthesized. Adsorption experiments results showed that the saturation adsorption amounts of Fe3O4@SiO2@Ag@MIPs is 36.74 mg/g with 40 mg/L DMP and Fe3O4@SiO2@Ag@NIPs is 17.45 mg/g. For DMP, Fe3O4@SiO2@Ag@MIPs have a greater affinity. In addition, after seven adsorption-desorption cycles the Fe3O4@SiO2@Ag@MIPs are reusable with approximately a 9.8 % loss in adsorption capacity. With an 8.7 × 10-9 M detection limit, DMP detection was performed by SERS, which revealed that the Raman intensities of the associated characteristic peak were linearly proportional to the DMP concentrations. As a result, the recovery rate of the testing artificial water varied from 87.9 % to 117 %. These outcomes show that the suggested technique for finding DMP in actual water samples is practical.
Collapse
Affiliation(s)
- Yang Feng
- School of Art and Design, Xijing University, Xi'an 710123, China
| | - Jingyi Sun
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tingting Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lan Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lujie Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Anzhe Guan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lingling Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xianhuai Huang
- School of Environment and Energy Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, China
| | - Weihua Li
- School of Environment and Energy Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, China
| | - Rui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
2
|
Xu M, Chen G, Huang Y, Song H, Wu Z, Jiang F, Fu L, Bi C, Cao X, Wei W. A simple SERS sensor based on antibody-modified Fe 3O 4@Au MNPs for the detection of CA19-9 in CRC patients. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 17:84-91. [PMID: 39569653 DOI: 10.1039/d4ay01382d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
This paper presents functionalized magnetic nanoparticles (Fe3O4@Au MNPs) combined with the surface-enhanced Raman spectroscopy (SERS) technique for sensitive detection of colorectal cancer (CRC) protein biomarker carbohydrate antigen 19-9 (CA19-9). Fe3O4@Au MNPs were constructed by the PEI-mediated seed growth method. Then, the signal molecule 5-5'-dithiobis (succinimidyl-2-nitrobenzoic acid) was used as a bridging agent to link CA19-9 antibody, and the SERS sensor was prepared. Using this sensor, detection of CA19-9 can be realized with only a one step sampling reaction. Fe3O4@Au MNPs combine the advantages of magnetic materials and noble metal nanoparticles, effectively amplifying the signal by creating numerous "hot spots" within the Au particle gaps and enhancing magnetic enrichment. Consequently, this approach lowers the detection limit (LOD) and enhances detection sensitivity. The ratio of characteristic peak intensities I1392/I1069 was selected for calculation, and a linear equation was constructed with a LOD as low as 0.27 U mL-1 by quantitative detections of the standard antigen. Finally, the sensor was used to analyze the clinical serum samples from CRC patients and healthy individuals, and the detection results were consistent with the actual results. This method exhibits notable advantages, including simplicity, high sensitivity, specificity, stability and reproducibility. It is expected to provide a new promising analytical method for clinical CA19-9 immunoassay.
Collapse
Affiliation(s)
- Miaowen Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Yangzhou, PR China.
| | - Gaoyang Chen
- Department of Oncology, The Second People's Hospital of Taizhou City, Taizhou, PR China
| | - Yong Huang
- Department of Gastrointestinal Surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, PR China.
| | - Hangyu Song
- Department of Gastrointestinal Surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, PR China.
| | - Zheng Wu
- Department of Gastrointestinal Surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, PR China.
| | - Fengjuan Jiang
- Department of Gastroenterology, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, PR China
| | - Lei Fu
- Department of Gastrointestinal Surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, PR China.
| | - Caili Bi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Yangzhou, PR China.
| | - Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Yangzhou, PR China.
| | - Wei Wei
- Department of Gastrointestinal Surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
3
|
Liu J, Zheng J, Lu Y, Feng Z, Zhang S, Sun T. Prepared Sandwich structure WS 2/ag@MIP composite for ultrasensitive SERS detection of trace 17β-estradiol in food. Food Chem 2024; 460:140731. [PMID: 39106757 DOI: 10.1016/j.foodchem.2024.140731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
17β-E2 is used in animal growth regulation and agricultural fertilizer, and even ng L-1 mass concentration levels can show biological effects. In this work, Ag NPs was used as surface-enhanced Raman spectroscopy (SERS) source and WS2 was synthesized by a simple method to provide a uniform distribution platform for Ag NPs. The MIP was the shell, which can selectively enrich the target molecule, pull the distance between the target molecule and SERS source, and protect Ag NPs. A cyclable SERS substrate with high sensitivity for detecting 17β-E2 in food was constructed. The optimized WS2/Ag@MIP as SERS substrate has the advantages of high Enhanced Factor (EF = 2.78 × 109), low detection limit (LOD = 0. 0958 pM), strong anti-interference ability, and good recycling performance. Moreover, the detection of 17β-E2 in real samples still has good accuracy. This work provides a new possibility for the trace detection of 17β-E2 in food.
Collapse
Affiliation(s)
- Jiaxin Liu
- College of Sciences, Northeastern University, Shenyang 110819, PR China
| | - Jia Zheng
- College of Sciences, Northeastern University, Shenyang 110819, PR China
| | - Yunshu Lu
- College of Sciences, Northeastern University, Shenyang 110819, PR China
| | - Zhongmin Feng
- College of Sciences, Northeastern University, Shenyang 110819, PR China.
| | - Siqi Zhang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, PR China
| | - Ting Sun
- College of Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
4
|
Mahanty S, Majumder S, Paul R, Boroujerdi R, Valsami-Jones E, Laforsch C. A review on nanomaterial-based SERS substrates for sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:174252. [PMID: 38942304 DOI: 10.1016/j.scitotenv.2024.174252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/06/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
The agricultural sector plays a pivotal role in driving the economy of many developing countries. Any dent in this economical structure may have a severe impact on a country's population. With rising climate change and increasing pollution, the agricultural sector is experiencing significant damage. Over time this cumulative damage will affect the integrity of food crops and create food security issues around the world. Therefore, an early warning system is needed to detect possible stress on food crops. Here we present a review of the recent developments in nanomaterial-based Surface Enhanced Raman Spectroscopy (SERS) substrates which could be utilized to monitor agricultural crop responses to natural and anthropogenic stress. Initially, our review delves into diverse and cost-effective strategies for fabricating SERS substrates, emphasizing their intelligent utilization across various agricultural scenarios. In the second phase of our review, we spotlight the specific application of SERS in addressing critical food security issues. By detecting nutrients, hormones, and effector molecules in plants, SERS provides valuable insights into plant health. Furthermore, our exploration extends to the detection of contaminants, chemicals, and foodborne pathogens within plants, showcasing the versatility of SERS in ensuring food safety. The cumulative knowledge derived from these discussions illustrates the transformative potential of SERS in bolstering the agricultural economy. By enhancing precision in nutrient management, monitoring plant health, and enabling rapid detection of harmful substances, SERS emerges as a pivotal tool in promoting sustainable and secure agricultural practices. Its integration into agricultural processes not only augments productivity but also establishes a robust defence against potential threats to crop yield and food quality. As SERS continues to evolve, its role in shaping the future of agriculture becomes increasingly pronounced, promising a paradigm shift in how we approach and address challenges in food production and safety.
Collapse
Affiliation(s)
- Shouvik Mahanty
- Department of Atomic Energy, Saha Institute of Nuclear Physics, Sector 1, AF Block, Bidhannagar, Kolkata 700064, West Bengal, India
| | - Santanu Majumder
- Department of Life and Environmental Sciences, Bournemouth University (Talbot Campus), Fern Barrow, Poole BH12 5BB, UK.
| | - Richard Paul
- Department of Life and Environmental Sciences, Bournemouth University (Talbot Campus), Fern Barrow, Poole BH12 5BB, UK
| | - Ramin Boroujerdi
- Department of Life and Environmental Sciences, Bournemouth University (Talbot Campus), Fern Barrow, Poole BH12 5BB, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christian Laforsch
- Department of Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
5
|
Meng Z, Zhu L, Wang J, Li T, He C, Liu R, Hui G, Zhao B. TiO 2 nanofilms for surface-enhanced Raman scattering analysis of urea. Talanta 2024; 279:126664. [PMID: 39098238 DOI: 10.1016/j.talanta.2024.126664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
In this study, titanium dioxide (TiO2) nanofilms with nanoparticle structure were grown in situ on metallic aluminum (Al) sheets using a simple sol-hydrothermal method. Al sheets were chosen because they can form Schottky junctions with TiO2 during the calcination process, thus achieving a tight bonding between the nanoparticles and the solid substrate, which cannot be achieved with conventional glass substrates. The substrates synthesized with different contents of titanium butoxide [Ti(OBu)4] were investigated using 4-mercaptobenzoic acid as a probe molecule, and the results showed that the substrate with 9 % of the total volume of Ti(OBu)4 had the highest surface-enhanced Raman scattering (SERS) performance. As a low-cost SERS substrate that is simple to synthesize, it has excellent signal reproducibility, with a relative standard deviation of 4.51 % for the same substrate and 6.43 % for different batches of synthesized substrates. Meanwhile, the same batch of substrate can be stored at room temperature for at least 20 weeks and still maintain stable SERS signals. In addition, the synthetic substrate was used to quantitatively detect urea with a detection limit of 4.23 × 10-3 mol/L, which is comparable to the application of noble metal substrates. The feasibility of this method was verified in human urine, and the results were consistent with the clinical results, indicating that this method has great potential for clinical application.
Collapse
Affiliation(s)
- Zhen Meng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Lin Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jihong Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Tingmiao Li
- China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Chengyan He
- China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Rui Liu
- China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China.
| | - Ge Hui
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130017, PR China.
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
6
|
Kim SH, Yun J, Kim W, Seon E, Lee C, Jeon J, Yun ME, Park KH. The effect of ceramides on skin absorption by Raman spectroscopy. Skin Res Technol 2024; 30:e70046. [PMID: 39331532 PMCID: PMC11430771 DOI: 10.1111/srt.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/25/2024] [Indexed: 09/29/2024]
Abstract
INTRODUCTION Ceramides are essential epidermal constituents that play a critical role in skin moisturization treatment as a raw material in cosmetics formulation. Recently, ceramides have been known to be frequently applied in various cosmetic formulations. Despite ceramide's beneficial characteristics, academic research regarding ceramides and their skin absorption remains insufficient. Therefore, our study conducted clinical research employing Raman spectroscopy to investigate the effects of ceramides on skin absorption to enhance the understanding of ceramides' dermatological functionality and their topical application in cosmetics science. MATERIALS AND METHODS Twenty healthy individuals with dry skin have participated in this clinical trial. In this double-arm designed trial, the test group received an investigational product with ceramides (5000 ppm) and a control group received an investigational product without the ceramides while all other components remained identical. The subjects visited the clinical research center and acclimatized for 30 min in constant humidity and temperature for equilibrium, subsequently conducting a measurement. Before the trial, the research subject's target site (lower arm area) was kept clean, devoid of any cosmetic administering 24 h before the trial when investigational product was topically applied. RESULTS Our findings with Raman spectroscopy statistically demonstrate that skin absorption amount, speed and depth for both groups improved overall (p < 0.05) after administration of the investigational product. Notably, the test group received an investigational product with ceramides (5000 ppm) indicating superior effectiveness across all parameters compared to a control group from comparison analysis of each parameter (p < 0.05). CONCLUSION This study concludes that ceramide-containing cosmetics provide a beneficial effect on skin absorption via visual and statistical results of Raman spectroscopy analysis.
Collapse
Affiliation(s)
- Song Hee Kim
- Sunjin Clinical Research CenterSunjin Beauty Science Co., Ltd.SeoulSouth Korea
| | - Jeonghoon Yun
- Sunjin Clinical Research CenterSunjin Beauty Science Co., Ltd.SeoulSouth Korea
- Faculty of Life SciencesUniversity of TorontoTorontoOntarioCanada
| | - Woncheol Kim
- Sunjin Clinical Research CenterSunjin Beauty Science Co., Ltd.SeoulSouth Korea
| | - Eunsu Seon
- Sunjin Clinical Research CenterSunjin Beauty Science Co., Ltd.SeoulSouth Korea
| | - Chanhwi Lee
- Sunjin Clinical Research CenterSunjin Beauty Science Co., Ltd.SeoulSouth Korea
| | - Jaejoon Jeon
- Sunjin Clinical Research CenterSunjin Beauty Science Co., Ltd.SeoulSouth Korea
| | - Mid Eum Yun
- R&D CenterSunjin Beauty Science Co., Ltd.SeoulSouth Korea
| | - Keun Hyung Park
- Sunjin Clinical Research CenterSunjin Beauty Science Co., Ltd.SeoulSouth Korea
- R&D CenterSunjin Beauty Science Co., Ltd.SeoulSouth Korea
| |
Collapse
|
7
|
Chen F, Huang Y, Liu Y, Zhuang Y, Cao X, Qin X. SERS Analysis Platform Based on Aptamer Recognition-Release Strategy for Efficient and Sensitive Diagnosis of Colorectal Precancerous Lesions. Int J Nanomedicine 2024; 19:10009-10021. [PMID: 39371477 PMCID: PMC11451456 DOI: 10.2147/ijn.s483261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024] Open
Abstract
Background Colorectal cancer (CRC) has become a significant global public health challenge, demanding immediate attention due to its high incidence and mortality rates. Regular CRC screening is essential for the early detection of precancerous lesions and CRC. Methods : We developed a novel surface-enhanced Raman scattering (SERS) analysis platform that employs high-throughput microarray chips as carriers and Au/SnO2 nanoring arrays (Au/SnO2 NRAs) as substrates. This platform utilizes an aptamer recognition-release strategy to achieve efficient and sensitive detection of protein tumor markers. In the detection process, the strong affinity and high specificity between the aptamer and the target protein result in competitive replacement of the SERS nanoprobes originally bound to the substrate surface. As a result, the SERS nanoprobes carrying Raman reporter genes are dislodged, leading to a reduction in the SERS signal intensity. Results The platform demonstrated excellent detection performance, with rapid detection completed within 15 minutes and limits of detection (LOD) as low as 6.2×10-12 g/mL for hnRNP A1 and 6.51×10-12 g/mL for S100P. Clinical samples analyzed using the SERS platform showed high consistency with enzyme-linked immunosorbent assay (ELISA) results. Conclusion This platform offers strong support for the early detection, risk assessment, and treatment monitoring of colorectal cancer precancerous lesions, with broad potential for clinical applications.
Collapse
Affiliation(s)
- Fengsong Chen
- Department of Gastroenterology, Nantong Haimen People’s Hospital, Nantong, Jiangsu, 226100, People’s Republic of China
| | - Yanhua Huang
- Department of Gastroenterology, Nantong Haimen People’s Hospital, Nantong, Jiangsu, 226100, People’s Republic of China
| | - Yongxia Liu
- Department of gastroenterology, Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, Jiangsu, 226300, People’s Republic of China
| | - Yanwen Zhuang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, People’s Republic of China
| | - Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, People’s Republic of China
| | - Xiaogang Qin
- Department of gastroenterology, Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, Jiangsu, 226300, People’s Republic of China
| |
Collapse
|
8
|
Chen F, Huang Y, Qian Y, Zhao Y, Bu C, Zhang D. A Machine Learning-Driven Surface-Enhanced Raman Scattering Analysis Platform for the Label-Free Detection and Identification of Gastric Lesions. Int J Nanomedicine 2024; 19:9305-9315. [PMID: 39282579 PMCID: PMC11401524 DOI: 10.2147/ijn.s471392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
Background Gastric lesions pose significant clinical challenges due to their varying degrees of malignancy and difficulty in early diagnosis. Early and accurate detection of these lesions is crucial for effective treatment and improved patient outcomes. Methods This paper proposed a label-free and highly sensitive classification method for serum of patients with different degrees of gastric lesions by combining surface-enhanced Raman scattering (SERS) and machine learning analysis. Specifically, we prepared Au lotus-shaped (AuLS) nanoarrays substrates using seed-mediated and liquid-liquid interface self-assembly method for measuring SERS spectra of serum, and then the collected spectra were processed by principal component analysis (PCA) - multi-local means based nearest neighbor (MLMNN) model to achieve differentiation. Results By employing this pattern analysis, AuLS nanoarray substrates can achieve fast, sensitive, and label-free serum spectral detection. The classification accuracy can reach 97.5%, the sensitivity is higher than 96.7%, and the specificity is higher than 95.0%. Moreover, by analyzing the PCs loading plots, the most critical spectral features distinguishing different degrees of gastric lesions were successfully captured. Conclusion This discovery lays the foundation for combining SERS with machine learning for real-time diagnosis and recognition of gastric lesions.
Collapse
Affiliation(s)
- Fengsong Chen
- Department of Gastroenterology, Haimen People's Hospital, Nantong, 226000, People's Republic of China
| | - Yanhua Huang
- Department of Gastroenterology, Haimen People's Hospital, Nantong, 226000, People's Republic of China
| | - Yayun Qian
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Ya Zhao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Chiwen Bu
- Institute of Surgery, Guanyun People's Hospital, Guanyun, 222200, People's Republic of China
| | - Dong Zhang
- Institute of Surgery, Guanyun People's Hospital, Guanyun, 222200, People's Republic of China
| |
Collapse
|
9
|
Heo EH, Chang H. Simple and sensitive galactose monitoring based on capillary SERS sensor. Anal Bioanal Chem 2024; 416:3811-3819. [PMID: 38702448 DOI: 10.1007/s00216-024-05322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Galactosemia, a severe genetic metabolic disorder, results from the absence of galactose-degrading enzymes, leading to harmful galactose accumulation. In this study, we introduce a novel capillary-based surface-enhanced Raman spectroscopy (SERS) sensor for convenient and sensitive galactose detection. The developed sensor enhances SERS signals by introducing gold nanoparticles (Au NPs) onto the surface of silver nanoshells (Ag NSs) within a capillary, creating Ag NSs with Au NPs as satellites. Utilizing 4-mercaptophenylboronic acid (4-MPBA) as a Raman reporter molecule, the detection method relies on the conversion of 4-MPBA to 4-mercaptophenol (4-MPhOH) driven by hydrogen peroxide (H2O2) generated during galactose oxidation by galactose oxidase (GOx). A new SERS signal was observed, which was generated by H2O2 produced when galactose and GOx reacted. Our strategy yielded a quantitative change in the SERS signal, specifically in the band intensity ratio of 998 to 1076 cm-1 (I998/I1076) as the galactose concentration increased. Our capillary-based SERS biosensor provides a promising platform for early galactosemia diagnosis.
Collapse
Affiliation(s)
- Eun Hae Heo
- Division of Science Education, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
10
|
Li J, Li M, Wang Q, Wang J, Zhu Y, Bu L, Zhang H, Li P, Xu W. Necklace-like Te-Au reticula platform with three dimensional hotspots Surface-Enhanced Raman Scattering (SERS) sensor for food hazards analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124037. [PMID: 38354678 DOI: 10.1016/j.saa.2024.124037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
In this work, we combined three-dimensional (3D) necklace-like Te-Au reticula as novel surface-enhanced Raman scattering (SERS) active substrates with oxidation-reduction displacement reactions to construct a molecular machine for SERS detection. The structurally tunable 3D necklace-like spatial structures generated more active 'hot spots' and thus enhanced the sensitivity of SERS signals. Besides, layers of ultrathin nanowires showed high sequence dependence that ensure the repeatability and abundant hotspots at interparticle gaps and guarantee the high SERS performance of the substrate. A better-localized surface plasmon resonance (LSPR) effect of the sensor was verified by finite-difference time-domain (FDTD) analysis in both Raman intensities and electromagnetic field distributions compared to the citrate-stabilized AuNPs and CTAB-protected AuNRs. The proposed strategy can also serve as a universally amplified and sensitive detection platform for monitoring different molecules, thus achieving an amplification detection of 3,3'-diethylthiatricarbocyanine iodide (DTTCI) are 1 nM and R6G with a low limit of detection of 1 pM. Especially, the intensity of the main vibration of R6G from 30 spots of SERS data with excellent reproducibility (relative standard deviation of 6.25 %). High selectivity and accuracy of the SERS sensor were proved by practical analysis melamine (MM) in milk with a linear calibration curve (R2 = 0.9962) and a limit of detection of 0.75 mg/kg. Our research provides a new perspective to construct 3D SERS sensor from integrated structural design.
Collapse
Affiliation(s)
- Jingya Li
- Department of Pathology, Anhui University of Chinese Medicine, Hefei 230012, China; University of Science and Technology of China, Hefei 230026, China
| | - Man Li
- Department of Bioengineering, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qianqian Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Anhui, Hefei 230038, China
| | - Juan Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Anhui, Hefei 230038, China
| | - Yinbo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Linfeng Bu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Hanyuan Zhang
- University of Science and Technology of China, Hefei 230026, China
| | - Pan Li
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, CAS, Hefei 230021, China.
| | - Weiping Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, Hefei 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Anhui Provincial Hospital, Anhui, Hefei 230001, China; Gerontology Institute of Anhui Province, Hefei 230001, China.
| |
Collapse
|
11
|
Wang J, Liu S, Wei B, Liu Y. Frequency shift Raman-based sensing of serum MicroRNA for ultrasensitive cervical cancer diagnosis. Photodiagnosis Photodyn Ther 2024; 46:104105. [PMID: 38677498 DOI: 10.1016/j.pdpdt.2024.104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Cervical cancer is the most common gynaecological tumor. The development of a sensor for the ultrasensitive detection of cervical cancer is significant in guaranteeing its prognosis. Herein, we proposed a novel surface-enhanced Raman scattering (SERS) analysis platform using a frequency shifts-based sensing model for rapid and ultrasensitive microRNA (miRNA) assay. During the analysis process, miR-21 can be captured by the single-stranded DNA (ssDNA) modified on the platform which is complementary pairing with miR-21. The connection of miR-21 can lead to the variation of the molecular weight and result in the deformation extent of the Raman report molecule 6Thioguanine (6TG); thus, the peak at 1301 cm-1 due to the ring C-N stretches of 6TG shifts to lower frequency. The detection limit (LOD) of the proposed SERS analysis platform is as low as 8.32 aM. Moreover, the platform also has excellent specificity and repeatability, with the relative standard deviation (RSD) value of 6.53 %. Serum samples of cervical cancer patients and healthy subjects were analyzed via the platform and the accuracy of the detection results was verified by qRT-PCR, revealing that SERS results and qRT-PCR results have high homogeneity. Thus, the platform can serve as a potential tool for clinical diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou 225000, China
| | - Shenxiang Liu
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou 225000, China
| | - Benfei Wei
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou 225000, China
| | - Yulong Liu
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| |
Collapse
|
12
|
Xue W, Fu J, Zhang Y, Ren S, Liu G. A core-shell structured AuNPs@ZnCo-MOF SERS substrate for sensitive and selective detection of thiram. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1811-1820. [PMID: 38450563 DOI: 10.1039/d4ay00164h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Surface-enhanced Raman scattering (SERS) enables pesticide residue monitoring to become facile and efficient. In this study, a core-shell structured gold nanoparticles@ZnCo metal-organic framework (AuNPs@ZnCo-MOF) SERS substrate was designed and successfully synthesized for efficient and selective detection of thiram. The bimetallic ZnCo-MOF shell can not only enrich the targeted molecules in the electromagnetic field because of its excellent absorptive capacity, but also act as a stabilized matrix for protecting the AuNPs from aggregation. The AuNPs@ZnCo-MOFs exhibited a high enhancement factor (EF) of 3.51 × 106 and a low detection limit of 1 × 10-7 mol L-1. Besides, the substrate material showed exceptional stability for up to 28 days at room temperature. The AuNPs@ZnCo-MOFs were used to detect thiram which displayed wide linearity (1 × 10-7 to 1 × 10-4 mol L-1) and high recoveries (83.45-99.61%). Moreover, the AuNPs@ZnCo-MOF SERS substrate exhibited excellent anti-interference ability and size selectivity for the target molecules. These indicate that the AuNPs@ZnCo-MOF substrate has great potential for the detection of thiram residues in practical applications.
Collapse
Affiliation(s)
- Wenxia Xue
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Jihong Fu
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Yaxue Zhang
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Shuxian Ren
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Guoqi Liu
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| |
Collapse
|
13
|
Zhang D, He M, Qin C, Wu Z, Cao M, Ni D, Yu Z, Liang P. A highly effective SERS platform formed by the fabrication of Ag@ZIF-8@Au nanoparticles for rapid detection of acetamiprid in environment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123754. [PMID: 38091646 DOI: 10.1016/j.saa.2023.123754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024]
Abstract
The unreasonable spraying and random migration of acetamiprid may cause pollution of crops, soil and water resources in the environment, resulting in threatening ecosystem and human health. However, the monitoring of acetamiprid using mass spectrum in the environment encounters challenges due to high-cost instruments and complex processing time. Herein, we fabricated a rapid and reliable SERS method based on Ag@ZIF-8@Au platforms for tracing acetamiprid residues in the environment. In this method, a MOF material named ZIF-8 is coated with silver nanoparticles and distributed internally between AgNPs and AuNPs to enhance Raman signal, which can enrich pesticide molecules into the hotspots area provided by noble material and helps avoid the oxidation of silver nanoparticles. High sensitivity (LOD of 9.027 × 10-10 M for acetamiprid, and SERS enhancement factor of 4.3 × 107), excellent reproducibility (6.496% or 7.198% RSD for 30 random points) and superior stability (3.127% RSD for 6 weeks) were achieved using the proposed method. Acetamiprid with concentrations from 10-4 to 10-9 M were successfully detected by SERS method. Furthermore, the linear detection models of acetamiprid in different environment matrices (lake water, tea leaves, tea garden soil, oranges and oranges orchard soil) were established and all the correlation coefficient (R2) were higher than or equal to 95%, indicating the excellent adaptability of Ag@ZIF-8@Au platform in environment. The randomly spiked concentrations of acetamiprid were also tested with good recovery values and low relative error values, further confirming the reliability of the detection method.
Collapse
Affiliation(s)
- De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Mingxin He
- College of Science, Huazhong Agricultural University, 430070 Wuhan, China
| | - Chongyang Qin
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhuoqun Wu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Minhui Cao
- College of Science, Huazhong Agricultural University, 430070 Wuhan, China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China.
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.
| |
Collapse
|
14
|
Jiao Y, Pan Y, Yang M, Li Z, Yu J, Fu R, Man B, Zhang C, Zhao X. Micro-nano hierarchical urchin-like ZnO/Ag hollow sphere for SERS detection and photodegradation of antibiotics. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:307-318. [PMID: 39633674 PMCID: PMC11501311 DOI: 10.1515/nanoph-2023-0659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/08/2024] [Indexed: 12/07/2024]
Abstract
Hollow urchin-like substrates have been widely interested in the field of surface-enhanced Raman scattering (SERS) and photocatalysis. However, most reported studies are simple nanoscale urchin-like substrate with limited light trapping range and complicated preparation process. In this paper, a simple and effective controllable synthesis strategy based on micro-nano hierarchical urchin-like ZnO/Ag hollow spheres was prepared. Compared with the 2D structure and solid spheres, the 3D urchin-like ZnO/Ag hollow sphere has higher laser utilization and more exposed specific surface area due to its special hollow structure, which resulted in excellent SERS and photocatalytic performance, and successfully realize the detection and photodegradation of antibiotics. The limited of detection of metronidazole can reach as low as 10-9 M, and degradation rate achieve 89 % within 120 min. The experimental and theoretical results confirm that the ZnO/Ag hollow spheres can be used in the development of ZnO heterostructure for the detection and degradation of antibiotics, which open new avenues for the development of novel ZnO-based substrate in SERS sensing and catalytic application to address environmental challenges.
Collapse
Affiliation(s)
- Yang Jiao
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Yuanyuan Pan
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Moru Yang
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Zhen Li
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Jing Yu
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Rong Fu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng252000, China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Chao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Xiaofei Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| |
Collapse
|
15
|
Wei S, Du W, Hao Z, Li N, Li Y, Wang M. Construction of dense film inside capillary wall and SERS application research. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123967. [PMID: 38309008 DOI: 10.1016/j.saa.2024.123967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
The high-density particle distribution in capillary was a crucial factor for enhancing SERS properties and a difficult point in the preparation process. The direct high-temperature method was used to fuse the particles and form a uniform and dense particle distribution on the capillary's inner wall, providing a foundation for enhancing Raman signals. The prepared capillary SERS substrate strongly enhances the rhodamine 6G (R6G) signal, and the RSD values of several characteristic peaks of R6G are about 10 %, demonstrating high sensitivity, uniformity, and stability. Using capillary SERS substrate for detecting goat serum. Embedding precious metal particles into capillary SERS substrate can effectively encapsulate the tested liquid and avoid contamination, which improves the disadvantage of traditional substrates exposing the liquid to air. The prepared capillary SERS substrate could be used for field and biomedical sensitivity detection, providing a theoretical and experimental basis for developing the capillary SERS substrate.
Collapse
Affiliation(s)
- Shengnan Wei
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Wei Du
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Zongshuo Hao
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Na Li
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Yue Li
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Mingli Wang
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
16
|
Yu H, Sun H, Ma J, Han B, Wang R, Ma Y, Lou G, Song Y. Resonance-Assisted Surface-Enhanced Raman Spectroscopy Amplification on Hierarchical Rose-Shaped MoS 2/Au Nanocomposites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:380-388. [PMID: 38153039 DOI: 10.1021/acs.langmuir.3c02635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has emerged as a highly sensitive trace detection technique in recent decades, yet its exceptional performance remains elusive in semiconductor materials due to the intricate and ambiguous nature of the SERS mechanism. Herein, we have synthesized MoS2 nanoflowers (NFs) decorated with Au nanoparticles (NPs) by hydrothermal and redox methods to explore the size-dependence SERS effect. This strategy enhances the interactions between the substrate and molecules, resulting in exceptional uniformity and reproducibility. Compared to the unadorned Au nanoparticles (NPs), the decoration of Au NPs induces an n-type effect on MoS2, resulting in a significant enhancement of the SERS effect. This augmentation empowers MoS2 to achieve a low limit of detection concentration of 2.1 × 10-9 M for crystal violet (CV) molecules and the enhancement factor (EF) is about 8.52 × 106. The time-stability for a duration of 20 days was carried out, revealing that the Raman intensity of CV on the MoS2/Au-6 substrate only exhibited a reduction of 24.36% after undergoing aging for 20 days. The proposed mechanism for SERS primarily stems from the synergistic interplay among the resonance of CV molecules, local surface plasma resonance (LSPR) of Au NPs, and the dual-step charge transfer enhancement. This research offers comprehensive insights into SERS enhancement and provides guidance for the molecular design of highly sensitive SERS systems.
Collapse
Affiliation(s)
- Hongyan Yu
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Huanhuan Sun
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Junjie Ma
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Boyang Han
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Rensheng Wang
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Yun Ma
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Gang Lou
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Yanping Song
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
17
|
Ma C, Shi Y, Huang Y, Dai G. Raman spectroscopy-based prediction of ofloxacin concentration in solution using a novel loss function and an improved GA-CNN model. BMC Bioinformatics 2023; 24:409. [PMID: 37904084 PMCID: PMC10617066 DOI: 10.1186/s12859-023-05542-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND A Raman spectroscopy method can quickly and accurately measure the concentration of ofloxacin in solution. This method has the advantages of accuracy and rapidity over traditional detection methods. However, the manual analysis methods for the collected Raman spectral data often ignore the nonlinear characteristics of the data and cannot accurately predict the concentration of the target sample. METHODS To address this drawback, this paper proposes a novel kernel-Huber loss function that combines the Huber loss function with the Gaussian kernel function. This function is used with an improved genetic algorithm-convolutional neural network (GA-CNN) to model and predict the Raman spectral data of different concentrations of ofloxacin in solution. In addition, the paper introduces recurrent neural networks (RNN), long short-term memory (LSTM), bidirectional long short-term memory (BiLSTM) and gated recurrent units (GRU) models to conduct multiple experiments and use root mean square error (RMSE) and residual predictive deviation (RPD) as evaluation metrics. RESULTS The proposed method achieved an [Formula: see text] of 0.9989 on the test set data and improved by 3% over the traditional CNN. Multiple experiments were also conducted using RNN, LSTM, BiLSTM, and GRU models and evaluated their performance using RMSE, RPD, and other metrics. The results showed that the proposed method consistently outperformed these models. CONCLUSIONS This paper demonstrates the effectiveness of the proposed method for predicting the concentration of ofloxacin in solution based on Raman spectral data, in addition to discussing the advantages and limitations of the proposed method, and the study proposes a solution to the problem of deep learning methods for Raman spectral concentration prediction.
Collapse
Affiliation(s)
- Chenyu Ma
- School of Information and Control Engineering, Liaoning Petrochemical University, Fushun, 113001, China
| | - Yuanbo Shi
- School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun, 113001, China.
| | - Yueyang Huang
- School of Information and Control Engineering, Liaoning Petrochemical University, Fushun, 113001, China
| | - Gongwei Dai
- School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun, 113001, China
| |
Collapse
|
18
|
Ke X, Chen J, Chang L, Zhou Z, Zhang W. Casting liquid PDMS on self-assembled bilayer polystyrene nanospheres to prepare a SERS substrate with two layers of nanopits for detection of p-nitrophenol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4582-4590. [PMID: 37655547 DOI: 10.1039/d3ay00628j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
p-Nitrophenol (PNP) is widely used in pesticides, pharmaceuticals, and dyestuffs. It is vital to detect trace PNP in the environment, because it poses significant environmental hazards due to its high toxicity. In this paper, a new method was reported for preparing a SERS substrate with excellent SERS activity by combining self-assembly techniques and flexible materials. First, the three-dimensional (3D) polystyrene (PS) photonic crystal (PC) structural master was fabricated by stacking two layers of self-assembled PS nanospheres with different diameters. Polydimethylsiloxane (PDMS) with a complementary structure to the master was obtained by casting, curing and peeling off. Finally, the PDMS-Ag substrate was fabricated by sputtering a thin Ag layer on the PDMS structure. The enhancement factor (EF) of the PDMS-Ag substrate was calculated to be 2.90 × 109 by using 4-amino thiophenol (ATP) as the probe molecule, and the limit of detection (LOD) for ATP can reach 10-11 M. And the RSD of the SERS intensity for the peak at 1078 cm-1 on the PDMS-Ag substrates from batch to batch was within 2%, indicating the high reproducibility of the as-prepared substrate. The quantitative analysis of PNP was achieved with a LOD of 10-8 M. Therefore, the PDMS-Ag substrate exhibits high sensitivity and reproducibility, and it can detect PNP in trace amounts, with great potential for detecting other contaminants.
Collapse
Affiliation(s)
- Xiurui Ke
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
| | - Jinran Chen
- Chongqing Jiaotong University, Chongqing, 400074, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
| | - Lin Chang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
| | - Zhou Zhou
- The University of Manchester, Department of Materials, Oxford Road, Manchester M13 9PL, UK
| | - Wei Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
| |
Collapse
|
19
|
Mei L, Wang Z, Niu Y, Deng W, Shao Y. Graphene nanospacer layer modulated multilayer composite structures of precious metals and their SERS performance. OPTICS EXPRESS 2023; 31:29768-29781. [PMID: 37710770 DOI: 10.1364/oe.497888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
Graphene(G)-noble metal-ZnO hybrid systems were developed as highly sensitive and recyclable surface enhanced Raman scattering (SERS) platforms, in which ultrathin graphene of varying thickness was embedded between two metallic layers on top of a ZnO layer. Due to the multi-dimensional plasmonic coupling effect, the Au/G/Ag@ZnO multilayer structure possessed ultrahigh sensitivity with the detection limit of Rhodamine 6 G (R6G) as low as 1.0×10-13 mol/L and a high enhancement factor of 5.68×107. Both experimental and simulation results showed that graphene films could significantly regulate the interlayer plasmon resonance coupling strength, and single-layer graphene had the best interlayer regulation effect. Additionally, the SERS substrate structure prepared through physical methods exhibited high uniformity, the graphene component of the substrate possessed excellent molecular enrichment ability and silver oxidation inhibition characteristics, resulting in a substrate with high stability and exceptional reproducibility. The signal change was less than 15%. Simultaneously, due to the excellent photocatalytic performance of the low-cost and wide-band-gap semiconductor material ZnO, the SERS substrate exhibited exceptional reusability. Even after five cycles of adsorption-desorption, the SERS performance remained stable and maintained a reliable detection limit. The study introduced a novel approach to creating multilayer composite SERS substrates that exhibited exceptional performance, offering a new analytical tool with high sensitivity, stability, and reusability.
Collapse
|
20
|
Bao X, Wang S, Liu X, Li G. Highly sensitive detection of CYFRA21-1 with a SERS sensing platform based on the MBs enrichment strategy and antibody-DNA-mediated CHA amplification. Front Bioeng Biotechnol 2023; 11:1251595. [PMID: 37635996 PMCID: PMC10449459 DOI: 10.3389/fbioe.2023.1251595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Laryngeal carcinoma (LC) is the second most common malignant tumor of the head and neck. Due to its insidious nature, most patients have developed to the middle and late stages by the time they are diagnosed, missing the best treatment period. Thus, early detection, diagnosis and treatment are crucial to improve the prognosis of LC and enhance the quality of life of patients. In this study, a surface-enhanced Raman (SERS) sensing platform was developed by combining the magnetic beads (MBs) enrichment strategy and the antibody-DNA-mediated catalytic hairpin self-assembly (CHA) signal amplification technology. 4-Mercaptobenzoic acid (4-MBA) and hairpin DNA 1 (hpDNA1) were modified onto the surface of gold nanobipyramids (GNBPs) as SERS nanotags. Hairpin DNA 2 (hpDNA2) modified MBs were used as capture nanoprobes. Under the action of CHA and magnet-induced MBs enrichment, GNBPs can be assembled on the surface of MBs, forming high-density "hot spots" for the SERS signal enhancement. The results showed that the SERS sensing platform has the advantages of high sensitivity, high specificity and high reproducibility, with the limit of detection (LOD) low to pg/mL level. The expression level of CYFRA21-1 in serum of LC patients and healthy controls was successfully detected by the SERS sensing platform. The accuracy of the SERS results was verified by enzyme linked immunosorbent assay (ELISA). Therefore, this SERS sensor can be used for the detection of CYFRA21-1 in serum, providing a simple and reliable new method for the early diagnosis of LC.
Collapse
Affiliation(s)
- Xiaotao Bao
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Shiyi Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaoyan Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Xishan People’s Hospital of Wuxi City, Wuxi, China
| | - Guang Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
21
|
Zhang H, Zhang Z, Wang H, Huang L, Yang Z, Wang Y, Li H. Versatile flexible SERS substrate for in situ detection of contaminants in water and fruits based on Ag NPs decorated wrinkled PDMS film. OPTICS EXPRESS 2023; 31:21025-21037. [PMID: 37381212 DOI: 10.1364/oe.492496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
Flexible surface-enhanced Raman spectroscopy (SERS) substrate has attracted great attention due to its convenient sampling and on-site monitoring capability. However, it is still challenging to fabricate a versatile flexible SERS substrate, which can be used for in situ detection of analytes either in water or on irregular solid surfaces. Here, we report a flexible and transparent SERS substrate based on a wrinkled polydimethylsiloxane (PDMS) film obtained by transferring corrugated structures on the aluminium/polystyrene bilayer film, onto which silver nanoparticles (Ag NPs) are deposited by thermal evaporation. The as-fabricated SERS substrate exhibits a high enhancement factor (∼1.19×105), good signal uniformity (RSD of 6.27%), and excellent batch-to-batch reproducibility (RSD of 7.3%) for rhodamine 6 G. In addition, the Ag NPs@W-PDMS film can maintain high detection sensitivity even after mechanical deformations of bending or torsion for 100 cycles. More importantly, being flexible, transparent, and light, the Ag NPs@W-PDMS film can both float on the water surface and conformally contact with the curved surface for in situ detection. The malachite green in aqueous environment and on apple peel can be easily detected down to 10-6 M with a portable Raman spectrometer. Therefore, it is expected that such a versatile flexible SERS substrate has great potential in on-site, in situ contaminant monitoring for realistic applications.
Collapse
|
22
|
Song Z, Wang X, Chen P, Wang Z, Ma X. A gold nanoflower based dual mode aptasensor for aflatoxin B 1 detection using SERS and fluorescence effect simultaneously. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122963. [PMID: 37302200 DOI: 10.1016/j.saa.2023.122963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Aflatoxin B1 (AFB1) is usually the major aflatoxin produced by toxigenic strains and has been identified the most potent natural carcinogen. Here, a SERS/fluorescence dual-mode nanosensor has been designed while gold nanoflowers (AuNFs) was used as substrate for the detection of AFB1. AuNFs exhibited excellent SERS enhancement effect as well as the good fluorescence quenching effect which made the dual signal detection possible. First, the surface of AuNFs was modified with AFB1 aptamer via Au-SH group. Then, the complementary sequence functionalized with Cy5 (the signal molecule) was attached to AuNFs based on the base complementary pairing principle. On this case, Cy5 was close to AuNFs, the SERS intensity was greatly enhanced and the fluorescence intensity was quenched. After incubation with AFB1, the aptamer was preferentially combined to its target AFB1. Thus, the complementary sequence detached from AuNFs which caused the SERS intensity of Cy5 decreased while its fluorescence effect recovered. Then, the quantitative detection was realized with two optical properties. The LOD was calculated to be 0.03 ng/mL. It was a convenient and fast detection method which expanded the application of nanomaterials based multi-signal simultaneous detection.
Collapse
Affiliation(s)
- Zhiyi Song
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xinyi Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Peifang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
23
|
Zheng C, Yu J, Dou L, Wang Z, Huang Z, Li X, Hu X, Li Y. Flexible 3D Substrate of Ag Nanoparticle-Loaded Carbon Aerogels with Outstanding Surface-Enhanced Raman Scattering Performance. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37285222 DOI: 10.1021/acsami.3c04414] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Surface-enhanced Raman scattering (SERS), an ultra-sensitive and non-destructive analytic technique, has attracted wide attention from the scientific community. Despite its rapid development, limited hotspots on the SERS substrates have restricted their potential in practical applications. Herein, we developed a facile method to fabricate a flexible three-dimensional (3D) SERS substrate composed of silver nanoparticles (Ag NPs)-loaded carbon aerogels (CAs). Such a flexible Ag NPs/CAs substrate exhibited numerous hotspots, which can facilely be adjusted not only by tuning the density of Ag NPs but also by controlling the bending degree of the flexible substrate. In addition, the influence of hotspots on the local electric field enhancement was investigated by theoretical calculations. Moreover, the 3D network structure of the CAs with a large specific surface area and strong adsorption ability can improve the capture of target molecules. Consequently, the optimal Ag NPs/CAs substrate has a low detection limit of 10-12 M for rhodamine 6G molecules as well as good repeatability. Furthermore, based on the good performance of SERS detection of the Ag NPs/CAs substrate, it can also be practically used for the detection of thiram molecules on the surface of cherry tomatoes. Such a flexible 3D Ag NPs/CAs substrate has great potential for practical environmental monitoring applications.
Collapse
Affiliation(s)
- Chunxue Zheng
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jie Yu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Liguang Dou
- Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhen Wang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhulin Huang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xinyang Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Xiaoye Hu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yue Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
24
|
Pang Y, Jin M. Fabrication of Silver Nanobowl Arrays on Patterned Sapphire Substrate for Surface-Enhanced Raman Scattering. MICROMACHINES 2023; 14:1197. [PMID: 37374782 DOI: 10.3390/mi14061197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
The current article discusses surface-enhanced Raman spectroscopy (SERS) as a powerful technique for detecting molecules or ions by analyzing their molecular vibration signals for fingerprint peak recognition. We utilized a patterned sapphire substrate (PSS) featuring periodic micron cone arrays. Subsequently, we prepared a three-dimensional (3D) PSS-loaded regular Ag nanobowls (AgNBs) array using self-assembly and surface galvanic displacement reactions based on polystyrene (PS) nanospheres. The SERS performance and structure of the nanobowl arrays were optimized by manipulating the reaction time. We discovered that the PSS substrates featuring periodic patterns exhibited superior light-trapping effects compared to the planar substrates. The SERS performance of the prepared AgNBs-PSS substrates was tested under the optimized experimental parameters with 4-mercaptobenzoic acid (4-MBA) as the probe molecule, and the enhancement factor (EF) was calculated to be 8.96 × 104. Finite-difference time-domain (FDTD) simulations were conducted to explain that the AgNBs arrays' hot spots were distributed at the bowl wall locations. Overall, the current research offers a potential route for developing high-performance, low-cost 3D SERS substrates.
Collapse
Affiliation(s)
- Yanzhao Pang
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing 526060, China
| | - Mingliang Jin
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing 526060, China
| |
Collapse
|
25
|
Pang Y, Jin M. Self-Assembly of Silver Nanowire Films for Surface-Enhanced Raman Scattering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1358. [PMID: 37110942 PMCID: PMC10146873 DOI: 10.3390/nano13081358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
The development of SERS detection technology is challenged by the difficulty in obtaining SERS active substrates that are easily prepared, highly sensitive, and reliable. Many high-quality hotspot structures exist in aligned Ag nanowires (NWs) arrays. This study used a simple self-assembly method with a liquid surface to prepare a highly aligned AgNW array film to form a sensitive and reliable SERS substrate. To estimate the signal reproducibility of the AgNW substrate, the RSD of SERS intensity of 1.0 × 10-10 M Rhodamine 6G (R6G) in an aqueous solution at 1364 cm-1 was calculated to be as low as 4.7%. The detection ability of the AgNW substrate was close to the single molecule level, and even the R6G signal of 1.0 × 10-16 M R6G could be detected with a resonance enhancement factor (EF) as high as 6.12 × 1011 under 532 nm laser excitation. The EF without the resonance effect was 2.35 × 106 using 633 nm laser excitation. FDTD simulations have confirmed that the uniform distribution of hot spots inside the aligned AgNW substrate amplifies the SERS signal.
Collapse
Affiliation(s)
- Yanzhao Pang
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing 526060, China
| | - Mingliang Jin
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing 526060, China
| |
Collapse
|
26
|
Zhang H, Zeng P, Guan Q, Yan X, Yu L, Wu G, Hong Y, Wang C. Combining thin-film microextraction and surface enhanced Raman spectroscopy to sensitively detect thiram based on 3D silver nanonetworks. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122073. [PMID: 36399817 DOI: 10.1016/j.saa.2022.122073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
By coupling thin-film microextraction (TFME) with surface enhanced Raman scattering (SERS), a facile method was developed for the determination of thiram in the complex matrix (orange juice or grape peel). The substrate of TFME was made by self-assembling silver sol on the silicon wafer to form a three-dimensional (3D) silver nanonetwork structure, without adding any template, which was used for TFME and SERS detection, respectively. The substrate exhibits high reproducibility with a relative standard deviation of about 7.32 % in spot and spot SERS intensity. The SERS signal intensity at a shift of 1384 cm-1 and the thiram concentration showed good linearity in the range of 0.01-5 µg/L and the linear correlation coefficient was 0.9912. The detection limit for thiram was found to be 0.01 µg/L. The TFME-SERS method was applied for the determination of thiram in fruit juice and the results were obtained very well. Therefore, this method is expected to play a role in the detection of trace pollutants.
Collapse
Affiliation(s)
- Huan Zhang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Pei Zeng
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Qi Guan
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Xianzai Yan
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Lili Yu
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Guoping Wu
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Yanping Hong
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Chunrong Wang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China.
| |
Collapse
|
27
|
Cheng Y, Ding Y, Chen J, Xu W, Wang W, Xu S. Au nanoparticles decorated covalent organic framework composite for SERS analyses of malachite green and thiram residues in foods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121644. [PMID: 35878495 DOI: 10.1016/j.saa.2022.121644] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
A three-dimensional (3D) surface-enhanced Raman scattering (SERS) substrate composed of gold nanoparticles (AuNPs) self-assembled covalent organic frameworks (COFs) was fabricated via the electrostatic interaction between positively charged COFs and negatively charged AuNPs, which exhibited excellent SERS performance and were successfully applied for the analyses of malachite green (MG) residue in different seafood products as well as thiram residue in several kinds of fruit juice. The raspberry-like structure SERS substrate has a larger surface area that can provide more adsorption sites in testing and improve the efficiency of sample enrichment. By using this developed SERS substrate, the detection linearity ranges are 1.0 × 10-9 mol·L-1-1.0 × 10-6 mol·L-1 for MG and 5.0 × 10-8 mol·L-1-1.0 × 10-5 mol·L-1 for thiram (R2 ≥ 0.995). The detection limits are 6.2 × 10-10 mol·L-1 for MG and 1.7 × 10-8 mol·L-1 for thiram, respectively. The COF-AuNPs substrate was actually applied for analysis of MG in seafood products and thiram in different fruit juice, with the recoveries in the ranges of 94.67-108.99 % for MG and 95.00-107.58 % for thiram, and both of the relative standard deviation (RSD) are no more than 5.88 %. This work indicates that the developed COF-AuNPs substrate is promising for SERS analyses and detections of residues in foods.
Collapse
Affiliation(s)
- Yuqi Cheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yanru Ding
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jiamin Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Weigang Wang
- No. 2 Department of Urology, The First Hospital of Jilin University, Changchun 130021, PR China.
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China; Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
28
|
Yang Y, Ren MY, Xu XG, Han Y, Zhao X, Li CH, Zhao ZL. Recent advances in simultaneous detection strategies for multi-mycotoxins in foods. Crit Rev Food Sci Nutr 2022; 64:3932-3960. [PMID: 36330603 DOI: 10.1080/10408398.2022.2137775] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mycotoxin contamination has become a challenge in the field of food safety testing, given the increasing emphasis on food safety in recent years. Mycotoxins are widely distributed, in heavily polluted areas. Food contamination with these toxins is difficult to prevent and control. Mycotoxins, as are small-molecule toxic metabolites produced by several species belonging to the genera Aspergillus, Fusarium, and Penicillium growing in food. They are considered teratogenic, carcinogenic, and mutagenic to humans and animals. Food systems are often simultaneously contaminated with multiple mycotoxins. Due to the additive or synergistic toxicological effects caused by the co-existence of multiple mycotoxins, their individual detection requires reliable, accurate, and high-throughput techniques. Currently available, methods for the detection of multiple mycotoxins are mainly based on chromatography, spectroscopy (colorimetry, fluorescence, and surface-enhanced Raman scattering), and electrochemistry. This review provides a comprehensive overview of advances in the multiple detection methods of mycotoxins during the recent 5 years. The principles and features of these techniques are described. The practical applications and challenges associated with assays for multiple detection methods of mycotoxins are summarized. The potential for future development and application is discussed in an effort, to provide standards of references for further research.
Collapse
Affiliation(s)
- Ying Yang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Meng-Yu Ren
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Xiao-Guang Xu
- School of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Yue Han
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Xin Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Chun-Hua Li
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Zhi-Lei Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| |
Collapse
|
29
|
Fujiwara S, Kawasaki D, Sueyoshi K, Hisamoto H, Endo T. Gold Nanocone Array with Extensive Electromagnetic Fields for Highly Reproducible Surface-Enhanced Raman Scattering Measurements. MICROMACHINES 2022; 13:mi13081182. [PMID: 35893179 PMCID: PMC9332797 DOI: 10.3390/mi13081182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a technique used to distinguish the constitution of disease-related biomarkers in liquid biopsies, such as exosomes and circulating tumor cells, without any recognition elements. Previous studies using metal nanoparticle aggregates and angular nanostructures have achieved the detection of various biomarkers owing to strong hot spots and electromagnetic (EM) fields by localized surface plasmon resonance (LSPR). Although these SERS platforms enable significant enhancement of Raman signals, they still have some problems with the fabrication reproducibility of platforms in obtaining reproducible SERS signals. Therefore, highly reproducible fabrication of SERS platforms is required. Here, we propose the application of a polymer-based gold (Au) nanocone array (Au NCA), which extensively generates an enhanced EM field near the Au NCA surface by LSPR. This approach was experimentally demonstrated using a 785 nm laser, typically used for SERS measurements, and showed excellent substrate-to-substrate reproducibility (relative standard deviation (RSD) < 6%) using an extremely simple fabrication procedure and very low laser energy. These results proved that a Au NCA can be used as a highly reproducible SERS measurement to distinguish the constitution of biomarkers.
Collapse
Affiliation(s)
- Satoko Fujiwara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan; (S.F.); (D.K.); (K.S.); (H.H.)
| | - Daiki Kawasaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan; (S.F.); (D.K.); (K.S.); (H.H.)
| | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan; (S.F.); (D.K.); (K.S.); (H.H.)
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo 102-8666, Japan
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan; (S.F.); (D.K.); (K.S.); (H.H.)
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan; (S.F.); (D.K.); (K.S.); (H.H.)
- Correspondence: ; Tel.: +81-72-254-9284
| |
Collapse
|
30
|
Abstract
Current advances in the fabrication of smart nanomaterials and nanostructured surfaces find wide usage in the biomedical field. In this context, nanosensors based on localized surface plasmon resonance exhibit unprecedented optical features that can be exploited to reduce the costs, analytic times, and need for expensive lab equipment. Moreover, they are promising for the design of nanoplatforms with multiple functionalities (e.g., multiplexed detection) with large integration within microelectronics and microfluidics. In this review, we summarize the most recent design strategies, fabrication approaches, and bio-applications of plasmonic nanoparticles (NPs) arranged in colloids, nanoarrays, and nanocomposites. After a brief introduction on the physical principles behind plasmonic nanostructures both as inherent optical detection and as nanoantennas for external signal amplification, we classify the proposed examples in colloid-based devices when plasmonic NPs operate in solution, nanoarrays when they are assembled or fabricated on rigid substrates, and nanocomposites when they are assembled within flexible/polymeric substrates. We highlight the main biomedical applications of the proposed devices and offer a general overview of the main strengths and limitations of the currently available plasmonic nanodevices.
Collapse
|
31
|
Wan T, Zhu L, Zhang Z, Wang H, Yang Y, Ye H, Wang H, Li L, Li J. Zr-based metal organic framework nanoparticles coated with a molecularly imprinted polymer for trace diazinon surface enhanced Raman scattering analysis. NEW J CHEM 2022. [DOI: 10.1039/d2nj01874h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a new surface imprinted polymer of type MOFs-MIPs was synthesized with diazinon as template and Zr-based metal organic framework (UiO-67) as matrix for trace diazinon surface enhanced...
Collapse
|