1
|
Wei D, Li J, Zheng S, Guo M, Xu J, Deng Q, Wang X. Effective extraction and detection of aflatoxins in cereals using nitrogen-rich benzodiimidazole linkage magnetic covalent organic framework based solid phase extraction and HPLC-MS/MS analysis. Food Chem X 2024; 24:101797. [PMID: 39290752 PMCID: PMC11406339 DOI: 10.1016/j.fochx.2024.101797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Cereals are frequently contaminated by aflatoxins (AFs). The objective of this study was to develop an efficient extraction materials for rapidly extracting and detecting AFs. A novel amino-functionalized benzodiimidazole linkage magnetic covalent organic framework (Fe3O4@BB-COF) was simply fabricated by one-step cyclization and aromatization. The Fe3O4@BB-COF, having multiple N-containing active sites, exhibited excellent extraction capability towards AFs due to synergistic interactions, including the π-π interactions, hydrogen bonding interactions, polar interactions, electrostatic interactions and Lewis acid-base interactions. The Fe3O4@BB-COF based MSPE method for detecting aflatoxins has advantages of simple operation, short extraction time (6 min), and low material consumption (2 mg). This method exhibited satisfactory linearity (0.05-20 μg/kg), and sensitivity (0.01-0.45 μg/L for the detection limits) and accuracy (76.8-97.1 % for recovery) and was successfully applied for extracting and detecting AFs in cereals.
Collapse
Affiliation(s)
- Dan Wei
- Hangzhou Medical College, School of Laboratory Medicine and Bioengineering, Hangzhou, 310053, China, Zhejiang 311300, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Hangzhou 310058, China
| | - Jianliang Li
- Hangzhou Medical College, School of Laboratory Medicine and Bioengineering, Hangzhou, 310053, China, Zhejiang 311300, China
| | - Shuangshuang Zheng
- Hangzhou Medical College, School of Laboratory Medicine and Bioengineering, Hangzhou, 310053, China, Zhejiang 311300, China
| | - Ming Guo
- Zhejiang Chemical Production Quality Inspection Co., Ltd, Hangzhou 310023, China
| | - Jingjing Xu
- Hangzhou Medical College, School of Laboratory Medicine and Bioengineering, Hangzhou, 310053, China, Zhejiang 311300, China
| | - Qiao Deng
- Hangzhou Medical College, School of Laboratory Medicine and Bioengineering, Hangzhou, 310053, China, Zhejiang 311300, China
| | - Xu Wang
- Hangzhou Medical College, School of Laboratory Medicine and Bioengineering, Hangzhou, 310053, China, Zhejiang 311300, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Hangzhou 310058, China
| |
Collapse
|
2
|
Romero-Sánchez I, Alonso-Núñez I, Gracia-Lor E, Madrid-Albarrán Y. Analysis and evaluation of in vitro bioaccessibility of aflatoxins B1, B2, G1 and G2 in plant-based milks. Food Chem 2024; 460:140538. [PMID: 39047489 DOI: 10.1016/j.foodchem.2024.140538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Plant-based milks emerge as a healthy and vegan alternative for human diet, but these foodstuffs are susceptible to be contaminated by aflatoxins. A new method based on SPE and HPLC-MS/MS analysis was optimized and validated to test the presence of aflatoxins B1, B2, G1 and G2 analysis in almond, oat, rice and soy commercial milks. Moreover, aflatoxin bioaccessibility was evaluated through an in vitro digestion assay applied to each type of spiked milk. Aflatoxins B1, B2 and G1 were detected in one soy milk sample below the LOQ, fulfilling the limits stablished by the European Legislation. The final bioaccessibility percentages were highly dependent on the type of mycotoxin and sample matrix, the highest and the lowest values were obtained for AFB2 (82%-92%) and AFG1 (15%-30%), whereas AFB1 (28%-50%) and AFG2 (32%-76%) values resulted more influenced by the plant-based milk matrix.
Collapse
Affiliation(s)
- Iván Romero-Sánchez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain.
| | - Irene Alonso-Núñez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - Emma Gracia-Lor
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain.
| | - Yolanda Madrid-Albarrán
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| |
Collapse
|
3
|
Ulaganambi M, S LK, Kumar S, Tetala KKR. In silico studies and development of a protein-based electrochemical sensor for selective and sensitive detection of aflatoxin B1. Mikrochim Acta 2024; 191:426. [PMID: 38935329 DOI: 10.1007/s00604-024-06495-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Proteins from different species have been docked with aflatoxin B1 (AFB1) and identified 3 proteins (prostaglandin-E(2)9-reductase from Oryctolagus uniculus, proto-oncogene serine/threonine-protein kinase Pim-1 and human immunoglobulin G (hIgG)) as potential candidates to develop an electrochemical sensor. Fluorescence spectroscopy experiments have confirmed the interaction of hIgG with AFB1 with an affinity constant of 4.6 × 105 M-1. As a proof-of-concept, hIgG was immobilized on carbon nanocomposite (carbon nanotube-nanofiber, CNT-F)-coated glassy carbon electrode (GCE). FT-IR spectra, HR-TEM and BCA assay have confirmed successful immobilization of hIgG on the electrode (hIgG@CNT-F/GCE). The preparation of this protein electrochemical sensor requires only 1 h 36 min, which is fast as compared with preparing an electro immunosensor. hIgG@CNT-F/GCE has displayed an excellent AFB1 limit of detection (0.1 ng/mL), commendable selectivity in the presence of two other mycotoxins (ochratoxin A and patulin) and the detection of AFB1 in spiked peanuts and corn samples.
Collapse
Affiliation(s)
- Megala Ulaganambi
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamilnadu, India
| | - Lokesh Kumar S
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamilnadu, India
| | - Sanjit Kumar
- Department of Biotechnology, School of Interdisciplinary Education and Research, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
| | - Kishore K R Tetala
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamilnadu, India.
| |
Collapse
|
4
|
Salim SA, Baharudin NH, Ibrahim NS, Abd Ghani Z, Ismail MN. Determination of aflatoxins in rice from Penang, Malaysia by dispersive liquid-liquid micro-extraction and LC-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:563-574. [PMID: 38527182 DOI: 10.1080/19440049.2024.2329614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
Rice is one of the crops cultivated in Malaysia, and it is the main diet for most of the population. In this study, dispersive liquid-liquid micro-extraction (DLLME) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to develop, optimise and validate a reliable, easy-to-use and quick approach to detect aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2). The extraction recoveries in DLLME were enhanced by the addition of 5% salt, utilising chloroform as the extraction solvent and acetonitrile as the dispersive solvent. The DLLME parameters - the extraction solvent volume, salt concentration and dispersive solvent volume were optimised with Box-Behnken design (BBD) and response surface methodology (RSM). Under optimised experimental conditions, excellent linearity was obtained with a limit of detection (LOD) ranging from 0.125 to 0.25 ng g-1, a limit of quantitation (LOQ) ranging from 0.25 to 0.3 ng g-1 and a correlation value (R2) of 0.990. The matrix effects were between -11.1% and 19.9%, and recoveries ranged from 87.4% to 117.3%. The optimised and validated method was used effectively to assess aflatoxins contamination in 20 commercial rice samples collected from local supermarkets in Penang, Malaysia. AFB1 was detected at 0.41-0.43 ng g-1 in two rice samples, below the regulatory limit.
Collapse
Affiliation(s)
- Sofiyatul Akmal Salim
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Nur Shahila Ibrahim
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang, Malaysia
| | - Zalilawati Abd Ghani
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang, Malaysia
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
5
|
Rodríguez-Cañás I, González-Jartín JM, Alfonso A, Alvariño R, Vieytes MR, Botana LM. Application of a multi-toxin detect method to analyze mycotoxins occurrence in plant-based beverages. Food Chem 2024; 434:137427. [PMID: 37708575 DOI: 10.1016/j.foodchem.2023.137427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/01/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
In recent years, plant-based beverages have gained popularity on the market due to environmental and ethical concerns, as well as milk intolerances and allergies. However, raw materials employed in the manufacture of these products are susceptible to mycotoxin contamination. For this reason, a new method based on a QuEChERS extraction procedure followed by ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) detection was developed for the analysis of 29 mycotoxins in oat, rice, soy, and almond beverages. The method was validated in terms of linearity, detection and quantification limits, matrix effect, recoveries, accuracy and precision. Satisfactory performance characteristics were achieved, with recoveries above 70% for most mycotoxins. Several commercial samples were analyzed, aflatoxins were frequently detected in rice and almond beverages, while T-2 and HT-2 toxins were identified in oat-based products. In addition, emerging mycotoxins such as enniatins and beauvericin were detected in the four types of beverages.
Collapse
Affiliation(s)
- Inés Rodríguez-Cañás
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Jesús M González-Jartín
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Rebeca Alvariño
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
6
|
Tay KSJ, See HH. Recent Advances in Dispersive Liquid-Liquid Microextraction for Pharmaceutical Analysis. Crit Rev Anal Chem 2024:1-22. [PMID: 38165816 DOI: 10.1080/10408347.2023.2299280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Sample clean-up and pre-concentration are critical components of pharmaceutical analysis. The dispersive liquid-liquid microextraction (DLLME) technique is widely recognized as the most effective approach for enhancing overall detection sensitivity. While various DLLME modes have been advanced in pharmaceutical analysis, there need to be more discussions on pre-concentration techniques specifically developed for this field. This review presents a comprehensive overview of the different DLLME modes used in pharmaceutical analysis from 2017 to May 2023. The review covers the principles of DLLME, the factors affecting microextraction, the selected applications of different DLLME modes, and their advantages and disadvantages. Additionally, it focuses on multi-extraction strategies employed for pharmaceutical analysis.
Collapse
Affiliation(s)
- Karen Sze Jie Tay
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Hong Heng See
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
7
|
Hu X, Li H, Yang J, Wen X, Wang S, Pan M. Nanoscale Materials Applying for the Detection of Mycotoxins in Foods. Foods 2023; 12:3448. [PMID: 37761156 PMCID: PMC10528894 DOI: 10.3390/foods12183448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Trace amounts of mycotoxins in food matrices have caused a very serious problem of food safety and have attracted widespread attention. Developing accurate, sensitive, rapid mycotoxin detection and control strategies adapted to the complex matrices of food is crucial for in safeguarding public health. With the continuous development of nanotechnology and materials science, various nanoscale materials have been developed for the purification of complex food matrices or for providing response signals to achieve the accurate and rapid detection of various mycotoxins in food products. This article reviews and summarizes recent research (from 2018 to 2023) on new strategies and methods for the accurate or rapid detection of mold toxins in food samples using nanoscale materials. It places particular emphasis on outlining the characteristics of various nanoscale or nanostructural materials and their roles in the process of detecting mycotoxins. The aim of this paper is to promote the in-depth research and application of various nanoscale or structured materials and to provide guidance and reference for the development of strategies for the detection and control of mycotoxin contamination in complex matrices of food.
Collapse
Affiliation(s)
- Xiaochun Hu
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huilin Li
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xintao Wen
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfei Pan
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
8
|
Nemati M, Farajzadeh MA, Altunay N, Tuzen M, Kaya S, Maslov MM, Mogaddam MRA. Combination of doped amorphous carbon based dispersive solid phase extraction with ionic liquid-based DLLME for the extraction of aromatic amines from leather industries wastewater; Theoretical and experimental insights. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
9
|
Bazzaz Dilmaghani A, Afshar Mogaddam MR, Monajjemzadeh F, Farajzadeh MA. Deep eutectic solvent-based iron nanoparticles coated by N, S-doped amorphous carbon and its application in magnetic Dµ-SPE combined with DLLME for the extraction of PAHs in eyeliner. ANAL SCI 2023; 39:169-178. [PMID: 36447008 DOI: 10.1007/s44211-022-00212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/02/2022] [Indexed: 12/05/2022]
Abstract
This work presents a preparation of new magnetic nanoparticles coated with amorphous carbon and their application in dispersive solid-phase extraction in simultaneous extraction of sixteen polycyclic aromatic hydrocarbons from eyeliner. The extraction procedure was hyphenated with a lower density than water dispersive liquid-liquid microextraction (DLLME) for further preconcentration of the analytes to sensitive determination of them with gas chromatography-flame ionization detection. The magnetic adsorbent was prepared sonically from iron pentacarbonyl and then the nanoparticles were coated by N, S-doped amorphous carbon and the deep eutectic solvent prepared from tetrabutyl ammonium chloride and decanoic acid. The magnetic properties of the nanoparticles were studied by vibrating sample magnetometer. Also, scanning electron microscopy was used to investigate the nanoparticles morphology. The extraction procedure was done by migration of the analytes from eyeliner into a proper aqueous solution and their adsorption onto the nanoparticles. Then, the analytes were eluted and more concentrated by the DLLME approach. After validating the method, acceptable limit of detection and broad linear range were accessed in the ranges of 0.25-0.54 and 1.8-250 ng/g, respectively. Relative standard deviation values were ≤ 7.1% for the repeated analyses in the same day (n = 6) and different days (n = 6). Extraction recovery of the method was in the range of 79-96%. The introduced method was successfully used for the analysis of the PAHs in five eyeliner samples and only two of them were identified in all samples at ng/g level.
Collapse
Affiliation(s)
- Araz Bazzaz Dilmaghani
- Pharmaceutical and Food Control Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farnaz Monajjemzadeh
- Pharmaceutical and Food Control Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. .,Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Engineering Faculty, Near East University, 99138 Nicosia, Mersin 10, North Cyprus, Turkey
| |
Collapse
|
10
|
Zheng J, Kuang Y, Zhou S, Gong X, Ouyang G. Latest Improvements and Expanding Applications of Solid-Phase Microextraction. Anal Chem 2023; 95:218-237. [PMID: 36625125 DOI: 10.1021/acs.analchem.2c03246] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinying Gong
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
11
|
Kannouma RE, Hammad MA, Kamal AH, Mansour FR. Miniaturization of Liquid-Liquid extraction; the barriers and the enablers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Zhang S, Ange KU, Ali N, Yang Y, Khan A, Ali F, Sajid M, Tian CT, Bilal M. Analytical perspective and environmental remediation potentials of magnetic composite nanosorbents. CHEMOSPHERE 2022; 304:135312. [PMID: 35709848 DOI: 10.1016/j.chemosphere.2022.135312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The synthesis and application of magnetic nanosorbents to remove emerging pollutants have been considered the best environmental remediation and sustainability option. Incorporating magnetism shortens the treatment time and allows the sorbent to be recovered quickly using external magnetic with many cycles. The implementation of magnetic solid-phase extraction (MSPE) using magnetic materials of different shapes, sizes, and surface morphology can be a valuable tool in applying materials to prepare analytical samples. In MSPE applications, materials with strong magnetic domain can be used as precursors for constructing magnetic composite as a promising sorbent. This article focuses on the most recent and exceptional applications of magnetic adsorbents for preconcentration and removal purposes. Magnetic adsorbents, such as nanoparticles (NPs), foam, sponges, nanocomposites, hydrogels, and beads with multifunctional attributes have been comprehensively studied in terms of preparation procedures, limitations, advantages, and interactions between pollutants and magnetic composites. The role of magnetic sorbents in sample preparation methods, such as simple solid-phase extraction and microextraction, as well as sorptive extraction using a stir bar, was also examined. The use of magnetic adsorbents with analytical techniques, such as solid-phase extraction and solid-phase microextraction improves the method for preparing samples concerning the influential role of magnetic adsorbents. Towards the end, promising features and future outlook are also directed.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Kunda Umuhoza Ange
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Chen Tian Tian
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
13
|
Gholizadeh S, Mirzaei H, Khandaghi J, Mogaddam MRA, Javadi A. Ultrasound–assisted solvent extraction combined with magnetic ionic liquid based-dispersive liquid–liquid microextraction for the extraction of mycotoxins from tea samples. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Mohebbi A, Nemati M, Farajzadeh MA, Afshar Mogaddam MR, Lotfipour F. Application of calcium oxide as an efficient phase separation agent in temperature-induced counter-current homogenous liquid-liquid extraction of aflatoxins from dried fruit chips followed by high-performance liquid chromatography-tandem mass spectrometry determination. J Sep Sci 2022; 45:1894-1903. [PMID: 35353940 DOI: 10.1002/jssc.202100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/27/2022] [Accepted: 03/21/2022] [Indexed: 11/06/2022]
Abstract
A temperature-induced counter-current homogenous liquid-liquid extraction procedure performed in a burette has been proposed for the isolation of aflatoxins B1, B2, G1, and G2 from various fruit chip samples. In this method, a homogenous solution of deionized water and cyclohexylamine is added to the solid sample and the resulted mixture is vortexed. In the following, the liquid phase is taken and passed through the burette filled with a mixture of calcium oxide (as a phase separation agent) and sand (to avoid clumping the calcium oxide). By doing so, the temperature of the solution is increased by hydration of calcium oxide and consequently, the homogenous state is broken and the aflatoxins are migrated into the resulted tiny droplets of cyclohexylamine. This phase is collected on the top of the solution owing to its low density with respect to an aqueous solution. Numerous parameters which can affect the efficiency of the suggested approach were evaluated and under the best situations, great repeatability, low limits of determination and quantification, and high extraction recoveries were acquired. In the end, the suggested approach was employed for the quantification of the selected aflatoxins in various fruit chips samples marketed in Tabriz City, Iran.
Collapse
Affiliation(s)
- Ali Mohebbi
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboob Nemati
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Engineering Faculty, Near East University, Mersin 10, Turkey
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Lotfipour
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
15
|
Abasalizadeh A, Sorouraddin SM, Farajzadeh MA, Marzi E, Mogaddam MRA. Riboflavin as a green sorbent in dispersive micro solid phase extraction of several pesticides from fruit juices combined with dispersive liquid‐liquid microextraction. J Sep Sci 2022; 45:1550-1559. [DOI: 10.1002/jssc.202100916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Aysa Abasalizadeh
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| | | | - Mir Ali Farajzadeh
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
- Engineering Faculty Near East University North Cyprus, Mersin 10, 99138, Nicosia Turkey
| | - Elnaz Marzi
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Food and Drug Control Department Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|