1
|
Eser M, Çavuş İ. In Vitro and In Silico Evaluations of the Antileishmanial Activities of New Benzimidazole-Triazole Derivatives. Vet Sci 2023; 10:648. [PMID: 37999471 PMCID: PMC10675599 DOI: 10.3390/vetsci10110648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Benzimidazole and triazole rings are important pharmacophores, known to exhibit various pharmacological activities in drug discovery. In this study, it was purposed to synthesize new benzimidazole-triazole derivatives and evaluate their antileishmanial activities. The targeted compounds (5a-5h) were obtained after five chemical reaction steps. The structures of the compounds were confirmed by spectral data. The possible in vitro antileishmanial activities of the synthesized compounds were evaluated against the Leishmania tropica strain. Further, molecular docking and dynamics were performed to identify the probable mechanism of activity of the test compounds. The findings revealed that compounds 5a, 5d, 5e, 5f, and 5h inhibited the growth of Leishmania tropica to various extents and had significant anti-leishmanial activities, even if some orders were higher than the reference drug Amphotericin B. On the other hand, compounds 5b, 5c, and 5g were found to be ineffective. Additionally, the results of in silico studies have presented the existence of some interactions between the compounds and the active site of sterol 14-alpha-demethylase, a biosynthetic enzyme that plays a critical role in the growth of the parasite. Therefore, it can be suggested that if the results obtained from this study are confirmed with in vivo findings, it may be possible to obtain some new anti-leishmanial drug candidates.
Collapse
Affiliation(s)
- Mustafa Eser
- Health Programs, Faculty of Open Education, Anadolu University, Eskisehir 26470, Turkey
| | - İbrahim Çavuş
- Department of Parasitology, Faculty of Medicine, Manisa Celal Bayar University, Manisa 45030, Turkey;
| |
Collapse
|
2
|
Utage B, Patole M, Nagvenkar P, Gacche R. Prosopis juliflora (Sw.) DC.induces apoptotic-like programmed cell death in Leishmania donovani via over production of oxidative stress, mitochondrial dysfunction and ATP depletion. J Tradit Complement Med 2023; 13:611-622. [PMID: 38020554 PMCID: PMC10658441 DOI: 10.1016/j.jtcme.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/03/2023] [Accepted: 06/29/2023] [Indexed: 12/01/2023] Open
Abstract
Background Leishmaniasis is endemic in more than 60 countries with a large number of mortality cases. The current chemotherapy approaches employed for managing the leishmaniasis is associated with severe side effects. Therefore there is a need to develop effective, safe, and cost affordable antileishmanial drug candidates. Purpose of the study This study was designed to evaluate the in vitro antileishmanial activity of a Prosopis juliflora leaves extract (PJLME) towards the Leishmania donovani parasites. Material and methods PJLME was evaluated for its cytotoxicity against the L. donovani parasites and the mouse macrophage cells. Further, various in vitro experiments like ROS assay, mitochondrial membrane potential assay, annexin v assay, cell cycle assay, and caspase 3/7 assay were performed to understand the mechanism of cell death. Phytochemical profiling of P. juliflorawas performed by utilizing HPTLC and GC-MS analysis. Results PJLME demonstrated antileishmanial activity at a remarkably lower concentration of IC50 6.5 μg/mL. Of note, interestingly PJLME IC50 concentration has not demonstrated cytotoxicity against the mouse macrophage cell line. Performed experiments confirmed ROS inducing potential of PJLME which adversely affected the mitochondrial membrane potential and caused loss of mitochondrial membrane potential and thereby ATP levels. PJLME also arrested the cell cycle and induced apoptotic-like cell death in PJLME treated L. donovani promastigotes. Conclusion The results clearly established the significance of Prosopis juliflora as an effective and safe natural resource for managing visceral leishmaniasis. The findings can be used as a baseline reference for developing novel leads/formulations for effective management of visceral leishmaniasis.
Collapse
Affiliation(s)
| | - Milind Patole
- National Centre for Cell Science, NCCS Complex, Pune, 411007, MS, India
| | - Punam Nagvenkar
- National Centre for Cell Science, NCCS Complex, Pune, 411007, MS, India
| | - Rajesh Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007, MS, India
| |
Collapse
|
3
|
Istanbullu H, Bayraktar G, Karakaya G, Akbaba H, Perk NE, Cavus I, Podlipnik C, Yereli K, Ozbilgin A, Debelec Butuner B, Alptuzun V. Design, synthesis, in vitro - In vivo biological evaluation of novel thiazolopyrimidine compounds as antileishmanial agent with PTR1 inhibition. Eur J Med Chem 2023; 247:115049. [PMID: 36577215 DOI: 10.1016/j.ejmech.2022.115049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
The leishmaniasis are a group of vector-borne diseases caused by a protozoan parasite from the genus Leishmania. In this study, a series of thiazolopyrimidine derivatives were designed and synthesized as novel antileishmanial agents with LmPTR1 inhibitory activity. The final compounds were evaluated for their in vitro antipromastigote activity, LmPTR1 and hDHFR enzyme inhibitory activities, and cytotoxicity on RAW264.7 and L929 cell lines. Based on the bioactivity results, three compounds, namely L24f, L24h and L25c, were selected for evaluation of their in vivo efficacy on CL and VL models in BALB/c mice. Among them, two promising compounds, L24h and L25c, showed in vitro antipromastigote activity against L. tropica with the IC50 values of 0.04 μg/ml and 6.68 μg/ml; against L. infantum with the IC50 values of 0.042 μg/ml and 6.77 μg/ml, respectively. Moreover, the title compounds were found to have low in vitro cytotoxicity on L929 and RAW264.7 cell lines with the IC50 14.08 μg/ml and 21.03 μg/ml, and IC50 15.02 μg/ml and 8.75 μg/ml, respectively. LmPTR1 enzyme inhibitory activity of these compounds was determined as 257.40 μg/ml and 59.12 μg/ml and their selectivity index (SI) over hDHFR was reported as 42.62 and 7.02, respectively. In vivo studies presented that L24h and L25c have a significant antileishmanial activity against footpad lesion development of CL and at weight measurement of VL group in comparison to the reference compound, Glucantime®. Also, docking studies were carried out with selected compounds and other potential Leishmania targets to detect the putative targets of the title compounds. Taken together, all these findings provide an important novel lead structure for the antileishmanial drug development.
Collapse
Affiliation(s)
- Huseyin Istanbullu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Cigli, Izmir, Turkey.
| | - Gulsah Bayraktar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Gulsah Karakaya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Cigli, Izmir, Turkey
| | - Hasan Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Nami Ege Perk
- Department of Parasitology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Ibrahim Cavus
- Department of Parasitology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Crtomir Podlipnik
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Kor Yereli
- Department of Parasitology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Ahmet Ozbilgin
- Department of Parasitology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Bilge Debelec Butuner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Vildan Alptuzun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
4
|
Shockwaves Increase In Vitro Resilience of Rhizopus oryzae Biofilm under Amphotericin B Treatment. Int J Mol Sci 2022; 23:ijms23169226. [PMID: 36012494 PMCID: PMC9409157 DOI: 10.3390/ijms23169226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Acoustical biophysical therapies, including ultrasound, radial pressure waves, and shockwaves, have been shown to harbor both a destructive and regenerative potential depending on physical treatment parameters. Despite the clinical relevance of fungal biofilms, little work exits comparing the efficacy of these modalities on the destruction of fungal biofilms. This study evaluates the impact of acoustical low-frequency ultrasound, radial pressure waves, and shockwaves on the viability and proliferation of in vitro Rhizopus oryzae biofilm under Amphotericin B induced apoptosis. In addition, the impact of a fibrin substrate in comparison with a traditional polystyrene well-plate one is explored. We found consistent, mechanically promoted increased Amphotericin B efficacy when treating the biofilm in conjunction with low frequency ultrasound and radial pressure waves. In contrast, shockwave induced effects of mechanotransduction results in a stronger resilience of the biofilm, which was evident by a marked increase in cellular viability, and was not observed in the other types of acoustical pressure waves. Our findings suggest that fungal biofilms not only provide another model for mechanistical investigations of the regenerative properties of shockwave therapies, but warrant future investigations into the clinical viability of the therapy.
Collapse
|
5
|
Tunalı V, Harman M, Çavuş İ, Zorbozan O, Özbilgin A, Turgay N. Investigation of in vitro Efficacy of Miltefosine on Chronic Cutaneous Leishmaniasis. TURKIYE PARAZITOLOJII DERGISI 2022; 46:97-101. [PMID: 35604185 DOI: 10.4274/tpd.galenos.2022.85856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Leishmaniasis is the second deadliest parasitic disease in the World Health Organisation's list of neglected diseases, following malaria. Cutaneous leishmaniasis (CL) is the most common form of the disease and it is one of the few communicable diseases with increasing incidence rates owing to factors like armed conflicts and climate change. CL can be divided into two major groups: Acute CL (ACL) and chronic CL (CCL). The aim of this study was to compare the in vitro efficacy of miltefosine and pentavalent antimony compounds in the CCL patient samples. METHODS Five isolates previously isolated from 5 CCL patients were included in this study. Genotyping is performed using internal transcribed spacer 1 (ITS 1) gene region real-time PCR. In vitro drug efficacy tests were applied to determine their activity against meglumine antimoniate (MA) and miltefosine. Serial dilutions (512, 256, 128, 64, 32, 16, 8 and 4 µg/mL) prepared from MA and miltefosine were prepared in 96-well flat-bottom cell culture plates and incubated at 24 °C for 48 hours. The efficacy of the drug on Leishmania spp. promastigotes after 24 and 48 hours was evaluated by hemocytometer slide and XTT cell viability test. RESULTS All of the samples were genotyped as L. tropica. Evaluation of 24 and 48 hours showed, 128 µg/mL and 256 µg/mL and 32 µg/mL and 64 µg/mL concentrations of miltefosine and MA were enough to kill all the promastigotes respectively. The results of the hemocytometer slide and XTT were consistent. CONCLUSION There are no studies investigating the in vitro efficacy of miltefosine with the CCL patient group. To overcome the treatment challenges experienced in this special patient group, more studies are needed. According to our results, it is concluded that miltefosine is efficient for the treatment of CCL and further clinical studies with miltefosine will reveal valuable data.
Collapse
Affiliation(s)
- Varol Tunalı
- Muğla Üniversitesi Tıp Fakültesi, Acil Tıp Anabilim Dalı, Muğla, Türkiye
- Ege Üniversitesi Tıp Fakültesi, Parazitoloji Anabilim Dalı, İzmir, Türkiye
| | - Mehmet Harman
- Dicle Üniversitesi Tıp Fakültesi, Dermatoloji Anabilim Dalı, Diyarbakır, Türkiye
| | - İbrahim Çavuş
- Celal Bayar Üniversitesi Tıp Fakültesi, Parazitoloji Anabilim Dalı, Manisa, Türkiye
| | - Orçun Zorbozan
- Ege Üniversitesi Tıp Fakültesi, Parazitoloji Anabilim Dalı, İzmir, Türkiye
| | - Ahmet Özbilgin
- Celal Bayar Üniversitesi Tıp Fakültesi, Parazitoloji Anabilim Dalı, Manisa, Türkiye
| | - Nevin Turgay
- Ege Üniversitesi Tıp Fakültesi, Parazitoloji Anabilim Dalı, İzmir, Türkiye
| |
Collapse
|
6
|
In vitro activity of cinnamaldehyde on Leishmania (Leishmania) amazonensis. Exp Parasitol 2022; 236-237:108244. [DOI: 10.1016/j.exppara.2022.108244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/29/2021] [Accepted: 03/03/2022] [Indexed: 01/17/2023]
|
7
|
Cohen A, Azas N. Challenges and Tools for In Vitro Leishmania Exploratory Screening in the Drug Development Process: An Updated Review. Pathogens 2021; 10:1608. [PMID: 34959563 PMCID: PMC8703296 DOI: 10.3390/pathogens10121608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Leishmaniases are a group of vector-borne diseases caused by infection with the protozoan parasites Leishmania spp. Some of them, such as Mediterranean visceral leishmaniasis, are zoonotic diseases transmitted from vertebrate to vertebrate by a hematophagous insect, the sand fly. As there is an endemic in more than 90 countries worldwide, this complex and major health problem has different clinical forms depending on the parasite species involved, with the visceral form being the most worrying since it is fatal when left untreated. Nevertheless, currently available antileishmanial therapies are significantly limited (low efficacy, toxicity, adverse side effects, drug-resistance, length of treatment, and cost), so there is an urgent need to discover new compounds with antileishmanial activity, which are ideally inexpensive and orally administrable with few side effects and a novel mechanism of action. Therefore, various powerful approaches were recently applied in many interesting antileishmanial drug development programs. The objective of this review is to focus on the very first step in developing a potential drug and to identify the exploratory methods currently used to screen in vitro hit compounds and the challenges involved, particularly in terms of harmonizing the results of work carried out by different research teams. This review also aims to identify innovative screening tools and methods for more extensive use in the drug development process.
Collapse
Affiliation(s)
- Anita Cohen
- IHU Méditerranée Infection, Aix Marseille University, IRD (Institut de Recherche pour le Développement), AP-HM (Assistance Publique—Hôpitaux de Marseille), SSA (Service de Santé des Armées), VITROME (Vecteurs—Infections Tropicales et Méditerranéennes), 13005 Marseille, France;
| | | |
Collapse
|
8
|
Screening of six medicinal plant species for antileishmanial activity. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:399-414. [PMID: 36654098 DOI: 10.2478/acph-2021-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 01/20/2023]
Abstract
This study is aimed to investigate the in vitro anti-leishmanial activity of ethanolic, aqueous or dichloromethane extracts of leaves, flowers, fruits or roots, of six medicinal plant species, namely, Nectandra megapotamica, Brunfelsia uniflora, Myrcianthes pungens, Anona muricata, Hymenaea stigonocarpa and Piper corcovandesis. After isolation and analysis of chemical components by ultra-high performance liquid chromatography-high-resolution tandem mass spectrometry (UHPLC-HRMS/MS), the extracts were also tested for toxicity in J774.A1 macrophages and human erythrocytes. Phenolic acids, flavonoids, acetogenins, alkaloids and lignans were identified in these extracts. Grow inhibition of promastigotes forms of Leishmania amazonensis and Leishmania braziliensis and the cytotoxicity in J774.A1 macrophages were estimated by the XTT method. The most promising results for L. amazonensis and L. braziliensis were shown by the ethanolic extract of the fruits of Hymenaea stigonocarpa and dichloromethane extract of the roots of Piper corcovadensis, with IC 50 of 160 and 150 μg mL-1, resp. Ethanolic extracts of A. muricata (leaf), B. uniflora (flower and leaf), M. pungens (fruit and leaf), N. megapotamica (leaf), and aqueous extract of H. stigonocarpa (fruit) showed IC 50 > 170 μg mL-1 for L. amazonensis and > 200 μg mL-1 for L. braziliensis. The extracts exhibited low cytotoxicity towards J774.A1 macrophages with CC 50 > 1000 μg mL-1 and hemolytic activity from 0 to 46.1 %.
Collapse
|
9
|
SARs for the Antiparasitic Plant Metabolite Pulchrol. 3. Combinations of New Substituents in A/B-Rings and A/C-Rings. Molecules 2021; 26:molecules26133944. [PMID: 34203527 PMCID: PMC8271509 DOI: 10.3390/molecules26133944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
The natural products pulchrol and pulchral, isolated from the roots of the Mexican plant Bourreria pulchra, have previously been shown to possess antiparasitic activity towards Trypanosoma cruzi, Leishmania braziliensis and L. amazonensis, which are protozoa responsible for Chagas disease and leishmaniasis. These infections have been classified as neglected diseases, and still require the development of safer and more efficient alternatives to their current treatments. Recent SARs studies, based on the pulchrol scaffold, showed which effects exchanges of its substituents have on the antileishmanial and antitrypanosomal activity. Many of the analogues prepared were shown to be more potent than pulchrol and the current drugs used to treat leishmaniasis and Chagas disease (miltefosine and benznidazole, respectively), in vitro. Moreover, indications of some of the possible interactions that may take place in the binding sites were also identified. In this study, 12 analogues with modifications at two or three different positions in two of the three rings were prepared by synthetic and semi-synthetic procedures. The molecules were assayed in vitro towards T. cruzi epimastigotes, L. braziliensis promastigotes, and L. amazonensis promastigotes. Some compounds had higher antiparasitic activity than the parental compound pulchrol, and in some cases even benznidazole and miltefosine. The best combinations in this subset are with carbonyl functionalities in the A-ring and isopropyl groups in the C-ring, as well as with alkyl substituents in both the A- and C-rings combined with a hydroxyl group in position 1 (C-ring). The latter corresponds to cannabinol, which indeed was shown to be potent towards all the parasites.
Collapse
|
10
|
Gonzalez-Ramirez M, Limachi I, Manner S, Ticona JC, Salamanca E, Gimenez A, Sterner O. Trichilones A-E: New Limonoids from Trichilia adolfi. Molecules 2021; 26:3070. [PMID: 34063814 PMCID: PMC8196563 DOI: 10.3390/molecules26113070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
In addition to the trichilianones A-D recently reported from Trichilia adolfi, a continuing investigation of the chemical constituents of the ethanol extract of the bark of this medicinal plant yielded the five new limonoids 1-5. They are characterized by having four fused rings and are new examples of prieurianin-type limonoids, having a ε-lactone which in 4 and 5 is α, β- unsaturated. The structures of the isolated metabolites were determined by high field NMR spectroscopy and HR mass spectrometry. The new metabolites were shown to have the ε-lactone fused with a tetrahydrofuran ring which is connected to an oxidized hexane ring joined with a cyclo-pentanone having a 3-furanyl substituent. As the crude extract possesses antileishmanial activity, the compounds were assayed for cytotoxic and antiparasitic activities in vitro in murine macrophage cells (raw 264.7 cells) and in Leishmania amazoniensis as well as L. braziliensis promastigotes. Metabolites 1-3 and 5 showed moderate cytotoxicity (between 30-94 µg/mL) but are not responsible for the antileishmanial effect of the extract.
Collapse
Affiliation(s)
- Mariela Gonzalez-Ramirez
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, 22100 Lund, Sweden; (M.G.-R.); (I.L.); (S.M.)
| | - Ivan Limachi
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, 22100 Lund, Sweden; (M.G.-R.); (I.L.); (S.M.)
- Instituto de Investigaciones Farmaco Bioquimicas, Universidad Mayor de San Andres, La Paz, Bolivia; (J.C.T.); (E.S.); (A.G.)
| | - Sophie Manner
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, 22100 Lund, Sweden; (M.G.-R.); (I.L.); (S.M.)
| | - Juan C. Ticona
- Instituto de Investigaciones Farmaco Bioquimicas, Universidad Mayor de San Andres, La Paz, Bolivia; (J.C.T.); (E.S.); (A.G.)
| | - Efrain Salamanca
- Instituto de Investigaciones Farmaco Bioquimicas, Universidad Mayor de San Andres, La Paz, Bolivia; (J.C.T.); (E.S.); (A.G.)
| | - Alberto Gimenez
- Instituto de Investigaciones Farmaco Bioquimicas, Universidad Mayor de San Andres, La Paz, Bolivia; (J.C.T.); (E.S.); (A.G.)
| | - Olov Sterner
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, 22100 Lund, Sweden; (M.G.-R.); (I.L.); (S.M.)
| |
Collapse
|
11
|
Trichilianones A-D, Novel Cyclopropane-Type Limonoids from Trichilia adolfi. Molecules 2021; 26:molecules26041019. [PMID: 33671969 PMCID: PMC7919047 DOI: 10.3390/molecules26041019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 01/19/2023] Open
Abstract
The fractionation of an ethanol extract of the bark of Trichilia adolfi yielded four novel limonoids (trichilinones A-D, 1-4), with five fused rings and related to the hortiolide-type limonoids. Starting with an ε-lactone, which is α,β-unsaturated in trichilinones A and D (1 and 4), attached to a tetrahydrofuran ring that is connected to an unusual bicyclo [5.1.0] hexane system, joined with a cyclopentanone with a 3-furanyl substituent [(2-oxo)-furan-(5H)-3-yl in trichilinone D (4)], the four compounds isolated display a new 7/5/3/5/5 limonoid ring system. Their structures were established based on extensive analysis of NMR spectroscopic data. As the crude extract possessed anti-leishmanial properties, the compounds were assayed for cytotoxic and anti-parasitic activities in vitro in murine macrophages cells (Raw 264.7) and leishmania promastigotes (L. amazoniensis and L. braziliensis), respectively. The compounds showed moderate cytotoxicity (approximately 70 μg/mL), but are not responsible for the leishmanicidal effect of the extract.
Collapse
|
12
|
Camargo PG, Bortoleti BTDS, Fabris M, Gonçalves MD, Tomiotto-Pellissier F, Costa IN, Conchon-Costa I, Lima CHDS, Pavanelli WR, Bispo MDLF, Macedo F. Thiohydantoins as anti-leishmanial agents: n vitro biological evaluation and multi-target investigation by molecular docking studies. J Biomol Struct Dyn 2020; 40:3213-3222. [PMID: 33183184 DOI: 10.1080/07391102.2020.1845979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Leishmaniasis is a neglected tropical disease caused by protozoa of the genus Leishmania. The first-line treatment of this disease is still based on pentavalent antimonial drugs that have a high toxicity profile, which could induce parasitic resistance. Therefore, there is a critical need to discover more effective and selective novel anti-leishmanial agents. In this context, thiohydantoins are a versatile class of substances due to their simple synthesis and several biological activities. In this work, thiohydantoins 1a-l were evaluated in vitro for antileishmania activity. Among them, four derivatives (1c, 1e, 1h and 1l) showed promising IC50 values around 10 µM against promastigotes forms of Leishmania amazonensis and low cytotoxicity profile for peritoneal macrophages cells. Besides, these compounds induce oxidative stress through an increase in ROS production and the labeling of annexin-V and propidium iodide, indicating that promastigotes were undergoing a late apoptosis-like process. Additionally, molecular consensual docking analysis was carried out against two important targets to L. amazonensis: arginase and trypanothione reductase enzymes. Docking results suggest that thiohydantoin ring could be a pharmacophoric group due to its binding affinity by hydrogens bond interactions with important amino acid residues at the active site of both enzymes. These results demonstrate that compounds 1c, 1e, 1h and 1l may are promising in future advance studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priscila Goes Camargo
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Marcieli Fabris
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Manoela Daiele Gonçalves
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Idessania Nazareth Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Ivete Conchon-Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Wander Rogério Pavanelli
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Fernando Macedo
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
13
|
SARs for the Antiparasitic Plant Metabolite Pulchrol. Part 2: B- and C-Ring Substituents. Molecules 2020; 25:molecules25194510. [PMID: 33019678 PMCID: PMC7582507 DOI: 10.3390/molecules25194510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022] Open
Abstract
Neglected tropical diseases affect most of the underprivileged populations in tropical countries. Among these are chagas and leishmaniasis, present mainly in South and Central America, Africa and East Asia. Current treatments are long and have severe adverse effects, therefore there is a strong need to develop alternatives. In this study, we base our research on the plant metabolite pulchrol, a natural benzochromene which has been shown to possess antiparasitic activity against Trypanosoma and Leishmania species. In a recent study, we investigated how changes in the benzyl alcohol functionality affected the antiparasitic activity, but the importance of B- and C-ring substituents is not understood. Fifteen derivatives of pulchrol with different substituents in positions 1, 2, 3, and 6 while leaving the A-ring intact, were therefore prepared by total synthesis, assayed, and compared with pulchrol and positive controls. The generated series and parental molecule were tested in vitro for antiparasitic activity against Trypanosoma cruzi, Leishmania braziliensis, and L. amazonensis, and cytotoxicity using RAW cells. Substantial differences in the activity of the compounds synthesized were observed, of which some were more potent towards Trypanosoma cruzi than the positive control benznidazole. A general tendency is that alkyl substituents improve the potency, especially when positioned on C-2.
Collapse
|
14
|
Terrazas P, Salamanca E, Dávila M, Manner S, Giménez A, Sterner O. SAR:s for the Antiparasitic Plant Metabolite Pulchrol. 1. The Benzyl Alcohol Functionality. Molecules 2020; 25:molecules25133058. [PMID: 32635469 PMCID: PMC7412453 DOI: 10.3390/molecules25133058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/22/2022] Open
Abstract
Pulchrol (1) is a natural benzochromene isolated from the roots of Bourreria pulchra, shown to possess potent antiparasitic activity towards both Leishmania and Trypanozoma species. As it is not understood which molecular features of 1 are important for the antiparasitic activity, several analogues were synthesized and assayed. The ultimate goal is to understand the structure–activity relationships (SAR:s) and create a QSAR model that can be used for the development of clinically useful antiparasitic agents. In this study, we have synthesized 25 2-methoxy-6,6-dimethyl-6H-benzo[c]chromen analogues of 1 and its co-metabolite pulchral (5a), by semi-synthetic procedures starting from the natural product pulchrol (1) itself. All 27 compounds, including the two natural products 1 and 5a, were subsequently assayed in vitro for antiparasitic activity against Trypanozoma cruzi, Leishmania brasiliensis and Leishmania amazoniensis. In addition, the cytotoxicity in RAW cells was assayed, and a selectivity index (SI) for each compound and each parasite was calculated. Several compounds are more potent or equi-potent compared with the positive controls Benznidazole (Trypanozoma) and Miltefosine (Leishmania). The compounds with the highest potencies as well as SI-values are esters of 1 with various carboxylic acids.
Collapse
Affiliation(s)
- Paola Terrazas
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, 22100 Lund, Sweden; (P.T.); (S.M.)
- Centre of Agroindustrial Technology, San Simón University, 3299 Cochabamba, Bolivia;
| | - Efrain Salamanca
- Institute for Pharmacological and Biochemical Sciences, San Andrés University, 3299 La Paz, Bolivia; (E.S.); (A.G.)
| | - Marcelo Dávila
- Centre of Agroindustrial Technology, San Simón University, 3299 Cochabamba, Bolivia;
| | - Sophie Manner
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, 22100 Lund, Sweden; (P.T.); (S.M.)
| | - Alberto Giménez
- Institute for Pharmacological and Biochemical Sciences, San Andrés University, 3299 La Paz, Bolivia; (E.S.); (A.G.)
| | - Olov Sterner
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, 22100 Lund, Sweden; (P.T.); (S.M.)
- Correspondence: ; Tel.: +46-70-5306649
| |
Collapse
|
15
|
Istanbullu H, Bayraktar G, Akbaba H, Cavus I, Coban G, Debelec Butuner B, Kilimcioglu AA, Ozbilgin A, Alptuzun V, Erciyas E. Design, synthesis, and in vitro biological evaluation of novel thiazolopyrimidine derivatives as antileishmanial compounds. Arch Pharm (Weinheim) 2020; 353:e1900325. [DOI: 10.1002/ardp.201900325] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Huseyin Istanbullu
- Department of Pharmaceutical Chemistry, Faculty of PharmacyIzmir Katip Celebi University Cigli Izmir Turkey
| | - Gulsah Bayraktar
- Department of Pharmaceutical Chemistry, Faculty of PharmacyEge University Bornova Izmir Turkey
| | - Hasan Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of PharmacyEge University Bornova Izmir Turkey
| | - Ibrahim Cavus
- Department of ParasitologyManisa Celal Bayar University Manisa Turkey
| | - Gunes Coban
- Department of Pharmaceutical Chemistry, Faculty of PharmacyEge University Bornova Izmir Turkey
| | - Bilge Debelec Butuner
- Department of Pharmaceutical Biotechnology, Faculty of PharmacyEge University Bornova Izmir Turkey
| | | | - Ahmet Ozbilgin
- Department of ParasitologyManisa Celal Bayar University Manisa Turkey
| | - Vildan Alptuzun
- Department of Pharmaceutical Chemistry, Faculty of PharmacyEge University Bornova Izmir Turkey
| | - Ercin Erciyas
- Department of Pharmaceutical Chemistry, Faculty of PharmacyEge University Bornova Izmir Turkey
| |
Collapse
|
16
|
Stefanowicz-Hajduk J, Ochocka JR. Real-time cell analysis system in cytotoxicity applications: Usefulness and comparison with tetrazolium salt assays. Toxicol Rep 2020; 7:335-344. [PMID: 32090021 PMCID: PMC7025972 DOI: 10.1016/j.toxrep.2020.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 01/08/2023] Open
Abstract
RTCA system allows to easily monitor cell adhesion and proliferation. The real-time impedance technique is widely used in many toxicological studies. RTCA results are generally comparable with results from tetrazolium salts assays. RTCA analysis should be limited when drugs with electroactive additives are tested. Tetrazolium salts assays should be avoided when colored compounds are studied.
Real-time cell analysis (RTCA) is a technique based on impedance and microsensor electrodes. RTCA system allows label-free, real-time, and continuous monitoring of cell adhesion, morphology, and rate of cell proliferation. The system offers a wide range of applications, mainly in toxicological studies, new drug screening, and microbiology. Here, we describe the usefulness of the system in different applications and compare this technology with conventional endpoint assays based on tetrazolium salts. We present advantages and disadvantages of the system and endpoint methods and their limitations in cytotoxicity investigations.
Collapse
Affiliation(s)
- Justyna Stefanowicz-Hajduk
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Al. Hallera 107, 80-416, Gdańsk, Poland
| | - J Renata Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Al. Hallera 107, 80-416, Gdańsk, Poland
| |
Collapse
|
17
|
Oyama J, Lera-Nonose DSSL, Ramos-Milaré ÁCFH, Padilha Ferreira FB, de Freitas CF, Caetano W, Hioka N, Silveira TGV, Lonardoni MVC. Potential of Pluronics ® P-123 and F-127 as nanocarriers of anti-Leishmania chemotherapy. Acta Trop 2019; 192:11-21. [PMID: 30659806 DOI: 10.1016/j.actatropica.2019.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 12/19/2022]
Abstract
Leishmaniasis is a neglected disease and drugs approved for its treatment often lead to abandonment, failure of therapy and even death. Photodynamic therapy (PDT) has been shown to be a promising, non-invasive and selective for a target region without requiring high-cost technology. Usually, it is employed a photosensitizing agent (PS) incorporated into nanoparticles (NP). Pluronics® P-123 and F-127 micelles are very interesting aqueous NP promoting efficient and selective delivery and less adverse effects. This study aimed to detect the activity of Pluronics® P-123 and F-127 themselves since there is a scarcity of data on these NP activities without drugs incorporation. This study evaluated, in vitro, the activity of Pluronics® against promastigotes and amastigotes of Leishmania amazonensis and also their cytotoxicities. Additionally, the determination of the mitochondria membrane potential in promastigotes, internalization of these Pluronics® in the parasite membrane and macrophages and its stability in the culture medium was evaluated. Results showed that Pluronics® did not cause significant damage to human red cells and promastigotes. The P-123 and F-127 inhibited the survival rate of L. amazonensis amastigotes, and also presented loss of mitochondrial membrane potential on promastigotes. The Pluronics® showed low cytotoxic activity on J774A.1 macrophages, while only P-123 showed moderate cytotoxicity for BALB/c macrophages. The stability of P-123 and F-127 in culture medium was maintained for ten days. In conclusion, the NP studied can be used for incorporating potent leishmanicidal chemotherapy, due to their selectivity towards macrophages, being a promising system for the treatment of cutaneous leishmaniasis.
Collapse
|
18
|
Rahman K, Khan SU, Fahad S, Shinwari ZK, Khan D, Kamal S, Ullah I, Anjum SI, Man S, Khan AJ, Khan WU, Khan MHU, Jan M, Adnan M, Noor M. In vitro biological screening of a critically endangered medicinal plant, Atropa acuminata Royle Ex Lindl of north western Himalaya. Sci Rep 2018; 8:11028. [PMID: 30038240 PMCID: PMC6056422 DOI: 10.1038/s41598-018-29231-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/18/2018] [Indexed: 01/06/2023] Open
Abstract
Atropa acuminata Royle Ex Lindl (Atropa acuminata) under tremendous threat of extinction in its natural habitat. However, the antimicrobial, antileishmanial and anticancer effects of the plant’s extracts have not been reported yet. In the current study, an attempt has been made to evaluate the pharmacological potential of this plant’s extracts against microbes, Leishmania and cancer. The roots, stems and leaves of Atropa acuminata were ground; then, seven different solvents were used alone and in different ratios to prepare crude extracts, which were screened for pharmacological effects. The aqueous, methanolic and ethanolic extracts of all parts carried a broad spectrum of anti-bacterial activities, while no significant activity was observed with combined solvents. Three types of cytotoxicity assays were performed, i.e., haemolytic, brine shrimp and protein kinase assays. The aqueous extract of all the parts showed significant haemolytic activity while n-hexane extracts of roots showed significant activity against brine shrimp. The acetone extracts strongly inhibited protein kinase while the methanolic extracts exhibited significant cytotoxic activity of roots and stem. The anti-leishmanial assays revealed that the methanolic extract of leaves and roots showed significant activity. These findings suggest that this plant could be a potential source of natural product based drugs.
Collapse
Affiliation(s)
- Khaista Rahman
- State Key Laboratory of Agricultural Microbiology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.,Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shahid Ullah Khan
- College of Plant Sciences and Technology/National Key Laboratory of Crop Genetic and improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Shah Fahad
- College of Plant Sciences and Technology/National Key Laboratory of Crop Genetic and improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China. .,Department of Agriculture, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan.
| | - Zabta Khan Shinwari
- State Key Laboratory of Agricultural Microbiology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.,Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Dilfaraz Khan
- Institute of Chemical Sciences, Gomal University D.I.Khan, 29050, KPK, Pakistan
| | - Sajid Kamal
- School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Ikram Ullah
- State Key Laboratory of Agricultural Microbiology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Syed Ishtiaq Anjum
- Department of Zoology, Kohat University of Science and Technology, Kohat, 26000, Pakistan
| | - Shad Man
- Inner Mongolia University, Huhot, 010021, P. R. China
| | | | - Wasim Ullah Khan
- School of Chemistry and Chemical Engineering, Sun Yat- Sen University, Guangzhou, 510275, P. R. China
| | - Muhammad Hafeez Ullah Khan
- College of Plant Sciences and Technology/National Key Laboratory of Crop Genetic and improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Mehmood Jan
- Zhejiang University Hangzhou, Hangzhou, 310058, People's Republic of China
| | - Muhammad Adnan
- Department of Agriculture, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Noor
- Department of Agriculture, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
19
|
Arévalo-Lopéz D, Nina N, Ticona JC, Limachi I, Salamanca E, Udaeta E, Paredes C, Espinoza B, Serato A, Garnica D, Limachi A, Coaquira D, Salazar S, Flores N, Sterner O, Giménez A. Leishmanicidal and cytotoxic activity from plants used in Tacana traditional medicine (Bolivia). JOURNAL OF ETHNOPHARMACOLOGY 2018; 216:120-133. [PMID: 29391199 DOI: 10.1016/j.jep.2018.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 05/27/2023]
Abstract
ETNOPHARMACOLOGICAL RELEVANCE Thirty-eight Tacana medicinal plant species used to treat skin problems, including leishmania ulcers, skin infections, inflammation and wound healing, were collected in the community of Buena Vista, Bolivia, with the Tacana people. Twenty two species are documented for the first time as medicinal plants for this ethnic group living in the northern area of the Department of La Paz. AIM OF THE STUDY To evaluate the leishmanicidal effect (IC50) and cytotoxicity (LD50) of the selected plants. To carry out bioguided studies on the active extracts. To assess the potential of Bolivian plant biodiversity associated with traditional knowledge in the discovery of alternative sources to fight leishmaniasis. MATERIALS AND METHODS Seventy three ethanol extracts were prepared from 38 species by maceration and were evaluated in vitro against promastigotes of Leishmania amazonensis and L. braziliensis. Active extracts (IC50 ≤ 50 μg/mL) were fractionated by chromatography on Silica gel column and the fractions were assessed against the two Leishmania strains. The most active fractions and the crude extracts were evaluated against reference strains of L. amazonensis, L. braziliensis, L. aethiopica, two native strains (L. Lainsoni and L. braziliensis) and for cytotoxicity against HeLa cells. The chromatographic profile of the active fractions was obtained by reverse phase chromatography using HPLC. RESULTS From the 73 extracts, 39 extracts (53.4%) were inactive and 34 showed activity. Thirteen species were sselected for bioguided studies. The crude extracts and their 36 fractions were evaluated against two Leishmania strains. The most active fraction were tested in a panel of five leishmania strains and for cytotoxicity. The Selective Index (SI = LD50/IC50) was calculated, and were generally low. Retention time and UV spectra were recorded for the active fractions by HPLC-DAD using a reverse phase column. Profiles were very different from each other, showing the presence of different compounds. CONCLUSION Bolivian traditional knowledge from the Tacanba was useful to identify plants with effect on Leishmania promastigotes. Chromatographic bioguided studies showed stronger leishmanicidal and cytotoxic activity for the medium polar fraction. HPLC analysis showed different chromatographic profiles of the active fractions.
Collapse
Affiliation(s)
- Diandra Arévalo-Lopéz
- Instituto de Investigaciones Fármaco-Bioquímicas (IIFB), Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés (UMSA), Av. Saavedra No 2224, Miraflores, La Paz, Bolivia
| | - Nélida Nina
- Instituto de Investigaciones Fármaco-Bioquímicas (IIFB), Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés (UMSA), Av. Saavedra No 2224, Miraflores, La Paz, Bolivia
| | - Juan C Ticona
- Instituto de Investigaciones Fármaco-Bioquímicas (IIFB), Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés (UMSA), Av. Saavedra No 2224, Miraflores, La Paz, Bolivia
| | - Ivan Limachi
- Instituto de Investigaciones Fármaco-Bioquímicas (IIFB), Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés (UMSA), Av. Saavedra No 2224, Miraflores, La Paz, Bolivia; Center for Analysis and Synthesis, Department of Chemistry, Lund University, Sweden
| | - Efrain Salamanca
- Instituto de Investigaciones Fármaco-Bioquímicas (IIFB), Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés (UMSA), Av. Saavedra No 2224, Miraflores, La Paz, Bolivia
| | - Enrique Udaeta
- Instituto de Investigaciones Fármaco-Bioquímicas (IIFB), Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés (UMSA), Av. Saavedra No 2224, Miraflores, La Paz, Bolivia
| | - Crispin Paredes
- Instituto de Investigaciones Fármaco-Bioquímicas (IIFB), Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés (UMSA), Av. Saavedra No 2224, Miraflores, La Paz, Bolivia
| | - Boris Espinoza
- Instituto de Investigaciones Fármaco-Bioquímicas (IIFB), Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés (UMSA), Av. Saavedra No 2224, Miraflores, La Paz, Bolivia
| | - Alcides Serato
- Consejo Indigena de Pueblos Tacana (CIPTA), Tumupasa, Provincia Abel Iturralde, Department of La Paz, Bolivia
| | - David Garnica
- Instituto de Investigaciones Fármaco-Bioquímicas (IIFB), Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés (UMSA), Av. Saavedra No 2224, Miraflores, La Paz, Bolivia
| | - Abigail Limachi
- Instituto de Investigaciones Fármaco-Bioquímicas (IIFB), Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés (UMSA), Av. Saavedra No 2224, Miraflores, La Paz, Bolivia
| | - Dayana Coaquira
- Instituto de Investigaciones Fármaco-Bioquímicas (IIFB), Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés (UMSA), Av. Saavedra No 2224, Miraflores, La Paz, Bolivia
| | - Sarah Salazar
- Instituto de Investigaciones Fármaco-Bioquímicas (IIFB), Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés (UMSA), Av. Saavedra No 2224, Miraflores, La Paz, Bolivia
| | - Ninoska Flores
- Instituto de Investigaciones Fármaco-Bioquímicas (IIFB), Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés (UMSA), Av. Saavedra No 2224, Miraflores, La Paz, Bolivia
| | - Olov Sterner
- Center for Analysis and Synthesis, Department of Chemistry, Lund University, Sweden
| | - Alberto Giménez
- Instituto de Investigaciones Fármaco-Bioquímicas (IIFB), Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés (UMSA), Av. Saavedra No 2224, Miraflores, La Paz, Bolivia.
| |
Collapse
|
20
|
Lipid lowering agents of natural origin: An account of some promising chemotypes. Eur J Med Chem 2017; 140:331-348. [DOI: 10.1016/j.ejmech.2017.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/07/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022]
|
21
|
Almaliti J, Malloy KL, Glukhov E, Spadafora C, Gutiérrez M, Gerwick WH. Dudawalamides A-D, Antiparasitic Cyclic Depsipeptides from the Marine Cyanobacterium Moorea producens. JOURNAL OF NATURAL PRODUCTS 2017; 80:1827-1836. [PMID: 28535042 DOI: 10.1021/acs.jnatprod.7b00034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A family of 2,2-dimethyl-3-hydroxy-7-octynoic acid (Dhoya)-containing cyclic depsipeptides, named dudawalamides A-D (1-4), was isolated from a Papua New Guinean field collection of the cyanobacterium Moorea producens using bioassay-guided and spectroscopic approaches. The planar structures of dudawalamides A-D were determined by a combination of 1D and 2D NMR experiments and MS analysis, whereas the absolute configurations were determined by X-ray crystallography, modified Marfey's analysis, chiral-phase GCMS, and chiral-phase HPLC. Dudawalamides A-D possess a broad spectrum of antiparasitic activity with minimal mammalian cell cytotoxicity. Comparative analysis of the Dhoya-containing class of lipopeptides reveals intriguing structure-activity relationship features of these NRPS-PKS-derived metabolites and their derivatives.
Collapse
Affiliation(s)
- Jehad Almaliti
- Department Pharmaceutical Sciences, College of Pharmacy, The University of Jordan , Amman, 11942, Jordan
| | | | | | | | | | | |
Collapse
|
22
|
Aguiar PHN, Fernandes NMGS, Zani CL, Mourão MM. A high-throughput colorimetric assay for detection of Schistosoma mansoni viability based on the tetrazolium salt XTT. Parasit Vectors 2017; 10:300. [PMID: 28637488 PMCID: PMC5480175 DOI: 10.1186/s13071-017-2240-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/11/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Schistosoma mansoni is a trematode parasite that causes schistosomiasis, one of the most prevalent neglected tropical diseases, leading to the loss of 2.6 million disability-adjusted life years. Praziquantel is the only drug available, and new drugs are required. The most common strategy in schistosomiasis drug discovery is the use of the schistosomula larval-stage for a pre-screen in drug sensitivity assays. However, assessing schistosomula viability by microscopy has always been a limitation to the throughput of such assays. Hence, the development of validated, robust high-throughput in vitro assays for Schistosoma with simple readouts is needed. Here, we present a simple and affordable alternative to assess schistosomula viability. The method employed is based on the hydrosoluble tetrazolium salt XTT which has been widely used in other organisms but has never been used to drug screen in schistosomes. RESULTS We showed that schistosomula reduce XTT salt to a coloured formazan product and that absorbance levels reflected the viability and parasites number. This XTT viability assay was validated for high throughput screening of compounds in schistosomula, and dose-response curves of compounds could be reproduced. CONCLUSIONS We conclude that the XTT viability assay could be applied for the screening of large compounds collections in S. mansoni and accelerate the identification of novel antischistosomal compounds.
Collapse
Affiliation(s)
| | | | - Carlos Leomar Zani
- Laboratório de Química dos Produtos Naturais, René Rachou Research Center, FIOCRUZ, Belo Horizonte, Minas Gerais Brazil
| | - Marina Moraes Mourão
- Laboratório de Helmintologia e Malacologia Médica, René Rachou Research Center, FIOCRUZ, Belo Horizonte, Minas Gerais Brazil
| |
Collapse
|
23
|
Lax NC, Ahmed KT, Ignatz CM, Spadafora C, Kolber BJ, Tidgewell KJ. Marine cyanobacteria-derived serotonin receptor 2C active fraction induces psychoactive behavioral effects in mice. PHARMACEUTICAL BIOLOGY 2016; 54:2723-2731. [PMID: 27181630 PMCID: PMC5155707 DOI: 10.1080/13880209.2016.1181659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
CONTEXT Marine cyanobacteria offer a robust resource for natural products drug discovery due to the secondary metabolites they produce. OBJECTIVE To identify novel cyanobacterial compounds that exhibit CNS psychoactive effects. MATERIALS AND METHODS Cyanobacteria were collected from Las Perlas Archipelago, Panama and subjected to dichloromethane/methanol extraction and fractionation by column chromatography before being screened for affinity against a panel of CNS targets. A 50:50 ethyl acetate:methanol fraction of one cyanobacterial extract (2064H) was subjected to HPLC and the major peak was isolated (2064H3). At a dose of 20 μg per animal, 2064H and 2064H3 were tested in mice using behavioral assays that included the forced swim, open field and formalin tests. RESULTS 2064H was shown to bind to the serotonin 2C (5-HT2C) receptor, a known target for depression and pain treatment. 2064H showed 59.6% inhibition of binding of [3H]-mesulergine with an IC50 value of 179 ng/mL and did not show inhibition of binding greater than 45% with any other receptors tested. Both 2064H and 2064H3 decreased immobility time in the first minute of the tail suspension test. 2064H increased time, distance and number of entries in the center region in the first half of the open field test. 2064H increased overall nocifensive behaviors in the formalin test. DISCUSSION AND CONCLUSION Overall, manipulating the 5-HT2C receptor with these receptor-specific ligands derived from cyanobacteria altered pain, depression and anxiety-like behaviors, illustrating the importance of this receptor in affective behaviors. These results demonstrate the potential of cyanobacteria as a source for CNS active compounds.
Collapse
Affiliation(s)
- Neil C. Lax
- Duquesne University Department of Biological Sciences, Pittsburgh, PA 15282, USA
- Duquesne University Chronic Pain Research Consortium, Pittsburgh, PA 15282, USA
| | - Kh Tanvir Ahmed
- Duquesne University Mylan School of Pharmacy, Pittsburgh, PA 15282, USA
- Duquesne University Chronic Pain Research Consortium, Pittsburgh, PA 15282, USA
| | - Christopher M. Ignatz
- Duquesne University Department of Biological Sciences, Pittsburgh, PA 15282, USA
- Duquesne University Chronic Pain Research Consortium, Pittsburgh, PA 15282, USA
| | - Carmenza Spadafora
- Instituto de Investigaciones Cientificas y Servicios de Alta Tecnologia, Clayton, Apartado 0816-02852, Panama
| | - Benedict J. Kolber
- Duquesne University Department of Biological Sciences, Pittsburgh, PA 15282, USA
- Duquesne University Chronic Pain Research Consortium, Pittsburgh, PA 15282, USA
| | - Kevin J. Tidgewell
- Duquesne University Mylan School of Pharmacy, Pittsburgh, PA 15282, USA
- Duquesne University Chronic Pain Research Consortium, Pittsburgh, PA 15282, USA
| |
Collapse
|
24
|
Nina N, Lima B, Feresin GE, Giménez A, Salamanca Capusiri E, Schmeda-Hirschmann G. Antibacterial and leishmanicidal activity of Bolivian propolis. Lett Appl Microbiol 2016; 62:290-6. [PMID: 26743801 DOI: 10.1111/lam.12543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/28/2015] [Accepted: 01/05/2016] [Indexed: 01/06/2023]
Abstract
UNLABELLED The antimicrobial activity of Bolivian propolis was assessed for the first time on a panel of bacteria and two endemic parasitic protozoa. Ten samples of Bolivian propolis and their main constituents were tested using the micro-broth dilution method against 11 bacterial pathogenic strains as well as against promastigotes of Leishmania amazonensis and L. braziliensis using the XTT-based colorimetric method. The methanolic extracts showed antibacterial effect ranging from inactive (MICs > 1000 μg ml(-1) ) to low (MICs 250-1000 μg ml(-1) ), moderate (62·5-125 μg ml(-1) ) and high antibacterial activity (MIC 31·2 μg ml(-1) ), according to the collection place and chemical composition. The most active samples towards Leishmania species were from Cochabamba and Tarija, with IC50 values of 12·1 and 7·8, 8·0 and 10·9 μg ml(-1) against L. amazonensis and Leishmania brasiliensis respectively. The results show that the best antibacterial and antiprotozoal effect was observed for some phenolic-rich propolis. SIGNIFICANCE AND IMPACT OF THE STUDY Propolis is used in Bolivia as an antimicrobial agent. Bolivian propolis from the main production areas was assessed for antibacterial and leishmanicidal effect and the results were compared with the propolis chemical composition. The active antibacterial propolis samples were phenolic-rich while those containing mainly triterpenes were devoid of activity or weakly active. A similar picture was obtained for the effect on Leishmania, with better effect for the phenolic-rich samples. As propolis is used for the same purposes regardless of the production area and composition, our findings indicate the need for the standardization of this natural product as antimicrobial.
Collapse
Affiliation(s)
- N Nina
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile.,Facultad de Ciencias de la Salud, Programa de Magister en Ciencias Biomédicas, Universidad de Talca, Talca, Chile
| | - B Lima
- Facultad de Ingeniería, Instituto de Biotecnología, Universidad Nacional de San Juan, San Juan, Argentina
| | - G E Feresin
- Facultad de Ingeniería, Instituto de Biotecnología, Universidad Nacional de San Juan, San Juan, Argentina
| | - A Giménez
- Facultad de Ciencias Químico Farmacéuticas y Bioquímicas, Instituto de Investigaciones Fármaco Bioquímicas - IIFB, Universidad Mayor de San Andrés - UMSA, La Paz, Bolivia
| | - E Salamanca Capusiri
- Facultad de Ciencias Químico Farmacéuticas y Bioquímicas, Instituto de Investigaciones Fármaco Bioquímicas - IIFB, Universidad Mayor de San Andrés - UMSA, La Paz, Bolivia
| | - G Schmeda-Hirschmann
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| |
Collapse
|
25
|
Demarchi IG, Terron MDS, Thomazella MV, Mota CA, Gazim ZC, Cortez DAG, Aristides SMA, Silveira TGV, Lonardoni MVC. Antileishmanial and immunomodulatory effects of the essential oil from Tetradenia riparia (Hochstetter) Codd. Parasite Immunol 2016; 38:64-77. [PMID: 26615004 DOI: 10.1111/pim.12297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022]
Abstract
Cutaneous leishmaniasis usually presents therapeutic resistance to antimonials, and the existing therapies for leishmaniasis have many adverse effects and toxicity. Natural products may be regarded as possible candidates for alternative leishmaniasis treatment. The plant Tetradenia riparia has shown promise for the treatment of infectious diseases in folk medicine. We evaluated the antileishmanial activity of an essential oil from T. riparia (TrEO) and the modulatory effects of TrEO on cytokine modulation by peritoneal fluid cells that were infected with L. (L.) amazonensis. Peritoneal fluid cells were infected with Leishmania and incubated with TrEO (30 ng/mL) for 3, 6, and 24 h. Cytokines were screened using semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR) and flow cytometry. Antileishmanial activity was evaluated at 24 h by microscopic counting and quantitative PCR (qPCR). TrEO treatment induced the death of 50% of Leishmania amastigotes (indicated by microscopic counting) and 91% of the parasite load (indicated by qPCR). TrEO inhibited some of the most critical cytokines for parasite growth and the establishment of infection, including granulocyte-macrophage colony-stimulating factor, interleukin-4 (IL-4), IL-10, and tumour necrosis factor. The parasite inhibited interferon-γ and IL-12, and TrEO blocked this inhibition, indicating that these cytokines are critical for activating mechanisms associated with the death and elimination of the parasite. These results suggest that TrEO may be an alternative leishmaniasis therapy when considering its antileishmanial and immunomodulatory activity.
Collapse
Affiliation(s)
- Izabel Galhardo Demarchi
- Departamento de Análises Clínicas e Biomedicina, Laboratório de Imunologia Clínica, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Mariana de Souza Terron
- Departamento de Análises Clínicas e Biomedicina, Laboratório de Imunologia Clínica, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Mateus Vailant Thomazella
- Departamento de Análises Clínicas e Biomedicina, Laboratório de Imunologia Clínica, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Camila Alves Mota
- Departamento de Análises Clínicas e Biomedicina, Laboratório de Imunologia Clínica, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Zilda Cristiani Gazim
- Departamento de Farmácia, Laboratório de Química de Produtos Naturais da Universidade Paranaense, Umuarama, Paraná, Brazil
| | | | - Sandra Mara Alessi Aristides
- Departamento de Análises Clínicas e Biomedicina, Laboratório de Imunologia Clínica, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Thaís Gomes Verzignassi Silveira
- Departamento de Análises Clínicas e Biomedicina, Laboratório de Imunologia Clínica, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Maria Valdrinez Campana Lonardoni
- Departamento de Análises Clínicas e Biomedicina, Laboratório de Imunologia Clínica, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
26
|
Glisic S, Sencanski M, Perovic V, Stevanovic S, García-Sosa AT. Arginase Flavonoid Anti-Leishmanial in Silico Inhibitors Flagged against Anti-Targets. Molecules 2016; 21:molecules21050589. [PMID: 27164067 PMCID: PMC6274217 DOI: 10.3390/molecules21050589] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/24/2022] Open
Abstract
Arginase, a drug target for the treatment of leishmaniasis, is involved in the biosynthesis of polyamines. Flavonoids are interesting natural compounds found in many foods and some of them may inhibit this enzyme. The MetIDB database containing 5667 compounds was screened using an EIIP/AQVN filter and 3D QSAR to find the most promising candidate compounds. In addition, these top hits were screened in silico versus human arginase and an anti-target battery consisting of cytochromes P450 2a6, 2c9, 3a4, sulfotransferase, and the pregnane-X-receptor in order to flag their possible interactions with these proteins involved in the metabolism of substances. The resulting compounds may have promise to be further developed for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Sanja Glisic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia.
| | - Milan Sencanski
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia.
| | - Vladimir Perovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia.
| | - Strahinja Stevanovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia.
| | | |
Collapse
|
27
|
Socolsky C, Salamanca E, Giménez A, Borkosky SA, Bardón A. Prenylated Acylphloroglucinols with Leishmanicidal Activity from the Fern Elaphoglossum lindbergii. JOURNAL OF NATURAL PRODUCTS 2016; 79:98-105. [PMID: 26689830 DOI: 10.1021/acs.jnatprod.5b00767] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Purification of a diethyl ether extract of the Argentinian fern Elaphoglossum lindbergii afforded five new prenylated acylphloroglucinols, lindbergins E-I (1-5), of which two showed significant in vitro leishmanicidal activity against promastigotes of Leishmania braziliensis and L. amazonensis. The structures of compounds 1-5 were elucidated based on analysis of their spectroscopic data and comparison with values previously reported for other phloroglucinol derivatives isolated from plant species of the genera Hypericum, Dryopteris, and Elaphoglossum. Fragmentation and rearrangement patterns of prenylated acylphloroglucinols were analyzed, and some mechanisms were proposed to rationalize the peaks observed in the mass spectra of these natural products produced by EI and FAB. Compounds isolated from E. lindbergii show the opposite absolute configuration when compared to those reported from E. crassipes. Empirical evidence indicates that acylphloroglucinols carrying a prenylated acylfilicinic acid residue possess a high-amplitude configuration-dependent Cotton effect centered at 350-360 nm in their CD curves, from which the absolute configuration of the sole chiral center of the prenylated acylfilicinic acid moiety can be deduced.
Collapse
Affiliation(s)
| | - Efrain Salamanca
- Instituto de Investigaciones Fármaco Bioquímicas (IIFB), Universidad Mayor de San Andrés , Avenida B. Saavedra 2224, La Paz 3239, Bolivia
| | - Alberto Giménez
- Instituto de Investigaciones Fármaco Bioquímicas (IIFB), Universidad Mayor de San Andrés , Avenida B. Saavedra 2224, La Paz 3239, Bolivia
| | - Susana A Borkosky
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán , Ayacucho 471, Tucumán 4000, Argentina
| | - Alicia Bardón
- INQUINOA-CONICET , Ayacucho 471, Tucumán 4000, Argentina
| |
Collapse
|
28
|
Cardoso BM, de Mello TFP, Lopes SN, Demarchi IG, Lera DSL, Pedroso RB, Cortez DA, Gazim ZC, Aristides SMA, Silveira TGV, Lonardoni MVC. Antileishmanial activity of the essential oil from Tetradenia riparia obtained in different seasons. Mem Inst Oswaldo Cruz 2015; 110:1024-34. [PMID: 26602873 PMCID: PMC4708023 DOI: 10.1590/0074-02760150290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/16/2015] [Indexed: 11/22/2022] Open
Abstract
The herbaceous shrub Tetradenia riparia has been traditionally used
to treat inflammatory and infectious diseases. Recently, a study showed that
T. riparia essential oil (TrEO) obtained in summer has
antileishmanial effects, although these results could be influenced by seasonal
variation. This study evaluated the activity of the TrEO obtained in different
seasons against Leishmania (Leishmania) amazonensis, in vitro and in
vivo. The compounds in the TrEO were analysed by gas chromatography-mass
spectrometry; terpenoids were present and oxygenated sesquiterpenes were the majority
compounds (55.28%). The cytotoxicity and nitric oxide (NO) production were also
tested after TrEO treatment. The TrEO from all seasons showed a 50% growth inhibitory
concentration for promastigotes of about 15 ng/mL; at 30 ng/mL and 3 ng/mL, the TrEO
reduced intracellular amastigote infection, independently of season. The TrEO from
plants harvested in summer had the highest 50% cytotoxic concentration, 1,476 ng/mL
for J774.A1 macrophages, and in spring (90.94 ng/mL) for murine macrophages. NO
production did not change in samples of the TrEO from different seasons. The
antileishmanial effect in vivo consisted of a reduction of the parasite load in the
spleen. These results suggest that the TrEO has potential effects on L. (L.)
amazonensis, consonant with its traditional use to treat parasitic
diseases.
Collapse
Affiliation(s)
- Bruna Muller Cardoso
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | | | - Sara Negrão Lopes
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Izabel Galhardo Demarchi
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | | | - Raíssa Bocchi Pedroso
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | | | | | | | | | | |
Collapse
|
29
|
Demarchi IG, Terron MDS, Thomazella MV, Pedroso RB, Gazim ZC, Cortez DAG, Aristides SMA, Silveira TGV, Lonardoni MVC. Immunomodulatory activity of essential oil fromTetrania riparia(Hochstetter) Codd in murine macrophages. FLAVOUR FRAG J 2015. [DOI: 10.1002/ffj.3284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Izabel G. Demarchi
- Departamento de Análises Clínicas e Biomedicina, Laboratório de Imunologia Clínica; Universidade Estadual de Maringá; Maringá Paraná Brazil
| | - Mariana d-S. Terron
- Departamento de Análises Clínicas e Biomedicina, Laboratório de Imunologia Clínica; Universidade Estadual de Maringá; Maringá Paraná Brazil
| | - Mateus V. Thomazella
- Departamento de Análises Clínicas e Biomedicina, Laboratório de Imunologia Clínica; Universidade Estadual de Maringá; Maringá Paraná Brazil
| | - Raíssa B. Pedroso
- Pós-graduação em Biociências Aplicadas à Farmácia; Universidade Estadual de Maringá; Maringá Paraná Brazil
| | - Zilda C. Gazim
- Departamento de Farmácia; Laboratório de Química de Produtos Naturais da Universidade Paranaense; Umuarama Paraná Brazil
| | | | - Sandra M. A. Aristides
- Departamento de Análises Clínicas e Biomedicina, Laboratório de Imunologia Clínica; Universidade Estadual de Maringá; Maringá Paraná Brazil
| | - Thaís G. Verzignassi Silveira
- Departamento de Análises Clínicas e Biomedicina, Laboratório de Imunologia Clínica; Universidade Estadual de Maringá; Maringá Paraná Brazil
| | - Maria V. C. Lonardoni
- Departamento de Análises Clínicas e Biomedicina, Laboratório de Imunologia Clínica; Universidade Estadual de Maringá; Maringá Paraná Brazil
| |
Collapse
|
30
|
Rapid Bioassay-Guided Isolation of Antibacterial Clerodane Type Diterpenoid from Dodonaea viscosa (L.) Jaeq. Int J Mol Sci 2015; 16:20290-307. [PMID: 26343638 PMCID: PMC4613204 DOI: 10.3390/ijms160920290] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 11/20/2022] Open
Abstract
Plant extracts are complex matrices and, although crude extracts are widely in use, purified compounds are pivotal in drug discovery. This study describes the application of automated preparative-HPLC combined with a rapid off-line bacterial bioassay, using reduction of a tetrazolium salt as an indicator of bacterial metabolism. This approach enabled the identification of fractions from Dodonaea viscosa that were active against Staphylococcus aureus and Escherichia coli, which, ultimately, resulted in the identification of a clerodane type diterpenoid, 6β-hydroxy-15,16-epoxy-5β, 8β, 9β, 10α-cleroda-3, 13(16), 14-trien-18-oic acid, showing bacteriostatic activity (minimum inhibitory concentration (MIC) = 64–128 µg/mL) against test bacteria. To the best of our knowledge, this is the first report on antibacterial activity of this metabolite from D. viscosa.
Collapse
|
31
|
Demarchi IG, Thomazella MV, de Souza Terron M, Lopes L, Gazim ZC, Cortez DAG, Donatti L, Aristides SMA, Silveira TGV, Lonardoni MVC. Antileishmanial activity of essential oil and 6,7-dehydroroyleanone isolated from Tetradenia riparia. Exp Parasitol 2015; 157:128-37. [PMID: 26116864 DOI: 10.1016/j.exppara.2015.06.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
Tetradenia riparia plant is used as a traditional medicine in Africa for the treatment of inflammatory and infectious diseases as like parasitic. Therapy for leishmaniasis caused by Leishmania (Leishmania) amazonensis specie often fails, and the conventional drugs are toxic, expensive, require a long period of treatment, and adverse effects are common. The alternative therapies using natural products are inexpensive and have few or any adverse reaction. These reasons are sufficient to investigate the new natural therapeutic for leishmaniasis. We evaluated the potential of the essential oil (TrEO) and 6,7-dehydroroyleanone (TrROY) isolated from T. riparia on L. (L.) amazonensis promastigote and amastigote forms, cytotoxicity on human erythrocytes and murine macrophages, nitric production and inducible nitric oxide synthase (iNOS) mRNA expression. TrEO was the most effective to promote the Leishmania promastigote death. After 72 h incubation, the lethal dose of TrEO and TrROY that promoted 50% Leishmania death (LD50) were 0.8 μg/mL and 3 μg/mL, respectively. TrEO and TrROY were not cytotoxic to human erythrocytes, but TrROY was toxic to murine macrophages resulting in a low selectivity index. The transmission electronic microscopy showed that TrEO (0.03 μg/mL) was able to modify the promastigote ultrastructures suggesting autophagy as chromatin condensation, blebbing, membranous profiles and nuclear fragmentation. Infected-macrophages treated with TrEO (0.03 μg/mL) or TrROY (10 μg/mL) had an infection index decreased in 65 and 48%. TrEO did not induce iNOS mRNA expression or nitrite production in macrophages infected with Leishmania. TrROY and mainly TrEO promoted the Leishmania death, and TrROY showed loss toxicity to erythrocytes cells. Other compounds derived from T. riparia and the essential oil could be explored to develop a new alternative treatment for leishmaniasis.
Collapse
Affiliation(s)
| | | | - Mariana de Souza Terron
- Laboratório de Imunologia Clínica da Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Lilian Lopes
- Laboratório de Imunologia Clínica da Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Zilda Cristiani Gazim
- Laboratório de Química de Produtos Naturais da Universidade Paranaense, Umuarama, Paraná, Brazil
| | | | - Lucélia Donatti
- Laboratório de Biologia Adaptativa, Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | | |
Collapse
|
32
|
Vandesmet VCS, Felipe CFB, Kerntopf MR, Rolón M, Vega C, Coronel C, Barbosa AGR, Coutinho HDM, Menezes IRA. The use of herbs against neglected diseases: Evaluation of in vitro leishmanicidal and trypanocidal activity of Stryphnodendron rotundifolium Mart. Saudi J Biol Sci 2015; 24:1136-1141. [PMID: 28855804 PMCID: PMC5562377 DOI: 10.1016/j.sjbs.2015.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/19/2015] [Accepted: 03/02/2015] [Indexed: 11/24/2022] Open
Abstract
The evaluation of the leishmanicidal and trypanocidal activity of the hydroalcoholic extract of the bark of Stryphnodendron rotundifolium Mart. (EHCSR) was carried out to find an alternative treatment for parasitic diseases. EHCSR was prepared and used at four different concentrations (1000, 500, 250, 125 μg/mL) in in vitro assays for activity against Leishmania promastigotes using the species Leishmania brasiliensis and Leishmania infantum and for trypanocidal activity using the epimastigotes of Trypanosoma cruzi. We also tested EHCSR for cytotoxicity against adhered cultured Murine J774 fibroblasts. The tests were performed in triplicate, and the percent mortality of parasites, IC50 and percent toxicity were determined. With regard to anti-leishmania activity against L. infantum, there was a mean mortality of 45% at all concentrations, and against L. brasiliensis, a substantial effect was seen at 1000 μg/mL with 56.38% mortality, where the IC50 values were 1338.76 and 987.35 μg/mL, respectively. Trypanocidal activity was notably high at 1000 μg/mL extract with 82.31% mortality of epimastigotes. Cytotoxicity at the highest extract concentrations of 500 and 1000 μg/mL was respectively 75.12% and 94.14%, with IC50 = 190.24 μg/mL. Despite that the extract has anti-parasitic activity, its substantial cytotoxicity against fibroblasts cells makes its systemic use nonviable as a therapeutic alternative.
Collapse
Affiliation(s)
| | - Cícero F B Felipe
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa (PB), Brazil
| | - Marta R Kerntopf
- Laboratório de Farmacologia e Quimica Molecular, Universidade Regional do Cariri, Crato (CE), Brazil
| | - Miriam Rolón
- Centre for the Development of Scientific la Investigación (CEDIC), Fundación Moisés Bertoni/Laboratorios Diaz Gill, Asuncion, Paraguay
| | - Celeste Vega
- Centre for the Development of Scientific la Investigación (CEDIC), Fundación Moisés Bertoni/Laboratorios Diaz Gill, Asuncion, Paraguay
| | - Cathia Coronel
- Centre for the Development of Scientific la Investigación (CEDIC), Fundación Moisés Bertoni/Laboratorios Diaz Gill, Asuncion, Paraguay
| | - Andreza G R Barbosa
- Laboratório de Farmacologia e Quimica Molecular, Universidade Regional do Cariri, Crato (CE), Brazil
| | - Henrique D M Coutinho
- Laboratório de Microbiologia e Biologia Molecular, Universidade Regional do Cariri, Crato (CE), Brazil.,Faculdade Leão Sampaio, Juazeiro do Norte (CE), Brazil
| | - Irwin R A Menezes
- Laboratório de Farmacologia e Quimica Molecular, Universidade Regional do Cariri, Crato (CE), Brazil.,Faculdade Leão Sampaio, Juazeiro do Norte (CE), Brazil
| |
Collapse
|
33
|
Naujorks AADS, da Silva AO, Lopes RDS, de Albuquerque S, Beatriz A, Marques MR, de Lima DP. Novel naphthoquinone derivatives and evaluation of their trypanocidal and leishmanicidal activities. Org Biomol Chem 2015; 13:428-37. [DOI: 10.1039/c4ob01869a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel naphthoquinone derivatives were synthesized and tested for trypanocidal and leishmanicidal activities. Compound 11a was the most active against T. cruzi.
Collapse
Affiliation(s)
- Aline Alves dos Santos Naujorks
- Programa de Pós-Graduação em Farmácia
- Centro de Ciências Biológicas e da Saúde
- Universidade Federal de Mato Grosso do Sul
- Campo Grande
- Brazil
| | | | | | - Sérgio de Albuquerque
- Departamento de Análises Clínicas
- Toxicológicas e Bromatológicas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto
- USP
- Ribeirão Preto
| | - Adilson Beatriz
- Instituto de Química (LP4)
- Universidade Federal de Mato Grosso do Sul
- Campo Grande
- Brazil
| | - Maria Rita Marques
- Centro de Ciências Biológicas e da Saúde
- Laboratório de Bioquímica
- Universidade Federal de Mato Grosso do Sul
- Campo Grande
- Brazil
| | - Dênis Pires de Lima
- Instituto de Química (LP4)
- Universidade Federal de Mato Grosso do Sul
- Campo Grande
- Brazil
| |
Collapse
|
34
|
Forestier CL, Späth GF, Prina E, Dasari S. Simultaneous multi-parametric analysis of Leishmania and of its hosting mammal cells: A high content imaging-based method enabling sound drug discovery process. Microb Pathog 2014; 88:103-8. [PMID: 25448129 DOI: 10.1016/j.micpath.2014.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/18/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022]
Abstract
Leishmaniasis is a vector-borne disease for which only limited therapeutic options are available. The disease is ranked among the six most important tropical infectious diseases and represents the second-largest parasitic killer in the world. The development of new therapies has been hampered by the lack of technologies and methodologies that can be integrated into the complex physiological environment of a cell or organism and adapted to suitable in vitro and in vivo Leishmania models. Recent advances in microscopy imaging offer the possibility to assess the efficacy of potential drug candidates against Leishmania within host cells. This technology allows the simultaneous visualization of relevant phenotypes in parasite and host cells and the quantification of a variety of cellular events. In this review, we present the powerful cellular imaging methodologies that have been developed for drug screening in a biologically relevant context, addressing both high-content and high-throughput needs. Furthermore, we discuss the potential of intra-vital microscopy imaging in the context of the anti-leishmanial drug discovery process.
Collapse
Affiliation(s)
- Claire-Lise Forestier
- INSERM U1095, URMITE-UMR CNRS 7278, Infectiopole Sud, University of Aix-Marseille, Marseille, France.
| | - Gerald Frank Späth
- Institut Pasteur and CNRS URA2581, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Eric Prina
- Institut Pasteur and CNRS URA2581, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Sreekanth Dasari
- INSERM U1095, URMITE-UMR CNRS 7278, Infectiopole Sud, University of Aix-Marseille, Marseille, France
| |
Collapse
|
35
|
Shawali AS, Samy NA. Functionalized formazans: A review on recent progress in their pharmacological activities. J Adv Res 2014; 6:241-54. [PMID: 26257923 PMCID: PMC4522548 DOI: 10.1016/j.jare.2014.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 11/28/2022] Open
Abstract
This review provides an up to date information about the diverse pharmaceutical activities of formazans. The bibliography includes 97 references which have been published during the period from 1980 to 2013. The covered biological activities of the title compounds include antioxidant, anticonvulsant, therapeutic, anthelmintic, anti-tubercular, antiviral, anti-inflammatory, anticancer, anti-HIV, antimicrobial, antiparkinsonian, cardiovascular and antiproliferative activities.
Collapse
Affiliation(s)
- Ahmad S Shawali
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
| | - Nevien A Samy
- Department of Dermatology, National Institute of Laser Enhanced Sciences, University of Cairo, Giza, Egypt
| |
Collapse
|
36
|
Ginouves M, Carme B, Couppie P, Prevot G. Comparison of tetrazolium salt assays for evaluation of drug activity against Leishmania spp. J Clin Microbiol 2014; 52:2131-8. [PMID: 24719447 PMCID: PMC4042777 DOI: 10.1128/jcm.00201-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/07/2014] [Indexed: 11/20/2022] Open
Abstract
In French Guiana, leishmaniasis is an essentially cutaneous infection. It constitutes a major public health problem, with a real incidence of 0.2 to 0.3%. Leishmania guyanensis is the causal species most frequently encountered in French Guiana. The treatment of leishmaniasis is essentially drug based, but the therapeutic compounds available have major side effects (e.g., liver damage and diabetes) and must be administered parenterally or are costly. The efficacy of some of these agents has declined due to the emergence of resistance in certain strains of Leishmania. There is currently no vaccine against leishmaniasis, and it is therefore both necessary and urgent to identify new compounds effective against Leishmania. The search for new drugs requires effective tests for evaluations of the leishmanicidal activity of a particular molecule or extract. Microculture tetrazolium assays (MTAs) are colorimetric tests based on the use of tetrazolium salts. We compared the efficacies of three tetrazolium salts-3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT), and 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-8)-for quantification of the promastigotes of various species of Leishmania. We found that the capacity of Leishmania to metabolize a tetrazolium salt depended on the salt used and the species of Leishmania. WST-8 was the tetrazolium salt best metabolized by L. guyanensis and gave the best sensitivity.
Collapse
Affiliation(s)
- Marine Ginouves
- Université des Antilles et de la Guyane, Laboratoire d'Épidémiologie des Parasitoses Tropicales EA 3593, Labex CEBA UFR de Médecine, Cayenne, French Guiana
| | - Bernard Carme
- Université des Antilles et de la Guyane, Laboratoire d'Épidémiologie des Parasitoses Tropicales EA 3593, Labex CEBA UFR de Médecine, Cayenne, French Guiana Laboratoire Hospitalo-Universitaire de Parasitologie et Mycologie, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Pierre Couppie
- Université des Antilles et de la Guyane, Laboratoire d'Épidémiologie des Parasitoses Tropicales EA 3593, Labex CEBA UFR de Médecine, Cayenne, French Guiana Service de Dermatologie, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Ghislaine Prevot
- Université des Antilles et de la Guyane, Laboratoire d'Épidémiologie des Parasitoses Tropicales EA 3593, Labex CEBA UFR de Médecine, Cayenne, French Guiana
| |
Collapse
|
37
|
A new, rapid and sensitive bioluminescence assay for drug screening on Leishmania. J Microbiol Methods 2013; 95:320-3. [DOI: 10.1016/j.mimet.2013.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/05/2013] [Accepted: 09/08/2013] [Indexed: 11/22/2022]
|
38
|
Pavlik CM, Wong CY, Ononye S, Lopez DD, Engene N, McPhail KL, Gerwick WH, Balunas MJ. Santacruzamate A, a potent and selective histone deacetylase inhibitor from the Panamanian marine cyanobacterium cf. Symploca sp. JOURNAL OF NATURAL PRODUCTS 2013; 76:2026-33. [PMID: 24164245 PMCID: PMC3879121 DOI: 10.1021/np400198r] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A dark brown tuft-forming cyanobacterium, morphologically resembling the genus Symploca, was collected during an expedition to the Coiba National Park, a UNESCO World Heritage Site on the Pacific coast of Panama. Phylogenetic analysis of its 16S rRNA gene sequence indicated that it is 4.5% divergent from the type strain for Symploca and thus is likely a new genus. Fractionation of the crude extract led to the isolation of a new cytotoxin, designated santacruzamate A (1), which has several structural features in common with suberoylanilide hydroxamic acid [(2), SAHA, trade name Vorinostat], a clinically approved histone deacetylase (HDAC) inhibitor used to treat refractory cutaneous T-cell lymphoma. Recognition of the structural similarly of 1 and SAHA led to the characterization of santacruzamate A as a picomolar level selective inhibitor of HDAC2, a Class I HDAC, with relatively little inhibition of HDAC4 or HDAC6, both Class II HDACs. As a result, chemical syntheses of santacruzamate A as well as a structurally intriguing hybrid molecule, which blends aspects of both agents (1 and 2), were achieved and evaluated for their HDAC activity and specificity.
Collapse
Affiliation(s)
- Christopher M. Pavlik
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Christina Y.B. Wong
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT), Ciudad del Saber, Clayton, Apartado Postal 0816-02852, Panama City, Panamá
| | - Sophia Ononye
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Dioxelis D. Lopez
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT), Ciudad del Saber, Clayton, Apartado Postal 0816-02852, Panama City, Panamá
| | - Niclas Engene
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Kerry L. McPhail
- College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, USA
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA
- Smithsonian Tropical Research Institute (STRI), Ancón, Apartado Postal 0843-03092, Panama City, Panamá
| | - Marcy J. Balunas
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT), Ciudad del Saber, Clayton, Apartado Postal 0816-02852, Panama City, Panamá
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA
- Smithsonian Tropical Research Institute (STRI), Ancón, Apartado Postal 0843-03092, Panama City, Panamá
| |
Collapse
|
39
|
Nosratabadi SJ, Sharifi I, Sharififar F, Bamorovat M, Daneshvar H, Mirzaie M. In vitro antileishmanial activity of methanolic and aqueous extracts of Eucalyptus camaldulensis against Leishmania major. J Parasit Dis 2013; 39:18-21. [PMID: 25698853 DOI: 10.1007/s12639-013-0377-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/18/2013] [Indexed: 10/26/2022] Open
Abstract
Pentavalent antimony compounds are expensive, toxic and drug resistance is prevalent, whereas the plant extract derivatives are safe. In the present study, the effect of methanolic and aqueous extracts of Eucalyptus camaldulensis on the promastigotes of Leishmania major was evaluated. The methanolic and aqueous extracts of E. camaldulensis leaves were prepared. The compounds were dried and powdered. Serial dilutions of the extracts and control drugs in phosphate buffer solution were prepared. The stationary phase promastigotes of L. major were incubated to the methanolic and aqueous extractions in vitro. Tartar emetic was used as the positive control drug. After 72 h of incubation the activity of the extracts was measured, using MTT method. The IC50 values (50 % inhibitory concentration) were 586.2 ± 47.6 and 1,108.6 ± 51.9 μg/ml for methanolic and aqueous extracts, respectively, whereas it was 32.5 ± 6.8 μg/ml for tartar emetic. The results indicated that the methanolic extract was more effective than aqueous extract, although there was no significant difference. The extracts were less effective as compared to the control drug. Further investigation is required to evaluate these extracts on clinical stage in macrophage-amastigote model.
Collapse
Affiliation(s)
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, 76169-14115 Kerman, Iran
| | - Fariba Sharififar
- Faculty of Pharmacy, Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, 76169-14115 Kerman, Iran
| | - Hamid Daneshvar
- Immunology Department, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Mirzaie
- Pathobiology Department, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
40
|
Quintal S, Morais TS, Matos CP, Paula Robalo M, Piedade MFM, Villa de Brito MJ, Helena Garcia M, Marques M, Maia C, Campino L, Madureira J. Synthesis, structural characterization and leishmanicidal activity evaluation of ferrocenyl N-heterocyclic compounds. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2013.07.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Madureira J, Ramos CIV, Marques M, Maia C, de Sousa B, Campino L, Santana-Marques MG, Farrell N. Nonclassic Metallointercalators with Dipyridophenazine: DNA Interaction Studies and Leishmanicidal Activity. Inorg Chem 2013; 52:8881-94. [DOI: 10.1021/ic401067d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- João Madureira
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond,
Virginia 23284, United States
- Departamento de Química e Bioquímica, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa,
Portugal
| | - Catarina I. V. Ramos
- Departamento de
Química, Universidade de Aveiro,
Campus de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | | - Lenea Campino
- Departamento Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, 8000-117
Faro, Portugal
| | | | - Nicholas Farrell
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond,
Virginia 23284, United States
| |
Collapse
|
42
|
In vitro drug susceptibility of Leishmania infantum isolated from humans and dogs. Exp Parasitol 2013; 135:36-41. [PMID: 23747751 DOI: 10.1016/j.exppara.2013.05.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 05/25/2013] [Accepted: 05/28/2013] [Indexed: 11/24/2022]
Abstract
Visceral leishmaniasis (VL) caused by parasites of Leishmania donovani complex is a severe human disease which often leads to death if left untreated. Domestic dogs are the main reservoir hosts for zoonotic human visceral infection caused by Leishmania infantum. In the absence of effective human and dog vaccines, the only feasible way to treat and control leishmaniasis is through the use of suitable medications. To know the drug susceptibility of human and canine Leishmania strains from Lisbon-Portugal, a study on a panel of strains was conducted by testing the susceptibility of promastigotes and intracellular amastigotes to the common drugs used in canine leishmaniasis (CanL) and human VL (meglumine antimoniate, amphotericin B, miltefosine and allopurinol). Although a high heterogeneity of susceptibilities was obtained to each drug on both axenic promastigote and intracellular amastigote assays, intracellular amastigotes system correlated better with treatment outcome. Parasites isolated from the refractory human case were the least susceptible to the drugs used highlighting that the emergence of cross-resistance to the drugs available for human therapy should not be neglected. Furthermore, parasites isolated from dogs showed low susceptibility to the main drugs used in CanL treatment. Our results focus the importance of reducing/avoiding the emergence and spread of resistant parasites in the canine and human populations, a factor that requires special consideration when dogs are treated using the same available anti-Leishmania drugs for human VL. In addition, efforts should be made in order to standardize the conditions used to test drug susceptibility (methodologies, drug formulations and media) in order to compare results between laboratories.
Collapse
|
43
|
Cragg GM, Katz F, Newman DJ, Rosenthal J. The impact of the United Nations Convention on Biological Diversity on natural products research. Nat Prod Rep 2012; 29:1407-23. [PMID: 23037777 DOI: 10.1039/c2np20091k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The discovery and development of novel, biologically active agents from natural sources, whether they be drugs, agrochemicals or other bioactive entities, involve a high level of interdisciplinary as well as international collaboration. Such collaboration, particularly at the international level, requires the careful negotiation of collaborative agreements protecting the rights of all parties, with special attention being paid to the rights of host (source) country governments, communities and scientific organizations. While many biodiversity-rich source countries currently might not have the necessary resources for in-country drug discovery and advanced development, they provide valuable opportunities for collaboration in this endeavor with research organizations from more high-income nations. This chapter discusses the experiences of the US National Cancer Institute and the US government-sponsored International Cooperative Biodiversity Groups program in the establishment of international agreements in the context of the Convention of Biological Diversity's objectives of promoting fair and equitable collaboration with multiple parties in many countries, and includes some specific lessons of value in developing such collaborations.
Collapse
Affiliation(s)
- Gordon M Cragg
- Natural Products Branch, National Cancer Institute-Frederick, P. O. Box B, Frederick, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|
44
|
Martínez-Luis S, Gómez JF, Spadafora C, Guzmán HM, Gutiérrez M. Antitrypanosomal alkaloids from the marine bacterium Bacillus pumilus. Molecules 2012; 17:11146-55. [PMID: 22990456 PMCID: PMC6268621 DOI: 10.3390/molecules170911146] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 11/16/2022] Open
Abstract
Fractionation of the ethyl acetate extract of the marine bacterium Bacillus pumilus isolated from the black coral Antipathes sp. led to the isolation of five compounds: cyclo-(L-Leu-L-Pro) (1), 3-hydroxyacetylindole (2), N-acetyl-β-oxotryptamine (3), cyclo-(L-Phe-L-Pro) (4), and 3-formylindole (5). The structures of compounds 1−5 were established by spectroscopic analyses, including HRESITOF-MS and NMR (1H, 13C, HSQC, HMBC and COSY). Compounds 2, 3 and 5 caused the inhibition on the growth of Trypanosoma cruzi (T. cruzi), with IC50 values of 20.6, 19.4 and 26.9 μM, respectively, with moderate cytotoxicity against Vero cells. Compounds 1−5 were found to be inactive when tested against Plasmodium falciparum and Leishmania donovani, therefore showing selectivity against T. cruzi parasites.
Collapse
Affiliation(s)
- Sergio Martínez-Luis
- Center for Biodiversity and Drug Discovery, Institute for Scientific Research and High Technology Services, City of Knowledge, P.O. Box 0843-01103, Panama;
| | - José Félix Gómez
- Center for Biodiversity and Drug Discovery, Institute for Scientific Research and High Technology Services, City of Knowledge, P.O. Box 0843-01103, Panama;
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, México D.F. 07360, Mexico;
| | - Carmenza Spadafora
- Center for Cellular and Molecular Biology of Diseases, Institute for Scientific Research and High Technology Services, City of Knowledge, P.O. Box 0843-01103, Panama;
| | - Héctor M. Guzmán
- Smithsonian Tropical Research Institute, Balboa, Ancon, P.O. Box 0843-03092, Panama;
| | - Marcelino Gutiérrez
- Center for Biodiversity and Drug Discovery, Institute for Scientific Research and High Technology Services, City of Knowledge, P.O. Box 0843-01103, Panama;
- Author to whom correspondence should be addressed; ; Tel.: +507-517-0732; Fax: +507-517-0701
| |
Collapse
|
45
|
Kheiri Manjili H, Jafari H, Ramazani A, Davoudi N. Anti-leishmanial and toxicity activities of some selected Iranian medicinal plants. Parasitol Res 2012; 111:2115-21. [PMID: 22875395 DOI: 10.1007/s00436-012-3059-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/17/2012] [Indexed: 11/28/2022]
Abstract
Leishmaniasis is caused by protozoan parasites belonging to the genus Leishmania. Cutaneous leishmaniasis is the most common form of leishmaniasis in Iran. As there is not any vaccine for leishmaniasis, treatment is important to prevent the spreading of parasites. There is, therefore, a need to develop newer drugs from different sources. The aim of this study was to assess anti-leishmanial activity of the ethanolic extracts of 17 different medicinal plants against Leishmania major promastigotes and macrophage cell line J774. The selection of the hereby studied 17 plants was based on the existing information on their local ethnobotanic history. Plants were dried, powdered, and macerated in a hydroalcoholic solution. Resulting extracts have been assessed for in vitro anti-leishmanial and brine shrimp toxicity activities. Four plants, Caesalpinia gilliesii, Satureia hortensis, Carum copticum heirm, and Thymus migricus, displayed high anti-leishmanial activity (IC50, 9.76 ± 1.27, 15.625 ± 3.76, 15.625 ± 5.46, and 31.25 ± 15.44 μM, respectively) and were toxic against the J774 macrophage cell line at higher concentrations than those needed to inhibit the parasite cell growth (IC50, 45.13 ± 3.17, 100.44 ± 17.48, 43.76 ± 0.78, and 39.67 ± 3.29 μM, respectively). Glucantime as positive control inhibited the growth of L. major promastigotes with IC50 = 254 μg/ml on promastigotes (1 × 10(6)/100 μ/well) of a log phase culture, without affecting the growth of J774 macrophages. These data revealed that C. gilliesii, S. hortensis, C. copticum heirm, and T. migricus extracts contain active compounds, which could serve as alternative agents in the control of cutaneous leishmaniasis. The activity of these herbs against L. major promastigotes and macrophage cell line J774 was reported for the first time in our study.
Collapse
|
46
|
Balunas MJ, Grosso MF, Villa FA, Engene N, McPhail KL, Tidgewell K, Pineda LM, Gerwick L, Spadafora C, Kyle DE, Gerwick WH. Coibacins A-D, antileishmanial marine cyanobacterial polyketides with intriguing biosynthetic origins. Org Lett 2012; 14:3878-81. [PMID: 22794317 DOI: 10.1021/ol301607q] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Four unsaturated polyketide lactone derivatives, coibacins A-D, were isolated from a Panamanian marine cyanobacterium, cf. Oscillatoria sp. The two different types of termini observed in these co-occurring metabolites, either a methyl cyclopropyl ring as seen in curacin A or a methyl vinyl chloride similar to that observed in the jamaicamides, suggest an intriguing flexibility in the "beta branch" forming biosynthetic process. The coibacins possess selective antileishmanial activity as well as potent anti-inflammatory activity.
Collapse
Affiliation(s)
- Marcy J Balunas
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kavitha N, Noordin R, Chan KL, Sasidharan S. In vitro anti-Toxoplasma gondii activity of root extract/fractions of Eurycoma longifolia Jack. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:91. [PMID: 22781137 PMCID: PMC3488307 DOI: 10.1186/1472-6882-12-91] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 06/28/2012] [Indexed: 12/04/2022]
Abstract
Background Toxoplasma gondii infection causes toxoplasmosis, an infectious disease with worldwide prevalence. The limited efficiency of drugs against this infection, their side effects and the potential appearance of resistant strains make the search of novel drugs an essential need. We examined Eurycoma longifolia root extract and fractions as potential sources of new compounds with high activity and low toxicity. The main goal of this study was to investigate the anti-T. gondii activity of crude extract (TACME) and four fractions (TAF 273, TAF 355, TAF 191 and TAF 401) from E. longifolia, with clindamycin as the positive control. Methods In vitro toxoplasmacidal evaluation was performed using Vero cells as host for T. gondii. Light microscopy technique was used to study in situ antiparasitic activity. Results Significant anti-T. gondii activity was observed with clindamycin (EC50 = 0.016 μg/ml), follow by TAF 355 (EC50 = 0.369 μg/ml) and TAF 401 (EC50 = 0.882 μg/ml). Light microscopy revealed that most Vero cells were infected after 3 h of exposure to T. gondii. After 36 h of exposure to the E. longifolia fraction, the host Vero cells showed no visible intracellular parasite and no remarkable morphological changes. Conclusions Our study demonstrated that TAF 355 and TAF401 fractions may be the sources of new anti-T. gondii compounds.
Collapse
|
48
|
Ferreira C, Soares DC, Barreto-Junior CB, Nascimento MT, Freire-de-Lima L, Delorenzi JC, Lima MEF, Atella GC, Folly E, Carvalho TMU, Saraiva EM, Pinto-da-Silva LH. Leishmanicidal effects of piperine, its derivatives, and analogues on Leishmania amazonensis. PHYTOCHEMISTRY 2011; 72:2155-2164. [PMID: 21885074 DOI: 10.1016/j.phytochem.2011.08.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/22/2011] [Accepted: 08/02/2011] [Indexed: 05/31/2023]
Abstract
Leishmaniasis is a tropical disease caused by protozoan parasites of the genus Leishmania which affects 12 million people worldwide. The discovery of drugs for the treatment of leishmaniasis is a pressing concern in global health programs. The aim of this study aim was to evaluate the leishmanicidal effect of piperine and its derivatives/analogues on Leishmania amazonensis. Our results showed that piperine and phenylamide are active against promastigotes and amastigotes in infected macrophages. Both drugs induced mitochondrial swelling, loose kinetoplast DNA, and led to loss of mitochondrial membrane potential. The promastigote cell cycle was also affected with an increase in the G1 phase cells and a decrease in the S-phase cells, respectively, after piperine and phenylamide treatment. Lipid analysis of promastigotes showed that piperine reduced triglyceride, diacylglycerol, and monoacylglycerol contents, whereas phenylamide only reduced diacylglycerol levels. Both drugs were deemed non toxic to macrophages at 50 μM as assessed by XTT (sodium 2,3,-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium inner salt), Trypan blue exclusion, and phagocytosis assays, whereas low toxicity was noted at concentrations higher than 150 μM. None of the drugs induced nitric oxide (NO) production. By contrast, piperine reduced NO production in activated macrophages. The isobologram analysis showed that piperine and phenylamide acted synergistically on the parasites suggesting that they affect different target mechanisms. These results indicate that piperine and its phenylamide analogue are candidates for development of drugs for cutaneous leishmaniasis treatment.
Collapse
Affiliation(s)
- C Ferreira
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chaverri C, Díaz C, Cicció JF. Leaf Essential Oil of Manekia naranjoana (Piperaceae) from Costa Rica and its Cytotoxic Activity. Nat Prod Commun 2011. [DOI: 10.1177/1934578x1100600135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The chemical composition of the leaf oil of Manekia naranjoana (C. DC.) Callejas (Piperaceae) from Costa Rica was analyzed by capillary GC/FID and GC/MS. Fifty-five compounds were identified. Major compounds from the leaf oil were β-pinene (30.6%), α-pinene (18.8%), limonene (13.7%), and β-caryophyllene (6.1%). The oil presented very low toxicity to tumor and non-tumor cell lines, even though it contains components, such as α- and β-pinene, limonene and others, which have been shown to be cytotoxic. This is the first report of the chemical composition of the essential oil obtained from this species.
Collapse
Affiliation(s)
- Carlos Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Química, Universidad de Costa Rica, San José, Montes de Oca, San Pedro, 11501-2060 Costa Rica
| | - Cecilia Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología and Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Montes de Oca, San Pedro, 11501-2060 Costa Rica
| | - José F. Cicció
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Química, Universidad de Costa Rica, San José, Montes de Oca, San Pedro, 11501-2060 Costa Rica
| |
Collapse
|
50
|
Yelani T, Hussein AA, Meyer JJM. Isolation and identification of poisonous triterpenoids from Elaeodendron croceum. Nat Prod Res 2010; 24:1418-25. [PMID: 20234972 DOI: 10.1080/14786410903052399] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A phytochemical investigation of the poisonous Elaeodendron croceum leaves guided by cytotoxicity against Vero cells led to the isolation of five known compounds: 20-hydroxy-20-epi-tingenone (1), tingenone (2), tingenine B (3), 11alpha-hydroxy-beta-amyrin (4) and naringenin (5). Compounds 1 and 2 showed the highest toxicity against Vero cells (IC(50) values 2.65 nM and 8.23 microM, respectively). Cytotoxicity of the isolated compounds against three human cancer cell lines, HeLa, MCF-7 and SNO was also determined. Compounds 1 and 2 again showed the highest cytotoxicity, with IC(50) values ranging between 2.47 and 0.43 microM. This is the first report on the isolation of poisonous compounds from E. croceum, a species well known for its toxicity.
Collapse
Affiliation(s)
- Thembela Yelani
- Department of Plant Science, University of Pretoria, Pretoria 0002, South Africa
| | | | | |
Collapse
|