1
|
Gallego S, Sungthong R, Guyot B, Saphy A, Devers-Lamrani M, Martin-Laurent F, Imfeld G. Tracking atrazine degradation in soil combining 14C-mineralisation assays and compound-specific isotope analysis. CHEMOSPHERE 2024; 363:142981. [PMID: 39089341 DOI: 10.1016/j.chemosphere.2024.142981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
The quantification of pesticide dissipation in agricultural soil is challenging. In this study, we investigated atrazine biodegradation in both liquid and soil experiments bioaugmented with distinct atrazine-degrading bacterial isolates. This was achieved by combining 14C-mineralisation assays and compound-specific isotope analysis of atrazine. In liquid experiments, the three bacterial isolates mineralised over 40% of atrazine, demonstrating their potential for extensive degradation. However, the kinetics of mineralisation and degradation varied among the isolates. Carbon stable isotope fractionation was similar for Pseudomonas isolates ADPT34 and ADP2T0, but slightly higher for Chelatobacter SR27. In soil experiments, atrazine primarily degraded into atrazine-desethyl, while atrazine-hydroxy was mainly observed in experiments with SR27. Atrazine mineralisation in soil by ADPT34 and SR27 exceeded 40%, whereas ADP2T0 exhibited a mineralisation rate of 10%. In experiments with ADPT34 and SR27, atrazine 14C-residues were predominantly found in the non-extractable fraction, whereas they accumulated in the extractable fraction in the experiment with ADP2T0. Compound-specific isotope analysis (CSIA) relies on changes of stable isotope ratios and holds potential to evaluate herbicide transformation in soil. CSIA of atrazine indicated atrazine biodegradation in water and solvent extractable soil fractions and varied between 29% and 52%, depending on the bacterial isolate. Despite atrazine degradation in both soil fractions, a significant portion of atrazine residues persisted, depending on the bacterial degrader, initial cell concentration, and mineralisation and degradation rates. Overall, our approach can aid in quantifying atrazine persistence and degradation in soil, and in optimizing bioaugmentation strategies for remediating soils contaminated with persistent herbicides.
Collapse
Affiliation(s)
- Sara Gallego
- INRAE, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Agroécologie Dijon, France
| | - Rungroch Sungthong
- Institut Terre et Environnement de Strasbourg, Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, Strasbourg, F-67084, France
| | - Benoît Guyot
- Institut Terre et Environnement de Strasbourg, Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, Strasbourg, F-67084, France
| | - Adrien Saphy
- Institut Terre et Environnement de Strasbourg, Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, Strasbourg, F-67084, France
| | - Marion Devers-Lamrani
- INRAE, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Agroécologie Dijon, France
| | - Fabrice Martin-Laurent
- INRAE, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Agroécologie Dijon, France
| | - Gwenaël Imfeld
- Institut Terre et Environnement de Strasbourg, Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, Strasbourg, F-67084, France.
| |
Collapse
|
2
|
Gao L, Wang S, Xu X, Zheng J, Cai T, Jia S. Metagenomic analysis reveals the distribution, function, and bacterial hosts of degradation genes in activated sludge from industrial wastewater treatment plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122802. [PMID: 37913976 DOI: 10.1016/j.envpol.2023.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
For comprehensive insights into the bacterial community and its functions during industrial wastewater treatment, with a particular emphasis on its pivotal role in the bioremediation of organic pollutants, this study utilized municipal samples as a control group for metagenomic analysis. This approach allowed us to investigate the distribution, function, and bacterial hosts of biodegradation genes (BDGs) and organic degradation genes (ODGs), as well as the dynamics of bacterial communities during the industrial wastewater bioprocess. The results revealed that BDGs and ODGs associated with the degradation of benzoates, biphenyls, triazines, nitrotoluenes, and chlorinated aromatics were notably more abundant in the industrial samples. Specially, genes like clcD, linC, catE, pcaD, hbaB, hcrC, and badK, involved in the peripheral pathways for the catabolism of aromatic compounds, benzoate transport, and central aromatic intermediates, showed a significantly higher abundance of industrial activated sludge (AS) than municipal AS. Additionally, the BDG/ODG co-occurrence contigs in industrial samples exhibited a higher diversity in terms of degradation gene carrying capacity. Functional analysis of Clusters of Orthologous Groups (COGs) indicated that the primary function of bacterial communities in industrial AS was associated with the category of "metabolism". Furthermore, the presence of organic pollutants in industrial wastewater induced alterations in the bacterial community, particularly impacting the abundance of key hosts harboring BDGs and ODGs (e.g. Bradyrhizobium, Hydrogenophaga, and Mesorhizobium). The specific hosts of BDG/ODG could explain the distribution characteristics of degradation genes. For example, the prevalence of the Adh1 gene, primarily associated with Mesorhizobium, was notably more prevalent in the industrial AS. Overall, this study provides valuable insights into the development of more effective strategies for the industrial wastewater treatment and the mitigation of organic pollutant contamination.
Collapse
Affiliation(s)
- Linjun Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuya Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xu Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinli Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianming Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuyu Jia
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Aoki N, Shimasaki T, Yazaki W, Sato T, Nakayasu M, Ando A, Kishino S, Ogawa J, Masuda S, Shibata A, Shirasu K, Yazaki K, Sugiyama A. An isoflavone catabolism gene cluster underlying interkingdom interactions in the soybean rhizosphere. ISME COMMUNICATIONS 2024; 4:ycae052. [PMID: 38707841 PMCID: PMC11069340 DOI: 10.1093/ismeco/ycae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/19/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Plant roots secrete various metabolites, including plant specialized metabolites, into the rhizosphere, and shape the rhizosphere microbiome, which is crucial for the plant health and growth. Isoflavones are major plant specialized metabolites found in legume plants, and are involved in interactions with soil microorganisms as initiation signals in rhizobial symbiosis and as modulators of the legume root microbiota. However, it remains largely unknown the molecular basis underlying the isoflavone-mediated interkingdom interactions in the legume rhizosphere. Here, we isolated Variovorax sp. strain V35, a member of the Comamonadaceae that harbors isoflavone-degrading activity, from soybean roots and discovered a gene cluster responsible for isoflavone degradation named ifc. The characterization of ifc mutants and heterologously expressed Ifc enzymes revealed that isoflavones undergo oxidative catabolism, which is different from the reductive metabolic pathways observed in gut microbiota. We further demonstrated that the ifc genes are frequently found in bacterial strains isolated from legume plants, including mutualistic rhizobia, and contribute to the detoxification of the antibacterial activity of isoflavones. Taken together, our findings reveal an isoflavone catabolism gene cluster in the soybean root microbiota, providing molecular insights into isoflavone-mediated legume-microbiota interactions.
Collapse
Affiliation(s)
- Noritaka Aoki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomohisa Shimasaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Wataru Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomoaki Sato
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masaru Nakayasu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Akinori Ando
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Sachiko Masuda
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Arisa Shibata
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
4
|
Nakayasu M, Takamatsu K, Kanai K, Masuda S, Yamazaki S, Aoki Y, Shibata A, Suda W, Shirasu K, Yazaki K, Sugiyama A. Tomato root-associated Sphingobium harbors genes for catabolizing toxic steroidal glycoalkaloids. mBio 2023; 14:e0059923. [PMID: 37772873 PMCID: PMC10653915 DOI: 10.1128/mbio.00599-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/08/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE Saponins are a group of plant specialized metabolites with various bioactive properties, both for human health and soil microorganisms. Our previous works demonstrated that Sphingobium is enriched in both soils treated with a steroid-type saponin, such as tomatine, and in the tomato rhizosphere. Despite the importance of saponins in plant-microbe interactions in the rhizosphere, the genes involved in the catabolism of saponins and their aglycones (sapogenins) remain largely unknown. Here we identified several enzymes that catalyzed the degradation of steroid-type saponins in a Sphingobium isolate from tomato roots, RC1. A comparative genomic analysis of Sphingobium revealed the limited distribution of genes for saponin degradation in our saponin-degrading isolates and several other isolates, suggesting the possible involvement of the saponin degradation pathway in the root colonization of Sphingobium spp. The genes that participate in the catabolism of sapogenins could be applied to the development of new industrially valuable sapogenin molecules.
Collapse
Affiliation(s)
- Masaru Nakayasu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, Japan
| | - Kyoko Takamatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, Japan
| | - Keiko Kanai
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, Japan
| | - Sachiko Masuda
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Shinichi Yamazaki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Yuichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Arisa Shibata
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
5
|
Fajardo C, Sánchez-Fortún S, Videira-Quintela D, Martin C, Nande M, D Ors A, Costa G, Guillen F, Montalvo G, Martin M. Biofilm formation on polyethylene microplastics and their role as transfer vector of emerging organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84462-84473. [PMID: 37368211 DOI: 10.1007/s11356-023-28278-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Microplastic (MP)-colonizing microorganisms are important links for the potential impacts on environmental, health, and biochemical circulation in various ecosystems but are not yet well understood. In addition, biofilms serve as bioindicators for the evaluation of pollutant effects on ecosystems. This study describes the ability of three polyethylene-type microplastics, white (W-), blue (B-), and fluorescent blue (FB-) MPs, to support microbial colonization of Pseudomonas aeruginosa, the effect of mixed organic contaminants (OCs: amoxicillin, ibuprofen, sertraline, and simazine) on plastic-associated biofilms, and the role of biofilms as transfer vectors of such emerging pollutants. Our results showed that P. aeruginosa had a strong ability to produce biofilms on MPs, although the protein amount of biomass formed on FB-MP was 1.6- and 2.4-fold higher than that on B- and W-MP, respectively. When OCs were present in the culture medium, a decrease in cell viability was observed in the W-MP biofilm (65.0%), although a general impairing effect of OCs on biofilm formation was ruled out. Microbial colonization influenced the ability of MPs to accumulate OCs, which was higher for FB-MP. In particular, the sorption of amoxicillin was lower for all bacterial-colonized MPs than for the bare MPs. Moreover, we analysed oxidative stress production to assess the impact of MPs or MPs/OCs on biofilm development. The exposure of biofilms to OCs induced an adaptive stress response reflected in the upregulation of the katB gene and ROS production, particularly on B- and FB-MP. This study improves our understanding of MP biofilm formation, which modifies the ability of MPs to interact with some organic pollutants. However, such pollutants could hinder microbial colonization through oxidative stress production, and thus, considering the key role of biofilms in biogeochemical cycles or plastic degradation, the co-occurrence of MPs/OCs should be considered to assess the potential risks of MPs in the environment.
Collapse
Affiliation(s)
- Carmen Fajardo
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcala, Ctra. Madrid-Barcelona Km 33.600, Alcala de Henares, Madrid, Spain.
| | - Sebastián Sánchez-Fortún
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University Complutense of Madrid, W/N Puerta de Hierro Ave, Madrid, Spain
| | - Diogo Videira-Quintela
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Pharmacy, University of Alcala, Ctra. Madrid-Barcelona Km 33.600, Alcala de Henares, Madrid, Spain
| | - Carmen Martin
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Technical University of Madrid, 3 Complutense Ave, Madrid, Spain
| | - Mar Nande
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, University Complutense of Madrid, W/N Puerta de Hierro Ave, Madrid, Spain
| | - Ana D Ors
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University Complutense of Madrid, W/N Puerta de Hierro Ave, Madrid, Spain
| | - Gonzalo Costa
- Department of Animal Physiology, Faculty ofVeterinary, University Complutense of Madrid, W/N Puerta de Hierro Ave, 28040, Madrid, Spain
| | - Francisco Guillen
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcala, Ctra. Madrid-Barcelona Km 33.600, Alcala de Henares, Madrid, Spain
| | - Gemma Montalvo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Pharmacy, University of Alcala, Ctra. Madrid-Barcelona Km 33.600, Alcala de Henares, Madrid, Spain
| | - Margarita Martin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, University Complutense of Madrid, W/N Puerta de Hierro Ave, Madrid, Spain
| |
Collapse
|
6
|
Aldas-Vargas A, Poursat BAJ, Sutton NB. Potential and limitations for monitoring of pesticide biodegradation at trace concentrations in water and soil. World J Microbiol Biotechnol 2022; 38:240. [PMID: 36261779 PMCID: PMC9581840 DOI: 10.1007/s11274-022-03426-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
Pesticides application on agricultural fields results in pesticides being released into the environment, reaching soil, surface water and groundwater. Pesticides fate and transformation in the environment depend on environmental conditions as well as physical, chemical and biological degradation processes. Monitoring pesticides biodegradation in the environment is challenging, considering that traditional indicators, such as changes in pesticides concentration or identification of pesticide metabolites, are not suitable for many pesticides in anaerobic environments. Furthermore, those indicators cannot distinguish between biotic and abiotic pesticide degradation processes. For that reason, the use of molecular tools is important to monitor pesticide biodegradation-related genes or microorganisms in the environment. The development of targeted molecular (e.g., qPCR) tools, although laborious, allowed biodegradation monitoring by targeting the presence and expression of known catabolic genes of popular pesticides. Explorative molecular tools (i.e., metagenomics & metatranscriptomics), while requiring extensive data analysis, proved to have potential for screening the biodegradation potential and activity of more than one compound at the time. The application of molecular tools developed in laboratory and validated under controlled environments, face challenges when applied in the field due to the heterogeneity in pesticides distribution as well as natural environmental differences. However, for monitoring pesticides biodegradation in the field, the use of molecular tools combined with metadata is an important tool for understanding fate and transformation of the different pesticides present in the environment.
Collapse
Affiliation(s)
- Andrea Aldas-Vargas
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands
| | - Baptiste A J Poursat
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands.
| |
Collapse
|
7
|
Pérez-Villanueva ME, Masís-Mora M, Araya-Valverde E, Rodríguez-Rodríguez CE. Fast removal and detoxification of oxytetracycline, triazine and organophosphate pesticides in a biopurification system. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Al Khoury C, Nemer N, Bernigaud C, Fischer K, Guillot J. First evidence of the activity of an entomopathogenic fungus against the eggs of Sarcoptes scabiei. Vet Parasitol 2021; 298:109553. [PMID: 34388422 DOI: 10.1016/j.vetpar.2021.109553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
The entomopathogenic fungus Beauveria bassiana has been successfully used for the control of phytopathogenic arthropods and there are a growing number of studies suggesting that this kind of fungus could also be used for the control of ectoparasites in mammals. This study evaluated for the first time the efficacy of different Beauveria strains against the eggs of Sarcoptes scabiei collected from experimentally infected pigs. Eggs were exposed to fungal conidia and monitored for hatching over 10 days. The strongest effect (28.75 % of hatching inhibition) was obtained with a commercial B. bassiana strain. Furthermore, the detection of fungal genomic within the surface-cleaned eggs demonstrated the ability of B. bassiana to penetrate and proliferate in the egg-shell of S. scabiei. This study provides the first evidence, using molecular techniques, that the development of mycoacaricides may be of interest for the control of S. scabiei infection.
Collapse
Affiliation(s)
- Charbel Al Khoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos Campus, P.O. Box 36, Byblos, Lebanon; EA 7380 Dynamic, Ecole nationale vétérinaire d'Alfort, UPEC, USC ANSES, 7 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France.
| | - Nabil Nemer
- Department of Agriculture and Food Engineering, Holy Spirit University of Kaslik, P.O.Box 446, Jounieh, Lebanon
| | - Charlotte Bernigaud
- EA 7380 Dynamic, Ecole nationale vétérinaire d'Alfort, UPEC, USC ANSES, 7 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France; Dermatology Department, AP-AH, Henri Mondor Hospital, Université Paris-Est, 51 Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil, France
| | - Katja Fischer
- Scabies Laboratory, QIMR Berghofer Medical Research Institute, Infectious Diseases Program, Brisbane, Australia
| | - Jacques Guillot
- EA 7380 Dynamic, Ecole nationale vétérinaire d'Alfort, UPEC, USC ANSES, 7 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| |
Collapse
|
9
|
Shimasaki T, Masuda S, Garrido-Oter R, Kawasaki T, Aoki Y, Shibata A, Suda W, Shirasu K, Yazaki K, Nakano RT, Sugiyama A. Tobacco Root Endophytic Arthrobacter Harbors Genomic Features Enabling the Catabolism of Host-Specific Plant Specialized Metabolites. mBio 2021; 12:e0084621. [PMID: 34044592 PMCID: PMC8262997 DOI: 10.1128/mbio.00846-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/17/2021] [Indexed: 01/04/2023] Open
Abstract
Plant roots constitute the primary interface between plants and soilborne microorganisms and harbor microbial communities called the root microbiota. Recent studies have demonstrated a significant contribution of plant specialized metabolites (PSMs) to the assembly of root microbiota. However, the mechanistic and evolutionary details underlying the PSM-mediated microbiota assembly and its contribution to host specificity remain elusive. Here, we show that the bacterial genus Arthrobacter is predominant specifically in the tobacco endosphere and that its enrichment in the tobacco endosphere is partially mediated by a combination of two unrelated classes of tobacco-specific PSMs, santhopine and nicotine. We isolated and sequenced Arthrobacter strains from tobacco roots as well as soils treated with these PSMs and identified genomic features, including but not limited to genes for santhopine and nicotine catabolism, that are associated with the ability to colonize tobacco roots. Phylogenomic and comparative analyses suggest that these genes were gained in multiple independent acquisition events, each of which was possibly triggered by adaptation to particular soil environments. Taken together, our findings illustrate a cooperative role of a combination of PSMs in mediating plant species-specific root bacterial microbiota assembly and suggest that the observed interaction between tobacco and Arthrobacter may be a consequence of an ecological fitting process. IMPORTANCE Host secondary metabolites have a crucial effect on the taxonomic composition of its associated microbiota. It is estimated that a single plant species produces hundreds of secondary metabolites; however, whether different classes of metabolites have distinctive or common roles in the microbiota assembly remains unclear. Here, we show that two unrelated classes of secondary metabolites in tobacco play a cooperative role in the formation of tobacco-specific compositions of the root bacterial microbiota, which has been established as a consequence of independent evolutionary events in plants and bacteria triggered by different ecological effects. Our findings illustrate mechanistic and evolutionary aspects of the microbiota assembly that are mediated by an arsenal of plant secondary metabolites.
Collapse
Affiliation(s)
- Tomohisa Shimasaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Sachiko Masuda
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Ruben Garrido-Oter
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Takashi Kawasaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Yuichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Arisa Shibata
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Ryohei Thomas Nakano
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| |
Collapse
|
10
|
Nakayasu M, Ohno K, Takamatsu K, Aoki Y, Yamazaki S, Takase H, Shoji T, Yazaki K, Sugiyama A. Tomato roots secrete tomatine to modulate the bacterial assemblage of the rhizosphere. PLANT PHYSIOLOGY 2021; 186:270-284. [PMID: 33619554 PMCID: PMC8154044 DOI: 10.1093/plphys/kiab069] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/31/2021] [Indexed: 05/12/2023]
Abstract
Saponins are the group of plant specialized metabolites which are widely distributed in angiosperm plants and have various biological activities. The present study focused on α-tomatine, a major saponin present in tissues of tomato (Solanum lycopersicum) plants. α-Tomatine is responsible for defense against plant pathogens and herbivores, but its biological function in the rhizosphere remains unknown. Secretion of tomatine was higher at the early growth than the green-fruit stage in hydroponically grown plants, and the concentration of tomatine in the rhizosphere of field-grown plants was higher than that of the bulk soil at all growth stages. The effects of tomatine and its aglycone tomatidine on the bacterial communities in the soil were evaluated in vitro, revealing that both compounds influenced the microbiome in a concentration-dependent manner. Numerous bacterial families were influenced in tomatine/tomatidine-treated soil as well as in the tomato rhizosphere. Sphingomonadaceae species, which are commonly observed and enriched in tomato rhizospheres in the fields, were also enriched in tomatine- and tomatidine-treated soils. Moreover, a jasmonate-responsive ETHYLENE RESPONSE FACTOR 4 mutant associated with low tomatine production caused the root-associated bacterial communities to change with a reduced abundance of Sphingomonadaceae. Taken together, our results highlight the role of tomatine in shaping the bacterial communities of the rhizosphere and suggest additional functions of tomatine in belowground biological communication.
Collapse
Affiliation(s)
- Masaru Nakayasu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Kohei Ohno
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Kyoko Takamatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Yuichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Shinichi Yamazaki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Hisabumi Takase
- Faculty of Bioenvironmental Science, Kyoto University of Advanced Science, Kameoka, Kyoto 621-8555, Japan
| | - Tsubasa Shoji
- Department of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
- Author for communication:
| |
Collapse
|
11
|
Lopes RDO, Pereira PM, Pereira ARB, Fernandes KV, Carvalho JF, França ADSD, Valente RH, da Silva M, Ferreira-Leitão VS. Atrazine, desethylatrazine (DEA) and desisopropylatrazine (DIA) degradation by Pleurotus ostreatus INCQS 40310. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1754805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Raquel de Oliveira Lopes
- Biocatalysis Laboratory, National Institute of Technology (INT), Ministry of Science, Technology, Innovation and Communication (MCTIC), Rio de Janeiro, Brazil
| | - Patrícia Maia Pereira
- Biocatalysis Laboratory, National Institute of Technology (INT), Ministry of Science, Technology, Innovation and Communication (MCTIC), Rio de Janeiro, Brazil
- Department of Biochemistry, Federal University of Rio de Janeiro, Institute of Chemistry, Rio de Janeiro, Brazil
| | - Aline Ramalho Brandão Pereira
- Biocatalysis Laboratory, National Institute of Technology (INT), Ministry of Science, Technology, Innovation and Communication (MCTIC), Rio de Janeiro, Brazil
- Department of Biochemistry, Federal University of Rio de Janeiro, Institute of Chemistry, Rio de Janeiro, Brazil
| | - Keysson Vieira Fernandes
- Biocatalysis Laboratory, National Institute of Technology (INT), Ministry of Science, Technology, Innovation and Communication (MCTIC), Rio de Janeiro, Brazil
| | - Julia Finamor Carvalho
- Biocatalysis Laboratory, National Institute of Technology (INT), Ministry of Science, Technology, Innovation and Communication (MCTIC), Rio de Janeiro, Brazil
- Department of Biochemistry, Federal University of Rio de Janeiro, Institute of Chemistry, Rio de Janeiro, Brazil
| | - Alexandre da Silva de França
- Biocatalysis Laboratory, National Institute of Technology (INT), Ministry of Science, Technology, Innovation and Communication (MCTIC), Rio de Janeiro, Brazil
| | - Richard Hemmi Valente
- Department of Biochemistry, Federal University of Rio de Janeiro, Institute of Chemistry, Rio de Janeiro, Brazil
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Manuela da Silva
- Vice-Presidency of Research and Biological Collections, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Viridiana S. Ferreira-Leitão
- Biocatalysis Laboratory, National Institute of Technology (INT), Ministry of Science, Technology, Innovation and Communication (MCTIC), Rio de Janeiro, Brazil
- Department of Biochemistry, Federal University of Rio de Janeiro, Institute of Chemistry, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Fernandes AFT, Wang P, Staley C, Aparecida Silva Moretto J, Miguel Altarugio L, Chagas Campanharo S, Guedes Stehling E, Jay Sadowsky M. Impact of Atrazine Exposure on the Microbial Community Structure in a Brazilian Tropical Latosol Soil. Microbes Environ 2020; 35:ME19143. [PMID: 32269200 PMCID: PMC7308567 DOI: 10.1264/jsme2.me19143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/17/2020] [Indexed: 11/12/2022] Open
Abstract
Atrazine is a triazine herbicide that is widely used to control broadleaf weeds. Its widespread use over the last 50 years has led to the potential contamination of soils, groundwater, rivers, and lakes. Its main route of complete degradation is via biological means, which is carried out by soil microbiota using a 6-step pathway. The aim of the present study was to investigate whether application of atrazine to soil changes the soil bacterial community. We used 16S rRNA gene sequencing and qPCR to elucidate the microbial community structure and assess the abundance of the atrazine degradation genes atzA, atzD, and trzN in a Brazilian soil. The results obtained showed that the relative abundance of atzA and trzN, encoding triazine-initiating metabolism in Gram-negative and -positive bacteria, respectively, increased in soil during the first weeks following the application of atrazine. In contrast, the abundance of atzD, encoding cyanuric acid amidohydrolase-the fourth step in the pathway-was not related to the atrazine treatment. Moreover, the overall soil bacterial community showed no significant changes after the application of atrazine. Despite this, we observed increases in the relative abundance of bacterial families in the 4th and 8th weeks following the atrazine treatment, which may have been related to higher copy numbers of atzA and trzN, in part due to the release of nitrogen from the herbicide. The present results revealed that while the application of atrazine may temporarily increase the quantities of the atzA and trzN genes in a Brazilian Red Latosol soil, it does not lead to significant and long-term changes in the bacterial community structure.
Collapse
Affiliation(s)
- Ana Flavia Tonelli Fernandes
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Café Avenue s/n, Ribeirão Preto, SP 14040–903, Brazil
- Biotechnology Institute, University of Minnesota, 1479 Gortner Avenue, 55108 Saint Paul, MN 55108, USA
| | - Ping Wang
- Biotechnology Institute, University of Minnesota, 1479 Gortner Avenue, 55108 Saint Paul, MN 55108, USA
| | - Christopher Staley
- Biotechnology Institute, University of Minnesota, 1479 Gortner Avenue, 55108 Saint Paul, MN 55108, USA
| | - Jéssica Aparecida Silva Moretto
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Café Avenue s/n, Ribeirão Preto, SP 14040–903, Brazil
| | - Lucas Miguel Altarugio
- Department of Soil Science ESALQ, University of São Paulo, 11 Pádua Dias Avenue, Piracicaba, SP 13418–260, Brazil
| | - Sarah Chagas Campanharo
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Café Avenue s/n, Ribeirão Preto, SP 14040–903, Brazil
| | - Eliana Guedes Stehling
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Café Avenue s/n, Ribeirão Preto, SP 14040–903, Brazil
| | - Michael Jay Sadowsky
- Biotechnology Institute, University of Minnesota, 1479 Gortner Avenue, 55108 Saint Paul, MN 55108, USA
- Department of Soil, Water, & Climate, 1991 Upper Buford Circle and Department of Plant and Microbial Biology, 1479 Gortner Avenue—University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
13
|
Yu T, Wang L, Ma F, Yang J, Bai S, You J. Self-immobilized biomixture with pellets of Aspergillus niger Y3 and Arthrobacter. sp ZXY-2 to remove atrazine in water: A bio-functions integration system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:875-882. [PMID: 31280169 DOI: 10.1016/j.scitotenv.2019.06.313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/12/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
The microorganism Arthrobacter. ZXY-2 exhibits excellent degradation efficiency for atrazine in free cells. However, its poor fixability makes it hard to be kept and recycled in water. To conquer the problem, this work employed mycelial pellets of Aspergillus niger Y3 to immobilize ZXY-2, which formed a self-immobilized biomixture (SIB) to remove atrazine. SIB could completely degrade 57.3 mg/L atrazine within 10 h. The SIB exhibited the highest degradation efficiency at pH = 7 and 40 °C. Degradation of atrazine with initial concentrations of 57.3 mg/L and 17.5 mg/L was described well by zero and first-order reaction kinetics, respectively. The recycling experiments demonstrated that SIB could be recycled for 5 batches. The results of SEM, FT-IR, and zeta potential analysis showed that porous structure, functional groups, and electronegativity of SIB all contributed to its stable formation. Therefore, this study demonstrates that SIB could be formed stably and could remove atrazine efficiently.
Collapse
Affiliation(s)
- Tianmiao Yu
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, People's Republic of China
| | - Li Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, People's Republic of China.
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, People's Republic of China
| | - Jixian Yang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, People's Republic of China
| | - Shanshan Bai
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, People's Republic of China
| | - Jiayi You
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, People's Republic of China
| |
Collapse
|
14
|
Sharma A, Kalyani P, Trivedi VD, Kapley A, Phale PS. Nitrogen-dependent induction of atrazine degradation pathway in Pseudomonas sp. strain AKN5. FEMS Microbiol Lett 2019; 366:5222633. [PMID: 30500940 DOI: 10.1093/femsle/fny277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/29/2018] [Indexed: 01/06/2023] Open
Abstract
Soil isolate Pseudomonas sp. strain AKN5 degrades atrazine as the sole source of nitrogen. The strain showed expeditious growth on medium containing citrate as the carbon source and ammonium chloride as the nitrogen source as compared to citrate plus atrazine or cyanuric acid. Biochemical and nitrogen-source-dependent enzyme induction studies revealed that atrazine is metabolized through hydrolytic pathway and has two segments: the upper segment converts atrazine into cyanuric acid while the lower segment metabolizes cyanuric acid to CO2 and ammonia. Bioinformatics and co-transcriptional analyses suggest that atzA, atzB and atzC were transcribed as three independent transcripts while atzDEF were found to be transcribed as a single polycistronic mRNA indicating operonic arrangement. Transcriptional analysis showed inducible expression of atzA/B/C/DEF from atrazine grown cells while cyanuric acid grown cells showed significantly higher expression of atzDEF. Interestingly, growth profiles and enzyme activity measurements suggests that strain utilizes a simple nitrogen source (ammonium chloride) over the complex (atrazine or cyanuric acid) when grown on dual nitrogen source. These results suggest that atrazine degradation genes were up-regulated in the presence of atrazine but repressed in the presence of simple nitrogen source like ammonium chloride.
Collapse
Affiliation(s)
- Amrita Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Pradeep Kalyani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Vikas D Trivedi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Atya Kapley
- Environmental Genomics Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
15
|
Biodegradation of Atrazine by the Novel Klebsiella variicola Strain FH-1. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4756579. [PMID: 31467894 PMCID: PMC6699352 DOI: 10.1155/2019/4756579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/16/2019] [Indexed: 12/04/2022]
Abstract
Bacterial strain FH-1 with high efficiency of degrading Atrazine is separated by means of enrichment culture from the soil applied with Atrazine for many years. FH-1, recognized as Klebsiella variicola based on phylogenetic analysis of 16S rDNA sequences, can grow with Atrazine which is the sole nitrogen source. In fluid inorganic salt medium, the optimal degradation temperature, pH value, and initial concentration of Atrazine are 25°C, 9.0, and 50 mg L–1, respectively, and the degradation rate of Atrazine by strain FH-1 reached 81.5% in 11 d of culture. The degrading process conforms to the kinetics equation of pesticide degradation. Among the metal ions tested, Zn2+ (0.2 mM) has the most significant effect of facilitation on the degradation of Atrazine. In the fluid medium with Zn2+, the degradation rate of Atrazine is increased to 72.5%, while the Cu2+ (0.2 mM) inhibits the degradation of Atrazine. The degradation products of Atrazine by strain FH-1 were identified as HEIT (2-hydroxyl-4-ethylamino-6-isopropylamino-1,3,5-triazine), MEET (2-hydroxyl-4,6-bis(ethylamino)-1,3,5-triazine), and AEEO (4,6-bis(ethylamino)-1,3,5-triazin-2(1H)-one) by HPLC-MS/MS. Three genes (atzC, trzN, and trzD) encoding for Atrazine degrading enzymes were identified by PCR and sequencing in strain FH-1. This study provides additional theoretical support for the application of strain FH-1 in bioremediation of fields polluted by Atrazine.
Collapse
|
16
|
LeviRam I, Gross A, McCarthy D, Herzberg M. Real-time analysis of atrazine biodegradation and sessile bacterial growth: A quartz crystal microbalance with dissipation monitoring study. CHEMOSPHERE 2019; 225:871-879. [PMID: 30904767 DOI: 10.1016/j.chemosphere.2019.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/10/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
Biodegradation is a fundamental process for removal of the environmentally prevalent herbicide, atrazine, from contaminated waters. Biodegradation is more efficient when bacteria are attached on surface of an adsorbing carrier that supports the microbial population. However, for various reasons, biodegradation is almost always monitored in the liquid phase. In this study, we employ a novel Quartz Crystal Microbalance with Dissipation technique (QCM-D) for continuous, real-time monitoring of the attachment of atrazine-degrading bacteria to the surface, atrazine adsorption and degradation, and the consequent proliferation of the irreversibly attached sessile bacteria. The effect of atrazine biodegradation was observed in a batch mode of operation, in which a significant frequency decrease of the piezoelectric sensor was observed in the QCM-D, due to the proliferation of atrazine-degrading bacteria on the expense of atrazine. The latter was confirmed microscopically. Results also suggest that the viscoelastic properties of the atrazine-degrading consortium immediately changed in response to the presence of atrazine, whereas those of the non-degrading consortium were not affected. Importantly though, atrazine adsorption was similar regardless of the sessile consortia layers. When the QCM-D flow cell was exposed to a continuous flow of saturated atrazine solution, the degrading consortium layer was significantly more fluidic compared to batch mode conditions. The magnitude and kinetics of atrazine adsorption, which were monitored using QCM-D, were higher on bacterial cells comparing to the pristine, polystyrene-coated sensor. Findings from the current study can improve bioremediation design and open an avenue for studies on biodegradation and adsorption of micro-pollutants using QCM-D technology.
Collapse
Affiliation(s)
- Inbar LeviRam
- Ben-Gurion University of the Negev, Jacob Blaustein Institutes for Desert Research, Zuckerberg Institute for Water Research, Albert Katz International School for Desert Studies, Sede Boqer Campus, Israel
| | - Amit Gross
- Ben-Gurion University of the Negev, Jacob Blaustein Institutes for Desert Research, Zuckerberg Institute for Water Research, Albert Katz International School for Desert Studies, Sede Boqer Campus, Israel
| | - David McCarthy
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Clayton, Vic, Australia
| | - Moshe Herzberg
- Ben-Gurion University of the Negev, Jacob Blaustein Institutes for Desert Research, Zuckerberg Institute for Water Research, Albert Katz International School for Desert Studies, Sede Boqer Campus, Israel.
| |
Collapse
|
17
|
Moretto JAS, Braz VS, Furlan JPR, Stehling EG. Plasmids associated with heavy metal resistance and herbicide degradation potential in bacterial isolates obtained from two Brazilian regions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:314. [PMID: 31037401 DOI: 10.1007/s10661-019-7461-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The use of pesticides has been increasing due to the great agricultural production worldwide. The pesticides are used to eradicate pests and weeds; however, these compounds are classified as toxic to non-target organisms. Atrazine and diuron are herbicides widely used to control grassy and broadleaf weeds and weed control in agricultural crops and non-crop areas. Heavy metals are also important environmental contaminants that affect the ecological system. This study aimed to investigate the presence of herbicides-degrading genes and heavy metal resistance genes in bacterial isolates from two different soil samples from two Brazilian regions and to determine the genetic location of these genes. In this study, two isolates were obtained and identified as Escherichia fergusonii and Bacillus sp. Both isolates presented atzA, atzB, atzC, atzD, atzE, atzF, puhA, and copA genes and two plasmids each, being the major with ~ 60 Kb and a smaller with ~ 3.2 Kb. Both isolates presented the atzA-F genes inside the larger plasmid, while the puhA and copA genes were detected in the smaller plasmid. Digestion reactions were performed and showed that the ~ 60-Kb plasmid presented the same restriction profile using different restriction enzymes, suggesting that this plasmid harboring the complete degradation pathway to atrazine was found in both isolates. These results suggest the dispersion of these plasmids and the multi-herbicide degradation potential in both isolates to atrazine and diuron, which are widely used in different culture types worldwide.
Collapse
Affiliation(s)
- Jéssica Aparecida Silva Moretto
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical, Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Vânia Santos Braz
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical, Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - João Pedro Rueda Furlan
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical, Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Eliana Guedes Stehling
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical, Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
18
|
Ehrl B, Kundu K, Gharasoo M, Marozava S, Elsner M. Rate-Limiting Mass Transfer in Micropollutant Degradation Revealed by Isotope Fractionation in Chemostat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1197-1205. [PMID: 30514083 PMCID: PMC6365907 DOI: 10.1021/acs.est.8b05175] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 05/05/2023]
Abstract
Biodegradation of persistent micropollutants like pesticides often slows down at low concentrations (μg/L) in the environment. Mass transfer limitations or physiological adaptation are debated to be responsible. Although promising, evidence from compound-specific isotope fractionation analysis (CSIA) remains unexplored for bacteria adapted to this low concentration regime. We accomplished CSIA for degradation of a persistent pesticide, atrazine, during cultivation of Arthrobacter aurescens TC1 in chemostat under four different dilution rates leading to 82, 62, 45, and 32 μg/L residual atrazine concentrations. Isotope analysis of atrazine in chemostat experiments with whole cells revealed a drastic decrease in isotope fractionation with declining residual substrate concentration from ε(C) = -5.36 ± 0.20‰ at 82 μg/L to ε(C) = -2.32 ± 0.28‰ at 32 μg/L. At 82 μg/L ε(C) represented the full isotope effect of the enzyme reaction. At lower residual concentrations smaller ε(C) indicated that this isotope effect was masked indicating that mass transfer across the cell membrane became rate-limiting. This onset of mass transfer limitation appeared in a narrow concentration range corresponding to about 0.7 μM assimilable carbon. Concomitant changes in cell morphology highlight the opportunity to study the role of this onset of mass transfer limitation on the physiological level in cells adapted to low concentrations.
Collapse
Affiliation(s)
- Benno
N. Ehrl
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Kankana Kundu
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Mehdi Gharasoo
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Sviatlana Marozava
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Martin Elsner
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
- Chair
of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, 81377 Munich, Germany
| |
Collapse
|
19
|
Braz VS, Moretto JAS, Fernandes AFT, Stehling EG. Change in the antimicrobial resistance profile of Pseudomonas aeruginosa from soil after exposure to herbicides. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:290-293. [PMID: 30633634 DOI: 10.1080/03601234.2018.1561056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The extensive use of pesticides represents a risk to human health and to the environment. This study aimed to investigate if the exposure to atrazine and diuron, two herbicides widely used in Brazil, could induce changes in the susceptibility profile to aztreonam, colistin and polymyxin B antimicrobials in isolates of P. aeruginosa obtained from soil samples by using the determination of minimum inhibitory concentration (MIC) test. Three isolates had an increase of MIC to aztreonam after exposure to both herbicides and one isolate did not show any MIC change. The MexAB-OprM efflux pump has already been upregulated in these isolates and the herbicides atrazine and diuron did not increase MexAB-OprM overexpression. Therefore, the decrease in aztreonam susceptibility was not directly related to this pump, suggesting that probably other mechanisms should be involved.
Collapse
Affiliation(s)
- Vânia Santos Braz
- a Departamento de Análises Clínicas, Toxicológicas e Bromatológicas , Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP) - Ribeirão Preto , Ribeirão Preto , Brazil
| | - Jéssica Aparecida Silva Moretto
- a Departamento de Análises Clínicas, Toxicológicas e Bromatológicas , Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP) - Ribeirão Preto , Ribeirão Preto , Brazil
| | - Ana Flavia Tonelli Fernandes
- a Departamento de Análises Clínicas, Toxicológicas e Bromatológicas , Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP) - Ribeirão Preto , Ribeirão Preto , Brazil
| | - Eliana Guedes Stehling
- a Departamento de Análises Clínicas, Toxicológicas e Bromatológicas , Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP) - Ribeirão Preto , Ribeirão Preto , Brazil
| |
Collapse
|
20
|
Jiang C, Lu YC, Xu JY, Song Y, Song Y, Zhang SH, Ma LY, Lu FF, Wang YK, Yang H. Activity, biomass and composition of microbial communities and their degradation pathways in exposed propazine soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:398-407. [PMID: 28763756 DOI: 10.1016/j.ecoenv.2017.07.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Propazine is a s-triazine herbicide widely used for controlling weeds for crop production. Its persistence and contamination in environment nagatively affect crop growth and food safety. Elimination of propazine residues in the environment is critical for safe crop production. This study identified a microbial community able to degrade propazine in a farmland soil. About 94% of the applied propazine was degraded within 11 days of incubation when soil was treated with 10mgkg-1 propazine as the initial concentration. The process was accompanied by increased microbial biomass and activities of soil enzymes. Denaturing gradient gel electrophoresis (DGGE) revealed multiple bacterial strains in the community as well as dynamic change of the composition of microbial community with a reduced microbial diversity (H' from 3.325 to 2.78). Tracking the transcript level of degradative genes AtzB, AtzC and TrzN showed that these genes were induced by propazine and played important roles in the degradation process. The activities of catalase, dehydrogenase and phenol oxidase were stimulated by propazine exposure. Five degradation products (hydroxyl-, methylated-, dimeric-propazine, ammeline and ammelide) were characterized by UPLC-MS2, revealing a biodegradation of propazine in soil. Several novel methylated and dimeric products of propazine were characterized in thepropazine-exposed soil. These data help understand the pathway, detailed mechanism and efficiency of propazine biodegradation in soil under realistic field condition.
Collapse
Affiliation(s)
- Chen Jiang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Chen Lu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Jiang Yan Xu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Song
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Song
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Hao Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Ya Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Fan Lu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ya Kun Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
21
|
Fierros-Romero G, Wrosek-Cabrera JA, Gómez-Ramírez M, Pless RC, Rivas-Castillo AM, Rojas-Avelizapa NG. Expression Changes in Metal-Resistance Genes in Microbacterium liquefaciens Under Nickel and Vanadium Exposure. Curr Microbiol 2017; 74:840-847. [DOI: 10.1007/s00284-017-1252-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 02/04/2023]
|
22
|
Yale RL, Sapp M, Sinclair CJ, Moir JWB. Microbial changes linked to the accelerated degradation of the herbicide atrazine in a range of temperate soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7359-7374. [PMID: 28108915 PMCID: PMC5383679 DOI: 10.1007/s11356-017-8377-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/03/2017] [Indexed: 05/11/2023]
Abstract
Accelerated degradation is the increased breakdown of a pesticide upon its repeated application, which has consequences for the environmental fate of pesticides. The herbicide atrazine was repeatedly applied to soils previously untreated with s-triazines for >5 years. A single application of atrazine, at an agriculturally relevant concentration, was sufficient to induce its rapid dissipation. Soils, with a range of physico-chemical properties and agricultural histories, showed similar degradation kinetics, with the half-life of atrazine decreasing from an average of 25 days after the first application to <2 days after the second. A mathematical model was developed to fit the atrazine-degrading kinetics, which incorporated the exponential growth of atrazine-degrading organisms. Despite the similar rates of degradation, the repertoire of atrazine-degrading genes varied between soils. Only a small portion of the bacterial community had the capacity for atrazine degradation. Overall, the microbial community was not significantly affected by atrazine treatment. One soil, characterised by low pH, did not exhibit accelerated degradation, and atrazine-degrading genes were not detected. Neutralisation of this soil restored accelerated degradation and the atrazine-degrading genes became detectable. This illustrates the potential for accelerated degradation to manifest when conditions become favourable. Additionally, the occurrence of accelerated degradation under agriculturally relevant concentrations supports the consideration of the phenomena in environmental risk assessments.
Collapse
Affiliation(s)
- R. L. Yale
- CRD, Mallard House, 3 Peasholme Green, York, YO1 7PX UK
- Department of Biology, University of York, Heslington, York, YO10 5DD UK
- FERA Science Ltd., Sand Hutton, York, YO41 1LZ UK
| | - M. Sapp
- FERA Science Ltd., Sand Hutton, York, YO41 1LZ UK
- Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, NRW Germany
| | | | - J. W. B. Moir
- Department of Biology, University of York, Heslington, York, YO10 5DD UK
| |
Collapse
|
23
|
Guo Y, Zhao P, Zhang W, Li X, Chen X, Chen D. Catalytic improvement and structural analysis of atrazine chlorohydrolase by site-saturation mutagenesis. Biosci Biotechnol Biochem 2016; 80:1336-43. [DOI: 10.1080/09168451.2016.1156481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
To improve the catalytic activity of atrazine chlorohydrolase (AtzA), amino acid residues involved in substrate binding (Gln71) and catalytic efficiency (Val12, Ile393, and Leu395) were targeted to generate site-saturation mutagenesis libraries. Seventeen variants were obtained through Haematococcus pluvialis-based screening, and their specific activities were 1.2–5.2-fold higher than that of the wild type. For these variants, Gln71 tended to be substituted by hydrophobic amino acids, Ile393 and Leu395 by polar ones, especially arginine, and Val12 by alanine, respectively. Q71R and Q71M significantly decreased the Km by enlarging the substrate-entry channel and affecting N-ethyl binding. Mutations at sites 393 and 395 significantly increased the kcat/Km, probably by improving the stability of the dual β-sheet domain and the whole enzyme, owing to hydrogen bond formation. In addition, the contradictory relationship between the substrate affinity improvement by Gln71 mutation and the catalytic efficiency improvement by the dual β-sheet domain modification was discussed.
Collapse
Affiliation(s)
- Yuan Guo
- College of Life Sciences, Nankai University, Tianjin, China
| | - Panjie Zhao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wenhao Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaolong Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiwen Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Defu Chen
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
24
|
Ye J, Zhang J, Gao J, Li H, Liang D, Liu R. Isolation and characterization of atrazine-degrading strain Shewanella
sp. YJY4 from cornfield soil. Lett Appl Microbiol 2016; 63:45-52. [DOI: 10.1111/lam.12584] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 11/26/2022]
Affiliation(s)
- J.Y. Ye
- College of Life Science; Northeast Agricultural University; Harbin China
| | - J.B. Zhang
- College of Life Science; Northeast Agricultural University; Harbin China
| | - J.G. Gao
- College of Life Science; Northeast Agricultural University; Harbin China
| | - H.T. Li
- College of Life Science; Northeast Agricultural University; Harbin China
| | - D. Liang
- College of Life Science; Northeast Agricultural University; Harbin China
| | - R.M. Liu
- College of Life Science; Northeast Agricultural University; Harbin China
| |
Collapse
|
25
|
Fierros Romero G, Rivas Castillo A, Gómez Ramírez M, Pless R, Rojas Avelizapa N. Expression Analysis of Ni- and V-Associated Resistance Genes in a Bacillus megaterium Strain Isolated from a Mining Site. Curr Microbiol 2016; 73:165-71. [PMID: 27107759 DOI: 10.1007/s00284-016-1044-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/12/2016] [Indexed: 11/30/2022]
Abstract
Bacillus megaterium strain MNSH1-9K-1 was isolated from a mining site in Guanajuato, Mexico. This B. megaterium strain presented the ability to remove Ni and V from a spent catalyst. Also, its associated metal resistance genes nccA, hant, VAN2, and smtAB were previously identified by a PCR approach. The present study reports for the first time, in B. megaterium, the changes in the expression of the genes nccA (Ni-Co-Cd resistance); hant (high-affinity nickel transporter); smtAB, a metal-binding protein gene; and VAN2 (V resistance) after exposure to 200 ppm of Ni and 200 ppm of V during the stationary phase of the microorganism in PHGII liquid media. The data presented here may contribute to the knowledge of the genes involved in the Ni and V resistances of B. megaterium, and the possible pathways implicated in the Ni-V removal processes, which may be potentiated for the biological treatment of high metal content residues.
Collapse
Affiliation(s)
- Grisel Fierros Romero
- Centro de Investigación de Ciencia Aplicada y Tecnología Avanzada, Instituto Politecnico Nacional, Querétaro, Mexico
| | - Andrea Rivas Castillo
- Centro de Investigación de Ciencia Aplicada y Tecnología Avanzada, Instituto Politecnico Nacional, Querétaro, Mexico
| | - Marlenne Gómez Ramírez
- Centro de Investigación de Ciencia Aplicada y Tecnología Avanzada, Instituto Politecnico Nacional, Querétaro, Mexico
| | - Reynaldo Pless
- Centro de Investigación de Ciencia Aplicada y Tecnología Avanzada, Instituto Politecnico Nacional, Querétaro, Mexico
| | - Norma Rojas Avelizapa
- Centro de Investigación de Ciencia Aplicada y Tecnología Avanzada, Instituto Politecnico Nacional, Querétaro, Mexico.
| |
Collapse
|
26
|
|
27
|
Sagarkar S, Bhardwaj P, Storck V, Devers-Lamrani M, Martin-Laurent F, Kapley A. s-triazine degrading bacterial isolate Arthrobacter sp. AK-YN10, a candidate for bioaugmentation of atrazine contaminated soil. Appl Microbiol Biotechnol 2015; 100:903-13. [PMID: 26403923 DOI: 10.1007/s00253-015-6975-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/20/2015] [Accepted: 09/01/2015] [Indexed: 12/13/2022]
Abstract
The Arthrobacter sp. strain AK-YN10 is an s-triazine pesticide degrading bacterium isolated from a sugarcane field in Central India with history of repeated atrazine use. AK-YN10 was shown to degrade 99 % of atrazine in 30 h from media supplemented with 1000 mg L(-1) of the herbicide. Draft genome sequencing revealed similarity to pAO1, TC1, and TC2 catabolic plasmids of the Arthrobacter taxon. Plasmid profiling analyses revealed the presence of four catabolic plasmids. The trzN, atzB, and atzC atrazine-degrading genes were located on a plasmid of approximately 113 kb.The flagellar operon found in the AK-YN10 draft genome suggests motility, an interesting trait for a bioremediation agent, and was homologous to that of Arthrobacter chlorophenolicus. The multiple s-triazines degradation property of this isolate makes it a good candidate for bioremediation of soils contaminated by s-triazine pesticides.
Collapse
Affiliation(s)
- Sneha Sagarkar
- Environmental Genomics Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Pooja Bhardwaj
- Environmental Genomics Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Veronika Storck
- INRA, UMR 1347 Agroécologie, 17 rue Sully, B.P. 86510, 21065, Dijon Cedex, France
| | | | | | - Atya Kapley
- Environmental Genomics Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
| |
Collapse
|
28
|
Mao Y, Graham DW, Tamaki H, Zhang T. Dominant and novel clades of Candidatus Accumulibacter phosphatis in 18 globally distributed full-scale wastewater treatment plants. Sci Rep 2015; 5:11857. [PMID: 26138542 PMCID: PMC4490554 DOI: 10.1038/srep11857] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/09/2015] [Indexed: 11/09/2022] Open
Abstract
Here we employed quantitative real-time PCR (qPCR) assays for polyphosphate kinase 1 (ppk1) and 16S rRNA genes to assess relative abundances of dominant clades of Candidatus Accumulibacter phosphatis (referred to Accumulibacter) in 18 globally distributed full-scale wastewater treatment plants (WWTPs) from six countries. Accumulibacter were not only detected in the 6 WWTPs performing biological phosphorus removal, but also inhabited in the other 11 WWTPs employing conventional activated sludge (AS) with abundances ranging from 0.02% to 7.0%. Among the AS samples, clades IIC and IID were found to be dominant among the five Accumulibacter clades. The relative abundance of each clade in the Accumulibacter lineage significantly correlated (p < 0.05) with the influent total phosphorus and chemical oxygen demand instead of geographical factors (e.g. latitude), which showed that the local wastewater characteristics and WWTPs configurations could be more significant to determine the proliferation of Accumulibacter clades in full-scale WWTPs rather than the geographical location. Moreover, two novel Accumulibacter clades (IIH and II-I) which had not been previously detected were discovered in two enhanced biological phosphorus removal (EBPR) WWTPs. The results deepened our understanding of the Accumulibacter diversity in environmental samples.
Collapse
Affiliation(s)
- Yanping Mao
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - David W Graham
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Tong Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
29
|
Decreasing global transcript levels over time suggest that phytoplasma cells enter stationary phase during plant and insect colonization. Appl Environ Microbiol 2015; 81:2591-602. [PMID: 25636844 DOI: 10.1128/aem.03096-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To highlight different transcriptional behaviors of the phytoplasma in the plant and animal host, expression of 14 genes of "Candidatus Phytoplasma asteris," chrysanthemum yellows strain, was investigated at different times following the infection of a plant host (Arabidopsis thaliana) and two insect vector species (Macrosteles quadripunctulatus and Euscelidius variegatus). Target genes were selected among those encoding antigenic membrane proteins, membrane transporters, secreted proteins, and general enzymes. Transcripts were detected for all analyzed genes in the three hosts; in particular, those encoding the antigenic membrane protein Amp, elements of the mechanosensitive channel, and two of the four secreted proteins (SAP54 and TENGU) were highly accumulated, suggesting that they play important roles in phytoplasma physiology during the infection cycle. Most transcripts were present at higher abundance in the plant host than in the insect hosts. Generally, transcript levels of the selected genes decreased significantly during infection of A. thaliana and M. quadripunctulatus but were more constant in E. variegatus. Such decreases may be explained by the fact that only a fraction of the phytoplasma population was transcribing, while the remaining part was aging to a stationary phase. This strategy might improve long-term survival, thereby increasing the likelihood that the pathogen may be acquired by a vector and/or inoculated to a healthy plant.
Collapse
|
30
|
Coleman NV. Primers: Functional Genes for Aerobic Chlorinated Hydrocarbon-Degrading Microbes. SPRINGER PROTOCOLS HANDBOOKS 2015. [DOI: 10.1007/8623_2015_91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Fernandes AFT, da Silva MBP, Martins VV, Miranda CES, Stehling EG. Isolation and characterization of a Pseudomonas aeruginosa from a virgin Brazilian Amazon region with potential to degrade atrazine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13974-13978. [PMID: 25035056 DOI: 10.1007/s11356-014-3316-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/09/2014] [Indexed: 06/03/2023]
Abstract
The use of pesticides to increase agricultural production can result in the contamination of the environment, causing changes in the genetic structure of organisms and in the loss of biodiversity. This practice is also inducing changes in the rainforest ecosystem. In this work, a Pseudomonas aeruginosa isolated from a preservation soil area of the Brazilian Amazon Forest, without usage of any pesticide, was evaluated for its potential to degrade atrazine. This isolate presented all responsible genes (atzA, atzB, atzC, atzD, atzE, and atzF) for atrazine mineralization and demonstrated capacity to use atrazine as a nitrogen source, having achieved a reduction of 44 % of the initial concentration of atrazine after 24 h. These results confirm gene dispersion and/or a possible contamination of the area with the herbicide, which reinforces global concern of the increase and intensive use of pesticides worldwide.
Collapse
Affiliation(s)
- Ana Flavia Tonelli Fernandes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP-Ribeirão Preto, Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, Brazil, 14040-903
| | | | | | | | | |
Collapse
|
32
|
He Z, Niu C, Lu Z. Individual or synchronous biodegradation of di-n-butyl phthalate and phenol by Rhodococcus ruber strain DP-2. JOURNAL OF HAZARDOUS MATERIALS 2014; 273:104-109. [PMID: 24727011 DOI: 10.1016/j.jhazmat.2014.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/27/2014] [Accepted: 03/16/2014] [Indexed: 06/03/2023]
Abstract
The bacterial strain DP-2, identified as Rhodococcus ruber, is able to effectively degrade di-n-butyl phthalate (DBP) and phenol. Degradation kinetics of DBP and phenol at different initial concentrations revealed DBP and phenol degradation to fit modified first-order models. The half-life of DBP degradation ranged from 15.81 to 27.75h and phenol degradation from 14.52 to 45.52h under the initial concentrations of 600-1200mg/L. When strain DP-2 was cultured with a mixture of DBP (800mg/L) and phenol (700mg/L), DBP degradation rate was found to be only slightly influenced; however, phthalic acid (PA) accumulated, and phenol degradation was clearly inhibited during synchronous degradation. Transcriptional levels of degradation genes, phenol hydroxylase (pheu) and phthalate 3,4-dioxygenase (pht), decreased significantly more during synchronous degradation than during individual degradation. Quantitative estimation of individual or synchronous degradation kinetics is essential to manage mixed hazardous compounds through biodegradation in industrial waste disposal.
Collapse
Affiliation(s)
- Zhixing He
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Chengzhen Niu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhenmei Lu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
33
|
Rehan M, Kluge M, Fränzle S, Kellner H, Ullrich R, Hofrichter M. Degradation of atrazine by Frankia alni ACN14a: gene regulation, dealkylation, and dechlorination. Appl Microbiol Biotechnol 2014; 98:6125-35. [DOI: 10.1007/s00253-014-5665-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 11/29/2022]
|
34
|
Yilmaz V, Ince-Yilmaz E, Yilmazel YD, Duran M. Is aceticlastic methanogen composition in full-scale anaerobic processes related to acetate utilization capacity? Appl Microbiol Biotechnol 2014; 98:5217-26. [DOI: 10.1007/s00253-014-5597-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/24/2014] [Accepted: 02/04/2014] [Indexed: 11/24/2022]
|
35
|
Wang J, Zhang C, Rong H. Analysis and succession of nitrifying bacteria community structure in sequencing biofilm batch reactor. Appl Microbiol Biotechnol 2014; 98:4581-7. [DOI: 10.1007/s00253-014-5537-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
|
36
|
Kim J, Lim J, Lee C. Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: Applications and considerations. Biotechnol Adv 2013; 31:1358-73. [DOI: 10.1016/j.biotechadv.2013.05.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/02/2013] [Accepted: 05/28/2013] [Indexed: 02/08/2023]
|
37
|
Bælum J, Chambon JC, Scheutz C, Binning PJ, Laier T, Bjerg PL, Jacobsen CS. A conceptual model linking functional gene expression and reductive dechlorination rates of chlorinated ethenes in clay rich groundwater sediment. WATER RESEARCH 2013; 47:2467-78. [PMID: 23490098 DOI: 10.1016/j.watres.2013.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 05/26/2023]
Abstract
We used current knowledge of cellular processes involved in reductive dechlorination to develop a conceptual model to describe the regulatory system of dechlorination at the cell level; the model links bacterial growth and substrate consumption to the abundance of messenger RNA of functional genes involved in the dechlorination process. The applicability of the model was tested on a treatability study of biostimulated and bioaugmented microcosms. Using quantitative real time PCR, high-resolution expression profiles of the functional reductive dehalogenase genes bvcA and vcrA were obtained during two consecutive dechlorination events of trichlorethene, cis-dichlorethene and vinyl chloride. Up-regulation of the bvcA (for the biostimulated microcosms) and vcrA (for the bioaugmented microcosms) gene expression fitted well with high rates of dechlorination of vinyl chloride, while no known transcripts could be measured during trichloroethene and cis-dichlorethene dechlorination. Maximum concentrations of 2.1 and 1.7 transcripts per gene of the bvcA and vcrA genes, respectively, were measured at the same time points as maximum dechlorination rates were observed. The developed model compared well with the experimental data for both biostimulated and bioaugmented microcosms under non-steady state conditions and was supported by results from a recently published study under steady state conditions.
Collapse
Affiliation(s)
- Jacob Bælum
- The Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, DK-1350 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
38
|
Sherchan SP, Bachoon DS, Otero E, Ramsubhag A. Molecular detection of atrazine catabolism gene atzA in coastal waters of Georgia, Puerto Rico and Trinidad. MARINE POLLUTION BULLETIN 2013; 69:215-218. [PMID: 23422065 DOI: 10.1016/j.marpolbul.2012.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 01/14/2012] [Accepted: 01/14/2012] [Indexed: 06/01/2023]
Abstract
In this study, quantitative polymerase chain reaction targeting the atrazine catabolism gene, atzA, was used to detect the presence of atrazine degrading bacteria as an indicator of atrazine contamination in 11 sites in Georgia, nine coastal sites in Puerto Rico and 11 coastal sites in Trinidad. The atzA gene was detected in five stations in Georgia (Oak Grove Island entrance, Blythe Island Recreation Park, Jekyll Island., Village Creek Landing and Dunbar Creek Sea Island Rd Bridge). In Puerto Rico gene was detected in five sites (Boquilla, Oro Creek, Fishers Association, Ceiba Creek and Sabalos Creek) while seven sites in Trinidad (Carli Bay, Las Cuevas Bay, Quinam Bay, Salybia River, Salybia Bay, Maracas River and Maracas Bay) showed the presence of atzA.
Collapse
Affiliation(s)
- Samendra P Sherchan
- Department of Biological and Environmental Sciences, Georgia College and State University, Campus Box 81, Milledgeville, GA 31061-0490, USA
| | | | | | | |
Collapse
|
39
|
Ongoing functional evolution of the bacterial atrazine chlorohydrolase AtzA. Biodegradation 2013; 25:21-30. [DOI: 10.1007/s10532-013-9637-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/03/2013] [Indexed: 10/27/2022]
|
40
|
Zhou X, Wang Q, Wang Z, Xie S. Nitrogen impacts on atrazine-degrading Arthrobacter strain and bacterial community structure in soil microcosms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2484-2491. [PMID: 22961491 DOI: 10.1007/s11356-012-1168-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/27/2012] [Indexed: 06/01/2023]
Abstract
The objective of this study was to investigate the impacts of exogenous nitrogen on a microbial community inoculated with the atrazine-degrading Arthrobacter sp. in soil amended with a high concentration of atrazine. Inoculated and uninoculated microcosms for biodegradation tests were constructed. Atrazine degradation capacity of the strain DAT1 and the strain's atrazine-metabolic potential and survival were assessed. The relative abundance of the strain DAT1 and the bacterial community structure in soils were characterized using quantitative PCR in combination with terminal restriction fragment length polymorphism. Atrazine degradation by the strain DAT1 and the strain's atrazine-metabolic potential and survival were not affected by addition of a medium level of nitrate, but these processes were inhibited by addition of a high level of nitrate. Microbial community structure changed in both inoculated and uninoculated microcosms, dependent on the level of added nitrate. Bioaugmentation with the strain DAT1 could be a very efficient biotechnology for bioremediation of soils with high concentrations of atrazine.
Collapse
Affiliation(s)
- Xiaode Zhou
- State Key Laboratory of Ecohydraulic Engineering in Shaanxi, Xi'an University of Technology, Xi'an 710048, China
| | | | | | | |
Collapse
|
41
|
Callbeck CM, Sherry A, Hubert CRJ, Gray ND, Voordouw G, Head IM. Improving PCR efficiency for accurate quantification of 16S rRNA genes. J Microbiol Methods 2013; 93:148-52. [PMID: 23524156 DOI: 10.1016/j.mimet.2013.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 03/10/2013] [Indexed: 10/27/2022]
Abstract
Quantitative real-time PCR is a valuable tool for microbial ecologists. To obtain accurate absolute quantification it is essential that PCR efficiency for pure standards is close to amplification efficiency for test samples. Counter to normal expectation that PCR efficiency might be lower in environmental DNA, due to the presence of PCR inhibitors, we report the counterintuitive observation that PCR efficiency of pure standards can be lower than for environmental DNA. This can lead to overestimation of gene abundances if not corrected. SYBR green-based qPCR assays of 16S rRNA genes targeting Bacteria, Syntrophus and Smithella spp., Marinobacter spp., Methanomicrobiales, Methanosarcinaceae, and Methanosaetaceae in samples from methanogenic crude oil biodegradation enrichments were tested. In five out of the six assays, PCR efficiency was lower with pure standards than with environmental DNA samples. We developed a solution to this problem based on amending pure clone standards with a background of non-target environmental 16S rRNA genes which significantly improved PCR efficiency of standards in the qPCR assays that exhibited this phenomenon. Overall this method of qPCR standard preparation achieved a more reliable and robust quantification of 16S rRNA genes. We believe this may be a potentially common issue in microbial ecology that often goes unreported, as intuitively one would not expect standards to have poorer PCR efficiency than samples.
Collapse
Affiliation(s)
- Cameron M Callbeck
- Petroleum Microbiology Research Group, University of Calgary, Department of Biological Sciences, Calgary, Alberta, T2N 1N4, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Denitrifying capacity of rhizobial strains of Argentine soils and herbicide sensitivity. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0619-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
43
|
Sagarkar S, Mukherjee S, Nousiainen A, Björklöf K, Purohit HJ, Jørgensen KS, Kapley A. Monitoring bioremediation of atrazine in soil microcosms using molecular tools. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 172:108-15. [PMID: 23022948 DOI: 10.1016/j.envpol.2012.07.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/27/2012] [Accepted: 07/29/2012] [Indexed: 05/25/2023]
Abstract
Molecular tools in microbial community analysis give access to information on catabolic potential and diversity of microbes. Applied in bioremediation, they could provide a new dimension to improve pollution control. This concept has been demonstrated in the study using atrazine as model pollutant. Bioremediation of the herbicide, atrazine, was analyzed in microcosm studies by bioaugmentation, biostimulation and natural attenuation. Genes from the atrazine degrading pathway atzA/B/C/D/E/F, trzN, and trzD were monitored during the course of treatment and results demonstrated variation in atzC, trzD and trzN genes with time. Change in copy number of trzN gene under different treatment processes was demonstrated by real-time PCR. The amplified trzN gene was cloned and sequence data showed homology to genes reported in Arthrobacter and Nocardioides. Results demonstrate that specific target genes can be monitored, quantified and correlated to degradation analysis which would help in predicting the outcome of any bioremediation strategy.
Collapse
Affiliation(s)
- Sneha Sagarkar
- Environmental Genomics Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | | | | | | | | | | | | |
Collapse
|
44
|
Udiković-Kolić N, Scott C, Martin-Laurent F. Evolution of atrazine-degrading capabilities in the environment. Appl Microbiol Biotechnol 2012; 96:1175-89. [DOI: 10.1007/s00253-012-4495-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 11/30/2022]
|
45
|
Response of a diuron-degrading community to diuron exposure assessed by real-time quantitative PCR monitoring of phenylurea hydrolase A and B encoding genes. Appl Microbiol Biotechnol 2012; 97:1661-8. [DOI: 10.1007/s00253-012-4318-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/10/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
|
46
|
Estimating the biodegradation of pesticide in soils by monitoring pesticide-degrading gene expression. Biodegradation 2012; 24:203-13. [PMID: 22991035 DOI: 10.1007/s10532-012-9574-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
Abstract
Assessing in situ microbial abilities of soils to degrade pesticides is of great interest giving insight in soil filtering capability, which is a key ecosystem function limiting pollution of groundwater. Quantification of pesticide-degrading gene expression by reverse transcription quantitative PCR (RT-qPCR) was tested as a suitable indicator to monitor pesticide biodegradation performances in soil. RNA extraction protocol was optimized to enhance the yield and quality of RNA recovered from soil samples to perform RT-qPCR assays. As a model, the activity of atrazine-degrading communities was monitored using RT-qPCRs to estimate the level of expression of atzD in five agricultural soils showing different atrazine mineralization abilities. Interestingly, the relative abundance of atzD mRNA copy numbers was positively correlated to the maximum rate and to the maximal amount of atrazine mineralized. Our findings indicate that the quantification of pesticide-degrading gene expression may be suitable to assess biodegradation performance in soil and monitor natural attenuation of pesticide.
Collapse
|
47
|
Fernández LA, Valverde C, Gómez MA. Isolation and characterization of atrazine-degrading Arthrobacter sp. strains from Argentine agricultural soils. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0463-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
48
|
Fajardo C, Ortíz LT, Rodríguez-Membibre ML, Nande M, Lobo MC, Martin M. Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. CHEMOSPHERE 2012; 86:802-8. [PMID: 22169206 DOI: 10.1016/j.chemosphere.2011.11.041] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/07/2011] [Accepted: 11/07/2011] [Indexed: 05/20/2023]
Abstract
In this work, nanoscale zero-valent iron (NZVI) particles have been used as an immobilisation strategy to reduce Pb and Zn availability and mobility in polluted soils. The application of NZVI to two soil microcosms (MPb and MZn) at a dose of 34 mg g(-1) soil efficiently immobilised Pb (25%) and zinc (20%). Exposure to NZVI had little impact on the microbial cellular viability and biological activity in the soils. Three bacterial genes (narG, nirS and gyrA) were used as treatment-related biomarkers. These biomarkers ruled out a broad bactericidal effect on the bulk soil microbial community. A transcriptome analysis of the genes did not reveal any changes in their expression ratios after the NZVI treatment: 1.6 (narG), 0.8 (nirS) and 0.7 (gyrA) in the MPb microcosm and 0.6 (narG), 1.2 (nirS) and 0.5 (gyrA) in the MZn microcosm. However, significant changes in the structure and composition of the soil bacteria population were detected by fluorescence in situ hybridisation. Thus, our results showed that NZVI toxicity could be highly dose and species dependent, and the effective applicability of the proposed molecular approach in assessing the impact of this immobilisation strategy on soil microbial population.
Collapse
Affiliation(s)
- C Fajardo
- Universidad Complutense de Madrid, Avenida Puerta de Hierro s/n, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Changey F, Devers-Lamrani M, Rouard N, Martin-Laurent F. In vitro evolution of an atrazine-degrading population under cyanuric acid selection pressure: evidence for the selective loss of a 47 kb region on the plasmid ADP1 containing the atzA, B and C genes. Gene 2011; 490:18-25. [PMID: 21959051 DOI: 10.1016/j.gene.2011.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/05/2011] [Accepted: 09/09/2011] [Indexed: 02/02/2023]
Abstract
The adaptation of microorganisms to pesticide biodegradation relies on the recruitment of catabolic genes by horizontal gene transfer and homologous recombination mediated by insertion sequences (IS). This environment-friendly function is maintained in the degrading population but it has a cost which could diminish its fitness. The loss of genes in the course of evolution being a major mechanism of ecological specialization, we mimicked evolution in vitro by sub-culturing the atrazine-degrading Pseudomonas sp. ADP in a liquid medium containing cyanuric acid as the sole source of nitrogen. After 120 generations, a new population evolved, which replaced the original one. This new population grew faster on cyanuric acid but showed a similar cyanuric acid degrading ability. Plasmid profiles and Southern blot analyses revealed the deletion of a 47 kb region from pADP1 containing the atzABC genes coding for the enzymes that turn atrazine into cyanuric acid. Long PCR and sequencing analyses revealed that this deletion resulted from a homologous recombination between two direct repeats of a 110-bp, identical to ISPps1 of Pseudomonas huttiensis, flanking the deleted 47 kb region. The loss of a region containing three functional genes constitutively expressed thereby constituting a genetic burden under cyanuric acid selection pressure was responsible for the gain in fitness of the new population. It highlights the IS-mediated plasticity of the pesticide-degrading potential and shows that IS not only favours the expansion of the degrading genetic potential thanks to dispersion and duplication events but also contribute to its reduction thanks to deletion events.
Collapse
Affiliation(s)
- F Changey
- INRA, Université de Bourgogne, Microbiologie du Sol et de l'Environnement, 17 Rue Sully, 21065 Dijon Cedex, France
| | | | | | | |
Collapse
|