1
|
Waidner LA, Potdukhe TV. Tools to Enumerate and Predict Distribution Patterns of Environmental Vibrio vulnificus and Vibrio parahaemolyticus. Microorganisms 2023; 11:2502. [PMID: 37894160 PMCID: PMC10609196 DOI: 10.3390/microorganisms11102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are water- and foodborne bacteria that can cause several distinct human diseases, collectively called vibriosis. The success of oyster aquaculture is negatively impacted by high Vibrio abundances. Myriad environmental factors affect the distribution of pathogenic Vibrio, including temperature, salinity, eutrophication, extreme weather events, and plankton loads, including harmful algal blooms. In this paper, we synthesize the current understanding of ecological drivers of Vv and Vp and provide a summary of various tools used to enumerate Vv and Vp in a variety of environments and environmental samples. We also highlight the limitations and benefits of each of the measurement tools and propose example alternative tools for more specific enumeration of pathogenic Vv and Vp. Improvement of molecular methods can tighten better predictive models that are potentially important for mitigation in more controlled environments such as aquaculture.
Collapse
Affiliation(s)
- Lisa A. Waidner
- Hal Marcus College of Science and Engineering, University of West Florida, 11000 University Pkwy, Building 58, Room 108, Pensacola, FL 32514, USA
| | - Trupti V. Potdukhe
- GEMS Program, College of Medicine, University of Illinois Chicago, 1853 W. Polk St., Chicago, IL 60612, USA;
| |
Collapse
|
2
|
Shu W, Wang P, Zhao J, Ding M, Zhang H, Nie M, Huang G. Sources and migration similarly determine nitrate concentrations: Integrating isotopic, landscape, and biological approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158216. [PMID: 36028031 DOI: 10.1016/j.scitotenv.2022.158216] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Rapid land use change has significantly increased nitrate (NO3-) loading to rivers, leading to eutrophication, and posing water security problems. Determining the sources of NO3- to waters and the underlying influential factors is critical for effectively reducing pollution and better managing water resources. Here, we identified the sources and influencing mechanisms of NO3- in a mixed land-use watershed by integrating stable isotopes (δ15N-NO3- and δ18O-NO3-), molecular biology, water chemistry, and landscape metrics measurements. Weak transformation processes of NO3- were identified in the river, as evinced by water chemistry, isotopes, species compositions, and predicted microbial genes related to nitrogen metabolism. NO3- concentrations were primarily influenced by exogenous inputs (i.e., from soil nitrogen (NS), nitrogen fertilizer (NF), and manure & sewage (MS)). The proportions of NO3- sources seasonally varied. In the wet season, the source contributions followed the order of NS (38.6 %) > NF (31.4 %) > atmospheric deposition (ND, 16.2 %) > MS (13.8 %). In the dry season, the contributions were in the order of MS (39.2 %) > NS (29.2 %) > NF (29 %) > ND (2.6 %). Farmland and construction land were the original factors influencing the spatial distribution of NO3- in the wet and dry seasons, respectively, while slope, basin relief (HD), hypsometric integral (HI), and COHESION, HD were the primary indicators associated with NO3- transport in the wet and dry seasons, respectively. Additionally, spatial scale differences were observed for the effects of landscape structure on NO3- concentrations, with the greatest effect at the 1000-m buffer zone scale in the wet season and at the sub-basin scale in the dry season. This study overcomes the limitation of isotopes in identifying nitrate sources by combining multiple approaches and provides new research perspectives for the determination of nitrate sources and migration in other watersheds.
Collapse
Affiliation(s)
- Wang Shu
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China; Sino-Danish Centre for Education and Research, Beijing 101408, China
| | - Peng Wang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Jun Zhao
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Minjun Ding
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Hua Zhang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Minghua Nie
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Gaoxiang Huang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| |
Collapse
|
3
|
Meire MA, van der Waal SV. A critical analysis of research methods and experimental models to study intracanal medicaments. Int Endod J 2022; 55 Suppl 2:330-345. [PMID: 35100452 DOI: 10.1111/iej.13694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/26/2022] [Indexed: 12/01/2022]
Abstract
In order to ensure predictable decontamination of the root canal system, chemo-mechanical preparation of the root canal space is sometimes supplemented with the use of intracanal medication. As microbial control of the root canal space is fundamental to the resolution of apical periodontitis, root canal disinfection strategies haven been researched intensively. The use of intracanal medication as a supplementary step to the chemo-mechanical preparation of the root canal space is one of them. Because of the costs and limitations of clinical research it is relevant and common practice to first evaluate alternative or new root canal disinfection modalities in laboratory studies. This involves the simulation of a root canal infection in a laboratory model, on which different disinfection strategies can be tested. When modelling the infected root canal, different levels of infection can be discriminated: suspended bacteria, microbial biofilms and infected dentine. This review describes the experimental models associated with these infection levels and critically appraises their value and methodological details. Suggestions for relevant research methods and experimental models are given, as well as some good practices for laboratory-based microbiological studies.
Collapse
Affiliation(s)
- M A Meire
- Department of Oral Health Sciences, Section of Endodontology, Ghent University, Ghent, Belgium
| | - S V van der Waal
- Department of Endodontology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| |
Collapse
|
4
|
Du P, He H, Zhou L, Dong F, Liu X, Zheng Y. Different biodegradation potential and the impacted soil functions of epoxiconazole in two soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126787. [PMID: 34399219 DOI: 10.1016/j.jhazmat.2021.126787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Epoxiconazole is an effective pesticide to control Fusarium head blight (FHB), and the application will increase. To investigate the ecotoxicity of epoxiconazole to soil microbiome, we carried out an indoor experiment in which soils from two main regions of wheat production in China (Nanjing and Anyang) were treated with epoxiconazole (0, 0.0625, 0.625, or 6.25 mg kg-1) and incubated for 90 days. Under epoxiconazole stress, for bacteria and fungi, the abundance was increased and the diversity and community were impacted. In Anyang soil, the half-life of epoxiconazole was short with more increased species (linear discriminant analysis effect size biomarkers) and more increased xenobiotics biodegradation pathways in epoxiconazole treatments. The increased species mostly due to high abundance in initial state and more positive connections of the species. Co-occurrences revealed that epoxiconazole tightened bacterial connection, and increased positive correlations in Anyang soil. The N transformation was influenced with increased nifH and amoA; and the contents of NH4+-N and NO3--N were also increased. The functions of C, S, and manganese metabolisms were also impacted by epoxiconazole. This work expands our understanding about epoxiconazole degradation and help us to properly assess the risk of epoxiconazole in soil.
Collapse
Affiliation(s)
- Pengqiang Du
- College of Plant Protection, Henan Agricultural University, No. 63, Agricultural Road, Zhengzhou 450002, China.
| | - Hairong He
- College of Pharmacy, Henan University of Chinese Medicine, No. 156, Jinshui East Road, Zhengzhou 450046, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, No. 63, Agricultural Road, Zhengzhou 450002, China.
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
5
|
Siqueira JF, Rôças IN. A critical analysis of research methods and experimental models to study the root canal microbiome. Int Endod J 2021; 55 Suppl 1:46-71. [PMID: 34714548 DOI: 10.1111/iej.13656] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
Endodontic microbiology deals with the study of the microbial aetiology and pathogenesis of pulpal and periradicular inflammatory diseases. Research in endodontic microbiology started almost 130 years ago and since then has mostly focussed on establishing and confirming the infectious aetiology of apical periodontitis, identifying the microbial species associated with the different types of endodontic infections and determining the efficacy of treatment procedures in eradicating or controlling infection. Diverse analytical methods have been used over the years, each one with their own advantages and limitations. In this review, the main features and applications of the most used technologies are discussed, and advice is provided to improve study designs in order to properly address the scientific questions and avoid setbacks that can compromise the results. Finally, areas of future research are described.
Collapse
Affiliation(s)
- José F Siqueira
- Department of Endodontics and Molecular Microbiology Laboratory, Faculty of Dentistry, Grande Rio University, Rio de Janeiro, Brazil.,Department of Dental Research, Faculty of Dentistry, Iguaçu University (UNIG), Nova Iguaçu, Brazil
| | - Isabela N Rôças
- Department of Endodontics and Molecular Microbiology Laboratory, Faculty of Dentistry, Grande Rio University, Rio de Janeiro, Brazil.,Department of Dental Research, Faculty of Dentistry, Iguaçu University (UNIG), Nova Iguaçu, Brazil
| |
Collapse
|
6
|
Fu J, Chiang ELC, Medriano CAD, Li L, Bae S. Rapid quantification of fecal indicator bacteria in water using the most probable number - loop-mediated isothermal amplification (MPN-LAMP) approach on a polymethyl methacrylate (PMMA) microchip. WATER RESEARCH 2021; 199:117172. [PMID: 33991777 DOI: 10.1016/j.watres.2021.117172] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 05/22/2023]
Abstract
Fecal contamination of water and its associated pathogens are a major public health concern in both developing and industrialized areas. Fecal indicator bacteria (FIB) are commonly used to assess microbial water quality, but they require a relatively long period of incubation time. Currently, molecular techniques have been applied to rapidly detect FIB. However, these molecular techniques require expensive and sophisticated equipment. In this study, we developed a rapid on-chip gene quantification method based on loop-mediated isothermal amplification (LAMP) PCR. The LAMP assays can measure the target genes of the fecal indicator bacteria (FIB), including E. coli and Enterococcus spp, using the most probable number (MPN) approach. The colorimetric LAMP assay allows for naked-eye observation of the PCR reaction as few as 4 gene copies / well. When the reaction ends, MPN measurement of positive outcomes on the white-based PMMA (polymethacrylic acid) microchips provides the concentrations of the target genes of FIB with a confidence interval. We validated the feasibility of the MPN-LAMP approach by obtaining a strong correlation between the results of the MPN estimations and the qPCR analysis. Moreover, the MPN-LAMP approach was used to quantify the FIB in different environmental water collected from the freshwater reservoirs, beach, agriculture farm, and sewage. Our research demonstrates that the MPN- LAMP method enables us to easily and quickly quantifying FIB genes isolated from the environment without expensive qPCR instruments.
Collapse
Affiliation(s)
- Jing Fu
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-04-07, No.1 Engineering Drive 2, Singapore 117576, Singapore
| | - Elaine Li Ching Chiang
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-04-07, No.1 Engineering Drive 2, Singapore 117576, Singapore
| | - Carl Angelo Dulatre Medriano
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-04-07, No.1 Engineering Drive 2, Singapore 117576, Singapore
| | - Liyan Li
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-04-07, No.1 Engineering Drive 2, Singapore 117576, Singapore
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-04-07, No.1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
7
|
Orschler L, Agrawal S, Lackner S. Lost in translation: the quest for Nitrosomonas cluster 7-specific amoA primers and TaqMan probes. Microb Biotechnol 2020; 13:2069-2076. [PMID: 32686322 PMCID: PMC7533338 DOI: 10.1111/1751-7915.13627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 11/30/2022] Open
Abstract
The choice of primer and TaqMan probes to quantify ammonia-oxidizing bacteria (AOB) in environmental samples is of crucial importance. The re-evaluation of primer pairs based on current genomic sequences used for quantification of the amoA gene revealed (1) significant misrepresentations of the AOB population in environmental samples, (2) and a lack of perfect match primer pairs for Nitrosomonas europaea and Nitrosomonas eutropha. We designed two new amoA cluster 7-specific primer pairs and TaqMan probes to quantify N. europaea (nerF/nerR/nerTaq) and N. eutropha (netF/netR/netTaq). Specificity and quantification biases of the newly designed primer sets were compared with the most popular primer pair (amoA1f/amoA2r) using DNA from various AOB cultures as individual templates as well as DNA mixtures and environmental samples. Based on the qPCR results, we found that the newly designed primer pairs and the most popular one performed similarly for individual templates but differed for the DNA mixtures and environmental samples. Using the popular primer pair introduced a high underestimation of AOB in environmental samples, especially for N. eutropha. Thus, there is a strong need for more specific primers and probes to understand the occurrence and competition between N. europaea and N. eutropha in different environments.
Collapse
Affiliation(s)
- Laura Orschler
- Institute IWARTechnical University of DarmstadtFranziska‐Braun‐Straße 7Darmstadt64287Germany
| | - Shelesh Agrawal
- Institute IWARTechnical University of DarmstadtFranziska‐Braun‐Straße 7Darmstadt64287Germany
| | - Susanne Lackner
- Institute IWARTechnical University of DarmstadtFranziska‐Braun‐Straße 7Darmstadt64287Germany
| |
Collapse
|
8
|
Sabrekov AF, Semenov MV, Terent’eva IE, Litti YV, Il’yasov DV, Glagolev MV. The link between Soil Methane Oxidation Rate and Abundance of Methanotrophs Estimated by Quantitative PCR. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720020113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
9
|
Reddypriya P, Soumare A, Balachandar D. Multiplex and quantitative PCR targeting SCAR markers for strain-level detection and quantification of biofertilizers. J Basic Microbiol 2018; 59:111-119. [PMID: 30318739 DOI: 10.1002/jobm.201800318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/23/2018] [Accepted: 09/22/2018] [Indexed: 11/12/2022]
Abstract
Biofertilizers are the eco-friendly bio-input being used to sustain the agriculture by reducing the chemical inputs and improving the soil health. Quality is the major concern of biofertilizer technology which often leads to poor performance in the field and thereby loses the farmers' faith. To authenticate the strain as well as its presumed cell load of a commercial product, sequence characterized amplified region (SCAR) markers were developed for three biofertilizer strains viz., Azospirillum brasilense (Sp7), Bacillus megaterium (Pb1) and Azotobacter chroococcum (Ac1). We evaluated the feasibility of multiplex-PCR and quantitative real-time PCR for SCAR marker-based quality assessment of the product as well as the persistence of the strains during crop growth. We showed that multiplex PCR can concurrently discriminate the strains based on the amplicons' size and detects up to 104 cells per g or per ml of carrier-based or liquid formulation of biofertilizer, respectively. The detection limit of quantitative PCR targeting SCAR markers is 103 cells per g or ml of biofertilizer. Both the PCR methods detected and quantified them in the maize rhizosphere. Hence SCAR marker-based quality assessment would be a sensitive tool to monitor the biofertilizer production as well as its persistence in the inoculated crop rhizosphere.
Collapse
Affiliation(s)
- Pasupuleti Reddypriya
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Abdoulaye Soumare
- Laboratoire Commun de Microbiologie (LCM, IRD/ISRA/UCAD), Dakar, Senegal
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
10
|
Garafutdinov RR, Galimova AA, Sakhabutdinova AR, Vakhitov VA, Chemeris AV. DNA amplification using PCR with abutting primers. Mol Biol 2015. [DOI: 10.1134/s0026893315040056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Heinzelmann SM, Villanueva L, Sinke-Schoen D, Sinninghe Damsté JS, Schouten S, van der Meer MTJ. Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids. Front Microbiol 2015; 6:408. [PMID: 26005437 PMCID: PMC4424904 DOI: 10.3389/fmicb.2015.00408] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/19/2015] [Indexed: 12/12/2022] Open
Abstract
Microorganisms are involved in all elemental cycles and therefore it is important to study their metabolism in the natural environment. A recent technique to investigate this is the hydrogen isotopic composition of microbial fatty acids, i.e., heterotrophic microorganisms produce fatty acids enriched in deuterium (D) while photoautotrophic and chemoautotrophic microorganisms produce fatty acids depleted in D compared to the water in the culture medium (growth water). However, the impact of factors other than metabolism have not been investigated. Here, we evaluate the impact of growth phase compared to metabolism on the hydrogen isotopic composition of fatty acids of different environmentally relevant microorganisms with heterotrophic, photoautotrophic and chemoautotrophic metabolisms. Fatty acids produced by heterotrophs are enriched in D compared to growth water with εlipid/water between 82 and 359‰ when grown on glucose or acetate, respectively. Photoautotrophs (εlipid/water between −149 and −264‰) and chemoautotrophs (εlipid/water between −217 and −275‰) produce fatty acids depleted in D. Fatty acids become, in general, enriched by between 4 and 46‰ with growth phase which is minor compared to the influence of metabolisms. Therefore, the D/H ratio of fatty acids is a promising tool to investigate community metabolisms in nature.
Collapse
Affiliation(s)
- Sandra M Heinzelmann
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research Den Burg, Netherlands
| | - Laura Villanueva
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research Den Burg, Netherlands
| | - Danielle Sinke-Schoen
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research Den Burg, Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research Den Burg, Netherlands ; Department of Earth Sciences, Faculty of Geosciences, Utrecht University Utrecht, Netherlands
| | - Stefan Schouten
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research Den Burg, Netherlands ; Department of Earth Sciences, Faculty of Geosciences, Utrecht University Utrecht, Netherlands
| | - Marcel T J van der Meer
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research Den Burg, Netherlands
| |
Collapse
|
12
|
Kushwaha SK, Manoharan L, Meerupati T, Hedlund K, Ahrén D. MetCap: a bioinformatics probe design pipeline for large-scale targeted metagenomics. BMC Bioinformatics 2015; 16:65. [PMID: 25880302 PMCID: PMC4355349 DOI: 10.1186/s12859-015-0501-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 02/19/2015] [Indexed: 12/15/2022] Open
Abstract
Background Massive sequencing of genes from different environments has evolved metagenomics as central to enhancing the understanding of the wide diversity of micro-organisms and their roles in driving ecological processes. Reduced cost and high throughput sequencing has made large-scale projects achievable to a wider group of researchers, though complete metagenome sequencing is still a daunting task in terms of sequencing as well as the downstream bioinformatics analyses. Alternative approaches such as targeted amplicon sequencing requires custom PCR primer generation, and is not scalable to thousands of genes or gene families. Results In this study, we are presenting a web-based tool called MetCap that circumvents the limitations of amplicon sequencing of multiple genes by designing probes that are suitable for large-scale targeted metagenomics sequencing studies. MetCap provides a novel approach to target thousands of genes and genomic regions that could be used in targeted metagenomics studies. Automatic analysis of user-defined sequences is performed, and probes specifically designed for metagenome studies are generated. To illustrate the advantage of a targeted metagenome approach, we have generated more than 300,000 probes that match more than 400,000 publicly available sequences related to carbon degradation, and used these probes for target sequencing in a soil metagenome study. The results show high enrichment of target genes and a successful capturing of the majority of gene families. MetCap is freely available to users from: http://soilecology.biol.lu.se/metcap/. Conclusion MetCap is facilitating probe-based target enrichment as an easy and efficient alternative tool compared to complex primer-based enrichment for large-scale investigations of metagenomes. Our results have shown efficient large-scale target enrichment through MetCap-designed probes for a soil metagenome. The web service is suitable for any targeted metagenomics project that aims to study several genes simultaneously. The novel bioinformatics approach taken by the web service will enable researchers in microbial ecology to tap into the vast diversity of microbial communities using targeted metagenomics as a cost-effective alternative to whole metagenome sequencing. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0501-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandeep K Kushwaha
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.
| | | | | | - Katarina Hedlund
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.
| | - Dag Ahrén
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden. .,Bioinformatics Infrastructure for Life Sciences (BILS), Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.
| |
Collapse
|
13
|
Cardinali-Rezende J, Araújo JC, Almeida PGS, Chernicharo CAL, Sanz JL, Chartone-Souza E, Nascimento AMA. Organic loading rate and food-to-microorganism ratio shape prokaryotic diversity in a demo-scale up-flow anaerobic sludge blanket reactor treating domestic wastewater. Antonie van Leeuwenhoek 2013; 104:993-1003. [PMID: 24000090 DOI: 10.1007/s10482-013-0018-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 08/24/2013] [Indexed: 12/01/2022]
Abstract
We investigated the microbial community in an up-flow anaerobic sludge blanket (UASB) reactor treating domestic wastewater (DW) during two different periods of organic loading rate (OLR) and food-to-microorganism (F/M) ratio. 16S rDNA clone libraries were generated, and quantitative real-time PCR (qPCR) analyses were performed. Fluctuations in the OLR and F/M ratio affected the abundance and the composition of the UASB prokaryotic community, mainly at the species level, as well as the performance of the UASB reactor. The qPCR analysis suggested that there was a decrease in the bacterial cell number during the rainy season, when the OLR and F/M ratio were lower. However, the bacterial diversity was higher during this time, suggesting that the community degraded more diversified substrates. The diversity and the abundance of the archaeal community were higher when the F/M ratio was lower. Shifts in the methanogenic community composition might have influenced the route of methane production, with methane produced by acetotrophic methanogens (dry season), and by hydrogenotrophic, methylotrophic and acetotrophic methanogens (rainy season). This study revealed higher levels of bacterial diversity, metabolic specialization and chemical oxygen demand removal efficiency of the DW UASB reactor during the rainy season.
Collapse
Affiliation(s)
- Juliana Cardinali-Rezende
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | | | | | | | | | | | | |
Collapse
|
14
|
Lal D, Jindal S, Kumari H, Jit S, Nigam A, Sharma P, Kumari K, Lal R. Bacterial diversity and real-time PCR based assessment oflinAandlinBgene distribution at hexachlorocyclohexane contaminated sites. J Basic Microbiol 2013; 55:363-73. [DOI: 10.1002/jobm.201300211] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/21/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Devi Lal
- Department of Zoology; Molecular Biology Laboratory; University of Delhi; Delhi India
| | - Swati Jindal
- Department of Zoology; Molecular Biology Laboratory; University of Delhi; Delhi India
| | - Hansi Kumari
- Department of Zoology; Molecular Biology Laboratory; University of Delhi; Delhi India
| | - Simran Jit
- Department of Zoology; Molecular Biology Laboratory; University of Delhi; Delhi India
| | - Aeshna Nigam
- Department of Zoology; Molecular Biology Laboratory; University of Delhi; Delhi India
| | - Pooja Sharma
- Department of Zoology; Molecular Biology Laboratory; University of Delhi; Delhi India
| | - Kirti Kumari
- Department of Zoology; Molecular Biology Laboratory; University of Delhi; Delhi India
| | - Rup Lal
- Department of Zoology; Molecular Biology Laboratory; University of Delhi; Delhi India
| |
Collapse
|
15
|
Quantification of endospore-forming firmicutes by quantitative PCR with the functional gene spo0A. Appl Environ Microbiol 2013; 79:5302-12. [PMID: 23811505 DOI: 10.1128/aem.01376-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial endospores are highly specialized cellular forms that allow endospore-forming Firmicutes (EFF) to tolerate harsh environmental conditions. EFF are considered ubiquitous in natural environments, in particular, those subjected to stress conditions. In addition to natural habitats, EFF are often the cause of contamination problems in anthropogenic environments, such as industrial production plants or hospitals. It is therefore desirable to assess their prevalence in environmental and industrial fields. To this end, a high-sensitivity detection method is still needed. The aim of this study was to develop and evaluate an approach based on quantitative PCR (qPCR). For this, the suitability of functional genes specific for and common to all EFF were evaluated. Seven genes were considered, but only spo0A was retained to identify conserved regions for qPCR primer design. An approach based on multivariate analysis was developed for primer design. Two primer sets were obtained and evaluated with 16 pure cultures, including representatives of the genera Bacillus, Paenibacillus, Brevibacillus, Geobacillus, Alicyclobacillus, Sulfobacillus, Clostridium, and Desulfotomaculum, as well as with environmental samples. The primer sets developed gave a reliable quantification when tested on laboratory strains, with the exception of Sulfobacillus and Desulfotomaculum. A test using sediment samples with a diverse EFF community also gave a reliable quantification compared to 16S rRNA gene pyrosequencing. A detection limit of about 10(4) cells (or spores) per gram of initial material was calculated, indicating this method has a promising potential for the detection of EFF over a wide range of applications.
Collapse
|
16
|
Correa-Galeote D, Tortosa G, Bedmar EJ. Determination of Denitrification Genes Abundance in Environmental Samples. ACTA ACUST UNITED AC 2013. [DOI: 10.4303/mg/235702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Authentication of prized white and black truffles in processed products using quantitative real-time PCR. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Cardinali-Rezende J, Colturato LFDB, Colturato TDB, Chartone-Souza E, Nascimento AMA, Sanz JL. Prokaryotic diversity and dynamics in a full-scale municipal solid waste anaerobic reactor from start-up to steady-state conditions. BIORESOURCE TECHNOLOGY 2012; 119:373-83. [PMID: 22750748 DOI: 10.1016/j.biortech.2012.05.136] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/27/2012] [Accepted: 05/28/2012] [Indexed: 05/16/2023]
Abstract
The prokaryotic diversity of an anaerobic reactor for the treatment of municipal solid waste was investigated over the course of 2 years with the use of 16S rDNA-targeted molecular approaches. The fermentative Bacteroidetes and Firmicutes predominated, and Proteobacteria, Actinobacteria, Tenericutes and the candidate division WWE1 were also identified. Methane production was dominated by the hydrogenotrophic Methanomicrobiales (Methanoculleus sp.) and their syntrophic association with acetate-utilizing and propionate-oxidizing bacteria. qPCR demonstrated the predominance of the hydrogenotrophic over aceticlastic Methanosarcinaceae (Methanosarcina sp. and Methanimicrococcus sp.), and Methanosaetaceae (Methanosaeta sp.) were measured in low numbers in the reactor. According to the FISH and CARD-FISH analyses, Bacteria and Archaea accounted for 85% and 15% of the cells, respectively. Different cell counts for these domains were obtained by qPCR versus FISH analyses. The use of several molecular tools increases our knowledge of the prokaryotic community dynamics from start-up to steady-state conditions in a full-scale MSW reactor.
Collapse
Affiliation(s)
- Juliana Cardinali-Rezende
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31.270-901, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Daniell TJ, Davidson J, Alexander CJ, Caul S, Roberts DM. Improved real-time PCR estimation of gene copy number in soil extracts using an artificial reference. J Microbiol Methods 2012; 91:38-44. [PMID: 22820198 DOI: 10.1016/j.mimet.2012.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/04/2012] [Accepted: 07/10/2012] [Indexed: 11/26/2022]
Abstract
Application of polymerase chain reaction (PCR) techniques has developed significantly from a qualitative technology to include powerful quantitative technologies, including real-time PCR, which are regularly used for detection and quantification of nucleic acids in many settings, including community analysis where culture-based techniques are not suitable. Many applications of real-time PCR involve absolute quantification which is susceptible to inaccuracies caused by losses during DNA extraction or inhibition caused by co-extracted compounds. We present here an improvement to this approach involving the addition of an artificial internal standard, prior to nucleic acid extraction. The standard was generated by in-situ mutagenesis from an E. coli template to ensure it both did not amplify with bacterial primers used for quantification and was short enough to minimise possible interference with other analyses. By estimating gene target copies by relative abundance, this approach accounts for both loss during extraction and inhibition effects. We present a novel application of relative real time PCR, using the internal standard as a reference, allowing accurate estimation of total bacterial populations both within and across a wide range of soils and demonstrate its improvement over absolute quantification by comparison of both approaches to ester linked fatty acid analysis of the same soils.
Collapse
Affiliation(s)
- T J Daniell
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | | | | | | | | |
Collapse
|
20
|
Bergmark L, Poulsen PHB, Al-Soud WA, Norman A, Hansen LH, Sørensen SJ. Assessment of the specificity of Burkholderia and Pseudomonas qPCR assays for detection of these genera in soil using 454 pyrosequencing. FEMS Microbiol Lett 2012; 333:77-84. [PMID: 22639954 DOI: 10.1111/j.1574-6968.2012.02601.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/13/2012] [Accepted: 05/17/2012] [Indexed: 11/29/2022] Open
Abstract
In this study, two highly specific quantitative PCR assays targeting the bacterial genera Burkholderia and Pseudomonas were developed and evaluated on soil samples. The primers were targeting different multivariate regions of the 16S rRNA gene and designed to be compatible with quantitative PCR and the high throughput 454 pyrosequencing technique. The developed assays were validated using the standard methods. All tests with the new developed assays showed very high specificity. Pyrosequencing was used for direct analysis of the PCR product and applied as a specificity measurement of the primers. The Pseudomonas primers showed a 99% primer specificity, which covered 200 different Pseudomonas sequence clusters in 0.5 g of soil. In contrast to that the same approach using the genus-specific Burkholderia primers showed only 8% primer specificity. This discrepancy in primer specificity between the normal procedures compared with pyrosequencing illustrates that the common validation procedures for quantitative PCR primers may be misleading. Our results exemplify the fact that current 16S RNA gene sequence databases might lack resolution within many taxonomic groups and emphasize the necessity for a standardized and functional primer validation protocol. A possible solution to this could be to supplement the normal verification of quantitative PCR assays with a pyrosequencing approach.
Collapse
Affiliation(s)
- Lasse Bergmark
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
21
|
Nõlvak H, Truu M, Truu J. Evaluation of quantitative real-time PCR workflow modifications on 16S rRNA and tetA gene quantification in environmental samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 426:351-358. [PMID: 22521102 DOI: 10.1016/j.scitotenv.2012.03.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/13/2012] [Accepted: 03/20/2012] [Indexed: 05/31/2023]
Abstract
The study examined the variability in 16S ribosomal RNA (16S rRNA) and tetracycline resistance tetA gene quantification from environmental samples in relation to modifications in quantitative polymerase chain reaction (qPCR) workflow and subsequent data evaluation and analysis. We analysed three types of soil samples using two DNA extraction methods, two qPCR chemistries (SYBR green, LUX™), and qPCR reaction kits from different manufacturers. To improve data quality, we employed a three-step amplification outlier removal approach prior to gene quantification calculations. We compared three variants of target gene enumerations and four variants of functional tetA gene normalisations against 16S rRNA genes. Results reveal that modifications in qPCR workflow steps significantly influence the gene quantification results from environmental samples. Primary factors affecting qPCR amplification efficiency included the variability of the target amplicon and the qPCR chemistry; the quality of the resulting datasets also had an impact. Although LUX™ qPCR has shown promise for environmental samples, SYBR green qPCR yielded considerably better-quality datasets and higher, more stable amplification efficiency values. Gene enumeration data of outlier-removed and unmodified sample sets showed minor differences for good-quality datasets (i.e., amplifications with SYBR green), but differed by up to 40% among lower-quality datasets. Different DNA extraction methods yielded varying amounts and purities of extracted microbial community DNA from environmental samples, with as much as an order of magnitude variation in gene copy numbers. Target gene normalisations yielded stable results on good-quality data, regardless of the DNA extraction method or qPCR chemistry used. Even though qPCR is regarded as a precise method with low detection limit, technical variability in the qPCR workflow tends to overestimate or effectively mask minute changes in community.
Collapse
Affiliation(s)
- Hiie Nõlvak
- Institute of Molecular and Cell Biology, Faculty of Science and Technology, University of Tartu, 23 Riia St, 51010, Tartu, Estonia.
| | | | | |
Collapse
|
22
|
Wei H, Tucker MP, Baker JO, Harris M, Luo Y, Xu Q, Himmel ME, Ding SY. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:20. [PMID: 22490508 PMCID: PMC3384452 DOI: 10.1186/1754-6834-5-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/10/2012] [Indexed: 05/07/2023]
Abstract
BACKGROUND Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars.However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. RESULTS In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. CONCLUSION The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels.
Collapse
Affiliation(s)
- Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Melvin P Tucker
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - John O Baker
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Michelle Harris
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Yonghua Luo
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Qi Xu
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Shi-You Ding
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| |
Collapse
|
23
|
Chemidlin Prévost-Bouré N, Christen R, Dequiedt S, Mougel C, Lelièvre M, Jolivet C, Shahbazkia HR, Guillou L, Arrouays D, Ranjard L. Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS One 2011; 6:e24166. [PMID: 21931659 PMCID: PMC3169588 DOI: 10.1371/journal.pone.0024166] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 08/01/2011] [Indexed: 11/19/2022] Open
Abstract
Fungi constitute an important group in soil biological diversity and functioning. However, characterization and knowledge of fungal communities is hampered because few primer sets are available to quantify fungal abundance by real-time quantitative PCR (real-time Q-PCR). The aim in this study was to quantify fungal abundance in soils by incorporating, into a real-time Q-PCR using the SYBRGreen® method, a primer set already used to study the genetic structure of soil fungal communities. To satisfy the real-time Q-PCR requirements to enhance the accuracy and reproducibility of the detection technique, this study focused on the 18S rRNA gene conserved regions. These regions are little affected by length polymorphism and may provide sufficiently small targets, a crucial criterion for enhancing accuracy and reproducibility of the detection technique. An in silico analysis of 33 primer sets targeting the 18S rRNA gene was performed to select the primer set with the best potential for real-time Q-PCR: short amplicon length; good fungal specificity and coverage. The best consensus between specificity, coverage and amplicon length among the 33 sets tested was the primer set FR1 / FF390. This in silico analysis of the specificity of FR1 / FF390 also provided additional information to the previously published analysis on this primer set. The specificity of the primer set FR1 / FF390 for Fungi was validated in vitro by cloning - sequencing the amplicons obtained from a real time Q-PCR assay performed on five independent soil samples. This assay was also used to evaluate the sensitivity and reproducibility of the method. Finally, fungal abundance in samples from 24 soils with contrasting physico-chemical and environmental characteristics was examined and ranked to determine the importance of soil texture, organic carbon content, C∶N ratio and land use in determining fungal abundance in soils.
Collapse
Affiliation(s)
| | - Richard Christen
- Université de Nice and CNRS UMR 6543, Laboratoire de Biologie Virtuelle, Centre de Biochimie, Parc Valose, Nice, France
| | - Samuel Dequiedt
- Platform GenoSol, INRA-Université de Bourgogne, CMSE, Dijon, France
| | - Christophe Mougel
- INRA-Université de Bourgogne, UMR Microbiologie du Sol et de l'Environnement, CMSE, Dijon, France
- Platform GenoSol, INRA-Université de Bourgogne, CMSE, Dijon, France
| | - Mélanie Lelièvre
- Platform GenoSol, INRA-Université de Bourgogne, CMSE, Dijon, France
| | | | | | - Laure Guillou
- Université Pierre and Marie Curie and CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| | | | - Lionel Ranjard
- INRA-Université de Bourgogne, UMR Microbiologie du Sol et de l'Environnement, CMSE, Dijon, France
- Platform GenoSol, INRA-Université de Bourgogne, CMSE, Dijon, France
- * E-mail:
| |
Collapse
|
24
|
Saleh-Lakha S, Shannon KE, Goyer C, Trevors JT. Challenges in quantifying microbial gene expression in soil using quantitative reverse transcription real-time PCR. J Microbiol Methods 2011; 85:239-43. [DOI: 10.1016/j.mimet.2011.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/02/2011] [Accepted: 03/07/2011] [Indexed: 11/30/2022]
|
25
|
Halliday E, Gast RJ. Bacteria in beach sands: an emerging challenge in protecting coastal water quality and bather health. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:370-9. [PMID: 21162561 PMCID: PMC3109870 DOI: 10.1021/es102747s] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To protect bather health at recreational beaches, fecal indicator bacterial standards are used to monitor water quality, and waters exceeding the standards are subsequently closed to bathers. However beachgoers are also in contact with beach sands, the sanitary quality of which is not included within beach monitoring programs. In fact, sands and sediments provide habitat where fecal bacterial populations may persist, and in some cases grow, in the coastal zone. Specific pathogens are less well studied in beach sands and sediments, but there is a body of evidence that they too may persist in these environments. This paper reviews the current state of knowledge regarding the abundance and distribution of fecal indicator bacteria and pathogens in beach sands of diverse climatological regions, and at beaches subjected to varied levels of anthropogenic impact. In all regions fecal indicator bacteria are nearly ubiquitous in beach sands, and similar relationships emerge among fecal indicator abundance in dry sand, submerged sands, and water. Taken together, these studies contextualize a potential public health issue and identify research questions that must be addressed in order to support future policy decisions.
Collapse
|
26
|
Yu A, Guo C, Zhou Y, Cao F, Zhu W, Sun M, Zhai G. Skin irritation and the inhibition effect on HSV-1 in vivo of penciclovir-loaded microemulsion. Int Immunopharmacol 2010; 10:1305-9. [DOI: 10.1016/j.intimp.2010.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 07/04/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
|
27
|
Ye L, Zhang T. Estimation of nitrifier abundances in a partial nitrification reactor treating ammonium-rich saline wastewater using DGGE, T-RFLP and mathematical modeling. Appl Microbiol Biotechnol 2010; 88:1403-12. [DOI: 10.1007/s00253-010-2837-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/10/2010] [Accepted: 08/10/2010] [Indexed: 10/19/2022]
|
28
|
Nimnoi P, Pongsilp N, Lumyong S. Genetic diversity and community of endophytic actinomycetes within the roots of Aquilaria crassna Pierre ex Lec assessed by Actinomycetes-specific PCR and PCR-DGGE of 16S rRNA gene. BIOCHEM SYST ECOL 2010. [DOI: 10.1016/j.bse.2010.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Von Felten A, Défago G, Maurhofer M. Quantification of Pseudomonas fluorescens strains F113, CHA0 and Pf153 in the rhizosphere of maize by strain-specific real-time PCR unaffected by the variability of DNA extraction efficiency. J Microbiol Methods 2010; 81:108-15. [DOI: 10.1016/j.mimet.2010.02.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/04/2010] [Accepted: 02/06/2010] [Indexed: 11/28/2022]
|
30
|
Lloyd KG, MacGregor BJ, Teske A. Quantitative PCR methods for RNA and DNA in marine sediments: maximizing yield while overcoming inhibition. FEMS Microbiol Ecol 2010; 72:143-51. [DOI: 10.1111/j.1574-6941.2009.00827.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
31
|
Pérez-de-Mora A, Schulz S, Schloter M. MPN- and real-time-based PCR methods for the quantification of alkane monooxygenase homologous genes (alkB) in environmental samples. Methods Mol Biol 2010; 599:59-68. [PMID: 19882279 DOI: 10.1007/978-1-60761-439-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hydrocarbons are major contaminants of soil ecosystems as a result of uncontrolled oil spills and wastes disposal into the environment. Ecological risk assessment and remediation of affected sites is often constrained due to lack of suitable prognostic and diagnostic tools that provide information of abiotic-biotic interactions occurring between contaminants and biological targets. Therefore, the identification and quantification of genes involved in the degradation of hydrocarbons may play a crucial role for evaluating the natural attenuation potential of contaminated sites and the development of successful bioremediation strategies. Besides other gene clusters, the alk operon has been identified as a major player for alkane degradation in different soils. An oxygenase gene (alkB) codes for the initial step of the degradation of aliphatic alkanes under aerobic conditions. In this work, we present an MPN- and a real-time PCR method for the quantification of the bacterial gene alkB (coding for rubredoxin-dependent alkane monooxygenase) in environmental samples. Both approaches enable a rapid culture-independent screening of the alkB gene in the environment, which can be used to assess the intrinsic natural attenuation potential of a site or to follow up the on-going progress of bioremediation assays.
Collapse
Affiliation(s)
- Alfredo Pérez-de-Mora
- Department for Terrestrial Ecogenetics, Helmholtz Zentrum München, Institute of Soil Ecology, Neuherberg, Germany
| | | | | |
Collapse
|
32
|
Estimation of dominant microbial population sizes in the anaerobic granular sludge of a full-scale UASB treating streptomycin wastewater by PCR-DGGE. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0175-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Kjeldsen KU, Tang L, Jørgensen MG, Ingvorsen K. Enumeration and identification of dominant types of sulfate-reducing bacteria in pulp from a paper-recycling plant: a multiphasic approach. FEMS Microbiol Ecol 2009; 69:481-94. [DOI: 10.1111/j.1574-6941.2009.00715.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
34
|
Diversity, abundance, and consistency of microbial oxygenase expression and biodegradation in a shallow contaminated aquifer. Appl Environ Microbiol 2009; 75:6478-87. [PMID: 19700556 DOI: 10.1128/aem.01091-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diversity of Rieske dioxygenase genes and short-term temporal variability in the abundance of two selected dioxygenase gene sequences were examined in a naphthalene-rich, coal tar waste-contaminated subsurface study site. Using a previously published PCR-based approach (S. M. Ní Chadhain, R. S. Norman, K. V. Pesce, J. J. Kukor, and G. J. Zylstra, Appl. Environ. Microbiol. 72:4078-4087, 2006) a broad suite of genes was detected, ranging from dioxygenase sequences associated with Rhodococcus and Sphingomonas to 32 previously uncharacterized Rieske gene sequence clone groups. The nag genes appeared frequently (20% of the total) in two groundwater monitoring wells characterized by low ( approximately 10(2) ppb; approximately 1 muM) ambient concentrations of naphthalene. A quantitative competitive PCR assay was used to show that abundances of nag genes (and archetypal nah genes) fluctuated substantially over a 9-month period. To contrast short-term variation with long-term community stability, in situ community gene expression (dioxygenase mRNA) and biodegradation potential (community metabolism of naphthalene in microcosms) were compared to measurements from 6 years earlier. cDNA sequences amplified from total RNA extracts revealed that nah- and nag-type genes were expressed in situ, corresponding well with structural gene abundances. Despite evidence for short-term (9-month) shifts in dioxygenase gene copy number, agreement in field gene expression (dioxygenase mRNA) and biodegradation potential was observed in comparisons to equivalent assays performed 6 years earlier. Thus, stability in community biodegradation characteristics at the hemidecadal time frame has been documented for these subsurface microbial communities.
Collapse
|
35
|
Dungan RS, Leytem AB. Qualitative and quantitative methodologies for determination of airborne microorganisms at concentrated animal-feeding operations. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0043-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Xu K, Liu H, Du G, Chen J. Real-time PCR assays targeting formyltetrahydrofolate synthetase gene to enumerate acetogens in natural and engineered environments. Anaerobe 2009; 15:204-13. [PMID: 19328859 DOI: 10.1016/j.anaerobe.2009.03.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 01/05/2009] [Accepted: 03/14/2009] [Indexed: 10/21/2022]
Abstract
Acetogens are ubiquitous in many anaerobic habitats and play a very important role in bioconversion and biodegradation of organic compounds. Methods for rapid detection and quantification of acetogens in different environments are urgently needed to understand the in situ activities in complicated microbial communities. To overcome the limitations of culture-dependent methods and provide enhanced diagnostic tools for determination of the ecological roles of acetogens in different habitats, a quantitative real-time PCR (qrt-PCR) approach targeting functional FTHFS (fhs) gene encoding the formyltetrahydrofolate synthetase was developed. Novel primers flanking the FTHFS fragment were designed and tested. High specificity and sensitivity for estimation of the abundance of acetogens were confirmed analysis of a collection of acetogens, clone libraries and melting curves. The utility of the assay was validated and used in quantifying the FTHFS gene present in different anoxic and oxic habitats, including anoxic and oxic sludges, lake sediment, sewage sullage as well as flooded rice field soils. The abundance of FTHFS gene recovered by fhs1 assay was in the order of magnitude of 10(5) up to 10(7) copies per gram of dry weight sample, and the maximum calculated abundance of acetogens relative to Eubacteria was 0.6-0.9%, confirming the low proportion of acetogens to total bacteria in environments.
Collapse
Affiliation(s)
- Kewei Xu
- Laboratory of Environmental Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | | | | | | |
Collapse
|
37
|
Latha PK, Soni R, Khan M, Marla SS, Goel R. Exploration of Csp genes from temperate and glacier soils of the Indian Himalayas and in silico analysis of encoding proteins. Curr Microbiol 2009; 58:343-8. [PMID: 19159976 DOI: 10.1007/s00284-008-9344-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 11/25/2008] [Accepted: 12/08/2008] [Indexed: 11/28/2022]
Abstract
The metagenomic Csp library was constructed from the temperate and glacier soils of central Himalaya, India followed by polymerase chain reaction (PCR) amplification. The library was further screened for low-temperature adaptation, and the positive recombinants were sorted out by determining changes in the melting temperature (Tm). A homology search of cloned sequence showed their identity with the Csp genes of Pseudomonas fluorescens, Psychrobacter cryohalolentis K5, and Shewanella spp MR-4. Amino acid sequence analysis annotated the presence of conserved aromatic and basic amino acids as well as RNA binding motifs from the cold shock domain. Furthermore, a PROSITE scan showed a moderate identity of less than 60% with the known cold shock-inducible proteins (ribosomal proteins, rbfA, DEAD-box helicases), cold acclimation protein, and temperature-induced protein (SRP1/TIP1). This study highlighted the prevalence of Csp genes from cold Himalayan environments that can be explored for tailor-made crop constructions in future.
Collapse
Affiliation(s)
- Prema K Latha
- Department of Microbiology, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, India.
| | | | | | | | | |
Collapse
|
38
|
Ramond JB, Berthe T, Lafite R, Deloffre J, Ouddane B, Petit F. Relationships between hydrosedimentary processes and occurrence of mercury-resistant bacteria (merA) in estuary mudflats (Seine, France). MARINE POLLUTION BULLETIN 2008; 56:1168-1176. [PMID: 18381217 DOI: 10.1016/j.marpolbul.2008.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/08/2008] [Accepted: 02/12/2008] [Indexed: 05/26/2023]
Abstract
The Seine estuary (France) is one of the world's macrotidal systems that is most contaminated with heavy metals. To study the mercury-resistant bacterial community in such an environment, we have developed a molecular tool, based on competitive PCR, enabling the quantification of Gram-negative merA gene abundance. The occurrence of the Gram-negative merA gene in relation with the topology (erosion/deposit periods) and the mercury contamination of three contrasted mudflats was investigated through a multidisciplinary approach and compared with a non-anthropized site (Authie, France). The higher abundance of the Gram-negative merA gene in the Seine estuary mudflats indicates a relationship between the degree of anthropization and the abundance of the merA gene in the mudflat sediments. In the Seine mudflats, the maxima of abundance are always located in fresh sediment deposits. Therefore, the abundance is closely related with the hydrosedimentary processes, which thus seem to be determining factors in the occurrence of the Gram-negative merA gene in the surface sediments of the Seine's mudflat.
Collapse
Affiliation(s)
- Jean-Baptiste Ramond
- Université de Rouen - CNRS UMR 6143, Morphodynamique Continentale et Côtière (M2C), Groupe de Microbiologie, 76821 Mont Saint Aignan Cedex, France
| | | | | | | | | | | |
Collapse
|
39
|
Effect of wastewater treatment plant effluent on microbial function and community structure in the sediment of a freshwater stream with variable seasonal flow. Appl Environ Microbiol 2008; 74:2659-68. [PMID: 18344343 DOI: 10.1128/aem.02348-07] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the effects of wastewater treatment plant (WWTP) discharge on the ecology of bacterial communities in the sediment of a small, low-gradient stream in South Australia. The quantification of genes involved in the biogeochemical cycling of carbon and nitrogen was used to assess potential impacts on ecosystem functions. The effects of disturbance on bacterial community structure were assessed by PCR-denaturing gradient gel electrophoresis of 16S rRNA genes, and clone library analysis was used to phylogenetically characterize significant shifts. Significant (P < 0.05) shifts in bacterial community structures were associated with alteration of the sediment's physicochemical properties, particularly nutrient loading from the WWTP discharge. The effects were greatest at the sampling location 400 m downstream of the outfall where the stream flow is reduced. This highly affected stretch of sediment contained representatives of the gammaproteobacteria that were absent from less-disturbed sites, including Oceanospirillales and Methylococcaceae. 16S rRNA gene sequences from less-disturbed sites had representatives of the Caulobacteraceae, Sphingomonadaceae, and Nitrospirae which were not represented in samples from disturbed sediment. The diversity was lowest at the reference site; it increased with proximity to the WWTP outfall and declined toward highly disturbed (400 m downstream) sites (P < 0.05). The potential for biological transformations of N varied significantly with the stream sediment location (P < 0.05). The abundance of amoA, narG, and nifH genes increased with the distance downstream of the outfall. These processes are driven by N and C availability, as well as redox conditions. Together these data suggest cause and effect between nutrient loading into the creek, shift in bacterial communities through habitat change, and alteration of capacity for biogeochemical cycling of N.
Collapse
|
40
|
Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G, Valori F. Effects of Root Exudates in Microbial Diversity and Activity in Rhizosphere Soils. SOIL BIOLOGY 2008. [DOI: 10.1007/978-3-540-75575-3_14] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
41
|
Doyle E, Muckian L, Hickey AM, Clipson N. Microbial PAH Degradation. ADVANCES IN APPLIED MICROBIOLOGY 2008; 65:27-66. [DOI: 10.1016/s0065-2164(08)00602-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Cupples AM. Real-time PCR quantification of Dehalococcoides populations: Methods and applications. J Microbiol Methods 2008; 72:1-11. [DOI: 10.1016/j.mimet.2007.11.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/09/2007] [Accepted: 11/09/2007] [Indexed: 10/22/2022]
|
43
|
Salvioli A, Lumini E, Anca IA, Bianciotto V, Bonfante P. Simultaneous detection and quantification of the unculturable microbe Candidatus Glomeribacter gigasporarum inside its fungal host Gigaspora margarita. THE NEW PHYTOLOGIST 2008; 180:248-257. [PMID: 18627497 DOI: 10.1111/j.1469-8137.2008.02541.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A combined approach based on quantitative and nested polymerase chain reaction (qPCR and nPCR, respectively) has been set up to detect and quantify the unculturable endobacterium Candidatus Glomeribacter gigasporarum inside the spores of its fungal host Gigaspora margarita. Four genes were targeted, two of bacterial origin (23S rRNA gene and rpoB) and two from the fungus (18S rRNA gene and EF1-alpha). The sensitivity of the qPCR protocol has proved to be comparable to that of nPCR, both for the fungal and the bacterial detection. It has been demonstrated that the last detected dilution in qPCR corresponded, in each case, to 10 copies of the target sequences, suggesting that the method is equally sensitive for the detection of both fungal and bacterial targets. As the two targeted bacterial genes are predicted to be in single copy, it can be concluded that the detection limit is of 10 bacterial genomes for each mixture. The protocol was then successfully applied to amplify fungal and bacterial DNA from auxiliary cells and extraradical and intraradical mycelium. For the first time qPCR has been applied to a complex biological system to detect and quantify fungal and bacterial components using single-copy genes, and to monitor the bacterial presence throughout the fungal life cycle.
Collapse
Affiliation(s)
- Alessandra Salvioli
- Dipartimento di Biologia Vegetale dell'Università degli Studi di Torino, Viale Mattioli 25, I-10125 Italy
| | - Erica Lumini
- Dipartimento di Biologia Vegetale dell'Università degli Studi di Torino, Viale Mattioli 25, I-10125 Italy
| | - Iulia A Anca
- Dipartimento di Biologia Vegetale dell'Università degli Studi di Torino, Viale Mattioli 25, I-10125 Italy
| | - Valeria Bianciotto
- Istituto per la Protezione delle Piante, Sez. di Torino, CNR, Viale Mattioli 25, I-10125 Italy
| | - Paola Bonfante
- Dipartimento di Biologia Vegetale dell'Università degli Studi di Torino, Viale Mattioli 25, I-10125 Italy
- Istituto per la Protezione delle Piante, Sez. di Torino, CNR, Viale Mattioli 25, I-10125 Italy
| |
Collapse
|
44
|
Radl V, Gattinger A, Chronáková A, Nemcová A, Cuhel J, Simek M, Munch JC, Schloter M, Elhottová D. Effects of cattle husbandry on abundance and activity of methanogenic archaea in upland soils. ISME JOURNAL 2007; 1:443-52. [PMID: 18043663 DOI: 10.1038/ismej.2007.60] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the present study, we tested the hypothesis that animal treading associated with a high input of organic matter would favour methanogenesis in soils used as overwintering pasture. Hence, methane emissions and methanogen populations were examined at sections with different degree of cattle impact in a Farm in South Bohemia, Czech Republic. In spring, methane emission positively corresponded to the gradient of animal impact. Applying phospholipid etherlipid analysis, the highest archaeal biomass was found in section severe impact (SI), followed by moderate impact (MI) and no impact. The same trend was observed for the methanogens as showed by real-time quantitative PCR analyses of methyl coenzyme M reductase (mcrA) genes. The detection of monounsaturated isoprenoid side chain hydrocarbons (i20:1) indicated the presence of acetoclastic methanogens in the cattle-impacted sites. This result was corroborated by the phylogenetic analysis of mcrA gene sequences obtained from section SI, which showed that 33% of the analysed clones belonged to the genus Methanosarcina. The majority of the sequenced clones (41%) showed close affiliations with uncultured rumen archaeons. This leads to the assumption that a substantial part of the methanogenic community in plot SI derived from the grazing cattle itself. Compared to the spring sampling, in autumn, a significant reduction in archaeal biomass and number of copies of mcrA genes was observed mainly for section MI. It can be concluded that after 5 months without cattle impact, the severely impact section maintained its methane production potential, whereas the methane production potential under moderate impact returned to background values.
Collapse
Affiliation(s)
- Viviane Radl
- Chair of Soil Ecology, Technical University of Munich, Oberschleissheim, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|