1
|
Dinu LD, Al-Zaidi QJ, Matache AG, Matei F. Improving the Efficiency of Viability-qPCR with Lactic Acid Enhancer for the Selective Detection of Live Pathogens in Foods. Foods 2024; 13:1021. [PMID: 38611327 PMCID: PMC11012224 DOI: 10.3390/foods13071021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Pathogenic Escherichia coli are the most prevalent foodborne bacteria, and their accurate detection in food samples is critical for ensuring food safety. Therefore, a quick technique named viability-qPCR (v-qPCR), which is based on the ability of a selective dye, such as propidium monoazide (PMA), to differentiate between alive and dead cells, has been developed. Despite diverse, successful applications, v-qPCR is impaired by some practical limitations, including the ability of PMA to penetrate the outer membrane of dead Gram-negative bacteria. The objective of this study is to evaluate the ability of lactic acid (LA) to improve PMA penetration and, thus, the efficiency of v-qPCR in detecting the live fraction of pathogens. The pre-treatment of E. coli ATCC 8739 cells with 10 mM LA greatly increased PMA penetration into dead cells compared to conventional PMA-qPCR assay, avoiding false positive results. The limit of detection when using LA-PMA qPCR is 1% viable cells in a mixture of dead and alive cells. The optimized LA-PMA qPCR method was reliably able to detect log 2 CFU/mL culturable E. coli in milk spiked with viable and non-viable bacteria. Lactic acid is cheap, has low toxicity, and can be used to improve the efficiency of the v-qPCR assay, which is economically interesting for larger-scale pathogen detection applications intended for food matrices.
Collapse
Affiliation(s)
- Laura-Dorina Dinu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania; (Q.J.A.-Z.); (A.G.M.); (F.M.)
| | - Quthama Jasim Al-Zaidi
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania; (Q.J.A.-Z.); (A.G.M.); (F.M.)
| | - Adelina Georgiana Matache
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania; (Q.J.A.-Z.); (A.G.M.); (F.M.)
| | - Florentina Matei
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania; (Q.J.A.-Z.); (A.G.M.); (F.M.)
- Faculty of Food Industry and Tourism, Transilvania University of Brasov, 500015 Brasov, Romania
| |
Collapse
|
2
|
How to Evaluate Non-Growing Cells-Current Strategies for Determining Antimicrobial Resistance of VBNC Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10020115. [PMID: 33530321 PMCID: PMC7912045 DOI: 10.3390/antibiotics10020115] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
Thanks to the achievements in sanitation, hygiene practices, and antibiotics, we have considerably improved in our ongoing battle against pathogenic bacteria. However, with our increasing knowledge about the complex bacterial lifestyles and cycles and their plethora of defense mechanisms, it is clear that the fight is far from over. One of these resistance mechanisms that has received increasing attention is the ability to enter a dormancy state termed viable but non-culturable (VBNC). Bacteria that enter the VBNC state, either through unfavorable environmental conditions or through potentially lethal stress, lose their ability to grow on standard enrichment media, but show a drastically increased tolerance against antimicrobials including antibiotics. The inability to utilize traditional culture-based methods represents a considerable experimental hurdle to investigate their increased antimicrobial resistance and impedes the development and evaluation of effective treatments or interventions against bacteria in the VBNC state. Although experimental approaches were developed to detect and quantify VBNCs, only a few have been utilized for antimicrobial resistance screening and this review aims to provide an overview of possible methodological approaches.
Collapse
|
3
|
Copin S, Mougin J, Raguenet V, Robert-Pillot A, Midelet G, Grard T, Bonnin-Jusserand M. Ethidium and propidium monoazide: comparison of potential toxicity on Vibrio sp. viability. Lett Appl Microbiol 2020; 72:245-250. [PMID: 33058219 DOI: 10.1111/lam.13412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
Vibrio sp., ubiquitous in the aquatic ecosystem, are bacteria of interest because of their involvement in human health, causing gastroenteritis after ingestion of seafood, as well as their role in vibriosis leading to severe losses in aquaculture production. Their ability to enter a viable but non-culturable (VBNC) state under stressful environmental conditions may lead to underestimation of the Vibrio population by traditional microbiological enumeration methods. As a result, using molecular methods in combination with EMA or PMA allows the detection of viable (VBNC and culturable viable) cells. In this study, the impact of the EMA and PMA was tested at different concentrations on the viability of several Vibrio species. We compared the toxicity of these two DNA-binding dyes to determine the best pretreatment to use with qPCR to discriminate between viable and dead Vibrio cells. Our results showed that EMA displayed lethal effects for each strain of V. cholerae and V. vulnificus tested. In contrast, the concentrations of PMA tested had no toxic effect on the viability of Vibrio cells studied. These results may help to achieve optimal PMA-qPCR methods to detect viable Vibrio sp. cells in food and environmental samples.
Collapse
Affiliation(s)
- S Copin
- Agence Nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Laboratoire de sécurité des aliments, Boulogne-sur-Mer, France
| | - J Mougin
- Institut Charles Viollette, Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Univ. Liège, Yncréa, Boulogne-sur-Mer, France
| | - V Raguenet
- Agence Nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Laboratoire de sécurité des aliments, Boulogne-sur-Mer, France
| | - A Robert-Pillot
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Vibrions et du Choléra, Paris, France
| | - G Midelet
- Agence Nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Laboratoire de sécurité des aliments, Boulogne-sur-Mer, France
| | - T Grard
- Institut Charles Viollette, Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Univ. Liège, Yncréa, Boulogne-sur-Mer, France
| | - M Bonnin-Jusserand
- Institut Charles Viollette, Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Univ. Liège, Yncréa, Boulogne-sur-Mer, France
| |
Collapse
|
4
|
Codony F, Dinh-Thanh M, Agustí G. Key Factors for Removing Bias in Viability PCR-Based Methods: A Review. Curr Microbiol 2019; 77:682-687. [DOI: 10.1007/s00284-019-01829-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/29/2019] [Indexed: 11/24/2022]
|
5
|
Santander RD, Meredith CL, Aćimović SG. Development of a viability digital PCR protocol for the selective detection and quantification of live Erwinia amylovora cells in cankers. Sci Rep 2019; 9:11530. [PMID: 31395913 PMCID: PMC6687816 DOI: 10.1038/s41598-019-47976-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/25/2019] [Indexed: 01/28/2023] Open
Abstract
Fire blight is a devastating disease of apple and pear caused by the bacterium Erwinia amylovora. One of its main symptoms is canker formation on perennial tissues which may lead to the death of limbs and/or the entire tree. E. amylovora overwinters in cankers which play an important role in initiating fire blight epidemics. However, knowledge of pathogen biology in cankers is scarce, in part due to limitations of classical microbiology methods and the inability of most molecular techniques to distinguish live from dead cells. In this work, a viability digital PCR (v-dPCR) protocol using propidium monoazide (PMA) was developed, allowing for the first time the selective detection and absolute quantification of E. amylovora live cells in apple and pear cankers collected in two time periods. Some key factors affecting the v-dPCR performance were the maceration buffer composition, the target DNA amplicon length, the thermal cycle number and the use of sodium dodecyl sulfate or PMA enhancer for Gram-negative bacteria to improve the effect of PMA. In the future, this methodology could shed light on E. amylovora population dynamics in cankers and provide clues on the effect of management practices, host cultivar, host water/nutritional status, etc., on bacterial survival.
Collapse
Affiliation(s)
- Ricardo D Santander
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Hudson Valley Research Laboratory, Highland, NY, USA
| | - Christopher L Meredith
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Hudson Valley Research Laboratory, Highland, NY, USA
| | - Srđan G Aćimović
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Hudson Valley Research Laboratory, Highland, NY, USA.
| |
Collapse
|
6
|
Telli AE, Doğruer Y. Discrimination of viable and dead Vibrio parahaemolyticus subjected to low temperatures using Propidium Monoazide - Quantitative loop mediated isothermal amplification (PMA-qLAMP) and PMA-qPCR. Microb Pathog 2019; 132:109-116. [PMID: 31034964 DOI: 10.1016/j.micpath.2019.04.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/14/2019] [Accepted: 04/17/2019] [Indexed: 11/29/2022]
Abstract
The aim of this study was to determine the effect of cold (4 °C) and subzero (-18 °C, -45 °C) temperatures on the occurrence time of membrane damage to provide Propidium Monoazide (PMA) penetration of Vibrio parahaemolyticus inoculated to the sea bass. Direct plate counting (DPC) and PMA-based quantitative loop-mediated isothermal amplification (qLAMP) and qPCR was utilized for discrimination of dead and live bacteria on the designated storage days (1, 3, 7, and 14). The optimum amount of PMA was 50 μM for inhibition of amplification derived from dead cells in spiked samples. The number of live V. parahaemolyticus was detectable at the end of the 14. day using PMA-qLAMP and PMA-qPCR at all the temperatures. On the 7th day, culturability has lost at any of the storage temperatures and DPCs at -18 °C and -45 °C revealed a difference of about 1 log10 CFU/ml between 1st and 3rd days. The same difference was also observed in PMA-qLAMP and PMA-qPCR on the same days (0.59-0.95 log10 CFU/ml). Subzero temperatures have the highest rate of viability while causing the fastest decrease in culturability in sample groups as a result of the higher level of transition to VBNC state. qLAMP and qPCR methods in the PMA-treated and nontreated groups on the storage days at all temperatures gave similar results (p > 0.05).
Collapse
Affiliation(s)
- A Ezgi Telli
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey.
| | - Yusuf Doğruer
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
7
|
Zhao Y, Chen H, Liu H, Cai J, Meng L, Dong L, Zheng N, Wang J, Wang C. Quantitative Polymerase Chain Reaction Coupled With Sodium Dodecyl Sulfate and Propidium Monoazide for Detection of Viable Streptococcus agalactiae in Milk. Front Microbiol 2019; 10:661. [PMID: 30984156 PMCID: PMC6450196 DOI: 10.3389/fmicb.2019.00661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/15/2019] [Indexed: 12/14/2022] Open
Abstract
Streptococcus agalactiae is an important pathogen causing bovine mastitis. The aim of this study was to develop a simple and specific method for direct detection of S. agalactiae from milk products. Propidium monoazide (PMA) and sodium dodecyl sulfate (SDS) were utilized to eliminate the interference of dead and injured cells in qPCR. Lysozyme (LYZ) was adopted to increase the extraction efficiency of target bacteria DNA in milk matrix. The specific primers were designed based on cfb gene of S. agalactiae for qPCR. The inclusivity and exclusivity of the assay were evaluated using 30 strains. The method was further determined by the detection of S. agalactiae in spiked milk. Results showed significant differences between the SDS–PMA–qPCR, PMA–qPCR and qPCR when a final concentration of 10 mg/ml (R2 = 0.9996, E = 95%) of LYZ was added in DNA extraction. Viable S. agalactiae was effectively detected when SDS and PMA concentrations were 20 μg/ml and 10 μM, respectively, and it was specific and more sensitive than qPCR and PMA–qPCR. Moreover, the SDS–PMA–qPCR assay coupled with LYZ was used to detect viable S. agalactiae in spiked milk, with a limit of detection of 3 × 103 cfu/ml. Therefore, the SDS–PMA–qPCR assay had excellent sensitivity and specificity for detection of viable S. agalactiae in milk.
Collapse
Affiliation(s)
- Yankun Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Urumqi, China.,Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi, China
| | - He Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Urumqi, China.,Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi, China
| | - Huimin Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Urumqi, China.,Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi, China.,Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianxing Cai
- Institute of Quality Standard and Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Urumqi, China.,Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi, China
| | - Lu Meng
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Dong
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Wang
- Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Urumqi, China.,Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi, China
| |
Collapse
|
8
|
Canh VD, Kasuga I, Furumai H, Katayama H. Viability RT-qPCR Combined with Sodium Deoxycholate Pre-treatment for Selective Quantification of Infectious Viruses in Drinking Water Samples. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:40-51. [PMID: 30680674 DOI: 10.1007/s12560-019-09368-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/18/2019] [Indexed: 05/22/2023]
Abstract
The presence of pathogenic viruses in drinking water is a major public health concern. Although viability RT-qPCR methods were developed to quantify infectious viruses, they may not always reflect viral infectivity, therefore leading to false-positive results. In this study, sodium deoxycholate (SD) pre-treatment was used to improve the efficiency of viability RT-qPCR methods with respect to exclusive quantification of infectious viruses. The ability of SD pre-treatment to enhance the penetration of three viability markers, namely, ethidium monoazide (EMA, 100 µM), propidium monoazide (PMA, 100 µM), and cis-dichlorodiammineplatinum (CDDP, 1000 µM), into heat-treated (90 °C for 1 min) Aichi virus at various concentrations (0.01-0.5%) was evaluated. The optimal SD concentration was found to be 0.1% for all markers. EMA/PMA/CDDP-RT-qPCR with 0.1% SD pre-treatment was significantly more effective than without SD pre-treatment in determining AiV inactivation after heat (50, 60, 70, 80, or 90 °C for 1 min) or chlorine treatment (1 mgCl2/L for 1, 2, 5, or 10 min). Among the viability RT-qPCR methods tested, CDDP-RT-qPCR with SD pre-treatment (SD-CDDP-RT-qPCR) was the most effective in reflecting viral infectivity. Performance testing of SD-CDDP-RT-qPCR in concentrated drinking water samples did not reveal any significant effects of SD-CDDP treatment. Thus, SD-CDDP-RT-qPCR could be a useful tool for monitoring infectious virus presence in drinking water.
Collapse
Affiliation(s)
- Vu Duc Canh
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Ikuro Kasuga
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
9
|
Optimization of viability qPCR for selective detection of membrane-intact Legionella pneumophila. J Microbiol Methods 2018; 156:68-76. [PMID: 30529241 DOI: 10.1016/j.mimet.2018.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 11/23/2022]
Abstract
Although a number of viability qPCR assays have been reported to selectively detect signals from membrane-intact Legionella pneumophila, the efficient suppression of amplification of DNA from dead membrane-compromised bacteria remains an ongoing challenge. This research aimed at establishing a new oligonucleotide combination that allows for a better exclusion of dead Legionella pneumophila on basis of the mip gene. Propidium monoazide (PMA) was chosen as viability dye. An oligonucleotide combination for the amplification of a 633 bp sequence was established with 100% specificity for different Legionella pneumophila strains compared with 17 other Legionella species tested. Apart from increasing amplicon length, the study aimed at optimizing dye incubation time and temperature. An incubation temperature of 45 °C for 10 min was found optimal. Dye treatment of heat-killed bacteria in the presence of EDTA improved signal suppression, whereas deoxycholate also affected signals from live intact bacteria. Suppression of signals from heat-treated bacteria was found to be approx. twice as efficient compared to a commercial kit, although the detection sensitivity is superior when targeting short amplicons. With a limit of detection of 10 genome copies per PCR well and a 6-log signal reduction of bacteria killed at 80 °C, the assay appears useful for applications where pathogen numbers are not limiting and where the priority is on the distinction between intact and damaged Legionella pneumophila for the evaluation of hygienic risk and of disinfection efficiency.
Collapse
|
10
|
Gu Y, Hu Y, Zhao X, Chen X, Wang P, Zheng Z. Discrimination of viable and dead microbial materials with Fourier transform infrared spectroscopy in 3-5 micrometers. OPTICS EXPRESS 2018; 26:15842-15850. [PMID: 30114839 DOI: 10.1364/oe.26.015842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
We present a method to show that average mass extinction coefficient of microbes evaluated via Lorenz-Mie theory can be used to discriminate between viable and dead microbes. Reflectance of viable and dead self-cultured fungal spores and mycelia were measured by the Fourier transform infrared spectroscopy. Complex refractive indices and mass extinction coefficient of viable and dead fungal spores and mycelia were obtained in terms of Kramers-Kronig (KK) relation and Lorenz-Mie theory respectively. Smoke box experimental system was built to validate the effectiveness of the method. The results show that viable and dead fungal spores and mycelia via average mass extinction coefficients can be distinguished. The method can be used to discriminate the bioactivity of microbes and has potential applications in identification, detection, and optical characteristics of viable and dead microbial materials.
Collapse
|
11
|
Lee HW, Lee HM, Yoon SR, Kim SH, Ha JH. Pretreatment with propidium monoazide/sodium lauroyl sarcosinate improves discrimination of infectious waterborne virus by RT-qPCR combined with magnetic separation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:306-314. [PMID: 29096303 DOI: 10.1016/j.envpol.2017.10.081] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/17/2017] [Accepted: 10/22/2017] [Indexed: 06/07/2023]
Abstract
RT-qPCR allows sensitive detection of viral particles of both infectious and noninfectious viruses in water environments, but cannot discriminate non-infectious from infectious viruses. In this study, we aimed to optimize RT-qPCR-based detection of chlorine-inactivated human norovirus (NoV) and pepper mild mottle virus (PMMoV) in suspension by pretreatment with an optimal combination of a monoazide and a detergent that can efficiently penetrate damaged viral capsids. Four methods were compared to determine the efficacy of chlorine disinfection (at 1, 3, and 5 min mg/L): (A) RT-qPCR alone, (B) RT-qPCR assay preceded by magnetic bead separation for enrichment of viral particles (MBS-RT-qPCR), (C) MBS-RT-qPCR assay with pretreatment with propidium monoazide (PMA-MBS-RT-qPCR), and (D) PMA-MBS-RT-qPCR assay with pretreatment with sodium lauroyl sarcosinate (INCI-PMA-MBS-RT-qPCR). On the basis of a PMA optimization assay, 200 and 300 μM PMA were used in subsequent experiments for NoV GII.4 and PMMoV, respectively. Optimal INCI concentrations, having minimal influence on NoV GII.4 and PMMoV, were found to be 0.5% and 0.2% INCI, respectively. For NoV GII.4, there were significant differences (P < 0.05) in log10 genome copies between the PMA-treated and the INCI + PMA-treated samples (log10 genome copies differed by 1.11 and 0.59 log10 for 3 and 5 min mg/L of chlorine, respectively). For PMMoV, INCI induced differences in log10 genome copies of 0.92, 1.18, and 1.86, for 1, 3, and 5 min mg/L of chlorine, respectively. Overall, the results of this study indicate that an optimal combination of PMA and INCI could be very useful for evaluating disinfection methods in water treatment strategies.
Collapse
Affiliation(s)
- Hae-Won Lee
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju 61755, South Korea
| | - Hee-Min Lee
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju 61755, South Korea
| | - So-Ra Yoon
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju 61755, South Korea
| | - Sung Hyun Kim
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju 61755, South Korea
| | - Ji-Hyoung Ha
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju 61755, South Korea.
| |
Collapse
|
12
|
Emerson JB, Adams RI, Román CMB, Brooks B, Coil DA, Dahlhausen K, Ganz HH, Hartmann EM, Hsu T, Justice NB, Paulino-Lima IG, Luongo JC, Lymperopoulou DS, Gomez-Silvan C, Rothschild-Mancinelli B, Balk M, Huttenhower C, Nocker A, Vaishampayan P, Rothschild LJ. Schrödinger's microbes: Tools for distinguishing the living from the dead in microbial ecosystems. MICROBIOME 2017; 5:86. [PMID: 28810907 PMCID: PMC5558654 DOI: 10.1186/s40168-017-0285-3] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/05/2017] [Indexed: 05/16/2023]
Abstract
While often obvious for macroscopic organisms, determining whether a microbe is dead or alive is fraught with complications. Fields such as microbial ecology, environmental health, and medical microbiology each determine how best to assess which members of the microbial community are alive, according to their respective scientific and/or regulatory needs. Many of these fields have gone from studying communities on a bulk level to the fine-scale resolution of microbial populations within consortia. For example, advances in nucleic acid sequencing technologies and downstream bioinformatic analyses have allowed for high-resolution insight into microbial community composition and metabolic potential, yet we know very little about whether such community DNA sequences represent viable microorganisms. In this review, we describe a number of techniques, from microscopy- to molecular-based, that have been used to test for viability (live/dead determination) and/or activity in various contexts, including newer techniques that are compatible with or complementary to downstream nucleic acid sequencing. We describe the compatibility of these viability assessments with high-throughput quantification techniques, including flow cytometry and quantitative PCR (qPCR). Although bacterial viability-linked community characterizations are now feasible in many environments and thus are the focus of this critical review, further methods development is needed for complex environmental samples and to more fully capture the diversity of microbes (e.g., eukaryotic microbes and viruses) and metabolic states (e.g., spores) of microbes in natural environments.
Collapse
Affiliation(s)
- Joanne B. Emerson
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210 USA
- Current Address: Department of Plant Pathology, University of California, Davis, CA USA
| | - Rachel I. Adams
- Department of Plant & Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720 USA
| | - Clarisse M. Betancourt Román
- Biology and the Built Environment Center, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403 USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403 USA
| | - Brandon Brooks
- Department of Plant & Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720 USA
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA 94720 USA
| | - David A. Coil
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Katherine Dahlhausen
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Holly H. Ganz
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Erica M. Hartmann
- Biology and the Built Environment Center, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403 USA
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Tiffany Hsu
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Nicholas B. Justice
- Lawrence Berkeley National Lab, 1 Cyclotron Road, 955-512L, Berkeley, CA 94720 USA
| | - Ivan G. Paulino-Lima
- Universities Space Research Association, NASA Ames Research Center, Mail Stop 239-20, Building 239, room 377, Moffett Field, CA 94035-1000 USA
| | - Julia C. Luongo
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, 427 UCB, Boulder, CO 80309 USA
| | - Despoina S. Lymperopoulou
- Department of Plant & Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720 USA
| | - Cinta Gomez-Silvan
- Lawrence Berkeley National Lab, 1 Cyclotron Road, 955-512L, Berkeley, CA 94720 USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94702 USA
| | | | - Melike Balk
- Department of Earth Sciences – Petrology, Faculty of Geosciences, Utrecht University, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Andreas Nocker
- IWW Water Centre, Moritzstrasse 26, 45476 Mülheim an der Ruhr, Germany
| | - Parag Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Lynn J. Rothschild
- Planetary Sciences and Astrobiology, NASA Ames Research Center, Mail Stop 239-20, Building 239, room 361, Moffett Field, CA 94035-1000 USA
| |
Collapse
|
13
|
Caburlotto G, Suffredini E, Toson M, Fasolato L, Antonetti P, Zambon M, Manfrin A. Occurrence and molecular characterisation of Vibrio parahaemolyticus in crustaceans commercialised in Venice area, Italy. Int J Food Microbiol 2015; 220:39-49. [PMID: 26773255 DOI: 10.1016/j.ijfoodmicro.2015.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/08/2015] [Accepted: 12/20/2015] [Indexed: 02/09/2023]
Abstract
Infections due to the pathogenic human vibrios, Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus, are mainly associated with consumption of raw or partially cooked bivalve molluscs. At present, little is known about the presence of Vibrio species in crustaceans and the risk of vibriosis associated with the consumption of these products. The aim of the present study was to evaluate the prevalence and concentration of the main pathogenic Vibrio spp. in samples of crustaceans (n=143) commonly eaten in Italy, taking into account the effects of different variables such as crustacean species, storage conditions and geographic origin. Subsequently, the potential pathogenicity of V. parahaemolyticus strains isolated from crustaceans (n=88) was investigated, considering the classic virulence factors (tdh and trh genes) and four genes coding for relevant proteins of the type III secretion systems 2 (T3SS2α and T3SS2β). In this study, the presence of V. cholerae and V. vulnificus was never detected, whereas 40 samples (28%) were positive for V. parahaemolyticus with an overall prevalence of 41% in refrigerated products and 8% in frozen products. The highest prevalence and average contamination levels were detected in Crangon crangon (prevalence 58% and median value 3400 MPN/g) and in products from the northern Adriatic Sea (35%), with the samples from the northern Venetian Lagoon reaching a median value of 1375 MPN/g. While genetic analysis confirmed absence of the tdh gene, three of the isolates contained the trh gene and, simultaneously, the T3SS2β genes. Moreover three possibly clonal tdh-negative/trh-negative isolates carried the T3SS2α apparatus. The detection of both T3SS2α and T3SS2β apparatuses in V. parahaemolyticus strains isolated from crustaceans emphasised the importance of considering new genetic markers associated with virulence besides the classical factors. Moreover this study represents the first report dealing with Vibrio spp. in crustaceans in Italy, and it may provide useful information for the development of sanitary surveillance plans to prevent the risk of vibriosis in seafood consumers.
Collapse
Affiliation(s)
- Greta Caburlotto
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale Dell'Università 10, 35020 Legnaro, Padua, Italy.
| | - Elisabetta Suffredini
- Istituto Superiore di Sanità, Department of Veterinary Public Health and Food Safety, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marica Toson
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale Dell'Università 10, 35020 Legnaro, Padua, Italy
| | - Luca Fasolato
- University of Padova, Department of Comparative Biomedicine and Food Science, Viale dell'Università 16, 35020 Legnaro, Padua, Italy
| | - Paolo Antonetti
- Azienda Ulss 12 Veneziana, Department of Prevention - Veterinary Service, P.le San Lorenzo Giustiniani 11/d, 30174 Venezia Mestre, VE, Italy
| | - Michela Zambon
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale Dell'Università 10, 35020 Legnaro, Padua, Italy
| | - Amedeo Manfrin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale Dell'Università 10, 35020 Legnaro, Padua, Italy
| |
Collapse
|
14
|
Li H, Xin H, Li SFY. Multiplex PMA-qPCR Assay with Internal Amplification Control for Simultaneous Detection of Viable Legionella pneumophila, Salmonella typhimurium, and Staphylococcus aureus in Environmental Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14249-56. [PMID: 26512952 DOI: 10.1021/acs.est.5b03583] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pathogenic microorganisms are responsible for many infectious diseases, and pathogen monitoring is important and necessary for water quality control. This study for the first time explored a multiplex quantitative real-time PCR (qPCR) technique combined with propidium monoazide (PMA) to simultaneously detect viable Legionella pneumophila, Salmonella typhimurium, and Staphylococcus aureus in one reaction from water samples. Sodium lauroyl sarcosinate (sarkosyl) was applied to enhance the dead bacterial permeability of PMA. The sensitivity of the multiplex PMA-qPCR assay achieved two colony-forming units (CFU) per reaction for L. pneumophila and three CFU per reaction for S. typhimurium and S. aureus. No PCR products were amplified from all nontarget control samples. Significantly, with comparable specificity and sensitivity, this newly invented multiplex PMA-qPCR assay took a much shorter time than did conventional culture assays when testing water samples with spiked bacteria and simulated environmental water treatment. The viable multiplex PMA-qPCR assay was further successfully applied to pathogen detection from rivers, canals, and tap water samples after simple water pretreatment.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Chemistry, Faculty of Science, National University of Singapore , 3 Science Drive 3, Singapore 117543
| | - Hongyi Xin
- Bioinformatics Institute, Agency for Science, Technology and Research , 30 Biopolis Street, Singapore 138671
| | - Sam Fong Yau Li
- Department of Chemistry, Faculty of Science, National University of Singapore , 3 Science Drive 3, Singapore 117543
- NUS Environmental Research Institute, National University of Singapore , 5A Engineering Drive 1, Singapore 117411
| |
Collapse
|
15
|
Wang L, Ye C, Xu H, Aguilar ZP, Xiong Y, Lai W, Wei H. Development of an SD-PMA-mPCR assay with internal amplification control for rapid and sensitive detection of viable Salmonella spp., Shigella spp. and Staphylococcus aureus in food products. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Cell membrane integrity and distinguishing between metabolically active and inactive cells as a means of improving viability PCR. Mol Cell Probes 2015; 29:190-2. [DOI: 10.1016/j.mcp.2015.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 11/24/2022]
|
17
|
Alves J, Niguma NH, de Oliveira TC. Detection of Salmonella
spp. in Eight Complex Food Matrices Using Polymerase Chain Reaction Assay. J Food Saf 2015. [DOI: 10.1111/jfs.12194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juliane Alves
- Department of Food Science and Technology; Londrina State University; Rodovia Celso Garcia Cid, PR 445, Km 380, Campus Universitário, Caixa Postal 10.011 CEP 86057-970 Londrina Paraná Brazil
| | - Natália H. Niguma
- Department of Food Science and Technology; Londrina State University; Rodovia Celso Garcia Cid, PR 445, Km 380, Campus Universitário, Caixa Postal 10.011 CEP 86057-970 Londrina Paraná Brazil
| | - Tereza C.R.M. de Oliveira
- Department of Food Science and Technology; Londrina State University; Rodovia Celso Garcia Cid, PR 445, Km 380, Campus Universitário, Caixa Postal 10.011 CEP 86057-970 Londrina Paraná Brazil
| |
Collapse
|
18
|
Vendrame M, Manzano M, Comi G, Bertrand J, Iacumin L. Use of propidium monoazide for the enumeration of viable Brettanomyces bruxellensis in wine and beer by quantitative PCR. Food Microbiol 2014; 42:196-204. [PMID: 24929737 DOI: 10.1016/j.fm.2014.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/29/2014] [Accepted: 03/13/2014] [Indexed: 11/25/2022]
Abstract
Brettanomyces bruxellensis is a current problem in winemaking all over the world, and the question if B. bruxellensis has a positive or negative impact on wine is one of the most controversial discussions in the world. The presence of live B. bruxellensis cells represents the risk of growth and an increase in cell numbers, which is related to the potential production of volatile phenols. In this work, the optimisation of a PMA-quantitative PCR (qPCR) method to enumerate only viable cells was carried out using the standard strain B. bruxellensis DSMZ 70726. The obtained detection limits were 0.83 log CFU/mL in red wine, 0.63 log CFU/mL in white wine and 0.23 log CFU/mL in beer. Moreover, the quantification was also performed by Reverse Transcription quantitative PCR (RT-qPCR), and the results showed a higher detection limit for all of the trials.
Collapse
Affiliation(s)
- Marco Vendrame
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, via Sondrio 2/A, 33100 Udine, Italy
| | - Marisa Manzano
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, via Sondrio 2/A, 33100 Udine, Italy
| | - Giuseppe Comi
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, via Sondrio 2/A, 33100 Udine, Italy
| | - Julien Bertrand
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, via Sondrio 2/A, 33100 Udine, Italy
| | - Lucilla Iacumin
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, via Sondrio 2/A, 33100 Udine, Italy.
| |
Collapse
|
19
|
Wang L, Li P, Zhang Z, Chen Q, Aguilar ZP, Xu H, Yang L, Xu F, Lai W, Xiong Y, Wei H. Rapid and accurate detection of viable Escherichia coli O157:H7 in milk using a combined IMS, sodium deoxycholate, PMA and real-time quantitative PCR process. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.08.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Use of sodium lauroyl sarcosinate (sarkosyl) in viable real-time PCR for enumeration of Escherichia coli. J Microbiol Methods 2014; 98:89-93. [PMID: 24445114 DOI: 10.1016/j.mimet.2014.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/07/2014] [Accepted: 01/07/2014] [Indexed: 11/22/2022]
Abstract
The cell membranes of inactivated Escherichia coli are not always permeable to propidium monoazide (PMA). This limits the use of PMA real-time PCR (PMA-qPCR) for quantification of DNA from only viable cells for enumeration of E. coli. The aim of this study was to develop PMA-qPCR procedures for E. coli with improved selectivity for viable cells. E. coli inactivated by incubation at 52°C were treated with 12 detergents before PMA treatment, and DNA was quantified by real-time PCR. Treatment with each of the 12 detergents and PMA increased the cycle threshold (Ct) values for heat inactivated E. coli suspensions. The greatest increase, of 10.68 Ct was obtained with sarkosyl. Treatment with sodium deoxycholate (NaDC) increased the Ct value by 8.99 Ct. Treatment with sarkosyl or NaDC of 16 heat treated 5-strain cocktails of verotoxigenic E. coli (VTEC) increased the mean Ct values by 8.15 or 6.82 Ct, respectively. Those mean values were significantly (p<0.05) different. When used to enumerate viable E. coli in suspensions treated with lactic acid or in mixtures of viable E. coli and E. coli inactivated by peroxyacetic acid, the slopes relating the Ct values from sarkosyl treated samples to the numbers of viable E. coli were 2.24 and 2.47, respectively, with regression coefficient values ≥0.85. The findings show that sarkosyl was more effective than NaDC for dissipation of PMA-barrier properties of membranes of inactivated E. coli cells. Viable E. coli in mixtures of viable E. coli and E. coli inactivated by heat, lactic acid or peroxyacetic acid could be reliably enumerated by sarkosyl PMA-qPCR.
Collapse
|
21
|
Nkuipou-Kenfack E, Engel H, Fakih S, Nocker A. Improving efficiency of viability-PCR for selective detection of live cells. J Microbiol Methods 2013; 93:20-4. [DOI: 10.1016/j.mimet.2013.01.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/29/2013] [Indexed: 11/30/2022]
|
22
|
Vendrame M, Iacumin L, Manzano M, Comi G. Use of propidium monoazide for the enumeration of viable Oenococcus oeni in must and wine by quantitative PCR. Food Microbiol 2013; 35:49-57. [PMID: 23628614 DOI: 10.1016/j.fm.2013.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/24/2013] [Accepted: 02/15/2013] [Indexed: 01/05/2023]
Abstract
Malolactic fermentation is an important step in winemaking, but it has to be avoided in some cases. It's carried out by lactic acid bacteria belonging mainly to the genus Oenococcus, which is known to be a slow growing bacterium. Classical microbiological methods to enumerate viable cells of Oenococcus oeni in must and wine take 7-9 days to give results. Moreover, RT-qPCR technique gives accurate quantitative results, but it requires time consuming steps of RNA extraction and reverse transcription. In the present work we developed a fast and reliable quantitative PCR (qPCR) method to enumerate cells of Oenococcus oeni, directly, in must and wine. For the first time we used a propidium monoazide treatment of samples to enumerate only Oenococcus oeni viable cells. The detection limit of the developed method is 0.33 log CFU/mL (2.14 CFU/mL) in must, and 0.69 log CFU/mL (4.90 CFU/mL) in wine, lower than that of the previously developed qPCR protocols.
Collapse
Affiliation(s)
- Marco Vendrame
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, via Sondrio 2/A, 33100 Udine, Italy
| | | | | | | |
Collapse
|
23
|
Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification. J Microbiol Methods 2012; 91:276-89. [DOI: 10.1016/j.mimet.2012.08.007] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/16/2012] [Accepted: 08/16/2012] [Indexed: 11/20/2022]
|
24
|
Neupane GP, Kim DM, Yun NR, Shin SH, Lim SC, Choi CH. Quantitative PCR and in vivo efficacy of antibiotics in the treatment of Vibrio vulnificus infection in a mouse model. Eur J Clin Microbiol Infect Dis 2012; 31:2461-7. [PMID: 22434454 DOI: 10.1007/s10096-012-1592-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 02/14/2012] [Indexed: 02/07/2023]
Abstract
The Centers for Disease Control and Prevention (CDC) recommend oral or intravenous doxycycline plus a third-generation cephalosporin or fluoroquinolone alone for the treatment of Vibrio vulnificus infections. Until now, no study has compared oral with parenteral administered doxycycline with respect to their in vivo efficacy. In the present work, ICR mice infected with a high dose of V. vulnificus were administered ciprofloxacin, ceftriaxone, and doxycycline. The bacterial DNA copy number in surviving and non-surviving mice was determined using quantitative polymerase chain reaction (qPCR). In this setting, ciprofloxacin was the most effective monotherapeutic drug, but a higher survival rate (50%) was achieved using the combination therapy of intraperitoneal doxycycline plus ceftriaxone. The blood of non-surviving mice at 12 h post-infection contained at least 10(4) DNA copies/μL, in contrast to 10(2) to 10(3) DNA copies/μL in surviving mice. Thus, in the treatment of V. vulnificus infections in humans, when the intravenous form of doxycycline is unavailable, ciprofloxacin might be a better option than oral doxycycline to lower mortality. In addition, our results demonstrate that qPCR can be a useful tool for identifying the V. vulnificus load in infected patients, with the DNA copy number providing a marker of either disease severity or mortality.
Collapse
Affiliation(s)
- G P Neupane
- Division of Infectious Diseases, Department of Internal Medicine, Chosun University School of Medicine, 588 Seosuk-dong, Dong-gu, Gwangju, 501-717, Republic of Korea
| | | | | | | | | | | |
Collapse
|
25
|
ALVES JULIANE, MARQUES VIVIANIVIEIRA, PEREIRA LUIZFILIPEPROTASIO, HIROOKA ELISAYOKO, DE OLIVEIRA TEREZACRISTINAROCHAMOREIRA. MULTIPLEX PCR FOR THE DETECTION OF CAMPYLOBACTER SPP. AND SALMONELLA SPP. IN CHICKEN MEAT. J Food Saf 2012. [DOI: 10.1111/j.1745-4565.2012.00386.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Ye K, Zhang Q, Jiang Y, Xu X, Cao J, Zhou G. Rapid detection of viable Listeria monocytogenes in chilled pork by real-time reverse-transcriptase PCR. Food Control 2012. [DOI: 10.1016/j.foodcont.2011.10.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Yang X, Badoni M, Gill CO. Use of propidium monoazide and quantitative PCR for differentiation of viable Escherichia coli from E. coli killed by mild or pasteurizing heat treatments. Food Microbiol 2011; 28:1478-82. [DOI: 10.1016/j.fm.2011.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 06/24/2011] [Accepted: 08/07/2011] [Indexed: 01/16/2023]
|
28
|
Rapid Detection Viable Escherichia Coli O157 in Raw Milk Using Loop-Mediated Isothermal Amplification with Aid of Ethidium Monoazide. ACTA ACUST UNITED AC 2011. [DOI: 10.4028/www.scientific.net/amr.343-344.1217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The distinction between viable and dead cells was a major issue in detection of pathogenic microbe in foods especially when foods had been subjected to thermal processing. The performance of a loop-mediated isothermal amplification (LAMP) assay with aid of ethidium monoazide (EMA) for detecting viable Escherichia coli O157 in raw milk was presented in this paper. Three pairs of primers were specially designed for recognizing eight distinct sequences of rfbE gene. LAMP can only amplified DNA of viable Escherichia coli O157 because EMA selectively penetrated dead cells and covalently bound to DNA, detection limit level for artificially contaminated raw milk samples by the EMA-LAMP assay was 440 cfu/mL corresponding to 3–5 cells per reaction tube, while the detection level by EMA-PCR was 4.4×104 cfu/mL. In conclusion, EMA-LAMP had offered a novel assay for distinction between viable and dead cells with promising application in food safety detection.
Collapse
|