1
|
Cano I, Wood G, Stone D, Noyer M, Canier L, Arzul I. Loop-Mediated Isothermal Amplification for the Fast Detection of Bonamia ostreae and Bonamia exitiosa in Flat Oysters. Pathogens 2024; 13:132. [PMID: 38392870 PMCID: PMC10893247 DOI: 10.3390/pathogens13020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
The haplosporidian parasites Bonamia ostreae (BO) and B. exitiosa (BE) are serious oyster pathogens. Two independent laboratories evaluated fluorescence real-time loop-mediated isothermal amplification (LAMP) assays for rapidly detecting these parasites. Specific LAMP assays were designed on the BO actin-1 and BE actin genes. A further generic assay was conceived on a conserved region of the 18S gene to detect both Bonamia species. The optimal reaction temperature varied from 65 to 67 °C depending on the test and instrument. Melting temperatures were 89.8-90.2 °C, 87.0-87.6 °C, and 86.2-86.6 °C for each of the BO, BE, and generic assays. The analytical sensitivity of these assays was 50 copies/µL in a 30 min run. The BO and BE test sensitivity was ~1 log lower than a real-time PCR, while the generic test sensitivity was similar to the real-time PCR. Both the BO and BE assays were shown to be specific; however, the generic assay potentially cross-reacts with Haplosporidium costale. The performance of the LAMP assays evaluated on samples of known status detected positives within 7-20 min with a test accuracy of 100% for the BO and generic tests and a 95.8% accuracy for BE. The ease of use, rapidity and affordability of these tests allow for field deployment.
Collapse
Affiliation(s)
- Irene Cano
- The International Centre of Excellence for Aquatic Animal Health, Cefas Weymouth Laboratory, Weymouth, Dorset DT4 8UB, UK (D.S.)
| | - Gareth Wood
- The International Centre of Excellence for Aquatic Animal Health, Cefas Weymouth Laboratory, Weymouth, Dorset DT4 8UB, UK (D.S.)
| | - David Stone
- The International Centre of Excellence for Aquatic Animal Health, Cefas Weymouth Laboratory, Weymouth, Dorset DT4 8UB, UK (D.S.)
| | - Mathilde Noyer
- The Institut Français de Recherche pour l’Exploitation de la Mer Ifremer, RBE-SG2M-ASIM, Station de La Tremblade, Avenue de Mus de Loup, La Tremblade, 17390 Brest, France; (M.N.); (L.C.); (I.A.)
| | - Lydie Canier
- The Institut Français de Recherche pour l’Exploitation de la Mer Ifremer, RBE-SG2M-ASIM, Station de La Tremblade, Avenue de Mus de Loup, La Tremblade, 17390 Brest, France; (M.N.); (L.C.); (I.A.)
| | - Isabelle Arzul
- The Institut Français de Recherche pour l’Exploitation de la Mer Ifremer, RBE-SG2M-ASIM, Station de La Tremblade, Avenue de Mus de Loup, La Tremblade, 17390 Brest, France; (M.N.); (L.C.); (I.A.)
| |
Collapse
|
2
|
Latent potential of current plant diagnostics for detection of sugarcane diseases. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
3
|
A Seasonal Study of Koi Herpesvirus and Koi Sleepy Disease Outbreaks in the United Kingdom in 2018 Using a Pond-Side Test. Animals (Basel) 2021; 11:ani11020459. [PMID: 33572469 PMCID: PMC7916346 DOI: 10.3390/ani11020459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Cyprinid herpesvirus (CyHV)-3 and carp edema virus (CEV), the causative agents of koi herpesvirus disease and koi sleepy disease, respectively, are emerging DNA viruses infecting koi and common carp. Similarities in their clinical presentation present difficulties for its on-site identification based on gross pathology. Fluorescence real-time loop-mediated isothermal amplification (LAMP) assays for detecting CyHV-3 and CEV DNA were designed to use border inspection posts and local testing by national authorities for outbreak control. The limit of these tests’ detection (102 and 103 viral copies for CyHV-3 and CEV, respectively) allows for the amplification of viral DNA in clinical samples in less than 20 min. The assays’ field performance was tested with 63 common carp mucus swabs taken during disease investigations in 2018, and the results validated with the reference laboratory analysis. Overall, the good performance, ease of use, and cost-effectiveness of these tests make them good candidates for a point of care test. However, further work is required to incorporate reliable internal controls and improve the sensitivity of these tests’ asymptomatic testing. Abstract Fluorescence real-time LAMP assays were designed for the orf43 gene of CyHV-3 European genotype and the p4a gene of the CEV genogroup I. A third LAMP assay to detect the ef1a gene of the host common carp was designed as an internal control. The limit of detection was 102 and 103 viral copies under 25 min for CyHV-3 and CEV, respectively. The specificity of the CyHV-3 LAMP assay was 95.6% of 72 fish herpesviruses tested. Sixty-three non-lethal common carp mucus swabs were collected across 16 sites during disease investigations. DNA extractions were performed in under 10 min using the QuickExtract™ digestion buffer. The LAMP amplification of CyHV-3 DNA in mucus swabs from clinical cases was detected from 4 to 13 min in 13 sites, while a co-infection of CyHV-3 and CEV was confirmed by LAMP in a single site. The LAMP results agreed with the results of the reference laboratory. The common carp ef1a was amplified only in 61% of the mucus swabs collected, preventing its use as a robust internal control to distinguish false negatives from invalid tests. After further optimization, these tests could be implemented for border inspection posts surveillance and decentralizing testing during disease outbreaks.
Collapse
|
4
|
Cano I, McCullough R, Mulhearn B, Gunning S, Waine A, Joiner C, Paley R. Non-lethal loop-mediated isothermal amplification assay as a point-of-care diagnostics tool for Neoparamoeba perurans, the causative agent of amoebic gill disease. JOURNAL OF FISH DISEASES 2020; 43:779-790. [PMID: 32364315 PMCID: PMC7383609 DOI: 10.1111/jfd.13175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Neoparamoeba perurans is the causative agent of amoebic gill disease (AGD). Two loop-mediated isothermal amplification (LAMP) assays targeting the parasite 18S rRNA and the Atlantic salmon EF1α, used as internal control, were designed. The N. perurans LAMP assay did not amplify close relatives N. pemaquidensis and N. branchiphila, or the host DNA. This assay detected 106 copies of the parasite 18S rRNA gene under 13 min and 103 copies under 35 min. Five "fast-and-dirty" DNA extraction methods were compared with a reference method and further validated by TaqMan™ qPCR. Of those, the QuickExtract buffer was selected for field tests. Seventy-one non-lethal gill swabs were analysed from AGD-clinically infected Atlantic salmon. The pathogen was detected under 23 min in fish of gill score >2 and under 39 min for lower gill scores. About 1.6% of the tests were invalid (no amplification of the internal control). 100% of positives were obtained from swabs taken from fish showing gill score ˃3, but only ~50% of positives for lower gill scores. The present LAMP assay could be implemented as a point-of-care test for the on-site identification of N. perurans; however, further work is required to improve its performance for lower scores.
Collapse
Affiliation(s)
- Irene Cano
- International Centre of Excellence for Aquatic Animal HealthCefas Weymouth LaboratoryWeymouthUK
| | - Robin McCullough
- International Centre of Excellence for Aquatic Animal HealthCefas Weymouth LaboratoryWeymouthUK
| | - Brian Mulhearn
- International Centre of Excellence for Aquatic Animal HealthCefas Weymouth LaboratoryWeymouthUK
| | - Susie Gunning
- International Centre of Excellence for Aquatic Animal HealthCefas Weymouth LaboratoryWeymouthUK
| | - Ava Waine
- International Centre of Excellence for Aquatic Animal HealthCefas Weymouth LaboratoryWeymouthUK
| | - Claire Joiner
- International Centre of Excellence for Aquatic Animal HealthCefas Weymouth LaboratoryWeymouthUK
| | - Richard Paley
- International Centre of Excellence for Aquatic Animal HealthCefas Weymouth LaboratoryWeymouthUK
| |
Collapse
|
5
|
Zou Y, Mason MG, Botella JR. Evaluation and improvement of isothermal amplification methods for point-of-need plant disease diagnostics. PLoS One 2020; 15:e0235216. [PMID: 32598374 PMCID: PMC7323990 DOI: 10.1371/journal.pone.0235216] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/10/2020] [Indexed: 01/01/2023] Open
Abstract
A number of isothermal DNA amplification technologies claim to be ideal for point-of-need (PON) applications as they enable reactions to be performed using a single-temperature heat source (e.g. water bath). Thus, we examined several isothermal amplification methods focusing on simplicity, cost, sensitivity and reproducibility to identify the most suitable method(s) for low resource PON applications. A number of methods were found unsuitable as they either involved multiple temperature incubations, were relatively expensive or required relatively large amounts target DNA for amplification. Among the methods examined, loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA) were found to be the most suitable for PON applications as they are both single step methods that provide highly sensitive and reproducible amplifications. The speed of LAMP reactions was greatly enhanced, up to 76%, with the addition of loop primers while the presence of swarm primers and the sequestration of free magnesium ions with nucleotides also enhanced the amplification speed. In contrast, we were unable to enhance RPA's performance from the original published literature. While both RPA and LAMP have some drawbacks, either isothermal technology can reliably be used for on-site diagnostics with minimal equipment.
Collapse
Affiliation(s)
- Yiping Zou
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Glenn Mason
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jose Ramon Botella
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Luchi N, Ioos R, Santini A. Fast and reliable molecular methods to detect fungal pathogens in woody plants. Appl Microbiol Biotechnol 2020; 104:2453-2468. [PMID: 32006049 PMCID: PMC7044139 DOI: 10.1007/s00253-020-10395-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022]
Abstract
Plant diseases caused by pathogenic microorganisms represent a serious threat to plant productivity, food security, and natural ecosystems. An effective framework for early warning and rapid response is a crucial element to mitigate or prevent the impacts of biological invasions of plant pathogens. For these reasons, detection tools play an important role in monitoring plant health, surveillance, and quantitative pathogen risk assessment, thus improving best practices to mitigate and prevent microbial threats. The need to reduce the time of diagnosis has prompted plant pathologists to move towards more sensitive and rapid methods such as molecular techniques. Considering prevention to be the best strategy to protect plants from diseases, this review focuses on fast and reliable molecular methods to detect the presence of woody plant pathogens at early stage of disease development before symptoms occur in the host. A harmonized pool of novel technical, methodological, and conceptual solutions is needed to prevent entry and establishment of new diseases in a country and mitigate the impact of both invasive and indigenous organisms to agricultural and forest ecosystem biodiversity and productivity.
Collapse
Affiliation(s)
- Nicola Luchi
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano, 10, I-50019, Sesto Fiorentino (Firenze), Italy.
| | - Renaud Ioos
- ANSES Plant Health Laboratory, Unit of Mycology, Domaine de Pixérécourt, 54220, Malzéville, France
| | - Alberto Santini
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano, 10, I-50019, Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
7
|
Tiberini A, Tomlinson J, Micali G, Fontana A, Albanese G, Tomassoli L. Development of a reverse transcription-loop- mediated isothermal amplification (LAMP) assay for the rapid detection of onion yellow dwarf virus. J Virol Methods 2019; 271:113680. [PMID: 31202851 DOI: 10.1016/j.jviromet.2019.113680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/14/2019] [Accepted: 06/13/2019] [Indexed: 11/18/2022]
Abstract
Onion yellow dwarf virus (OYDV) is one of the most important viral pathogens of onion. In particular, on 'Rossa di Tropea' onion, granted with Protected Geographical Indication (PGI) trademarks, this pathogen represents the most limiting biotic stress in terms of spread, severity of symptoms and damage, and its detection is necessary to preserve high quality standards and avoid yield losses. A reverse transcription-loop mediated isothermal amplification (RT-LAMP) assay was developed for detection of OYDV. The specificity, sensitivity, repeatability and reproducibility of the assay were validated according to EPPO standard PM7/98 (2). Diagnostic specificity, diagnostic sensitivity and diagnostic accuracy were determined in both leaf and bulb tissues. To enhance the feasibility of a LAMP-based method for field diagnosis, several nucleic acid extraction methods were compared to simplify sample preparation. The results showed the reliability of the method for OYDV detection, with a limit of detection (LOD) comparable to real time reverse transcription polymerase chain reaction (RT-qPCR). The ease of sample preparation, and the more than acceptable LOD, indicated that the RT-LAMP assay could be used in plant pathology laboratories with limited facilities and resources, as well as directly in the field. This work was carried out in the frame of "SI.ORTO" project.
Collapse
Affiliation(s)
- Antonio Tiberini
- Università degli Studi Mediterranea di Reggio Calabria, Dipartimento di AGRARIA, Località Feo di Vito, 89122 Reggio Calabria, Italy.
| | | | - Giuseppe Micali
- Università degli Studi Mediterranea di Reggio Calabria, Dipartimento di AGRARIA, Località Feo di Vito, 89122 Reggio Calabria, Italy
| | - Anna Fontana
- Università degli Studi Mediterranea di Reggio Calabria, Dipartimento di AGRARIA, Località Feo di Vito, 89122 Reggio Calabria, Italy
| | - Giuliana Albanese
- Università degli Studi Mediterranea di Reggio Calabria, Dipartimento di AGRARIA, Località Feo di Vito, 89122 Reggio Calabria, Italy
| | - Laura Tomassoli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Difesa e Certificazione, Via C.G. Bertero 22, 00156 Roma, Italy
| |
Collapse
|
8
|
Ortega SF, Tomlinson J, Hodgetts J, Spadaro D, Gullino ML, Boonham N. Development of Loop-Mediated Isothermal Amplification Assays for the Detection of Seedborne Fungal Pathogens Fusarium fujikuroi and Magnaporthe oryzae in Rice Seed. PLANT DISEASE 2018; 102:1549-1558. [PMID: 30673431 DOI: 10.1094/pdis-08-17-1307-re] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bakanae disease (caused by Fusarium fujikuroi) and rice blast (caused by Magnaporthe oryzae) are two of the most important seedborne pathogens of rice. The detection of both pathogens in rice seed is necessary to maintain high quality standards and avoid production losses. Currently, blotter tests are used followed by morphological identification of the developing pathogens to provide an incidence of infection in seed lots. Two loop-mediated isothermal amplification assays were developed with primers designed to target the elongation factor 1-α sequence of F. fujikuroi and the calmodulin sequence of M. oryzae. The specificity, sensitivity, selectivity, repeatability, and reproducibility for each assay was assessed in line with the international validation standard published by the European and Mediterranean Plant Protection Organization (PM7/98). The results showed a limit of detection of 100 to 999 fg of DNA of F. fujikuroi and 10 to 99 pg of M. oryzae DNA. When combined with a commercial DNA extraction kit, the assays were demonstrated to be effective for use in detection of the pathogens in commercial batches of infected rice seed of different cultivars, giving results equivalent to the blotter method, thus demonstrating the reliability of the method for the surveillance of F. fujikuroi and M. oryzae in seed-testing laboratories.
Collapse
Affiliation(s)
- Sara Franco Ortega
- Centre of Competence for the Innovation in the Agro-Environmental Sector-Agroinnova, and Department of Agricultural, Forestry and Food Sciences (DiSAFA), University of Turin, I-10095 Grugliasco, TO, Italy
| | | | | | - Davide Spadaro
- Centre of Competence for the Innovation in the Agro-environmental Sector-Agroinnova, and DiSAFA, University of Turin
| | - Maria Lodovica Gullino
- Centre of Competence for the Innovation in the Agro-environmental Sector-Agroinnova, and DiSAFA, University of Turin
| | - Neil Boonham
- FERA, and IAFRI, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
9
|
Lau HY, Botella JR. Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Diseases Detection. FRONTIERS IN PLANT SCIENCE 2017; 8:2016. [PMID: 29375588 PMCID: PMC5770625 DOI: 10.3389/fpls.2017.02016] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/13/2017] [Indexed: 05/07/2023]
Abstract
Diagnostic technologies for the detection of plant pathogens with point-of-care capability and high multiplexing ability are an essential tool in the fight to reduce the large agricultural production losses caused by plant diseases. The main desirable characteristics for such diagnostic assays are high specificity, sensitivity, reproducibility, quickness, cost efficiency and high-throughput multiplex detection capability. This article describes and discusses various DNA-based point-of care diagnostic methods for applications in plant disease detection. Polymerase chain reaction (PCR) is the most common DNA amplification technology used for detecting various plant and animal pathogens. However, subsequent to PCR based assays, several types of nucleic acid amplification technologies have been developed to achieve higher sensitivity, rapid detection as well as suitable for field applications such as loop-mediated isothermal amplification, helicase-dependent amplification, rolling circle amplification, recombinase polymerase amplification, and molecular inversion probe. The principle behind these technologies has been thoroughly discussed in several review papers; herein we emphasize the application of these technologies to detect plant pathogens by outlining the advantages and disadvantages of each technology in detail.
Collapse
Affiliation(s)
- Han Yih Lau
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, Serdang, Malaysia
| | - Jose R. Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Hyun IH, Choi W. Phytophthora species, new threats to the plant health in Korea. THE PLANT PATHOLOGY JOURNAL 2014; 30:331-42. [PMID: 25506298 PMCID: PMC4262286 DOI: 10.5423/ppj.rw.07.2014.0068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 05/06/2023]
Abstract
Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries into Korea from 1900 to 2010. The genus Phytophthora, classified in oomycetes, includes more than 120 species that are mostly recognized worldwide as highly invasive plant pathogens. After 2000, over 50 new species of Phytophthora were identified internationally as plant pathogens occurring in crops and forest trees. In Korea, Phytophthora is also one of the most serious plant pathogens. To date, 22 species (about one-fifth of known species) of the genus have been identified and reported as plant pathogens in the country. The likelihood of new exotic Phytophthora species being introduced into Korea continues to increase, thus necessitating intensive plant quarantine inspections. As new potential threats to plant health in Korea, six Phytophthora species, namely, P. alni, P. inundata, P. kernoviae, P. pinifolia, P. quercina, and P. ramorum, are discussed in this review with focus on history, disease, biology, management, and plant quarantine issues.
Collapse
Affiliation(s)
- Ik-Hwa Hyun
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Suwon 443-400, Korea
| | - Woobong Choi
- Department of Biotechnology and Bioengineering, Dongeui University, Busan 614-714, Korea
| |
Collapse
|
11
|
Martin FN, Abad ZG, Balci Y, Ivors K. Identification and Detection of Phytophthora: Reviewing Our Progress, Identifying Our Needs. PLANT DISEASE 2012; 96:1080-1103. [PMID: 30727075 DOI: 10.1094/pdis-12-11-1036-fe] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With the increased attention given to the genus Phytophthora in the last decade in response to the ecological and economic impact of several invasive species (such as P. ramorum, P. kernoviae, and P. alni), there has been a significant increase in the number of described species. In part, this is due to the extensive surveys in historically underexplored ecosystems (e.g., forest and stream ecosystems) undertaken to determine the spread of invasive species and the involvement of Phytophthora species in forest decline worldwide (e.g., oak decline). The past decade has seen an approximate doubling in the number of described species within the genus Phytophthora, and the number will likely continue to increase as more surveys are completed and greater attention is devoted to clarifying phylogenetic relationships and delineating boundaries in species complexes. The development of molecular resources, the availability of credible sequence databases to simplify identification of new species, and the sequencing of several genomes have provided a solid framework to gain a better understanding of the biology, diversity, and taxonomic relationships within the genus. This information is much needed considering the impact invasive or exotic Phytophthora species have had on natural ecosystems and the regulatory issues associated with their management. While this work is improving our ability to identify species based on phylogenetic grouping, it has also revealed that the genus has a much greater diversity than previously appreciated.
Collapse
Affiliation(s)
- Frank N Martin
- USDA, ARS, Crop Improvement and Protection Research Unit, Salinas, CA
| | - Z Gloria Abad
- USDA, APHIS, PPQ, Center for Plant Health Science and Technology (CPHST), Beltsville Laboratory, MD
| | - Yilmaz Balci
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD
| | - Kelly Ivors
- Department of Plant Pathology, NC State University, Mountain Hort. Crops Research & Extension Center, Mills River, NC
| |
Collapse
|
12
|
Scientific Opinion on the Pest Risk Analysis onPhytophthora ramorumprepared by the FP6 project RAPRA. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|