1
|
Gionchetta G, Snead D, Semerad S, Beck K, Pruden A, Bürgmann H. Dynamics of antibiotic resistance markers and Escherichia coli invasion in riverine heterotrophic biofilms facing increasing heat and flow stagnation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 893:164658. [PMID: 37321511 DOI: 10.1016/j.scitotenv.2023.164658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
As motivation to address environmental dissemination of antimicrobial resistance (AMR) is mounting, there is a need to characterize mechanisms by which AMR can propagate under environmental conditions. Here we investigated the effect of temperature and stagnation on the persistence of wastewater-associated antibiotic resistance markers in riverine biofilms and the invasion success of genetically-tagged Escherichia coli. Biofilms grown on glass slides incubated in-situ downstream of a wastewater treatment plant effluent discharge point were transferred to laboratory-scale flumes fed with filtered river water under potentially stressful temperature and flow conditions: recirculation flow at 20 °C, stagnation at 20 °C, and stagnation at 30 °C. After 14 days, quantitative PCR and amplicon sequencing were used to quantify bacteria, biofilms diversity, resistance markers (sul1, sul2, ermB, tetW, tetM, tetB, blaCTX-M-1, intI1) and E. coli. Resistance markers significantly decreased over time regardless of the treatment applied. Although invading E. coli were initially able to colonize the biofilms, its abundance subsequently declined. Stagnation was associated with a shift in biofilm taxonomic composition, but there was no apparent effect of flow conditions or the simulated river-pool warming (30 °C) on AMR persistence or invasion success of E. coli. Results however indicated that antibiotic resistance markers in the riverine biofilms decreased under the experimental conditions in the absence of exposure to external inputs of antibiotics and AMR.
Collapse
Affiliation(s)
- G Gionchetta
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland
| | - D Snead
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, USA; Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - S Semerad
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland
| | - K Beck
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland
| | - A Pruden
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - H Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland.
| |
Collapse
|
2
|
Do TT, Smyth C, Crispie F, Burgess C, Brennan F, Walsh F. Comparison of soil and grass microbiomes and resistomes reveals grass as a greater antimicrobial resistance reservoir than soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159179. [PMID: 36191722 DOI: 10.1016/j.scitotenv.2022.159179] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Grasslands cover a large proportion of global agricultural landmass used to feed herbivores and ruminants and link the environment to the food chain via animals onto humans. However, most scientific studies of antimicrobial resistance and microbiomes at the environmental - animal nexus have focused on soil or vegetables rather than grasslands. Based on previous microbiome phyllosphere-soil studies we hypothesised that the microbiome and resistomes across soil and grass would have a core of shared taxa and antimicrobial resistance genes (ARGs), but that in addition each would also have a minority of unique signatures. Our data indicated grass contained a wider variety and higher relative abundance of ARGs and mobile genetic elements (MGEs) than soil with or without slurry amendments. The microbiomes of soil and grass were similar in content but varied in the composition proportionality. While there were commonalities across many of the ARGs present in soil and on grass their correlations with MGEs and bacteria differed, suggesting a source other than soil is also relevant for the resistome of grass. The variations in the relative abundances of ARGs in soil and on grass also indicated that either the MGEs or the bacteria carrying the ARGs comprised a higher relative abundance on grass than in soil. We conclude that while soil may be a source of some of these genes it cannot be the source for all ARGs and MGEs. Our data identifies grass as a more diverse and abundant reservoir of ARGs and MGEs in the environment than soil, which is significant to human and animal health when viewed in the context of grazing food animals.
Collapse
Affiliation(s)
- Thi Thuy Do
- Department of Biology, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - Cian Smyth
- Department of Biology, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
| | | | - Fiona Brennan
- Teagasc, Crops, Environment and Land-Use Programme, Johnstown Castle, Co. Wexford Y35 Y521, Ireland
| | - Fiona Walsh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
3
|
Major N, Jechalke S, Nesme J, Goreta Ban S, Černe M, Sørensen SJ, Ban D, Grosch R, Schikora A, Schierstaedt J. Influence of sewage sludge stabilization method on microbial community and the abundance of antibiotic resistance genes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 154:126-135. [PMID: 36242814 DOI: 10.1016/j.wasman.2022.09.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Municipal sewage sludge (MSS) and other biosolids are of high interest for agriculture. These nutrient-rich organic materials can potentially serve as organic fertilizers. Besides an increase of organic matter in soil, other positive effects were shown after their application. Especially the positive influence on circular economy increased the attention paid to management of MSS in recent years. Unfortunately, the use of sewage sludge has some drawbacks. Biosolids are frequently polluted with heavy metals, xenobiotic organic compounds and industrial chemicals, which may be hazardous for the environment and humans. Here, we investigated the influence of stabilization method and the size of wastewater treatment plant on the structure of microbial communities as well as the abundance of antibiotic resistance genes (ARG) and mobile genetic elements (MGE). All tested ARG and MGE were detectable in almost all of the samples. Interestingly, the presence of MGE as well as particular heavy metals correlated positively with the presence of several ARG. We conclude that the distribution of ARG and MGE in biosolids originated from municipal wastewater treatment plants, cannot be explained by the size of the facility or the applied stabilization method. Moreover, we postulate that the presence of pollutants and long-term impacts should be assessed prior to a possible use of sewage sludge as fertilizer.
Collapse
Affiliation(s)
- Nikola Major
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Sven Jechalke
- Institute for Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | | | - Marko Černe
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Dean Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops, Department Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Adam Schikora
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany.
| | - Jasper Schierstaedt
- Leibniz Institute of Vegetable and Ornamental Crops, Department Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| |
Collapse
|
4
|
Galgano S, Conway L, Maggio FD, Farthing K, Dalby N, Fellows A, Houdijk JGM. Precursor-derived in-water peracetic acid impacts on broiler performance, gut microbiota, and antimicrobial resistance genes. Poult Sci 2022; 102:102368. [PMID: 36566657 PMCID: PMC9801209 DOI: 10.1016/j.psj.2022.102368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 12/07/2022] Open
Abstract
Past antimicrobial misuse has led to the spread of antimicrobial resistance amongst pathogens, reportedly a major public health threat. Attempts to reduce the spread of antimicrobial resistant (AMR) bacteria are in place worldwide, among which finding alternatives to antimicrobials have a pivotal role. Such molecules could be used as "green alternatives" to reduce the bacterial load either by targeting specific bacterial groups or more generically, functioning as biocides when delivered in vivo. In this study, the effect of in-water peracetic acid as a broad-spectrum antibiotic alternative for broilers was assessed via hydrolysis of precursors sodium percarbonate and tetraacetylethylenediamine. Six equidistant peracetic acid levels were tested from 0 to 50 ppm using four pens per treatment and 4 birds per pen (i.e., 16 birds per treatment and 96 in total). Peracetic acid was administered daily from d 7 to 14 of age whilst measuring performance parameters and end-point bacterial concentration (qPCR) in crop, jejunum, and ceca, as well as crop 16S sequencing. PAA treatment, especially at 20, 30, and 40 ppm, increased body weight at d 14, and feed intake during PAA exposure compared to control (P < 0.05). PAA decreased bacterial concentration in the crop only (P < 0.05), which was correlated to better performance (P < 0.05). Although no differences in alpha- and beta-diversity were found, it was observed a reduction of Lactobacillus (P < 0.05) and Flectobacillus (P < 0.05) in most treatments compared to control, together with an increased abundance of predicted 4-aminobutanoate degradation (V) pathway. The analysis of the AMR genes did not point towards any systematic differences in gene abundance due to treatment administration. This, together with the rest of our observations could indicate that proximal gut microbiota modulation could result in performance amelioration. Thus, peracetic acid may be a valid antimicrobial alternative that could also positively affect performance.
Collapse
Affiliation(s)
- Salvatore Galgano
- Monogastric Science Research Centre, Scotland's Rural College, Edinburgh, Scotland, United Kingdom.
| | - Leah Conway
- Gama Healthcare Ltd and Aga Nanotech Ltd, Halifax, United Kingdom
| | | | - Kathryn Farthing
- Gama Healthcare Ltd and Aga Nanotech Ltd, Halifax, United Kingdom
| | - Nikki Dalby
- Centre for Innovation Excellence in Livestock, York, United Kingdom
| | - Adrian Fellows
- Gama Healthcare Ltd and Aga Nanotech Ltd, Halifax, United Kingdom
| | - Jos G M Houdijk
- Monogastric Science Research Centre, Scotland's Rural College, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
5
|
Xu X, Zhou W, Xie C, Zhu Y, Tang W, Zhou X, Xiao H. Airborne bacterial communities in the poultry farm and their relevance with environmental factors and antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157420. [PMID: 35850323 DOI: 10.1016/j.scitotenv.2022.157420] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The accelerating occurrence and environmental dissemination of bacteria, gas pollutants and antibiotic resistance genes (ARGs) in aerosols of poultry farms have become emerging environmental issues due to their potential threat to animals, workers, and the communities located near such farms. Here, aerosol samples were gathered from inside and outside of the chicken house in winter with a transportable high-flow bioaerosol sampler. Then, 16S rRNA gene amplicon sequencing was used to categorize the bacteria in air samples, and the abundance of 12 ARG subtypes was researched via the real-time quantitative polymerase chain reaction (qPCR). Results indicated that the bacterial richness and diversity and total absolute abundance of ARGs were similar in the bioaerosols from indoor and downwind site of the poultry farm. The zoonotic pathogens, Staphylococcus and Corynebacterium, were detected both inside and outside of the chicken house, and the four most abundant target genes were blaTEM, tetQ, ermB and sul1 in aerosols. Moreover, the correlation between the bacterial communities and environmental factors, such as NH3 and H2S concentrations, wind speed, temperature and relative humidity, was analyzed. The result revealed that the indoor bacteria community was positively associated with temperature and concentrations of air pollutants (NH3 and H2S), and could spread from confinement buildings to the ambient atmosphere through wind. In addition, the network analysis result showed that the airborne bacteria might significantly contribute in shaping the ARGs' profiles in bioaerosol from inside and outside of the poultry house. Overall, our results revealed the airborne bacterial communities and their associated influencing factors in the micro-environment (inside of the chicken house and nearby the boundary of the farm), and brought a new perspective for studying the gas pollutants and bioaerosol from poultry farms in winter.
Collapse
Affiliation(s)
- Xing Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weidong Zhou
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chuanqi Xie
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yinchu Zhu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wensheng Tang
- Institute of Animal Husbandry and Veterinary Science, Huangyan Bureau of Agriculture and Rural Affairs, Taizhou 318020, China
| | - Xin Zhou
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hua Xiao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
6
|
Keely SP, Brinkman NE, Wheaton EA, Jahne MA, Siefring SD, Varma M, Hill RA, Leibowitz SG, Martin RW, Garland JL, Haugland RA. Geospatial Patterns of Antimicrobial Resistance Genes in the US EPA National Rivers and Streams Assessment Survey. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14960-14971. [PMID: 35737903 PMCID: PMC9632466 DOI: 10.1021/acs.est.2c00813] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Antimicrobial resistance (AR) is a serious global problem due to the overuse of antimicrobials in human, animal, and agriculture sectors. There is intense research to control the dissemination of AR, but little is known regarding the environmental drivers influencing its spread. Although AR genes (ARGs) are detected in many different environments, the risk associated with the spread of these genes to microbial pathogens is unknown. Recreational microbial exposure risks are likely to be greater in water bodies receiving discharge from human and animal waste in comparison to less disturbed aquatic environments. Given this scenario, research practitioners are encouraged to consider an ecological context to assess the effect of environmental ARGs on public health. Here, we use a stratified, probabilistic survey of nearly 2000 sites to determine national patterns of the anthropogenic indicator class I integron Integrase gene (intI1) and several ARGs in 1.2 million kilometers of United States (US) rivers and streams. Gene concentrations were greater in eastern than in western regions and in rivers and streams in poor condition. These first of their kind findings on the national distribution of intI1 and ARGs provide new information to aid risk assessment and implement mitigation strategies to protect public health.
Collapse
Affiliation(s)
- Scott P. Keely
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Nichole E. Brinkman
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Emily A. Wheaton
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Michael A. Jahne
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Shawn D. Siefring
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Manju Varma
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Ryan A. Hill
- Center
for Public Health and Environmental Assessment, US Environmental Protection Agency, Corvallis, Oregon 97333, United States
| | - Scott G. Leibowitz
- Center
for Public Health and Environmental Assessment, US Environmental Protection Agency, Corvallis, Oregon 97333, United States
| | - Roy W. Martin
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Jay L. Garland
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Richard A. Haugland
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| |
Collapse
|
7
|
Sources and Drivers of ARGs in Urban Streams in Atlanta, Georgia, USA. Microorganisms 2022; 10:microorganisms10091804. [PMID: 36144405 PMCID: PMC9503305 DOI: 10.3390/microorganisms10091804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The spread of antibiotic resistance genes (ARGs) in the aquatic environment is an emerging concern in the interest of protecting public health. Stemming the environmental dissemination of ARGs will require a better understanding of the sources and drivers of ARGs in the water environment. In this study, we used direct measurement of sewage-associated molecular markers, the class 1 integron gene, standard water quality parameters, and watershed characteristics to evaluate the sources and drivers of ARGs in an urban watershed impacted by a gradient of human activities. Quantitative polymerase chain reaction (qPCR) was used to quantify the abundance of the sewage-associated HF183, the E. coli fecal indicator, class 1 integron gene (int1), and the ARGs sulI, sulII, tetW, tetM, ampC, and blaSHV in stream water samples collected from the Proctor Creek watershed in Atlanta, Georgia. Our findings show that ARGs were widely distributed, with detection frequencies of 96% (sulI and sulII), 82% (tetW and tetM), and 49% (ampC and blaSHV). All the ARGs were positively and significantly correlated (r > 0.5) with the HF183 and E. coli markers. Non-linear machine learning models developed using generalized boosting show that more than 70% of the variation in ARG loads in the watershed could be explained by fecal source loading, with other factors such as class 1 integron, which is associated with acquired antibiotic resistance, and environmental factors contributing < 30% to ARG variation. These results suggest that input from fecal sources is a more critical driver of ARG dissemination than environmental stressors or horizontal gene transfer in aquatic environments highly impacted by anthropogenic pollution. Finally, our results provide local watershed managers and stakeholders with information to mitigate the burden of ARGs and fecal bacteria in urban streams.
Collapse
|
8
|
Røken M, Forfang K, Wasteson Y, Haaland AH, Eiken HG, Hagen SB, Bjelland AM. Antimicrobial resistance- Do we share more than companionship with our dogs? J Appl Microbiol 2022; 133:1027-1039. [PMID: 35596927 PMCID: PMC9542740 DOI: 10.1111/jam.15629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022]
Abstract
Aims To investigate and compare antimicrobial resistance genes (ARGs) in faeces from cohabiting dogs and owners. Methods and Results DNA from faecal samples from 35 dogs and 35 owners was screened for the presence of 34 clinically relevant ARGs using high throughput qPCR. In total, 24 and 25 different ARGs were present in the dog and owner groups, respectively. The households had a mean of 9.9 ARGs present, with dogs and owners sharing on average 3.3 ARGs. ARGs were shared significantly more in households with dogs over 6 years old (3.5, interquartile range 2.75–5.0) than in households with younger dogs (2.5, interquartile range 2.0–3.0) (p = 0.02). Dogs possessed significantly more mecA and aminoglycoside resistance genes than owners. Conclusions Dogs and owners can act as reservoirs for a broad range of ARGs belonging to several antimicrobial resistance classes. A modest proportion of the same resistance genes were present in both dogs and owners simultaneously, indicating that ARG transmission between the dog and human gut is of minor concern in the absence of antimicrobial selection. Significance and Impact of the Study This study provides insight into the common dog and human gut resistomes, contributing to an improved knowledge base in risk assessments regarding ARG transmission between dogs and humans.
Collapse
Affiliation(s)
- Mari Røken
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine Department of Paraclinical Sciences, Ås, Norway
| | - Kristin Forfang
- Norwegian Institute of Bioeconomy Research, Division of Environment and Natural Resources, Ås, Norway
| | - Yngvild Wasteson
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine Department of Paraclinical Sciences, Ås, Norway
| | - Anita Haug Haaland
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine Department of Companion Animal Clinical Sciences, Ås, Norway
| | - Hans Geir Eiken
- Norwegian Institute of Bioeconomy Research, Division of Environment and Natural Resources, Ås, Norway
| | - Snorre B Hagen
- Norwegian Institute of Bioeconomy Research, Division of Environment and Natural Resources, Ås, Norway
| | - Ane Mohn Bjelland
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine Department of Paraclinical Sciences, Ås, Norway
| |
Collapse
|
9
|
Caron K, Craw P, Richardson MB, Bodrossy L, Voelcker NH, Thissen H, Sutherland TD. The Requirement of Genetic Diagnostic Technologies for Environmental Surveillance of Antimicrobial Resistance. SENSORS 2021; 21:s21196625. [PMID: 34640944 PMCID: PMC8513014 DOI: 10.3390/s21196625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
Antimicrobial resistance (AMR) is threatening modern medicine. While the primary cost of AMR is paid in the healthcare domain, the agricultural and environmental domains are also reservoirs of resistant microorganisms and hence perpetual sources of AMR infections in humans. Consequently, the World Health Organisation and other international agencies are calling for surveillance of AMR in all three domains to guide intervention and risk reduction strategies. Technologies for detecting AMR that have been developed for healthcare settings are not immediately transferable to environmental and agricultural settings, and limited dialogue between the domains has hampered opportunities for cross-fertilisation to develop modified or new technologies. In this feature, we discuss the limitations of currently available AMR sensing technologies used in the clinic for sensing in other environments, and what is required to overcome these limitations.
Collapse
Affiliation(s)
- Karine Caron
- CSIRO Health & Biosecurity, Canberra, ACT 2602, Australia;
| | - Pascal Craw
- CSIRO Oceans & Atmosphere, Hobart, TAS 7004, Australia; (P.C.); (L.B.)
| | - Mark B. Richardson
- CSIRO Manufacturing, Clayton, VIC 3168, Australia; (M.B.R.); (N.H.V.); (H.T.)
| | - Levente Bodrossy
- CSIRO Oceans & Atmosphere, Hobart, TAS 7004, Australia; (P.C.); (L.B.)
| | - Nicolas H. Voelcker
- CSIRO Manufacturing, Clayton, VIC 3168, Australia; (M.B.R.); (N.H.V.); (H.T.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Clayton, VIC 3168, Australia; (M.B.R.); (N.H.V.); (H.T.)
| | - Tara D. Sutherland
- CSIRO Health & Biosecurity, Canberra, ACT 2602, Australia;
- Correspondence:
| |
Collapse
|
10
|
On-Farm Anaerobic Digestion of Dairy Manure Reduces the Abundance of Antibiotic Resistance-Associated Gene Targets and the Potential for Plasmid Transfer. Appl Environ Microbiol 2021; 87:e0298020. [PMID: 33931422 DOI: 10.1128/aem.02980-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The present study investigated the impact of on-farm anaerobic digestion on the abundance of enteric bacteria, antibiotic resistance-associated gene targets, and the horizontal transfer potential of extended-spectrum β-lactamase (ESBL) genes. Samples of raw and digested manure were obtained from six commercial dairy farms in Ontario, Canada. Digestion significantly abated populations of viable coliforms in all six farms. Conjugative transfer of plasmids carrying β-lactamase genes from manure bacteria enriched overnight with buffered peptone containing 4 mg/liter cefotaxime into a β-lactam-sensitive green fluorescent protein (GFP)-labeled Escherichia coli recipient strain was evaluated in patch matings. Digestion significantly decreased the frequency of the horizontal transfer of ESBL genes. Twenty-five transconjugants were sequenced, revealing six distinct plasmids, ranging in size from 40 to 180 kb. A variety of ESBL genes were identified: blaCTX-M-1, blaCTX-M-14, blaCTX-M-15, blaCTX-M-27, blaCTX-M-55, and blaPER-1. blaCTX-M-15 was the most prevalent ESBL gene detected on plasmids harbored by transconjugants. Various mobile genetic elements were found located proximal to resistance genes. Ten gene targets, including sul1, str(A), str(B), erm(B), erm(F), intI1, aadA, incW, blaPSE, and blaOXA-20, were quantified by quantitative PCR on a subset of 18 raw and 18 digested samples. Most targets were significantly more abundant in raw manure; however, erm(B) and erm(F) targets were more abundant in digested samples. Overall, on-farm digestion of dairy manure abated coliform bacteria, a number of antibiotic resistance-associated gene targets, and the potential for in vitro conjugation of plasmids conferring resistance to extended-spectrum β-lactams and other classes of antibiotics into E. coli CV601. IMPORTANCE Using livestock manure for fertilization can entrain antibiotic-resistant bacteria into soil. Manure on some dairy farms is anaerobically digested before being land applied. Recommending the widespread implementation of the practice should be founded on understanding the impact of this treatment on various endpoints of human health concern. Although lab-scale anaerobic treatments have shown potential for reducing the abundance of antibiotic resistance genes, there are very few data from commercial farms. Anaerobic digestion of manure on six dairy farms efficiently abated coliform bacteria, E. coli, and a majority of antibiotic resistance-associated gene targets. In addition, the conjugation potential of plasmids carrying ESBL genes into introduced E. coli strain CV601 was reduced. Overall, anaerobic digestion abated coliform bacteria, the genes that they carry, and the potential for ESBL-carrying plasmid transfer.
Collapse
|
11
|
Yadav S, Caliboso KD, Nanquil JE, Zhang J, Kae H, Neupane K, Mishra B, Jha R. Cecal microbiome profile of Hawaiian feral chickens and pasture-raised broiler (commercial) chickens determined using 16S rRNA amplicon sequencing. Poult Sci 2021; 100:101181. [PMID: 34091350 PMCID: PMC8182230 DOI: 10.1016/j.psj.2021.101181] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/20/2021] [Accepted: 03/26/2021] [Indexed: 01/17/2023] Open
Abstract
This study investigated the taxonomic profile and abundance distribution of the bacterial community in the ceca of feral and pasture-raised broiler (commercial) chickens. Cecal content from feral and commercial chickens (n = 7 each) was collected, and total DNA was isolated. Next-Generation Sequencing (Illumina MiSeq) was performed to characterize the cecal microbiota. Specific bacteria explored were: Bacteroides, Bifidobacterium, Lactobacillus, Enterococcus, Escherichia, and Clostridium. At the phylum level, 92% of the bacteria belonged to Firmicutes, Bacteroidetes, and Proteobacteria for both feral and commercial chickens. The proportional abundance of Firmicutes was 55.3% and 63.3%, Bacteroidetes was 32.5% and 24.4%, and Proteobacteria was 7.0% and 5.9% in the feral and commercial chickens, respectively. The alpha-diversity Shannon index (P = 0.017) and Simpson index (P = 0.038) were significantly higher for commercial than for feral chickens. Predictive functional profiling by PICRUSt showed enriched microbial metabolic pathways for L-proline biosynthesis in the feral group (P < 0.01). There were a greater percentage of specific bacteria in the feral than commercial chickens, albeit with lower diversity but a more functional microbiota. In conclusion, feral birds have distinguished microbial communities, and further microbiome analysis is mandated to know the specific functional role of individual microbiota. The difference in microbiota level between feral and commercial birds could be accounted to the scavenging nature, diverse feed ingredients, and distinct rearing localities.
Collapse
Affiliation(s)
- Sudhir Yadav
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Rd, Honolulu, HI 96822, USA
| | - Kayla D Caliboso
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Rd, Honolulu, HI 96822, USA; Math and Sciences Division, Leeward Community College, Pearl City, HI 96782, USA
| | - Jannel E Nanquil
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Rd, Honolulu, HI 96822, USA; Math and Sciences Division, Leeward Community College, Pearl City, HI 96782, USA
| | - Jiachao Zhang
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Rd, Honolulu, HI 96822, USA; College of Food Science and Technology, Hainan University, Haikou, Hainan province, 570228, China
| | - Helmut Kae
- Math and Sciences Division, Leeward Community College, Pearl City, HI 96782, USA
| | - Kabi Neupane
- Math and Sciences Division, Leeward Community College, Pearl City, HI 96782, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Rd, Honolulu, HI 96822, USA
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Rd, Honolulu, HI 96822, USA.
| |
Collapse
|
12
|
Pavone S, Rinoldo R, Albini E, Fiorucci A, Caponi B, Fratto A, Manuali E, Papa P, Magistrali CF. First report of urinary tract infection caused by Comamonas kerstersii in a goat. BMC Vet Res 2021; 17:133. [PMID: 33766029 PMCID: PMC7992354 DOI: 10.1186/s12917-021-02840-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background Comamonas kerstersii is rarely associated with infections in humans and has never been reported in animals until now. Case presentation Herein, we describe a case of urinary tract infection caused by C. kerstersii in a young goat. A seven-month-old male goat showed lethargy, generalised weakness and anorexia and in the last hours before its death, severe depression, slight abdominal distention, ruminal stasis, and sternal recumbency. Grossly, multifocal haemorrhages in different organs and tissues, subcutaneous oedema and hydrocele, serous fluid with scattered fibrin deposition on the serosa of the abdominal organs and severe pyelonephritis with multifocal renal infarction were detected. Histopathological examination confirmed severe chronic active pyelonephritis with renal infarcts, multi-organ vasculitis and thrombosis suggestive of an infectious diseases of bacterial origin. The bacterium was identified using routine methods, matrix assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS), and sequencing of the gyrB gene. Conclusions To the best of our knowledge, this is the first report of C. kerstersii infection in animals (goat). Our findings support the possibility of C. kerstersii isolation from extraintestinal sites and suggest this organism as a possible cause of urinary tract infection.
Collapse
Affiliation(s)
- Silvia Pavone
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Via G. Salvemini, 1, 06126, Perugia, Italy.
| | - Roberto Rinoldo
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Via G. Salvemini, 1, 06126, Perugia, Italy
| | - Elisa Albini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Via G. Salvemini, 1, 06126, Perugia, Italy
| | - Alessandro Fiorucci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Via G. Salvemini, 1, 06126, Perugia, Italy
| | - Biagio Caponi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Via G. Salvemini, 1, 06126, Perugia, Italy
| | - Anna Fratto
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Via G. Salvemini, 1, 06126, Perugia, Italy
| | - Elisabetta Manuali
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Via G. Salvemini, 1, 06126, Perugia, Italy
| | - Paola Papa
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Via G. Salvemini, 1, 06126, Perugia, Italy
| | - Chiara Francesca Magistrali
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Via G. Salvemini, 1, 06126, Perugia, Italy
| |
Collapse
|
13
|
Rochegüe T, Haenni M, Cazeau G, Metayer V, Madec JY, Ferry T, Lupo A. An inventory of 44 qPCR assays using hydrolysis probes operating with a unique amplification condition for the detection and quantification of antibiotic resistance genes. Diagn Microbiol Infect Dis 2021; 100:115328. [PMID: 33819858 DOI: 10.1016/j.diagmicrobio.2021.115328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/28/2023]
Abstract
Early antibiotic resistance determinants (ARDs) detection in humans or animals is crucial to counteract their propagation. The ARDs quantification is fundamental to understand the perturbation caused by disruptors, such as antibiotics, during therapies. Forty-three qPCRs on the most diffused ARDs and integrons among human and animal Enterobacterales, and one on the 16S rDNA for bacteria quantification, were developed. The qPCRs, using hydrolysis probes, operated with a unique amplification condition and were tested analytically and diagnostically performing 435 reactions on five positive and negative controls for each qPCR. Diagnostic sensitivity and specificity were confirmed by PCR and genome sequencing of control isolates, demonstrating 100% performance for all qPCRs. An easy and rapid discrimination method for the epidemiologically relevant blaCTX-Ms is provided. This large, noncommercial qPCRs inventory could serve for precise quantification of ARDs, but also as a rapid screening tool for surveillance purposes, providing the basis for further high-throughput developments.
Collapse
Affiliation(s)
- Tony Rochegüe
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes (AVB), Lyon, France
| | - Marisa Haenni
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes (AVB), Lyon, France
| | - Géraldine Cazeau
- ANSES - Université de Lyon, Unité Epidémiologie et Appui à la Surveillance (EAS), Lyon, France
| | - Véronique Metayer
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes (AVB), Lyon, France
| | - Jean-Yves Madec
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes (AVB), Lyon, France
| | - Tristan Ferry
- Service des maladies infectieuses et tropicales, CHU de Lyon, Hôpital de la Croix-Rousse, Lyon, France; Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France
| | - Agnese Lupo
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes (AVB), Lyon, France.
| |
Collapse
|
14
|
Van Gompel L, Dohmen W, Luiken REC, Bouwknegt M, Heres L, van Heijnsbergen E, Jongerius-Gortemaker BGM, Scherpenisse P, Greve GD, Tersteeg-Zijderveld MHG, Wadepohl K, Ribeiro Duarte AS, Muñoz-Gómez V, Fischer J, Skarżyńska M, Wasyl D, Wagenaar JA, Urlings BAP, Dorado-García A, Wouters IM, Heederik DJJ, Schmitt H, Smit LAM. Occupational Exposure and Carriage of Antimicrobial Resistance Genes (tetW, ermB) in Pig Slaughterhouse Workers. Ann Work Expo Health 2021; 64:125-137. [PMID: 31883001 PMCID: PMC9194797 DOI: 10.1093/annweh/wxz098] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/30/2019] [Accepted: 12/13/2019] [Indexed: 01/05/2023] Open
Abstract
Objectives Slaughterhouse staff is occupationally exposed to antimicrobial resistant bacteria. Studies reported high antimicrobial resistance gene (ARG) abundances in slaughter pigs. This cross-sectional study investigated occupational exposure to tetracycline (tetW) and macrolide (ermB) resistance genes and assessed determinants for faecal tetW and ermB carriage among pig slaughterhouse workers. Methods During 2015–2016, 483 faecal samples and personal questionnaires were collected from workers in a Dutch pig abattoir, together with 60 pig faecal samples. Human dermal and respiratory exposure was assessed by examining 198 carcass, 326 gloves, and 33 air samples along the line, next to 198 packed pork chops to indicate potential consumer exposure. Samples were analyzed by qPCR (tetW, ermB). A job exposure matrix was created by calculating the percentage of tetW and ermB positive carcasses or gloves for each job position. Multiple linear regression models were used to link exposure to tetW and ermB carriage. Results Workers are exposed to tetracycline and macrolide resistance genes along the slaughter line. Tetw and ermB gradients were found for carcasses, gloves, and air filters. One packed pork chop contained tetW, ermB was non-detectable. Human faecal tetW and ermB concentrations were lower than in pig faeces. Associations were found between occupational tetW exposure and human faecal tetW carriage, yet, not after model adjustments. Sampling round, nationality, and smoking were determinants for ARG carriage. Conclusion We demonstrated clear environmental tetracycline and macrolide resistance gene exposure gradients along the slaughter line. No robust link was found between ARG exposure and human faecal ARG carriage.
Collapse
Affiliation(s)
- Liese Van Gompel
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Wietske Dohmen
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Roosmarijn E C Luiken
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | - Eri van Heijnsbergen
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Betty G M Jongerius-Gortemaker
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Peter Scherpenisse
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Gerdit D Greve
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Katharina Wadepohl
- Field Station for Epidemiology, University of Veterinary Medicine Hannover Foundation, Bakum, Germany
| | - Ana Sofia Ribeiro Duarte
- Section for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | - Jennie Fischer
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße, Berlin, Germany
| | | | - Dariusz Wasyl
- National Veterinary Research Institute (PIWet), Puławy, Poland
| | - Jaap A Wagenaar
- Wageningen, Bioveterinary Research, Lelystad, The Netherlands.,Department of Infectious Diseases and Immunology (I&I), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Alejandro Dorado-García
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Inge M Wouters
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Dick J J Heederik
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Heike Schmitt
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Centre for Infectious Disease Control (RIVM), National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
15
|
Leathers TD, Saunders LP, Bowman MJ, Price NPJ, Bischoff KM, Rich JO, Skory CD, Nunnally MS. Inhibition of Erwinia amylovora by Bacillus nakamurai. Curr Microbiol 2020; 77:875-881. [PMID: 31938805 DOI: 10.1007/s00284-019-01845-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/11/2019] [Indexed: 11/29/2022]
Abstract
A variety of potential inhibitors were tested for the first time for the suppression of Erwinia amylovora, the causal agent of fire blight in apples and pears. Strain variability was evident in susceptibility to inhibitors among five independently isolated virulent strains of E. amylovora. However, most strains were susceptible to culture supernatants from strains of Bacillus spp., and particularly to the recently described species B. nakamurai. Minimal inhibitory concentrations (MICs) were 5-20% (vol/vol) of culture supernatant from B. nakamurai against all five strains of E. amylovora. Although Bacillus species have been previously reported to produce lipopeptide inhibitors of E. amylovora, matrix-assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) and column chromatography indicated that the inhibitor from B. nakamurai was not a lipopeptide, but rather a novel inhibitor.
Collapse
Affiliation(s)
- Timothy D Leathers
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL, 61604, USA.
| | - Lauren P Saunders
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL, 61604, USA
| | - Michael J Bowman
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL, 61604, USA
| | - Neil P J Price
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL, 61604, USA
| | - Kenneth M Bischoff
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL, 61604, USA
| | - Joseph O Rich
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL, 61604, USA
| | - Christopher D Skory
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL, 61604, USA
| | - Melinda S Nunnally
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL, 61604, USA
| |
Collapse
|
16
|
Blau K, Jechalke S, Smalla K. Detection, Isolation, and Characterization of Plasmids in the Environment. Methods Mol Biol 2020; 2075:39-60. [PMID: 31584153 DOI: 10.1007/978-1-4939-9877-7_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Plasmids play a major role in the bacterial adaptation to changing and stressful environmental conditions caused by antibiotics, heavy metals, and disinfectants. However, the investigation of the ecology and diversity of environmental plasmids is challenging due to their typically low abundance in soil bacterial communities and the low cultivability of their hosts. Here we discuss the potentials and limitations of cultivation-dependent and cultivation-independent approaches for detecting and quantifying plasmids in total community DNA from environmental samples. Protocols for PCR-based detection of plasmid-specific sequences in total community DNA are presented. Furthermore, protocols to obtain and characterize plasmids either from isolates (endogenous plasmid isolation) or by capturing into a recipient strain by biparental and triparental mating will be provided.
Collapse
Affiliation(s)
- Khald Blau
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Sven Jechalke
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Braunschweig, Germany.
| |
Collapse
|
17
|
Research and Technological Advances Regarding the Study of the Spread of Antimicrobial Resistance Genes and Antimicrobial-Resistant Bacteria Related to Animal Husbandry. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16244896. [PMID: 31817253 PMCID: PMC6950033 DOI: 10.3390/ijerph16244896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/30/2019] [Accepted: 12/01/2019] [Indexed: 01/08/2023]
Abstract
The extensive use of antimicrobials in animal farms poses serious safety hazards to both the environment and public health, and this trend is likely to continue. Antimicrobial resistance genes (ARGs) are a class of emerging pollutants that are difficult to remove once introduced. Understanding the environmental transfer of antimicrobial-resistant bacteria (ARB) and ARGs is pivotal for creating control measures. In this review, we summarize the research progress on the spread and detection of ARB and ARG pollution related to animal husbandry. Molecular methods such as high-throughput sequencing have greatly enriched the information about ARB communities. However, it remains challenging to delineate mechanisms regarding ARG induction, transmission, and tempo-spatial changes in the whole process, from animal husbandry to multiple ecosystems. As a result, future research should be more focused on the mechanisms of ARG induction, transmission, and control. We also expect that future research will rely more heavily on metagenomic -analysis, metatranscriptomic sequencing, and multi-omics technologies
Collapse
|
18
|
Lopatto E, Choi J, Colina A, Ma L, Howe A, Hinsa-Leasure S. Characterizing the soil microbiome and quantifying antibiotic resistance gene dynamics in agricultural soil following swine CAFO manure application. PLoS One 2019; 14:e0220770. [PMID: 31425534 PMCID: PMC6699696 DOI: 10.1371/journal.pone.0220770] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022] Open
Abstract
As agriculture industrializes, concentrated animal feeding operations (CAFOs) are becoming more common. Feces from CAFOs is often used as fertilizer on fields. However, little is known about the effects manure has on the soil microbiome, which is an important aspect of soil health and fertility. In addition, due to the subtherapeutic levels of antibiotics necessary to keep the animals healthy, CAFO manure has elevated levels of antibiotic resistant bacteria. Using 16s rRNA high-throughput sequencing and qPCR, this study sought to determine the impact of swine CAFO manure application on both the soil microbiome and abundance of select antibiotic resistance genes (ARGs) and mobile element genes (erm(B), erm(C), sul1, str(B), intI1, IncW repA) in agricultural soil over the fall and spring seasons. We found the manure community to be distinct from the soil community, with a majority of bacteria belonging to Bacteroidetes and Firmicutes. The soil samples had more diverse communities dominated by Acidobacteria, Actinobacteria, Proteobacteria, Verrucomicrobia, and unclassified bacteria. We observed significant differences in the soil microbiome between all time points, except between the spring samples. However, by tracking manure associated taxa, we found the addition of the manure microbiome to be a minor driver of the shift. Of the measured genes, manure application only significantly increased the abundance of erm(B) and erm(C) which remained elevated in the spring. These results suggest bacteria in the manure do not survive well in soil and that ARG dynamics in soil following manure application vary by resistance gene.
Collapse
Affiliation(s)
- Edward Lopatto
- Department of Biology, Grinnell College, Grinnell, Iowa, United States of America
| | - Jinlyung Choi
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Alfredo Colina
- Department of Biology, Grinnell College, Grinnell, Iowa, United States of America
| | - Lanying Ma
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Shannon Hinsa-Leasure
- Department of Biology, Grinnell College, Grinnell, Iowa, United States of America
- * E-mail:
| |
Collapse
|
19
|
Kauser I, Ciesielski M, Poretsky RS. Ultraviolet disinfection impacts the microbial community composition and function of treated wastewater effluent and the receiving urban river. PeerJ 2019; 7:e7455. [PMID: 31403004 PMCID: PMC6688595 DOI: 10.7717/peerj.7455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/10/2019] [Indexed: 12/04/2022] Open
Abstract
Background In the United States, an estimated 14,748 wastewater treatment plants (WWTPs) provide wastewater collection, treatment, and disposal service to more than 230 million people. The quality of treated wastewater is often assessed by the presence or absence of fecal indicator bacteria. UV disinfection of wastewater is a common final treatment step used by many wastewater treatment plants in order to reduce fecal coliform bacteria and other pathogens; however, its potential impacts on the total effluent bacterial community are seemingly varied. This is especially important given that urban WWTPs typically return treated effluent to coastal and riverine environments and thus are a major source of microorganisms, genes, and chemical compounds to these systems. Following rainfall, stormflow conditions can result in substantial increases to effluent flow into combined systems. Methods Here, we conducted a lab-scale UV disinfection on WWTP effluent using UV dosage of 100 mJ/cm2 and monitored the active microbiome in UV-treated effluent and untreated effluent over the course of 48 h post-exposure using 16S rRNA sequencing. In addition, we simulated stormflow conditions with effluent UV-treated and untreated effluent additions to river water and compared the microbial communities to those in baseflow river water. We also tracked the functional profiles of genes involved in tetracycline resistance (tetW) and nitrification (amoA) in these microcosms using RT-qPCR. Results We showed that while some organisms, such as members of the Bacteroidetes, are inhibited by UV disinfection and overall diversity of the microbial community decreases following treatment, many organisms not only survive, but remain active. These include common WWTP-derived organisms such as Comamonadaceae and Pseudomonas. When combined with river water to mimic stormflow conditions, these organisms can persist in the environment and potentially enhance microbial functions such as nitrification and antibiotic resistance.
Collapse
Affiliation(s)
- Imrose Kauser
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Mark Ciesielski
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Rachel S Poretsky
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
20
|
de
Rooij MMT, Hoek G, Schmitt H, Janse I, Swart A, Maassen CBM, Schalk M, Heederik DJJ, Wouters IM. Insights into Livestock-Related Microbial Concentrations in Air at Residential Level in a Livestock Dense Area. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7746-7758. [PMID: 31081619 PMCID: PMC6611074 DOI: 10.1021/acs.est.8b07029] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/03/2019] [Accepted: 04/29/2019] [Indexed: 05/21/2023]
Abstract
Microbial air pollution from livestock farms has raised concerns regarding public health. Little is known about airborne livestock-related microbial levels in residential areas. We aimed to increase insights into this issue. Air measurements were performed in 2014 and 2015 at 61 residential sites in The Netherlands. Quantitative-PCR was used to assess DNA concentrations of selected bacteria (commensals: Escherichia coli and Staphylococcus spp.; a zoonotic pathogen: Campylobacter jejuni) and antimicrobial resistance (AMR) genes ( tetW, mecA) in airborne dust. Mixed models were used to explore spatial associations (temporal adjusted) with livestock-related characteristics of the surroundings. DNA from commensals and AMR genes was detectable even at sites furthest away from farms (1200 m), albeit at lower levels. Concentrations, distinctly different between sites, were strongly associated with the density of farms in the surroundings especially with poultry and pigs. C. jejuni DNA was less prevalent (42% of samples positive). Presence of C. jejuni was solely associated with poultry (OR: 4.7 (95% CI: 1.7-14), high versus low poultry density). Residential exposure to livestock-related bacteria and AMR genes was demonstrated. Identified associations suggest contribution of livestock farms to microbial air pollution in general and attribution differences between farm types. This supports the plausibility of recent studies showing health effects in relation to residential proximity to farms.
Collapse
Affiliation(s)
- Myrna M. T. de
Rooij
- Institute
for Risk Assessment Sciences (IRAS), Utrecht
University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
- Phone: +31302532539; e-mail:
| | - Gerard Hoek
- Institute
for Risk Assessment Sciences (IRAS), Utrecht
University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Heike Schmitt
- Institute
for Risk Assessment Sciences (IRAS), Utrecht
University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Ingmar Janse
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Arno Swart
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Catharina B. M. Maassen
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Marjolijn Schalk
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Dick J. J. Heederik
- Institute
for Risk Assessment Sciences (IRAS), Utrecht
University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Inge M. Wouters
- Institute
for Risk Assessment Sciences (IRAS), Utrecht
University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
21
|
Sen K, Berglund T, Soares MA, Taheri B, Ma Y, Khalil L, Fridge M, Lu J, Turner RJ. Antibiotic Resistance of E. coli Isolated From a Constructed Wetland Dominated by a Crow Roost, With Emphasis on ESBL and AmpC Containing E. coli. Front Microbiol 2019; 10:1034. [PMID: 31156579 PMCID: PMC6530415 DOI: 10.3389/fmicb.2019.01034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/24/2019] [Indexed: 12/17/2022] Open
Abstract
Information on the dissemination of antibiotic resistance mechanisms in the environment as well as wild life is needed in North America. A constructed wetland (where ∼15,000 American crows roost) was sampled on the University of Washington Bothell Campus for the presence of antibiotic resistant E. coli (ARE). Crow droppings from individual birds and grab samples of water were collected in 2014–2015. E. coli were isolated by selective agar plating. The most frequent antibiotic resistance (AR) of the fecal isolates was to ampicillin (AMP) (53%), followed by amoxicillin-clavulanic acid (AMC) (45%), streptomycin (S) (40%), and nalidixic acid (NA) (33%). Water isolates had similar AR pattern and ∼40% were multidrug resistant. Isolates from water samples collected during storm events showed higher resistance than isolates from no rain days to tetracycline, AMP, AMC, NA, and gentamycin. Extended spectrum beta lactamase (ESBL) containing E. coli with the blactx-M was found in three water and nine fecal isolates while blacmy-2 in 19 water and 16 fecal isolates. Multilocus Sequence Typing analysis (MLST) yielded 13 and 12 different sequence types (STs) amongst fecal and water isolates, many of which could be correlated to livestock, bird, and humans. MLST identified ESBL E. coli belonging to the clinically relevant ST131 clone in six fecal and one water isolate. Three STs found in feces could be found in water on the same dates of collection but not subsequently. Thus, the strains do not appear to survive for long in the wetland. Phylogenetic analysis revealed similar distribution of the water and fecal isolates among the different phylo-groups, with the majority belonging to the commensal B1 phylo-group, followed by the pathogenic B2 phylo-group. This study demonstrates that corvids can be reservoirs and vectors of ARE and pathogenic E. coli, posing a significant environmental threat.
Collapse
Affiliation(s)
- Keya Sen
- Division of Biological Sciences, STEM, University of Washington, Bothell, WA, United States
| | - Tanner Berglund
- Division of Biological Sciences, STEM, University of Washington, Bothell, WA, United States
| | - Marilia A Soares
- Division of Biological Sciences, STEM, University of Washington, Bothell, WA, United States
| | - Babak Taheri
- Division of Biological Sciences, STEM, University of Washington, Bothell, WA, United States
| | - Yizheng Ma
- Division of Biological Sciences, STEM, University of Washington, Bothell, WA, United States
| | - Laura Khalil
- Division of Biological Sciences, STEM, University of Washington, Bothell, WA, United States
| | - Megan Fridge
- Division of Biological Sciences, STEM, University of Washington, Bothell, WA, United States
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States
| | - Robert J Turner
- School of Interdisciplinary Arts and Sciences, University of Washington, Bothell, WA, United States
| |
Collapse
|
22
|
Blau K, Bettermann A, Jechalke S, Fornefeld E, Vanrobaeys Y, Stalder T, Top EM, Smalla K. The Transferable Resistome of Produce. mBio 2018; 9:e01300-18. [PMID: 30401772 PMCID: PMC6222124 DOI: 10.1128/mbio.01300-18] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/20/2018] [Indexed: 11/20/2022] Open
Abstract
Produce is increasingly recognized as a reservoir of human pathogens and transferable antibiotic resistance genes. This study aimed to explore methods to characterize the transferable resistome of bacteria associated with produce. Mixed salad, arugula, and cilantro purchased from supermarkets in Germany were analyzed by means of cultivation- and DNA-based methods. Before and after a nonselective enrichment step, tetracycline (TET)-resistant Escherichia coli were isolated and plasmids conferring TET resistance were captured by exogenous plasmid isolation. TET-resistant E. coli isolates, transconjugants, and total community DNA (TC-DNA) from the microbial fraction detached from leaves or after enrichment were analyzed for the presence of resistance genes, class 1 integrons, and various plasmids by real-time PCR and PCR-Southern blot hybridization. Real-time PCR primers were developed for IncI and IncF plasmids. TET-resistant E. coli isolated from arugula and cilantro carried IncF, IncI1, IncN, IncHI1, IncU, and IncX1 plasmids. Three isolates from cilantro were positive for IncN plasmids and blaCTX-M-1 From mixed salad and cilantro, IncF, IncI1, and IncP-1β plasmids were captured exogenously. Importantly, whereas direct detection of IncI and IncF plasmids in TC-DNA failed, these plasmids became detectable in DNA extracted from enrichment cultures. This confirms that cultivation-independent DNA-based methods are not always sufficiently sensitive to detect the transferable resistome in the rare microbiome. In summary, this study showed that an impressive diversity of self-transmissible multiple resistance plasmids was detected in bacteria associated with produce that is consumed raw, and exogenous capturing into E. coli suggests that they could transfer to gut bacteria as well.IMPORTANCE Produce is one of the most popular food commodities. Unfortunately, leafy greens can be a reservoir of transferable antibiotic resistance genes. We found that IncF and IncI plasmids were the most prevalent plasmid types in E. coli isolates from produce. This study highlights the importance of the rare microbiome associated with produce as a source of antibiotic resistance genes that might escape cultivation-independent detection, yet may be transferred to human pathogens or commensals.
Collapse
Affiliation(s)
- Khald Blau
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Antje Bettermann
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Sven Jechalke
- Justus Liebig University Giessen, Institute for Phytopathology, Gießen, Germany
| | - Eva Fornefeld
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Yann Vanrobaeys
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Eva M Top
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Kornelia Smalla
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| |
Collapse
|
23
|
Guo T, Lou C, Zhai W, Tang X, Hashmi MZ, Murtaza R, Li Y, Liu X, Xu J. Increased occurrence of heavy metals, antibiotics and resistance genes in surface soil after long-term application of manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:995-1003. [PMID: 29710621 DOI: 10.1016/j.scitotenv.2018.04.194] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/10/2018] [Accepted: 04/14/2018] [Indexed: 05/20/2023]
Abstract
The purpose of this study was to investigate the impact of long-term application of pig manure on the accumulation of heavy metals, antibiotics and ARGs in surface soil sampled from the Jiaxing long-term field experimental site with three manure treatments, N-PM (0 kg/ha/y, dw), L-PM (7720 kg/ha/y, dw), and H-PM (11,580 kg/ha/y, dw), in 2013 and 2014. The results showed that most serious metal pollution of Zn and Cu was recorded in all manured samples in both years, and their contents exceeded the soil quality standards. Among the three tetracyclines, chlortetracycline was the predominant antibiotic detected with a range of 3.04-98.03 μg·kg-1 in 2013 and 28.67-344.74 μg·kg-1 in 2014 after long-term pig manure application. Q-PCR results showed that the average accumulation of ribosomal protection protein genes (tetM, tetO, tetQ and tetW) was lower than most of the efflux pump genes (tetA and tetG). The abundance of tet and sul genes of those sites with manure application was significantly higher than that of sites without manure application in both years. Metagenomics analysis of ARGs revealed that the abundance of multidrug resistance genes was the most abundant subtype, followed by fluoroquinolone, bacitracin, sulfonamide and tetracycline. There was a positive correlation between the levels of ARGs; soil organic matter, antibiotics, Cu, As, and Zn levels in both years. These results may shed light on the mechanism underlining the effects of long-term manure application on the occurrence and dissemination of ARGs in surface soil.
Collapse
Affiliation(s)
- Ting Guo
- Institute of Soil, Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Chenlu Lou
- Institute of Soil, Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Zhai
- Institute of Soil, Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Xianjin Tang
- Institute of Soil, Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Z Hashmi
- Center for Climate Research and Development, COMSATS Institute of Information Technology, Islamabad Campus, Park Road, Chak Shahzad, Islamabad, Pakistan
| | - Rabbia Murtaza
- Center for Climate Research and Development, COMSATS Institute of Information Technology, Islamabad Campus, Park Road, Chak Shahzad, Islamabad, Pakistan
| | - Yong Li
- Institute of Soil, Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Xingmei Liu
- Institute of Soil, Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Jianming Xu
- Institute of Soil, Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
24
|
Svobodová K, Semerád J, Petráčková D, Novotný Č. Antibiotic Resistance in Czech Urban Wastewater Treatment Plants: Microbial and Molecular Genetic Characterization. Microb Drug Resist 2018; 24:830-838. [DOI: 10.1089/mdr.2017.0406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Kateřina Svobodová
- Laboratory of Environmental Biotechnology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Semerád
- Laboratory of Environmental Biotechnology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Institute for Environmental Studies, Charles University, Prague, Czech Republic
| | - Denisa Petráčková
- Laboratory of Post-Transcriptional Control of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Čeněk Novotný
- Laboratory of Environmental Biotechnology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
25
|
Paul C, Bayrychenko Z, Junier T, Filippidou S, Beck K, Bueche M, Greub G, Bürgmann H, Junier P. Dissemination of antibiotic resistance genes associated with the sporobiota in sediments impacted by wastewater. PeerJ 2018; 6:e4989. [PMID: 29942682 PMCID: PMC6015491 DOI: 10.7717/peerj.4989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/27/2018] [Indexed: 12/14/2022] Open
Abstract
Aquatic ecosystems serve as a dissemination pathway and a reservoir of both antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG). In this study, we investigate the role of the bacterial sporobiota to act as a vector for ARG dispersal in aquatic ecosystems. The sporobiota was operationally defined as the resilient fraction of the bacterial community withstanding a harsh extraction treatment eliminating the easily lysed fraction of the total bacterial community. The sporobiota has been identified as a critical component of the human microbiome, and therefore potentially a key element in the dissemination of ARG in human-impacted environments. A region of Lake Geneva in which the accumulation of ARG in the sediments has been previously linked to the deposition of treated wastewater was selected to investigate the dissemination of tet(W) and sul1, two genes conferring resistance to tetracycline and sulfonamide, respectively. Analysis of the abundance of these ARG within the sporobiome (collection of genes of the sporobiota) and correlation with community composition and environmental parameters demonstrated that ARG can spread across the environment with the sporobiota being the dispersal vector. A highly abundant OTU affiliated with the genus Clostridium was identified as a potential specific vector for the dissemination of tet(W), due to a strong correlation with tet(W) frequency (ARG copy numbers/ng DNA). The high dispersal rate, long-term survival, and potential reactivation of the sporobiota constitute a serious concern in terms of dissemination and persistence of ARG in the environment.
Collapse
Affiliation(s)
- Christophe Paul
- Institute of Biology, Laboratory of Microbiology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Zhanna Bayrychenko
- Institute of Biology, Laboratory of Microbiology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Thomas Junier
- Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sevasti Filippidou
- Institute of Biology, Laboratory of Microbiology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Karin Beck
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Matthieu Bueche
- Institute of Biology, Laboratory of Microbiology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Pilar Junier
- Institute of Biology, Laboratory of Microbiology, University of Neuchatel, Neuchâtel, NE, Switzerland
| |
Collapse
|
26
|
Abundances of Clinically Relevant Antibiotic Resistance Genes and Bacterial Community Diversity in the Weihe River, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15040708. [PMID: 29642605 PMCID: PMC5923750 DOI: 10.3390/ijerph15040708] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/30/2018] [Accepted: 04/07/2018] [Indexed: 12/17/2022]
Abstract
The spread of antibiotic resistance genes in river systems is an emerging environmental issue due to their potential threat to aquatic ecosystems and public health. In this study, we used droplet digital polymerase chain reaction (ddPCR) to evaluate pollution with clinically relevant antibiotic resistance genes (ARGs) at 13 monitoring sites along the main stream of the Weihe River in China. Six clinically relevant ARGs and a class I integron-integrase (intI1) gene were analyzed using ddPCR, and the bacterial community was evaluated based on the bacterial 16S rRNA V3–V4 regions using MiSeq sequencing. The results indicated Proteobacteria, Actinobacteria, Cyanobacteria, and Bacteroidetes as the dominant phyla in the water samples from the Weihe River. Higher abundances of blaTEM, strB, aadA, and intI1 genes (103 to 105 copies/mL) were detected in the surface water samples compared with the relatively low abundances of strA, mecA, and vanA genes (0–1.94 copies/mL). Eight bacterial genera were identified as possible hosts of the intI1 gene and three ARGs (strA, strB, and aadA) based on network analysis. The results suggested that the bacterial community structure and horizontal gene transfer were associated with the variations in ARGs.
Collapse
|
27
|
Yan H, Zhang K, Shentu J, Shen D, Li N, Wang M. Changes to tetracyclines and tetracycline resistance genes in arable soils after single and multiple applications of manure containing tetracyclines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5572-5581. [PMID: 29222656 DOI: 10.1007/s11356-017-0853-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
The influence of manure containing tetracyclines (TCs) on the prevalence of antibiotic resistance genes in soils remains poorly understood. Here, three different TCs (oxytetracycline (OTC), tetracycline (TC), and chlortetracycline (CTC)) were mixed respectively with unpolluted manure to fertilize arable soil. The soil received either a single application of 0 μg kg-1, 300 μg kg-1 (TC and CTC), or 700 μg kg-1 (OTC) or multiple applications every 14 days for 140 days. Four tetracycline resistance genes (TRGs), including tet(A), tet(L), tet(M), and tet(Q), were monitored. Although the abundances of the four TRGs in the single application treatment initially increased rapidly, they decreased over time and were significantly lower than those of the repeated treatments after day 112. All additions of TCs stopped on day 140, but we continued to assess the long-term accumulation of TRGs. Most of the TRGs were detected even after the TC-containing manures had not been applied for more than 15 months. The abundance of the TRGs after ceasing fertilization with the TC-containing manures was higher in the repeated application treatments than in the single application treatments. Therefore, more attention should be paid to repeated applications of antibiotic-containing manure to arable soils.
Collapse
Affiliation(s)
- Huicong Yan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Kun Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jiali Shentu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310018, China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310018, China
| | - Na Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310018, China.
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310018, China.
| |
Collapse
|
28
|
Madueño L, Paul C, Junier T, Bayrychenko Z, Filippidou S, Beck K, Greub G, Bürgmann H, Junier P. A historical legacy of antibiotic utilization on bacterial seed banks in sediments. PeerJ 2018; 6:e4197. [PMID: 29312823 PMCID: PMC5756452 DOI: 10.7717/peerj.4197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/05/2017] [Indexed: 12/31/2022] Open
Abstract
The introduction of antibiotics for both medical and non-medical purposes has had a positive effect on human welfare and agricultural output in the past century. However, there is also an important ecological legacy regarding the use of antibiotics and the consequences of increased levels of these compounds in the environment as a consequence of their use and disposal. This legacy was investigated by quantifying two antibiotic resistance genes (ARG) conferring resistance to tetracycline (tet(W)) and sulfonamide (sul1) in bacterial seed bank DNA in sediments. The industrial introduction of antibiotics caused an abrupt increase in the total abundance of tet(W) and a steady increase in sul1. The abrupt change in tet(W) corresponded to an increase in relative abundance from ca. 1960 that peaked around 1976. This pattern of accumulation was highly correlated with the abundance of specific members of the seed bank community belonging to the phylum Firmicutes. In contrast, the relative abundance of sul1 increased after 1976. This correlated with a taxonomically broad spectrum of bacteria, reflecting sul1 dissemination through horizontal gene transfer. The accumulation patterns of both ARGs correspond broadly to the temporal scale of medical antibiotic use. Our results show that the bacterial seed bank can be used to look back at the historical usage of antibiotics and resistance prevalence.
Collapse
Affiliation(s)
- Laura Madueño
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Christophe Paul
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Thomas Junier
- Vital-IT group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Zhanna Bayrychenko
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Sevasti Filippidou
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Karin Beck
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchâtel, NE, Switzerland
| |
Collapse
|
29
|
Blau K, Casadevall L, Wolters B, Van den Meersche T, Kreuzig R, Smalla K, Jechalke S. Soil texture-depending effects of doxycycline and streptomycin applied with manure on the bacterial community composition and resistome. FEMS Microbiol Ecol 2017; 94:4566514. [DOI: 10.1093/femsec/fix145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 10/25/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Khald Blau
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Laia Casadevall
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Birgit Wolters
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
- Technische Universität Braunschweig, Institut für Ökologische und Nachhaltige Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Tina Van den Meersche
- Institute for Agricultural and Fisheries Research, Technology and Food Science Unit - Food safety, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Robert Kreuzig
- Technische Universität Braunschweig, Institut für Ökologische und Nachhaltige Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Sven Jechalke
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| |
Collapse
|
30
|
Di Cesare A, Losasso C, Barco L, Eckert EM, Conficoni D, Sarasini G, Corno G, Ricci A. Diverse distribution of Toxin-Antitoxin II systems in Salmonella enterica serovars. Sci Rep 2016; 6:28759. [PMID: 27357537 PMCID: PMC4928088 DOI: 10.1038/srep28759] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/06/2016] [Indexed: 11/09/2022] Open
Abstract
Type II Toxin-Antitoxin systems (TAs), known for their presence in virulent and antibiotic resistant bacterial strains, were recently identified in Salmonella enterica isolates. However, the relationships between the presence of TAs (ccdAB and vapBC) and the epidemiological and genetic features of different non-typhoidal Salmonella serovars are largely unknown, reducing our understanding of the ecological success of different serovars. Salmonella enterica isolates from different sources, belonging to different serovars and epidemiologically unrelated according to ERIC profiles, were investigated for the presence of type II TAs, plasmid content, and antibiotic resistance. The results showed the ubiquitous presence of the vapBC gene in all the investigated Salmonella isolates, but a diverse distribution of ccdAB, which was detected in the most widespread Salmonella serovars, only. Analysis of the plasmid toxin ccdB translated sequence of four selected Salmonella isolates showed the presence of the amino acid substitution R99W, known to impede in vitro the lethal effect of CcdB toxin in the absence of its cognate antitoxin CcdA. These findings suggest a direct role of the TAs in promoting adaptability and persistence of the most prevalent Salmonella serovars, thus implying a wider eco-physiological role for these type II TAs.
Collapse
Affiliation(s)
- Andrea Di Cesare
- Microbial Ecology Group, National Research Council – Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50,28822, Verbania, Italy
| | - Carmen Losasso
- Food Safety Department, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell’Università 10, 35020, Legnaro, Italy
| | - Lisa Barco
- Food Safety Department, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell’Università 10, 35020, Legnaro, Italy
| | - Ester M. Eckert
- Microbial Ecology Group, National Research Council – Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50,28822, Verbania, Italy
| | - Daniele Conficoni
- Department Animal Medicine, Production and Health, University of Padua, viale dell’Università, 35020, Legnaro, Italy
| | - Giulia Sarasini
- Microbial Ecology Group, National Research Council – Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50,28822, Verbania, Italy
| | - Gianluca Corno
- Microbial Ecology Group, National Research Council – Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50,28822, Verbania, Italy
| | - Antonia Ricci
- Food Safety Department, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell’Università 10, 35020, Legnaro, Italy
| |
Collapse
|
31
|
Franklin AM, Aga DS, Cytryn E, Durso LM, McLain JE, Pruden A, Roberts MC, Rothrock MJ, Snow DD, Watson JE, Dungan RS. Antibiotics in Agroecosystems: Introduction to the Special Section. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:377-93. [PMID: 27065385 DOI: 10.2134/jeq2016.01.0023] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The presence of antibiotic drug residues, antibiotic resistant bacteria, and antibiotic resistance genes in agroecosystems has become a significant area of research in recent years and is a growing public health concern. While antibiotics are used in both human medicine and agricultural practices, the majority of their use occurs in animal production where historically they have been used for growth promotion, in addition to the prevention and treatment of disease. The widespread use of antibiotics and the application of animal wastes to agricultural lands play major roles in the introduction of antibiotic-related contamination into the environment. Overt toxicity in organisms directly exposed to antibiotics in agroecosystems is typically not a major concern because environmental concentrations are generally lower than therapeutic doses. However, the impacts of introducing antibiotic contaminants into the environment are unknown, and concerns have been raised about the health of humans, animals, and ecosystems. Despite increased research focused on the occurrence and fate of antibiotics and antibiotic resistance over the past decade, standard methods and practices for analyzing environmental samples are limited and future research needs are becoming evident. To highlight and address these issues in detail, this special collection of papers was developed with a framework of five core review papers that address the (i) overall state of science of antibiotics and antibiotic resistance in agroecosystems using a causal model, (ii) chemical analysis of antibiotics found in the environment, (iii) need for background and baseline data for studies of antibiotic resistance in agroecosystems with a decision-making tool to assist in designing research studies, as well as (iv) culture- and (v) molecular-based methods for analyzing antibiotic resistance in the environment. With a focus on the core review papers, this introduction summarizes the current state of science for analyzing antibiotics and antibiotic resistance in agroecosystems, discusses current knowledge gaps, and develops future research priorities. This introduction also contains a glossary of terms used in the core reivew papers of this special section. The purpose of the glossary is to provide a common terminology that clearly characterizes the concepts shared throughout the narratives of each review paper.
Collapse
|
32
|
Livestock-associated methicillin and multidrug resistant S. aureus in humans is associated with occupational pig contact, not pet contact. Sci Rep 2016; 6:19184. [PMID: 26755419 PMCID: PMC4709655 DOI: 10.1038/srep19184] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/07/2015] [Indexed: 01/05/2023] Open
Abstract
This study aimed to explore the association of livestock-associated S. aureus with occupational pig contact and pet contact. In this cross-sectional study, 1,422 participants (including 244 pig workers, 200 pet-owning workers and 978 control workers) responded to a questionnaire and provided a nasal swab for S. aureus analysis. Resulting isolates were tested for antibiotic susceptibility, the immune evasion cluster (IEC) genes, and multilocus sequence type. Compared with controls, the pig workers demonstrated a greater prevalence of multidrug-resistant S. aureus (MDRSA) [prevalence ratio (PR) = 3.38; 95% CI: 2.07–5.53] and methicillin-resistant S. aureus (MRSA) (PR = 7.42; 95% CI: 3.71–14.83), but the prevalence of MDRSA and MRSA was similar in pet-owning workers and controls. There was a positive relation of frequency of pig contact with prevalence of MDRSA and MRSA carriage. Only pig workers carried MDRSA CC9 (16 isolates) and MRSA CC9 (16 isolates), and all of these isolates were tetracycline resistant and absent of IEC genes. These findings suggest that livestock-associated MRSA and MDRSA(CC9, IEC-negative, tetracycline-resistant) in humans is associated with occupational pig contact, not pet contact, and support growing concern about antibiotics use in pig farms and raising questions about the potential for occupational exposure to opportunistic S. aureus.
Collapse
|
33
|
Huang M, Qi F, Wang J, Xu Q, Lin L. Changes of bacterial diversity and tetracycline resistance in sludge from AAO systems upon exposure to tetracycline pressure. JOURNAL OF HAZARDOUS MATERIALS 2015; 298:303-309. [PMID: 26079369 DOI: 10.1016/j.jhazmat.2015.05.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/08/2015] [Accepted: 05/23/2015] [Indexed: 06/04/2023]
Abstract
Two lab-scale anaerobic-anoxic-oxic (AAO) systems were used to investigate the changes in tetracycline (TC) resistance and bacterial diversity upon exposure to TC pressure. High-throughput sequencing was used to detect diversity changes in microorganisms at the level of class in sludge from different bioreactors with and without TC. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect the abundances of eight tetracycline resistance genes (TRGs), tetA, tetB, tetC, tetE, tetM, tetO, tetS and tetX. The results showed that the diversities of the microbial communities of anoxic, anaerobic and aerobic sludge all increased with the addition of TC. TC substantially changed the structure of the microbial community regardless of oxygen conditions. Bacteroidetes and Proteobacteria were the dominant species in the three kinds of sludge and were substantially enriched with TC pressure. In sludge with TC added, almost all target TRGs proliferated more than those in sludge without TC except tetX, which decreased in anaerobic sludge with TC addition. The concentration of efflux pump genes, tet(A-C, E), was the highest among the three groups of TRGs in the different kinds of sludge.
Collapse
Affiliation(s)
- Manhong Huang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China.
| | - Fangfang Qi
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Jue Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Qi Xu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Li Lin
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| |
Collapse
|
34
|
Abundance of Antibiotic Resistance Genes in Bacteriophage following Soil Fertilization with Dairy Manure or Municipal Biosolids, and Evidence for Potential Transduction. Appl Environ Microbiol 2015; 81:7905-13. [PMID: 26341211 DOI: 10.1128/aem.02363-15] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/01/2015] [Indexed: 11/20/2022] Open
Abstract
Animal manures and municipal biosolids recycled onto crop production land carry antibiotic-resistant bacteria that can influence the antibiotic resistome of agricultural soils, but little is known about the contribution of bacteriophage to the dissemination of antibiotic resistance genes (ARGs) in this context. In this work, we quantified a set of ARGs in the bacterial and bacteriophage fractions of agricultural soil by quantitative PCR. All tested ARGs were present in both the bacterial and phage fractions. We demonstrate that fertilization of soil with dairy manure or human biosolids increases ARG abundance in the bacterial fraction but not the bacteriophage fraction and further show that pretreatment of dairy manure can impact ARG abundance in the bacterial fraction. Finally, we show that purified bacteriophage can confer increased antibiotic resistance to soil bacteria when combined with selective pressure. The results indicate that soilborne bacteriophage represents a substantial reservoir of antibiotic resistance and that bacteriophage could play a significant role in the horizontal transfer of resistance genes in the context of an agricultural soil microbiome. Overall, our work reinforces the advisability of composting or digesting fecal material prior to field application and suggests that application of some antibiotics at subclinical concentrations can promote bacteriophage-mediated horizontal transfer of ARGs in agricultural soil microbiomes.
Collapse
|
35
|
Shentu JL, Zhang K, Shen DS, Wang MZ, Feng HJ. Effect from low-level exposure of oxytetracycline on abundance of tetracycline resistance genes in arable soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13102-13110. [PMID: 25925140 DOI: 10.1007/s11356-015-4099-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 01/11/2015] [Indexed: 06/04/2023]
Abstract
To evaluate the effect from low-level exposure of antibiotics on the abundance of antibiotic resistance genes, unpolluted arable soils were treated with oxytetracycline (OTC)-containing manure, with OTC (0, 2, 20, or 70 μg kg(-1)) added every 2 weeks on 10 occasions. Six tetracycline resistance genes [TRGs-tet(A), tet(L), tet(M), tet(Q), tet(O), and tet(W)] and the 16S ribosomal RNA (rRNA) gene were monitored using real-time quantitative polymerase chain reaction. The relative abundance of tet(A), tet(L), tet(M), and tet(Q) genes in soil increased 10-1000 times after application of OTC-containing manure. Tet(A) abundance per unit of residual OTC on day 140 was 1.53-4.42 times higher than that on day 28, while tet(L) abundance was 1.04-1.74 times higher. Treatment with >40 μg kg(-1) OTC significantly increased abundance of tet(A) and tet(L), while tet(M) and tet(Q) abundance was positively correlated (R (2) = 0.965 and 0.932, p < 0.01) with residual OTC concentrations. There was a significant accumulation of TRGs associated with low-level OTC exposure in arable soils. Besides OTC residual, the effects from exposure time and application frequencies should also be considered to limit the increase in abundance of tet(A) and tet(L).
Collapse
Affiliation(s)
- Jia-Li Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, 310012, Hangzhou, China
| | | | | | | | | |
Collapse
|
36
|
Czekalski N, Sigdel R, Birtel J, Matthews B, Bürgmann H. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes. ENVIRONMENT INTERNATIONAL 2015; 81:45-55. [PMID: 25913323 DOI: 10.1016/j.envint.2015.04.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 03/30/2015] [Accepted: 04/10/2015] [Indexed: 05/06/2023]
Abstract
Antibiotic resistance genes (ARGs) are emerging environmental contaminants, known to be continuously discharged into the aquatic environment via human and animal waste. Freshwater aquatic environments represent potential reservoirs for ARG and potentially allow sewage-derived ARG to persist and spread in the environment. This may create increased opportunities for an eventual contact with, and gene transfer to, human and animal pathogens via the food chain or drinking water. However, assessment of this risk requires a better understanding of the level and variability of the natural resistance background and the extent of the human impact. We have analyzed water samples from 21 Swiss lakes, taken at sampling points that were not under the direct influence of local contamination sources and analyzed the relative abundance of ARG using quantitative real-time PCR. Copy numbers of genes mediating resistance to three different broad-spectrum antibiotic classes (sulfonamides: sul1, sul2, tetracyclines: tet(B), tet(M), tet(W) and fluoroquinolones: qnrA) were normalized to copy numbers of bacterial 16S rRNA genes. We used multiple linear regression to assess if ARG abundance is related to human activities in the catchment, microbial community composition and the eutrophication status of the lakes. Sul genes were detected in all sampled lakes, whereas only four lakes contained quantifiable numbers of tet genes, and qnrA remained below detection in all lakes. Our data indicate higher abundance of sul1 in lakes with increasing number and capacity of wastewater treatment plants (WWTPs) in the catchment. sul2 abundance was rather related to long water residence times and eutrophication status. Our study demonstrates the potential of freshwater lakes to preserve antibiotic resistance genes, and provides a reference for ARG abundance from lake systems with low human impact as a baseline for assessing ARG contamination in lake water.
Collapse
Affiliation(s)
- Nadine Czekalski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland
| | - Radhika Sigdel
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland
| | - Julia Birtel
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, 6047 Kastanienbaum, Switzerland
| | - Blake Matthews
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, 6047 Kastanienbaum, Switzerland
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland.
| |
Collapse
|
37
|
Di Cesare A, Eckert EM, Teruggi A, Fontaneto D, Bertoni R, Callieri C, Corno G. Constitutive presence of antibiotic resistance genes within the bacterial community of a large subalpine lake. Mol Ecol 2015; 24:3888-900. [DOI: 10.1111/mec.13293] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/19/2015] [Accepted: 06/24/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Andrea Di Cesare
- Microbial Ecology Group; National Research Council - Institute of Ecosystem Study (CNR-ISE); Largo Tonolli 50 28922 Verbania Italy
| | - Ester M. Eckert
- Microbial Ecology Group; National Research Council - Institute of Ecosystem Study (CNR-ISE); Largo Tonolli 50 28922 Verbania Italy
| | - Alessia Teruggi
- Microbial Ecology Group; National Research Council - Institute of Ecosystem Study (CNR-ISE); Largo Tonolli 50 28922 Verbania Italy
| | - Diego Fontaneto
- Microbial Ecology Group; National Research Council - Institute of Ecosystem Study (CNR-ISE); Largo Tonolli 50 28922 Verbania Italy
| | - Roberto Bertoni
- Microbial Ecology Group; National Research Council - Institute of Ecosystem Study (CNR-ISE); Largo Tonolli 50 28922 Verbania Italy
| | - Cristiana Callieri
- Microbial Ecology Group; National Research Council - Institute of Ecosystem Study (CNR-ISE); Largo Tonolli 50 28922 Verbania Italy
| | - Gianluca Corno
- Microbial Ecology Group; National Research Council - Institute of Ecosystem Study (CNR-ISE); Largo Tonolli 50 28922 Verbania Italy
| |
Collapse
|
38
|
Jechalke S, Broszat M, Lang F, Siebe C, Smalla K, Grohmann E. Effects of 100 years wastewater irrigation on resistance genes, class 1 integrons and IncP-1 plasmids in Mexican soil. Front Microbiol 2015; 6:163. [PMID: 25784901 PMCID: PMC4347510 DOI: 10.3389/fmicb.2015.00163] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/12/2015] [Indexed: 12/12/2022] Open
Abstract
Long-term irrigation with untreated wastewater can lead to an accumulation of antibiotic substances and antibiotic resistance genes in soil. However, little is known so far about effects of wastewater, applied for decades, on the abundance of IncP-1 plasmids and class 1 integrons which may contribute to the accumulation and spread of resistance genes in the environment, and their correlation with heavy metal concentrations. Therefore, a chronosequence of soils that were irrigated with wastewater from 0 to 100 years was sampled in the Mezquital Valley in Mexico in the dry season. The total community DNA was extracted and the absolute and relative abundance (relative to 16S rRNA genes) of antibiotic resistance genes (tet(W), tet(Q), aadA), class 1 integrons (intI1), quaternary ammonium compound resistance genes (qacE+qacEΔ1) and IncP-1 plasmids (korB) were quantified by real-time PCR. Except for intI1 and qacE+qacEΔ1 the abundances of selected genes were below the detection limit in non-irrigated soil. Confirming the results of a previous study, the absolute abundance of 16S rRNA genes in the samples increased significantly over time (linear regression model, p < 0.05) suggesting an increase in bacterial biomass due to repeated irrigation with wastewater. Correspondingly, all tested antibiotic resistance genes as well as intI1 and korB significantly increased in abundance over the period of 100 years of irrigation. In parallel, concentrations of the heavy metals Zn, Cu, Pb, Ni, and Cr significantly increased. However, no significant positive correlations were observed between the relative abundance of selected genes and years of irrigation, indicating no enrichment in the soil bacterial community due to repeated wastewater irrigation or due to a potential co-selection by increasing concentrations of heavy metals.
Collapse
Affiliation(s)
- Sven Jechalke
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI) Braunschweig, Germany
| | - Melanie Broszat
- Department of Infectious Diseases, University Hospital Freiburg Freiburg, Germany ; Microbiology, Faculty for Biology, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - Friederike Lang
- Chair of Soil Ecology, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - Christina Siebe
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria Mexico City, Mexico
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI) Braunschweig, Germany
| | - Elisabeth Grohmann
- Department of Infectious Diseases, University Hospital Freiburg Freiburg, Germany ; Microbiology, Faculty for Biology, Albert-Ludwigs-University Freiburg Freiburg, Germany
| |
Collapse
|
39
|
|
40
|
Laroche-Ajzenberg E, Flores Ribeiro A, Bodilis J, Riah W, Buquet S, Chaftar N, Pawlak B. Conjugative multiple-antibiotic resistance plasmids in Escherichia coli
isolated from environmental waters contaminated by human faecal wastes. J Appl Microbiol 2014; 118:399-411. [DOI: 10.1111/jam.12691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/14/2014] [Accepted: 11/06/2014] [Indexed: 11/30/2022]
Affiliation(s)
| | - A. Flores Ribeiro
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - J. Bodilis
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - W. Riah
- Agri'Terr Laboratory; ESITPA; Mont Saint Aignan France
| | - S. Buquet
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - N. Chaftar
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - B. Pawlak
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| |
Collapse
|
41
|
Videnska P, Rahman MM, Faldynova M, Babak V, Matulova ME, Prukner-Radovcic E, Krizek I, Smole-Mozina S, Kovac J, Szmolka A, Nagy B, Sedlar K, Cejkova D, Rychlik I. Characterization of egg laying hen and broiler fecal microbiota in poultry farms in Croatia, Czech Republic, Hungary and Slovenia. PLoS One 2014; 9:e110076. [PMID: 25329397 PMCID: PMC4199679 DOI: 10.1371/journal.pone.0110076] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/08/2014] [Indexed: 12/23/2022] Open
Abstract
Poultry meat is the most common protein source of animal origin for humans. However, intensive breeding of animals in confined spaces has led to poultry colonisation by microbiota with a zoonotic potential or encoding antibiotic resistances. In this study we were therefore interested in the prevalence of selected antibiotic resistance genes and microbiota composition in feces of egg laying hens and broilers originating from 4 different Central European countries determined by real-time PCR and 16S rRNA gene pyrosequencing, respectively. strA gene was present in 1 out of 10,000 bacteria. The prevalence of sul1, sul2 and tet(B) in poultry microbiota was approx. 6 times lower than that of the strA gene. tet(A) and cat were the least prevalent being present in around 3 out of 10,000,000 bacteria forming fecal microbiome. The core chicken fecal microbiota was formed by 26 different families. Rather unexpectedly, representatives of Desulfovibrionaceae and Campylobacteraceae, both capable of hydrogen utilisation in complex microbial communities, belonged among core microbiota families. Understanding the roles of individual population members in the total metabolism of the complex community may allow for interventions which might result in the replacement of Campylobacteraceae with Desulfovibrionaceae and a reduction of Campylobacter colonisation in broilers, carcasses, and consequently poultry meat products.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ivan Krizek
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Jasna Kovac
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ama Szmolka
- Institute for Veterinary Medical Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Bela Nagy
- Institute for Veterinary Medical Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Karel Sedlar
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | | | - Ivan Rychlik
- Veterinary Research Institute, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
42
|
Chen C, Li J, Chen P, Ding R, Zhang P, Li X. Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 193:94-101. [PMID: 25016103 DOI: 10.1016/j.envpol.2014.06.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/27/2014] [Accepted: 06/06/2014] [Indexed: 05/12/2023]
Abstract
Non-irrigated and wastewater-irrigated soils were collected from five wastewater irrigation areas in Beijing and Tianjin, China. The concentrations of sulfadiazine, sulfamethoxazole, oxytetracycline and chlortetracycline in the soils were determined. Abundances of antibiotic resistant bacteria and corresponding resistance genes were also measured to examine the impact of wastewater irrigation. No significant difference in antibiotic resistance bacteria was observed between irrigated and non-irrigated soils. However, the concentrations of antibiotics and abundances of resistance genes were significantly greater in irrigated soils, indicating that agricultural activities enhanced the occurrence of antibiotics and resistance genes in the soils. In addition, no significant difference was observed between previously and currently wastewater-irrigated soils. Therefore, cessation of wastewater irrigation did not significantly reduce the levels of antibiotic concentrations and resistance gene abundances. Other factors, e.g., manure application, may explain the lack of significant difference in the occurrence of antibiotics and resistance genes between previously and currently wastewater-irrigated soils.
Collapse
Affiliation(s)
- Chaoqi Chen
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China
| | - Jing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China
| | - Peipei Chen
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China
| | - Rui Ding
- Department of Earth and Atmospheric Sciences, City College of New York, CUNY, New York, NY, 10031, USA
| | - Pengfei Zhang
- Department of Earth and Atmospheric Sciences, City College of New York, CUNY, New York, NY, 10031, USA
| | - Xiqing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
43
|
Cook KL, Netthisinghe AMP, Gilfillen RA. Detection of pathogens, indicators, and antibiotic resistance genes after land application of poultry litter. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:1546-58. [PMID: 25603240 DOI: 10.2134/jeq2013.10.0432] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Poultry litter (PL) is a by-product of broiler production. Most PL is land applied. Land-applied PL is a valuable nutrient source for crop production but can also be a route of environmental contamination with manure-borne bacteria. The objective of this study was to characterize the fate of pathogens, fecal indicator bacteria (FIB), and bacteria containing antibiotic resistance genes (ARGs) after application of PL to soils under conventional till or no-till management. This 2-yr study was conducted in accordance with normal agricultural practices, and microbial populations were quantified using a combination of culture and quantitative, real-time polymerase chain reaction analysis. Initial concentrations of in PL were 5.4 ± 3.2 × 10 cells g PL; sp. was not detected in the PL but was enriched periodically from PL-amended soils. was detected in PL (1.5 ± 1.3 × 10 culturable or 1.5 ± 0.3 × 10 genes g) but was rarely detected in field soils, whereas enterococci (1.5 ± 0.5 × 10 cells g PL) were detected throughout the study. These results suggest that enterococci may be better FIB for field-applied PL. Concentrations of ARGs for sulfonamide, streptomycin, and tetracycline resistance increased up to 3.0 orders of magnitude after PL application and remained above background for up to 148 d. These data provide new knowledge about important microbial FIB, pathogens, and ARGs associated with PL application under realistic field-based conditions.
Collapse
|
44
|
Abstract
Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. The increasing prevalence of antibiotic resistance among bacteria is one of the most intractable challenges in 21st-century public health. The origins of resistance are complex, and a better understanding of the impacts of antibiotics used on farms would produce a more robust platform for public policy. Microbiomes of farm animals are reservoirs of antibiotic resistance genes, which may affect distribution of antibiotic resistance genes in human pathogens. Previous studies have focused on antibiotic resistance genes in manures of animals subjected to intensive antibiotic use, such as pigs and chickens. Cow manure has received less attention, although it is commonly used in crop production. Here, we report the discovery of novel and diverse antibiotic resistance genes in the cow microbiome, demonstrating that it is a significant reservoir of antibiotic resistance genes. The genomic resource presented here lays the groundwork for understanding the dispersal of antibiotic resistance from the agroecosystem to other settings.
Collapse
|
45
|
Safely coupling livestock and crop production systems: how rapidly do antibiotic resistance genes dissipate in soil following a commercial application of swine or dairy manure? Appl Environ Microbiol 2014; 80:3258-65. [PMID: 24632259 DOI: 10.1128/aem.00231-14] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Animal manures recycled onto crop production land carry antibiotic-resistant bacteria. The present study evaluated the fate in soil of selected genes associated with antibiotic resistance or genetic mobility in field plots cropped to vegetables and managed according to normal farming practice. Referenced to unmanured soil, fertilization with swine or dairy manure increased the relative abundance of the gene targets sul1, erm(B), str(B), int1, and IncW repA. Following manure application in the spring of 2012, gene copy number decayed exponentially, reaching background levels by the fall of 2012. In contrast, gene copy number following manure application in the fall of 2012 or spring of 2013 increased significantly in the weeks following application and then declined. In both cases, the relative abundance of gene copy numbers had not returned to background levels by the fall of 2013. Overall, these results suggest that under conditions characteristic of agriculture in a humid continental climate, a 1-year period following a commercial application of raw manure is sufficient to ensure that an additional soil burden of antibiotic resistance genes approaches background. The relative abundance of several gene targets exceeded background during the growing season following a spring application or an application done the previous fall. Results from the present study reinforce the advisability of treating manure prior to use in crop production systems.
Collapse
|
46
|
Czekalski N, Gascón Díez E, Bürgmann H. Wastewater as a point source of antibiotic-resistance genes in the sediment of a freshwater lake. ISME JOURNAL 2014; 8:1381-90. [PMID: 24599073 DOI: 10.1038/ismej.2014.8] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 12/18/2013] [Accepted: 01/01/2014] [Indexed: 12/19/2022]
Abstract
Antibiotic-resistance genes (ARGs) are currently discussed as emerging environmental contaminants. Hospital and municipal sewage are important sources of ARGs for the receiving freshwater bodies. We investigated the spatial distribution of different ARGs (sul1, sul2, tet(B), tet(M), tet(W) and qnrA) in freshwater lake sediments in the vicinity of a point source of treated wastewater. ARG contamination of Vidy Bay, Lake Geneva, Switzerland was quantified using real-time PCR and compared with total mercury (THg), a frequently particle-bound inorganic contaminant with known natural background levels. Two-dimensional mapping of the investigated contaminants in lake sediments with geostatistical tools revealed total and relative abundance of ARGs in close proximity of the sewage discharge point were up to 200-fold above levels measured at a remote reference site (center of the lake) and decreased exponentially with distance. Similar trends were observed in the spatial distribution of different ARGs, whereas distributions of ARGs and THg were only moderately correlated, indicating differences in the transport and fate of these pollutants or additional sources of ARG contamination. The spatial pattern of ARG contamination and supporting data suggest that deposition of particle-associated wastewater bacteria rather than co-selection by, for example, heavy metals was the main cause of sediment ARG contamination.
Collapse
Affiliation(s)
- Nadine Czekalski
- Department of Surface Waters-Research and Management, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Elena Gascón Díez
- Group of Limnology and Environmental Geology, Institut F.-A. Forel, University of Geneva, Versoix, Switzerland
| | - Helmut Bürgmann
- Department of Surface Waters-Research and Management, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| |
Collapse
|
47
|
Duffy B, Holliger E, Walsh F. Streptomycin use in apple orchards did not increase abundance of mobile resistance genes. FEMS Microbiol Lett 2013; 350:180-9. [PMID: 24164283 DOI: 10.1111/1574-6968.12313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/26/2013] [Accepted: 10/22/2013] [Indexed: 11/26/2022] Open
Abstract
Streptomycin is used as a first-line defense and tetracycline as a second-line defense, in the fight against fire blight disease in apple and pear orchards. We have performed the first study to quantitatively analyze the influence of streptomycin use in agriculture on the abundance of streptomycin and tetracycline resistance genes in apple orchards. Flowers, leaves, and soil were collected from three orchard sites in 2010, 2011, and 2012. Gene abundance distribution was analyzed using two-way anova and principal component analysis to investigate relationships between gene abundance data over time and treatment. The mobile antibiotic resistance genes, strA, strB, tetB, tetM, tetW, and the insertion sequence IS1133, were detected prior to streptomycin treatment in almost all samples, indicating the natural presence of these resistance genes in nature. Statistically significant increases in the resistance gene abundances were occasional, inconsistent, and not reproducible from one year to the next. We conclude that the application of streptomycin in these orchards was not associated with sustained increases in streptomycin or tetracycline resistance gene abundances.
Collapse
Affiliation(s)
- Brion Duffy
- Federal Department of Economic Affairs, Education and Research EAER, Research Station Agroscope Changins-Wädenswil ACW, Wädenswil, Switzerland
| | | | | |
Collapse
|
48
|
Junjie L, Mei Y, Danqun H, Changjun H, Xianliang L, Guomin W, Dan F. Molecularly imprinted polymers on the surface of silica microspheres via sol-gel method for the selective extraction of streptomycin in aqueous samples. J Sep Sci 2013; 36:1142-8. [DOI: 10.1002/jssc.201200869] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/27/2012] [Accepted: 12/30/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Li Junjie
- College of Bioengineering; Chongqing University; Chongqing P. R. China
| | - Yang Mei
- College of Bioengineering; Chongqing University; Chongqing P. R. China
| | - Huo Danqun
- College of Bioengineering; Chongqing University; Chongqing P. R. China
| | - Hou Changjun
- College of Bioengineering; Chongqing University; Chongqing P. R. China
| | - Li Xianliang
- Chongqing Engineering Research Center for Import and Export Food Safety; Chongqing P. R. China
| | - Wang Guomin
- Chongqing Engineering Research Center for Import and Export Food Safety; Chongqing P. R. China
| | - Feng Dan
- College of Bioengineering; Chongqing University; Chongqing P. R. China
| |
Collapse
|
49
|
Simple absolute quantification method correcting for quantitative PCR efficiency variations for microbial community samples. Appl Environ Microbiol 2012; 78:4481-9. [PMID: 22492459 DOI: 10.1128/aem.07878-11] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Real-time quantitative PCR (qPCR) is a widely used technique in microbial community analysis, allowing the quantification of the number of target genes in a community sample. Currently, the standard-curve (SC) method of absolute quantification is widely employed for these kinds of analysis. However, the SC method assumes that the amplification efficiency (E) is the same for both the standard and the sample target template. We analyzed 19 bacterial strains and nine environmental samples in qPCR assays, targeting the nifH and 16S rRNA genes. The E values of the qPCRs differed significantly, depending on the template. This has major implications for the quantification. If the sample and standard differ in their E values, quantification errors of up to orders of magnitude are possible. To address this problem, we propose and test the one-point calibration (OPC) method for absolute quantification. The OPC method corrects for differences in E and was derived from the ΔΔC(T) method with correction for E, which is commonly used for relative quantification in gene expression studies. The SC and OPC methods were compared by quantifying artificial template mixtures from Geobacter sulfurreducens (DSM 12127) and Nostoc commune (Culture Collection of Algae and Protozoa [CCAP] 1453/33), which differ in their E values. While the SC method deviated from the expected nifH gene copy number by 3- to 5-fold, the OPC method quantified the template mixtures with high accuracy. Moreover, analyzing environmental samples, we show that even small differences in E between the standard and the sample can cause significant differences between the copy numbers calculated by the SC and the OPC methods.
Collapse
|
50
|
Influence of soil use on prevalence of tetracycline, streptomycin, and erythromycin resistance and associated resistance genes. Antimicrob Agents Chemother 2011; 56:1434-43. [PMID: 22203596 DOI: 10.1128/aac.05766-11] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This study examined differences in antibiotic-resistant soil bacteria and the presence and quantity of resistance genes in soils with a range of management histories. We analyzed four soils from agricultural systems that were amended with manure from animals treated with erythromycin and exposed to streptomycin and/or oxytetracycline, as well as non-manure-amended compost and forest soil. Low concentrations of certain antibiotic resistance genes were detected using multiplex quantitative real-time PCR (qPCR), with tet(B), aad(A), and str(A) each present in only one soil and tet(M) and tet(W) detected in all soils. The most frequently detected resistance genes were tet(B), tet(D), tet(O), tet(T), and tet(W) for tetracycline resistance, str(A), str(B), and aac for streptomycin resistance, and erm(C), erm(V), erm(X), msr(A), ole(B), and vga for erythromycin resistance. Transposon genes specific for Tn916, Tn1549, TnB1230, Tn4451, and Tn5397 were detected in soil bacterial isolates. The MIC ranges of isolated bacteria for tetracycline, streptomycin, and erythromycin were 8 to >256 μg/ml, 6 to >1,024 μg/ml, and 0.094 to >256 μg/ml, respectively. Based on 16S rRNA gene similarity, isolated bacteria showed high sequence identity to genera typical of soil communities. Bacteria with the highest MICs were detected in manure-amended soils or soils from agricultural systems with a history of antibiotic use. Non-manure-amended soils yielded larger proportions of antibiotic-resistant bacteria, but these had lower MICs, carried fewer antibiotic resistance genes, and did not display multidrug resistance (MDR).
Collapse
|