1
|
Yetilmezsoy K, Kıyan E, Ilhan F. Synthesis of agro-industrial wastes/sodium alginate/bovine gelatin-based polysaccharide hydrogel beads: Characterization and application as controlled-release microencapsulated fertilizers. Int J Biol Macromol 2024; 279:135382. [PMID: 39250992 DOI: 10.1016/j.ijbiomac.2024.135382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/18/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Synthesis of novel agro-industrial wastes/sodium alginate/bovine gelatin-based polysaccharide hydrogel beads, micromeritic/morphometric characteristics of the prepared formulations, greenhouse trials using controlled-release microencapsulated fertilizers, and acute fish toxicity testing were conducted simultaneously for the first time within the scope of an integrated research. In the present analysis, for the first time, 16 different morphometric features, and 32 disinct plant growth traits of the prepared composite beads were explored in detail within the framework of a comprehensive digital image analysis. The hydrogel beads composed of 19 different agro-industrial wastes/materials were successfully synthesized using the ionotropic external gelation technique and CaCl2 as cross-linker. According to micromeritic characteristics, the ionotropically cross-linked beads exhibited 77.86 ± 3.55 % yield percentage and 2.679 ± 0.397 mm average particle size. The dried microbeads showed a good swelling ratio (270.02 ± 80.53 %) and had acceptable flow properties according to Hausner's ratio (1.136 ± 0.028), Carr's index (11.94 ± 2.17 %), and angle of repose (25.03° ± 5.33°) values. The settling process of the prepared microbeads was observed in the intermediate flow regime, as indicated by the average particle Reynolds numbers (169.17 ± 82.81). Experimental findings and non-parametric statistical tests reveal that dried fertilizer matrices demonstrated noteworthy performance on the cultivation of red hot chili pepper plant (Capsicum annuum var. fasciculatum) according to the results of greenhouse trials. Surface morphologies of the best-performing fertilizer matrices were also characterized by Scanning Electron Microscopy. Moreover, the static fish bioassay experiment confirmed that no abnormalities and acute toxic reactions occurred in shortfin molly fish (Poecilia sphenops) fed with dried leaves of red hot chili pepper plants grown with formulated fertilizers. This study showcased a pioneering investigation into the synthesis of microcapsules using synthesized hydrogel beads along with digital image processing for bio-waste management and sustainable agro-application.
Collapse
Affiliation(s)
- Kaan Yetilmezsoy
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus, 34220 Esenler, Istanbul, Turkey.
| | - Emel Kıyan
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus, 34220 Esenler, Istanbul, Turkey.
| | - Fatih Ilhan
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus, 34220 Esenler, Istanbul, Turkey.
| |
Collapse
|
2
|
Huong Nguyen T, Thong Vo T, Watari T, Hatamoto M, Setiadi T, Yamaguchi T. Azo dye anaerobic treatment in anaerobic reactors coupled with PVA/Fe/Starch gel bead. BIORESOURCE TECHNOLOGY 2024; 407:131102. [PMID: 39019198 DOI: 10.1016/j.biortech.2024.131102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
A novel bio-carrier, PVA/Fe/starch gel bead, was fabricated and developed to enhance the anaerobic treatment performance of synthetic azo dye-containing wastewater. PVA-gel beads with 5 % magnetite and 0.5 % starch were optimal for physical strength and treatment performance. A pair of 2 L-up-flow anaerobic sludge blankets (UASB), one with the bead (UB) and another without (U) as a controller, operated continuously at 30 °C and an HRT of 11-24 h for 302 days. UB showed better performance than U in most phases, especially with influent dye of 200 mg·L-1, suggesting a greater tolerance to dye toxicity of UB than U. Microbial analysis revealed that the PVA/Fe/starch gel beads successfully captured the dye degrader Clostridium. Diversity indices indicated that PVA/Fe/Starch gel beads effectively support microbial diversity and resilience under varying dye concentrations. Overall, these findings demonstrate the potential of PVA/Fe/Starch gel beads to improve the stability and efficiency of the dye treatment system.
Collapse
Affiliation(s)
- Thu Huong Nguyen
- Department of Science of Technology Innovation, Nagaoka University of Technology, Niigata 940-2188, Japan
| | - Tien Thong Vo
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata 940-2188, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata 940-2188, Japan; School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam.
| | - Masashi Hatamoto
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata 940-2188, Japan
| | - Tjandra Setiadi
- Department of Chemical Engineering, Faculty of Industrial Technology, Bandung Institute of Technology, 40132, Indonesia
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Niigata 940-2188, Japan; Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata 940-2188, Japan
| |
Collapse
|
3
|
Peng G, Li-Xian L, Xi L, Shuang-Fei W, Jian Z. Roles of entrapped bubbles in methanogenic granules under oscillating pressure: Respiration and embolization for intra-granular transport. BIORESOURCE TECHNOLOGY 2024; 395:130356. [PMID: 38262541 DOI: 10.1016/j.biortech.2024.130356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
Anaerobic granular sludge plays a pivotal role in the treatment of concentrated organic wastewater. However, previous studies on intra- granular transport have generally overlooked lung-like respiration that expedites transport in response to fluctuating pressure. This study explored the activities of calcified and normal granules under simulated hydrostatic pressure oscillations. The results revealed a significant enhancement in the bioactivity of calcified granules under oscillating pressure, contrasting with the comparatively lower bioactivity observed in normal granules. The hypothesis posited that the gas pockets in calcified granules facilitated respiration as the functional structure. The presence of tiny bubbles exhibited a propensity for inducing clogging, thereby diminishing the capillary connectivity essential for substrate diffusion. The proposed respiration and embolization concepts decipher the distinct roles of entrapped bubbles in the granular bioactivity across diverse fluid states. This study offers valuable insights into the impact of fluidization on microscopic transport within granule-based bed reactors.
Collapse
Affiliation(s)
- Gan Peng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lu Li-Xian
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Liu Xi
- Guangxi Bossco Environment Co., Ltd, Nanning 530007, China
| | - Wang Shuang-Fei
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhang Jian
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Deng Z, Muñoz Sierra J, Ferreira ALM, Cerqueda-Garcia D, Spanjers H, van Lier JB. Effect of operational parameters on the performance of an anaerobic sequencing batch reactor (AnSBR) treating protein-rich wastewater. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100296. [PMID: 37554625 PMCID: PMC10405192 DOI: 10.1016/j.ese.2023.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023]
Abstract
Treating protein-rich wastewater using cost-effective and simple-structured single-stage reactors presents several challenges. In this study, we applied an anaerobic sequencing batch reactor (AnSBR) to treat protein-rich wastewater from a slaughterhouse. We focused on identifying the key factors influencing the removal of chemical oxygen demand (COD) and the settling performance of the sludge. The AnSBR achieved a maximum total COD removal of 90%, a protein degradation efficiency exceeding 80%, and a COD to methane conversion efficiency of over 70% at organic loading rates of up to 6.2 g COD L-1 d-1. We found that the variations in both the organic loading rate within the reactor and the hydraulic retention time in the buffer tank had a significant effect on COD removal. The hydraulic retention time in the buffer tank and the reactor, which determined the ammonification efficiencies and the residual carbohydrate concentrations in the reactor liquid, affected the sludge settleability. Furthermore, the genus Clostridium sensu stricto 1, known as protein- and lipids-degraders, was predominant in the reactor. Statistical analysis showed a significant correlation between the core microbiome and ammonification efficiency, highlighting the importance of protein degradation as the governing process in the treatment. Our results will provide valuable insights to optimise the design and operation of AnSBR for efficient treatment of protein-rich wastewater.
Collapse
Affiliation(s)
- Zhe Deng
- Delft University of Technology, Faculty of Civil Engineering and Geosciences, Stevinweg 1, 2628 CN, Delft, the Netherlands
- Veolia Water Technologies Techno Center Netherlands B.V. - Biothane, Tanthofdreef 21, 2623 EW, Delft, the Netherlands
| | - Julian Muñoz Sierra
- Delft University of Technology, Faculty of Civil Engineering and Geosciences, Stevinweg 1, 2628 CN, Delft, the Netherlands
- KWR Water Research Institute, Groningenhaven 7, P.O. Box 1072, 3430 BB, Nieuwegein, the Netherlands
| | - Ana Lucia Morgado Ferreira
- Veolia Water Technologies Techno Center Netherlands B.V. - Biothane, Tanthofdreef 21, 2623 EW, Delft, the Netherlands
| | - Daniel Cerqueda-Garcia
- Institute of Ecology. A.C, Cluster Cientifico y Tecnologico BioMimic®, Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico
| | - Henri Spanjers
- Delft University of Technology, Faculty of Civil Engineering and Geosciences, Stevinweg 1, 2628 CN, Delft, the Netherlands
| | - Jules B. van Lier
- Delft University of Technology, Faculty of Civil Engineering and Geosciences, Stevinweg 1, 2628 CN, Delft, the Netherlands
| |
Collapse
|
5
|
Xu D, Cao S, Berry M, Du R, Peng Y. Granulation of partial denitrification sludge: Advances in mechanism understanding, technologies development and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166760. [PMID: 37659567 DOI: 10.1016/j.scitotenv.2023.166760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
The high-rate and stably efficient nitrite generation is vital and still challenges the wide application of partial denitrification (PD) and anammox technology. Increasing attention has been drawn to the granulation of PD biomass. However, the knowledge of PD granular sludge is still limited in terms of granules characterization and mechanisms of biomass aggregation for high nitrite accumulation. This work reviewed the performance and granulation of PD biomass for high nitrite accumulation via nitrate reduction, including the system start-up, influential factors, granular characteristics, hypothetical mechanism, challenges and perspectives in future application. The physiochemical characterization and key influential factors were summarized in view of nitrite production, morphology analysis, extracellular polymer substance structure, as well as microbial mechanisms. The PD granules exhibit potential advantages of a high biomass density, good settleability, high hydraulic loading rates, and strong shock resistance. A novel granular sludge-based PD combined with anammox process was proposed to enhance the capability of nitrogen removal. In the future, PD granules utilizing different electron donors is a promising way to broaden the application of anammox technology in both municipal and industrial wastewater treatment.
Collapse
Affiliation(s)
- Duanyuan Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China; College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Maxence Berry
- Department of Process Engineering and Bioprocesses, Polytech Nantes, Campus of Gavy, Saint-Nazaire 44603, France
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China; Chair of Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
6
|
van den Berg L, Pronk M, van Loosdrecht MCM, de Kreuk MK. Density measurements of aerobic granular sludge. ENVIRONMENTAL TECHNOLOGY 2023; 44:1985-1995. [PMID: 34904922 DOI: 10.1080/09593330.2021.2017492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/05/2021] [Indexed: 05/25/2023]
Abstract
Granular sludge processes are frequently used in domestic and industrial wastewater treatment. The granule buoyant density and biomass density are important parameters for the design and operation of granular sludge reactors. Different methods to measure the granule density include the pycnometer method, the Percoll density gradient method, the dextran blue method, and the settling velocity method. In this study, a comparison was made between these four methods to measure granule density for granules from a full-scale granular sludge plant treating domestic sewage. The effect of salinity on granule density was assessed as well. Three out of the four evaluated methods yielded comparable results, with granule buoyant densities between 1025.7 and 1028.1 kg/m3 and granule biomass densities between 71.1 and 71.5 g/L (based on volatile suspended solids (VSS)). The settling velocity method clearly underestimated the granule density, due to the complex relation between granule properties and settling velocity. The pycnometer method was the most precise method, but it was also quite susceptible to bias. The granule buoyant density increased proportionally with salinity, to 1049.2 kg/m3 at 36 g/L salinity. However, the granule biomass density, based on VSS, remained constant. This showed that the granule volume was not affected by salinity and that the buoyant density increase was the result of diffusion of salts into the granule pores. Overall, the granule density can be measured reliably with most methods, as long as the effect of salinity is considered. The results are discussed in light of operational aspects for full-scale granular sludge plants.
Collapse
Affiliation(s)
- Lenno van den Berg
- Department of Water Management, Delft University of Technology, Delft, the Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
- Royal HaskoningDHV, Amersfoort, the Netherlands
| | | | - Merle K de Kreuk
- Department of Water Management, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
7
|
Hua L, Shuai L, Ze-Xiang L, Xi L, Hai-Nong S, Cheng-Rong Q, Zhi-Wei W, Shuang-Fei W, Jian Z. Retardation of sludge calcification by blocking the transportation of Ca2+ into anaerobic granular sludge. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
8
|
Feng Y, Wang Q, Duan JL, Li XY, Ma JY, Wu L, Han Y, Liu XY, Zhang YB, Yuan XZ. Attachment and adhesion force between biogas bubbles and anaerobic granular sludge in the up-flow anaerobic sludge blanket. WATER RESEARCH 2020; 171:115458. [PMID: 31931378 DOI: 10.1016/j.watres.2019.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
The performance of the up-flow anaerobic sludge blanket (UASB) is significantly governed by the hydrodynamics of the reactor. Though the influence of hydrodynamics on mass transfer, granular size distribution, and biogas production was well studied, the interaction between biogas bubbles and anaerobic granular sludge (AGS) is poorly understood. This study used the impinging-jet technique and bubble probe atomic force microscope (AFM) to investigate the attachment and adhesion force between biogas bubbles (CH4 and CO2) and AGS. The fluxes of normalized CH4 or CO2 bubble-attachment on two kinds of AGS were directly affected by gas velocity and decreased with an increase in the Reynolds number ranged from 40 to 140. The bubble-attachment had a positive linear relationship with the contact angles, ratio of exopolymeric protein and polysaccharide, and hydrophilic functional groups of AGS. A bubble probe AFM was used to explore the adhesion force between a single bubble and AGS. The results indicated that the adhesion force between the bubbles and the two kinds of AGS also decreased with increasing approach velocity. Overall, these results contribute to a new insight into the understanding of interaction between biogas bubbles and AGS in UASB reactors.
Collapse
Affiliation(s)
- Yue Feng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Qian Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Jian-Lu Duan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Xiang-Yu Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Jing-Ya Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Lei Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Yi Han
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Xiao-Yu Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Yi-Bing Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, PR China.
| |
Collapse
|
9
|
Shi J, Xu C, Han Y, Han H. Enhanced anaerobic degradation of nitrogen heterocyclic compounds with methanol, sodium citrate, chlorella, spirulina, and carboxymethylcellulose as co-metabolic substances. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121496. [PMID: 31679892 DOI: 10.1016/j.jhazmat.2019.121496] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
The aim of the study was to explore the feasibility of methanol, sodium citrate, chlorella, spirulina, and carboxymethylcellulose (CMC) as co-metabolic substances in strengthening the anaerobic degradation of selected nitrogen heterocyclic compounds (NHCs). Chlorella, spirulina, and CMC as co-metabolic substances were first introduced into the enhanced anaerobic treatment of refractory compounds. With the addition of 300 μg/L sodium citrate, chlorella, spirulina, and CMC, reactor 3, reactor 4, reactor 5, and reactor 6 had higher degradation ratios than reactor 2 with methanol as co-metabolic substance. The addition of sodium citrate, chlorella, spirulina, and CMC increased the number of bacterial sequences, promoted the richness and diversity of the bacterial community structure, and enriched the functional genera (Levilinea and Longilinea) responsible for the degradation of quinoline and indole.
Collapse
Affiliation(s)
- Jingxin Shi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chunyan Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yuxing Han
- School of Engineering, South China Agriculture University, Guangzhou, 510642, China.
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
10
|
Shi J, Han Y, Xu C, Han H. Enhanced anaerobic degradation of selected nitrogen heterocyclic compounds with the assistance of carboxymethyl cellulose. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:781-788. [PMID: 31280160 DOI: 10.1016/j.scitotenv.2019.06.469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Carboxymethyl cellulose (CMC) is a modified cellulose compound that is dispersible in water. Microbial anaerobic degradation of nitrogen heterocyclic compounds (NHCs) in wastewater treatment may be enhanced by CMC addition, but this remains uncertain due to a lack of experimental evidence. In this study, It was demonstrated that CMC is a suitable co-metabolic matrix in an enhanced anaerobic degradation of quinoline and indole in coal gasification wastewater. When the dosage of CMC was 0.5 mg/L, a reactor exhibited a high degradation efficiency on quinoline and indole, with ratios of 95.23 ± 1.99% and 94.33 ± 3.45%. The addition of CMC increased the concentration of extracellular polymeric substances in anaerobic sludge and increased the particle size of the sludge, which improved the microbial stability and sedimentation of anaerobic granular sludge. Analysis of high-throughput sequencing indicated that the addition of CMC improved the richness and diversity of bacterial and archaea communities. Acetic acid metabolism was the primary mechanism to produce methane during anaerobic degradation of NHCs wastewater.
Collapse
Affiliation(s)
- Jingxin Shi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuxing Han
- School of Engineering, South China Agriculture University, Guangzhou 510642, China
| | - Chunyan Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
11
|
Biogas Production and Fundamental Mass Transfer Mechanism in Anaerobic Granular Sludge. SUSTAINABILITY 2019. [DOI: 10.3390/su11164443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Anaerobic granules are responsible for organic degradation and biogas production in a reactor. The biogas production is entirely dependent on a mass transfer mechanism, but so far, the fundamental understanding remains poor due to the covered surface of the reactor. The study aimed at investigating the fundamental mass transfer characteristics of single anaerobic granules of different sizes using microscopic imaging and analytical monitoring under single and different organic loadings. The experiment was conducted in a micro reactor and mass transfer was calculated using modified Fick’s law. Scanning electron microscopy was applied to observe biogas production zones in the granule, and a lab-scale microscope equipped with a camera revealed the biogas bubble detachment process in the micro reactor for the first time. In this experiment, the granule size was 1.32, 1.47, and 1.75 mm, but 1.75 mm granules were chosen for further investigation due to their large size. The results revealed that biogas production rates for 1.75 mm granules at initial Chemical Oxygen Demand (COD) 586, 1700, and 6700 mg/L were 0.0108, 0.0236, and 0.1007 m3/kg COD, respectively; whereas the mass transfer rates were calculated as 1.83 × 10−12, 5.30 × 10−12, and 2.08 × 10−11 mg/s. It was concluded that higher organic loading and large granules enhance the mass transfer inside the reactor. Thus, large granules should be preferred in the granule-based reactor to enhance biogas production.
Collapse
|