1
|
Ramos-Alvarez I, Jensen RT. The Important Role of p21-Activated Kinases in Pancreatic Exocrine Function. BIOLOGY 2025; 14:113. [PMID: 40001881 PMCID: PMC11851965 DOI: 10.3390/biology14020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025]
Abstract
The p21-activated kinases (PAKs) are a conserved family of serine/threonine protein kinases, which are effectors for the Rho family GTPases, namely, Rac/Cdc42. PAKs are divided into two groups: group I (PAK1-3) and group II (PAK4-6). Both groups of PAKs have been well studied in apoptosis, protein synthesis, glucose homeostasis, growth (proliferation and survival) and cytoskeletal regulation, as well as in cell motility, proliferation and cycle control. However, little is known about the role of PAKs in the secretory tissues, including in exocrine tissue, such as the exocrine pancreas (except for islet function and pancreatic cancer growth). Recent studies have provided insights supporting the importance of PAKs in exocrine pancreas. This review summarizes the recent insights into the importance of PAKs in the exocrine pancreas by reviewing their presence and activation; the ability of GI hormones/neurotransmitters/GFs/post-receptor activators to activate them; the kinetics of their activation; the participation of exocrine-tissue PAKs in activating the main growth-signaling cascade; their roles in the stimulation of enzyme secretion; finally, their roles in pancreatitis. These insights suggest that PAKs could be more important in exocrine/secretory tissues than currently appreciated and that their roles should be explored in more detail in the future.
Collapse
Affiliation(s)
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20812-1804, USA;
| |
Collapse
|
2
|
Estaras M, Marchena AM, Fernandez-Bermejo M, Mateos JM, Vara D, Roncero V, Salido GM, Gonzalez A. The melatonin receptor antagonist luzindole induces the activation of cellular stress responses and decreases viability of rat pancreatic stellate cells. J Appl Toxicol 2020; 40:1554-1565. [PMID: 32567733 DOI: 10.1002/jat.4018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
Abstract
In this study, we have examined the effects of luzindole, a melatonin receptor-antagonist, on cultured pancreatic stellate cells. Intracellular free-Ca2+ concentration, production of reactive oxygen species (ROS), activation of mitogen-activated protein kinases (MAPK), endoplasmic reticulum stress and cell viability were analyzed. Stimulation of cells with the luzindole (1, 5, 10 and 50 μm) evoked a slow and progressive increase in intracellular free Ca2+ ([Ca2+ ]i ) towards a plateau. The effect of the compound on Ca2+ mobilization depended on the concentration used. Incubation of cells with the sarcoendoplasmic reticulum Ca2+ -ATPase inhibitor thapsigargin (1 μm), in the absence of Ca2+ in the extracellular medium, induced a transient increase in [Ca2+ ]i . In the presence of thapsigargin, the addition of luzindole to the cells failed to induce further mobilization of Ca2+ . Luzindole induced a concentration-dependent increase in ROS generation, both in the cytosol and in the mitochondria. This effect was smaller in the absence of extracellular Ca2+ . In the presence of luzindole the phosphorylation of p44/42 and p38 MAPKs was increased, whereas no changes in the phosphorylation of JNK could be noted. Moreover, the detection of the endoplasmic reticulum stress-sensor BiP was increased in the presence of luzindole. Finally, viability was decreased in cells treated with luzindole. Because cellular membrane receptors for melatonin have not been detected in pancreatic stellate cells, we conclude that luzindole could exert direct effects that are not mediated through its action on melatonin membrane receptors.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Ana M Marchena
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| |
Collapse
|
3
|
Estaras M, Ameur FZ, Estévez M, Díaz-Velasco S, Gonzalez A. The lysine derivative aminoadipic acid, a biomarker of protein oxidation and diabetes-risk, induces production of reactive oxygen species and impairs trypsin secretion in mouse pancreatic acinar cells. Food Chem Toxicol 2020; 145:111594. [PMID: 32738373 DOI: 10.1016/j.fct.2020.111594] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
We have examined the effects of α-aminoadipic acid, an oxidized derivative from the amino acid lysine, on the physiology of mouse pancreatic acinar cells. Changes in intracellular free-Ca2+ concentration, the generation of reactive oxygen species, the levels of carbonyls and thiobarbituric-reactive substances, cellular metabolic activity and trypsin secretion were studied. Stimulation of mouse pancreatic cells with cholecystokinin (1 nM) evoked a transient increase in [Ca2+]i. In the presence of α-amoniadipic acid increases in [Ca2+]i were observed. In the presence of the compound, cholecystokinin induced a Ca2+ response that was smaller compared with that observed when cholecystokinin was applied alone. Stimulation of cells with cholecystokinin in the absence of Ca2+ in the extracellular medium abolished further mobilization of Ca2+ by α-aminoadipic acid. In addition, potential pro-oxidant conditions, reflected as increases in ROS generation, oxidation of proteins and lipids, were noted in the presence of α-aminoadipic acid. Finally, the compound impaired trypsin secretion induced by the secretagogue cholecystokinin. We conclude that the oxidized derivative from the amino acid lysine induces pro-oxidative conditions and the impairment of enzyme secretion in pancreatic acinar cells. α-aminoadipic acid thus creates a situation that could potentially lead to disorders in the physiology of the pancreas.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Fatma Z Ameur
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire, Université d'Oran1 Ahmed BenBella, Algeria
| | - Mario Estévez
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura, 10003, Cáceres, Spain
| | - Silvia Díaz-Velasco
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura, 10003, Cáceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
4
|
Gonzalez A, Estaras M, Martinez-Morcillo S, Martinez R, García A, Estévez M, Santofimia-Castaño P, Tapia JA, Moreno N, Pérez-López M, Míguez MP, Blanco-Fernández G, Lopez-Guerra D, Fernandez-Bermejo M, Mateos JM, Vara D, Roncero V, Salido GM. Melatonin modulates red-ox state and decreases viability of rat pancreatic stellate cells. Sci Rep 2020; 10:6352. [PMID: 32286500 PMCID: PMC7156707 DOI: 10.1038/s41598-020-63433-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
In this work we have studied the effects of pharmacological concentrations of melatonin (1 µM-1 mM) on pancreatic stellate cells (PSC). Cell viability was analyzed by AlamarBlue test. Production of reactive oxygen species (ROS) was monitored following CM-H2DCFDA and MitoSOX Red-derived fluorescence. Total protein carbonyls and lipid peroxidation were analyzed by HPLC and spectrophotometric methods respectively. Mitochondrial membrane potential (ψm) was monitored by TMRM-derived fluorescence. Reduced (GSH) and oxidized (GSSG) levels of glutathione were determined by fluorescence techniques. Quantitative reverse transcription-polymerase chain reaction was employed to detect the expression of Nrf2-regulated antioxidant enzymes. Determination of SOD activity and total antioxidant capacity (TAC) were carried out by colorimetric methods, whereas expression of SOD was analyzed by Western blotting and RT-qPCR. The results show that melatonin decreased PSC viability in a concentration-dependent manner. Melatonin evoked a concentration-dependent increase in ROS production in the mitochondria and in the cytosol. Oxidation of proteins was detected in the presence of melatonin, whereas lipids oxidation was not observed. Depolarization of ψm was noted with 1 mM melatonin. A decrease in the GSH/GSSG ratio was observed, that depended on the concentration of melatonin used. A concentration-dependent increase in the expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1 and heme oxygenase-1 was detected in cells incubated with melatonin. Finally, decreases in the expression and in the activity of superoxide dismutase were observed. We conclude that pharmacological concentrations melatonin modify the redox state of PSC, which might decrease cellular viability.
Collapse
Affiliation(s)
- Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain.
| | - Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | | | - Remigio Martinez
- Department of Animal Health, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Alfredo García
- Department of Animal Production, CICYTEX-La Orden, Guadajira, Badajoz, Spain
| | - Mario Estévez
- IPROCAR Research Institute, Food Technology, University of Extremadura, 10003, Cáceres, Spain
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Jose A Tapia
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Noelia Moreno
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Marcos Pérez-López
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - María P Míguez
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gerardo Blanco-Fernández
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez-Guerra
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| |
Collapse
|
5
|
Xia D, Halder B, Godoy C, Chakraborty A, Singla B, Thomas E, Shuja JB, Kashif H, Miller L, Csanyi G, Sabbatini ME. NADPH oxidase 1 mediates caerulein-induced pancreatic fibrosis in chronic pancreatitis. Free Radic Biol Med 2020; 147:139-149. [PMID: 31837426 PMCID: PMC7227077 DOI: 10.1016/j.freeradbiomed.2019.11.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory disorders of the pancreas are divided into acute (AP) and chronic (CP) forms. Both states of pancreatitis are a result of pro-inflammatory mediators, including reactive oxygen species (ROS). One of the sources of ROS is NADPH oxidase (Nox). The rodent genome encodes Nox1-4, Duox1 and Duox2. Our purpose was to assess the extent to which Nox enzymes contribute to the pathogenesis of both AP and CP using Nox-deficient mice. Using RT-PCR, Nox1 was found in both isolated mouse pancreatic acini and pancreatic stellate cells (PaSCs). Subsequently, mice with genetically deleted Nox1 were further studied and showed that the histo-morphologic characteristics of caerulein-induced CP, but not caerulein-induced AP, was ameliorated in Nox1 KO mice. We also found that the lack of Nox1 impaired caerulein-induced ROS generation in PaSCs. Using Western blotting, we found that AKT mediates the fibrotic effect of Nox1 in a mouse model of CP. We also found a decrease in phospho-ERK and p38MAPK levels in Nox1 KO mice with CP, but not with AP. Both CP-induced TGF-β up-regulation and NF-ĸB activation were impaired in pancreas from Nox1 KO mice. Western blotting indicated increases in proteins involved in fibrosis and acinar-to-ductal metaplasia in WT mice with CP. No change in those proteins were observed in Nox1 KO mice. The lack of Nox1 lowered mRNA levels of CP-induced matrix metalloproteinase MMP-9 and E-cadherin repressor Twist in PaSCs. CONCLUSION: Nox1-derived ROS in PaSCs mediate the fibrotic process of CP by activating the downstream redox-sensitive signaling pathways AKT and NF-ĸB, up-regulating MMP-9 and Twist, and producing α-smooth muscle actin and collagen I and III.
Collapse
Affiliation(s)
- Di Xia
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Bithika Halder
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Catalina Godoy
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | | | - Bhupesh Singla
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Eyana Thomas
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Jasim B Shuja
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Hisham Kashif
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Laurence Miller
- Department of Psychological Sciences, Augusta University, Augusta, GA, USA
| | - Gabor Csanyi
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Maria E Sabbatini
- Department of Biological Sciences, Augusta University, Augusta, GA, USA.
| |
Collapse
|
6
|
Estaras M, Ameur FZ, Roncero V, Fernandez-Bermejo M, Blanco G, Lopez D, Mateos JM, Salido GM, Gonzalez A. The melatonin receptor antagonist luzindole induces Ca 2+ mobilization, reactive oxygen species generation and impairs trypsin secretion in mouse pancreatic acinar cells. Biochim Biophys Acta Gen Subj 2019; 1863:129407. [PMID: 31381958 DOI: 10.1016/j.bbagen.2019.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND In this work we studied the effects of the melatonin receptor-antagonist luzindole (1 μM-50 μM) on isolated mouse pancreatic acinar cells. METHODS Changes in intracellular free-Ca2+ concentration, reactive oxygen species production and trypsin secretion were analyzed. RESULTS Luzindole induced increases in [Ca2+]i that diminished CCK-8 induced Ca2+ mobilization, compared with that observed when CCK-8 was applied alone. Treatment of cells with thapsigargin (1 μM), in the absence of Ca2+ in the extracellular medium, evoked a transient increase in [Ca2+]i. The additional incubation of cells with luzindole (10 μM) failed to induce further mobilization of Ca2+. In the presence of luzindole a concentration-dependent increase in ROS generation was observed that decreased in the absence of Ca2+ or by pretreatment of cells with melatonin (100 μM). Incubation of pancreatic acinar cells with luzindole (10 μM) impaired CCK-8-induced trypsin secretion. Melatonin was unable to revert the effect of luzindole on CCK-8-induced trypsin secretion. CONCLUSION The melatonin receptor-inhibitor luzindole induces Ca2+-mediated pro-oxidative conditions and impairment of enzyme secretion, which creates a situation in pancreatic acinar cells that might compromise their function. GENERAL SIGNIFICANCE The effects of luzindole that we have observed, might be unspecific and could mislead the observations when it is used to study the actions of melatonin on the gland. Another possibility is that melatonin receptors exhibit a basal or agonist-independent activity in pancreatic acinar cells, which might be modulated by melatonin or luzindole.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Fatma Z Ameur
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire, Université d'Oran1, Ahmed BenBella, Algeria
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | | | - Gerardo Blanco
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain.
| |
Collapse
|
7
|
Seo JY, Pandey RP, Lee J, Sohng JK, Namkung W, Park YI. Quercetin 3-O-xyloside ameliorates acute pancreatitis in vitro via the reduction of ER stress and enhancement of apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:40-49. [PMID: 30668442 DOI: 10.1016/j.phymed.2018.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/01/2018] [Accepted: 07/16/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND PURPOSE Glycosylation of phenolic compounds has been reported to increase water-solubility, reduce toxicity, and sometimes give improved or novel pharmacological activities. Present study was aimed to evaluate and compare the beneficial effects of quercetin aglycone (Quer) and its glycosylated derivative, quercetin 3-O-xyloside (Quer-Xyl), against acute pancreatitis (AP). METHODS The cellular acute pancreatitis model was established by treating the rat pancreatic acinar cells (AR42J) with lipopolysaccharide (10 µg/ml) and cerulein (10-7 M). The cytotoxicity of Quer or Quer-Xyl on AR42J cells was assessed by MTT assay. Calcium and ROS levels were fluorometrically determined. The ER stress levels (PERK, GRP78), expression levels of amylase and lipase, and apoptotic markers (caspase-3 and -9) were measured by RT-PCR, western blotting, or fluorometric assay. RESULTS While Quer increased the mRNA expressions of AP marker enzymes, amylase and lipase, Quer-Xyl dose-dependently reversed their expressions. Quer-Xyl suppressed intracellular ROS production and both mRNA and protein levels of GRP78 and PERK, which were significantly elevated in cerulein and LPS-treated AR42J cells. Further, RT-PCR and fluorescence assay revealed that Quer-Xyl dose-dependently augmented the mRNA expressions and activities of caspase-3 and -9. CONCLUSION These results showed that Quer-Xyl, but not Quer, has a significant anti-pancreatitis activity through attenuating intracellular ROS production and ER stress response and enhancing apoptotic cell death, suggesting that it might be useful as a potent functional ingredient in health-beneficial foods or as a therapeutic agent to prevent or treat AP.
Collapse
Affiliation(s)
- Jeong Yeon Seo
- Department of Biotechnology, Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, Asan, Chungnam 31460, Republic of Korea
| | - Jisun Lee
- Department of Biotechnology, Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Jae Kyung Sohng
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, Asan, Chungnam 31460, Republic of Korea
| | - Wan Namkung
- Department of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 21983, Republic of Korea
| | - Yong Il Park
- Department of Biotechnology, Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
8
|
Martínez-Morcillo S, Pérez-López M, Soler-Rodríguez F, González A. The organophosphorus pesticide dimethoate decreases cell viability and induces changes in different biochemical parameters of rat pancreatic stellate cells. Toxicol In Vitro 2019; 54:89-97. [PMID: 30243730 DOI: 10.1016/j.tiv.2018.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 12/14/2022]
Abstract
In the present study we employed cultured pancreatic stellate cells to study the effect of the organophosphorus insecticide dimethoate on pancreatic cell physiology. Esterase activity, cell viability, reactive oxygen species generation and Ca2+ mobilization were examined. Our results show that dimethoate (0.1, 1 and 10 μM) induced a concentration-dependent inhibition of cholinesterase enzymatic activity at all concentrations tested. A drop in carboxylesterase activity was noted in the presence of 10 μM dimethoate. In the presence of the pesticide a decrease in cell viability was detected. The clearer effect could be observed when the cells had been incubated during 96 h in the presence of dimethoate. The pesticide induced a slight but statistically significant increase in the production of reactive oxygen species in the mitochondria. Incubation of cells with dimethoate, in the presence of Ca2+ in the extracellular medium, led to a slow and progressive increase in [Ca2+]c towards an elevated value over the prestimulation level. A similar behavior was observed in the absence of extracellular Ca2+, indicating that dimethoate releases Ca2+ from the intracellular stores. Our results suggest that dimethoate might alter intracellular pathways that are critical for pancreatic physiology, creating a situation potentially leading to dysfunction in the exocrine pancreas.
Collapse
Affiliation(s)
| | - Marcos Pérez-López
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain.
| | | | - Antonio González
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain.
| |
Collapse
|
9
|
Ameur FZ, Mehedi N, Kheroua O, Saïdi D, Salido GM, Gonzalez A. Sulfanilic acid increases intracellular free-calcium concentration, induces reactive oxygen species production and impairs trypsin secretion in pancreatic AR42J cells. Food Chem Toxicol 2018; 120:71-80. [PMID: 29986830 DOI: 10.1016/j.fct.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/09/2018] [Accepted: 07/01/2018] [Indexed: 12/12/2022]
Abstract
We studied the effects of the tartrazine-metabolite sulfanilic acid on the physiology of pancreatic AR42J cells. Sulfanilic acid (1 μM-1 mM) induced a slow and progressive increase in intracellular free-calcium concentration that reached a plateau. The effect of sulfanilic acid was not concentration-dependent. Stimulation of cells with thapsigargin (1 μM) after treatment with sulfanilic acid (1 mM) induced a smaller Ca2+ response compared with that obtained with thapsigargin alone. Sulfanilic acid induced a concentration-dependent production of reactive oxygen species; however, this effect was not Ca2+-dependent. Depolarization of mitochondrial membrane potential was observed at the concentration of 1 mM sulfanilic acid. In the presence of the compound a decrease in the GSH/GSSG ratio was observed. A decrease in the expression of superoxide dismutase 2 was noted. Finally, stimulation of cells with CCK-8 led to a concentration-dependent increase of trypsin secretion that was impaired by pretreatment of cells with sulfanilic acid. Preincubation of cells with the antioxidant melatonin (100 μM) reduced the effect of sulfanilic acid on trypsin secretion. We conclude that sulfanilic acid might induce oxidative stress, which could alter Ca2+ signaling and enzyme secretion in pancreatic AR42J cells. This creates a situation potentially leading to damage of the exocrine pancreas.
Collapse
Affiliation(s)
- Fatma Zohra Ameur
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain; Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire - Université d'Oran1, Ahmed BenBella, Algeria
| | - Nabila Mehedi
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire - Université d'Oran1, Ahmed BenBella, Algeria
| | - Omar Kheroua
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire - Université d'Oran1, Ahmed BenBella, Algeria
| | - Djamel Saïdi
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire - Université d'Oran1, Ahmed BenBella, Algeria
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain.
| |
Collapse
|
10
|
Santofimia-Castaño P, Izquierdo-Alvarez A, Plaza-Davila M, Martinez-Ruiz A, Fernandez-Bermejo M, Mateos-Rodriguez JM, Salido GM, Gonzalez A. Ebselen impairs cellular oxidative state and induces endoplasmic reticulum stress and activation of crucial mitogen-activated protein kinases in pancreatic tumour AR42J cells. J Cell Biochem 2018; 119:1122-1133. [PMID: 28703940 DOI: 10.1002/jcb.26280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022]
Abstract
Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is an organoselenium radical scavenger compound, which has strong antioxidant and anti-inflammatory effects. However, evidence suggests that this compound could exert deleterious actions on cell physiology. In this study, we have analyzed the effect of ebselen on rat pancreatic AR42J cells. Cytosolic free-Ca2+ concentration ([Ca2+ ]c ), cellular oxidative status, setting of endoplasmic reticulum stress, and phosphorylation of major mitogen-activated protein kinases were analyzed. Our results show that ebselen evoked a concentration-dependent increase in [Ca2+ ]c . The compound induced an increase in the generation of reactive oxygen species in the mitochondria. We also observed an increase in global cysteine oxidation in the presence of ebselen. In the presence of ebselen an impairment of cholecystokinin-evoked amylase release was noted. Moreover, involvement of the unfolded protein response markers, ER chaperone and signaling regulator GRP78/BiP, eukaryotic translation initiation factor 2α and X-box binding protein 1 was detected. Finally, increases in the phosphorylation of SAPK/JNK, p38 MAPK, and p44/42 MAPK in the presence of ebselen were also observed. Our results provide evidences for an impairment of cellular oxidative state and enzyme secretion, the induction of endoplasmic reticulum stress and the activation of crucial mitogen-activated protein kinases in the presence of ebselen. As a consequence ebselen exerts a potential toxic effect on AR42J cells.
Collapse
Affiliation(s)
| | - Alicia Izquierdo-Alvarez
- Servicio de Inmunologia, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - María Plaza-Davila
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Caceres, Spain
| | - Antonio Martinez-Ruiz
- Servicio de Inmunologia, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Miguel Fernandez-Bermejo
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Caceres, Spain
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | | | - Gines M Salido
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Caceres, Spain
| |
Collapse
|
11
|
Song EA, Lim JW, Kim H. Docosahexaenoic acid inhibits IL-6 expression via PPARγ-mediated expression of catalase in cerulein-stimulated pancreatic acinar cells. Int J Biochem Cell Biol 2017; 88:60-68. [PMID: 28483666 DOI: 10.1016/j.biocel.2017.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
Abstract
Cerulein pancreatitis mirrors human acute pancreatitis. In pancreatic acinar cells exposed to cerulein, reactive oxygen species (ROS) mediate inflammatory signaling by Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3, and cytokine induction. Docosahexaenoic acid (DHA) acts as an agonist of peroxisome proliferator activated receptor γ (PPARγ), which mediates the expression of some antioxidant enzymes. We hypothesized that DHA may induce PPARγ-target catalase expression and reduce ROS levels, leading to the inhibition of JAK2/STAT3 activation and IL-6 expression in cerulein-stimulated acinar cells. Pancreatic acinar AR42J cells were treated with DHA in the presence or absence of the PPARγ antagonist GW9662, or treated with the PPARγ agonist troglitazone, and then stimulated with cerulein. Expression of IL-6 and catalase, ROS levels, JAK2/STAT3 activation, and nuclear translocation of PPARγ were assessed. DHA suppressed the increase in ROS, JAK2/STAT3 activation, and IL-6 expression induced nuclear translocation of PPARγ and catalase expression in cerulein-stimulated AR42J cells. Troglitazone inhibited the cerulein-induced increase in ROS and IL-6 expression, but induced catalase expression similar to DHA in AR42J cells. GW9662 abolished the inhibitory effect of DHA on cerulein-induced increase in ROS and IL-6 expression in AR42J cells. DHA-induced expression of catalase was suppressed by GW9662 in cerulein-stimulated AR42J cells. Thus, DHA induces PPARγ activation and catalase expression, which inhibits ROS-mediated activation of JAK2/STAT3 and IL-6 expression in cerulein-stimulated pancreatic acinar cells.
Collapse
Affiliation(s)
- Eun Ah Song
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
12
|
Wen D, An M, Gou H, Liu X, Liu L, Ma C, Cong B. Cholecystokinin-8 inhibits methamphetamine-induced neurotoxicity via an anti-oxidative stress pathway. Neurotoxicology 2016; 57:31-38. [DOI: 10.1016/j.neuro.2016.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/07/2016] [Accepted: 08/15/2016] [Indexed: 11/28/2022]
|
13
|
Nuche-Berenguer B, Ramos-Álvarez I, Jensen RT. The p21-activated kinase, PAK2, is important in the activation of numerous pancreatic acinar cell signaling cascades and in the onset of early pancreatitis events. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1122-1136. [PMID: 26912410 PMCID: PMC4846574 DOI: 10.1016/j.bbadis.2016.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 12/30/2022]
Abstract
In a recent study we explored Group-1-p21-activated kinases (GP.1-PAKs) in rat pancreatic acini. Only PAK2 was present; it was activated by gastrointestinal-hormones/neurotransmitters and growth factors in a PKC-, Src- and small-GTPase-mediated manner. PAK2 was required for enzyme-secretion and ERK/1-2-activation. In the present study we examined PAK2's role in CCK and TPA-activation of important distal signaling cascades mediating their physiological/pathophysiological effects and analyzed its role in pathophysiological processes important in early pancreatitis. In rat pancreatic acini, PAK2-inhibition by the specific, GP.1.PAK-inhibitor, IPA-3-suppressed cholecystokinin (CCK)/TPA-stimulated activation of focal-adhesion kinases and mitogen-activated protein-kinases. PAK2-inhibition reversed the dual stimulatory/inhibitory effect of CCK/TPA on the PI3K/Akt/GSK-3β pathway. However, its inhibition did not affect PKC activation. PAK2-inhibition protected acini from CCK-induced ROS-generation; caspase/trypsin-activation, important in early pancreatitis; as well as from cell-necrosis. Furthermore, PAK2-inhibition reduced proteolytic-activation of PAK-2p34, which is involved in programmed-cell-death. To ensure that the study did not only rely in the specificity of IPA-3 as a PAK inhibitor, we used two other approaches for PAK inhibition, FRAX597 a ATP-competitive-GP.1-PAKs-inhibitor and infection with a PAK2-dominant negative(DN)-Advirus. Those two approaches confirmed the results obtained with IPA-3. This study demonstrates that PAK2 is important in mediating CCK's effect on the activation of signaling-pathways known to mediate its physiological/pathophysiological responses including several cellular processes linked to the onset of pancreatitis. Our results suggest that PAK2 could be a new, important therapeutic target to consider for the treatment of diseases involving deregulation of pancreatic acinar cells.
Collapse
Affiliation(s)
- Bernardo Nuche-Berenguer
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Irene Ramos-Álvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - R T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA.
| |
Collapse
|
14
|
Santofimia-Castaño P, Clea Ruy D, Garcia-Sanchez L, Jimenez-Blasco D, Fernandez-Bermejo M, Bolaños JP, Salido GM, Gonzalez A. Melatonin induces the expression of Nrf2-regulated antioxidant enzymes via PKC and Ca2+ influx activation in mouse pancreatic acinar cells. Free Radic Biol Med 2015; 87:226-236. [PMID: 26163001 DOI: 10.1016/j.freeradbiomed.2015.06.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 05/24/2015] [Accepted: 06/23/2015] [Indexed: 12/12/2022]
Abstract
The goal of this study was to evaluate the potential activation of the nuclear factor erythroid 2-related factor and the antioxidant-responsive element (Nrf2-ARE) signaling pathway in response to melatonin in isolated mouse pancreatic acinar cells. Changes in intracellular free Ca(2+) concentration were followed by fluorimetric analysis of fura-2-loaded cells. The activations of PKC and JNK were measured by Western blot analysis. Quantitative reverse transcription-polymerase chain reaction was employed to detect the expression of Nrf2-regulated antioxidant enzymes. Immunocytochemistry was employed to determine nuclear location of phosphorylated Nrf2, and the cellular redox state was monitored following MitoSOX Red-derived fluorescence. Our results show that stimulation of fura-2-loaded cells with melatonin (1 µM to 1 mM), in the presence of Ca(2+) in the extracellular medium, induced a slow and progressive increase of [Ca(2+)](c) toward a stable level. Melatonin did not inhibit the typical Ca(2+) response induced by CCK-8 (1 nM). When the cells were challenged with indoleamine in the absence of Ca(2+) in the extracellular solution (medium containing 0.5 mM EGTA) or in the presence of 1 mM LaCl(3), to inhibit Ca(2+) entry, we could not detect any change in [Ca(2+)](c). Nevertheless, CCK-8 (1 nM) was able to induce the typical mobilization of Ca(2+). When the cells were incubated with the PKC activator PMA (1 µM) in the presence of Ca(2+) in the extracellular medium, we observed a response similar to that noted when the cells were challenged with melatonin 100 µM. However, in the presence of Ro31-8220 (3 µM), a PKC inhibitor, stimulation of cells with melatonin failed to evoke changes in [Ca(2+)]c. Immunoblots, using an antibody specific for phospho-PKC, revealed that melatonin induces PKCα activation, either in the presence or in the absence of external Ca(2+). Melatonin induced the phosphorylation and nuclear translocation of the transcription factor Nrf2, and evoked a concentration-dependent increase in the expression of the antioxidant enzymes NAD(P)H-quinone oxidoreductase 1, catalytic subunit of glutamate-cysteine ligase, and heme oxygenase-1. Incubation of MitoSOX Red-loaded pancreatic acinar cells in the presence of 1 nM CCK-8 induced a statistically significant increase in dye-derived fluorescence, reflecting an increase in oxidation, that was abolished by pretreatment of cells with melatonin (100 µM) or PMA (1 µM). On the contrary, pretreatment with Ro31-8220 (3 µM) blocked the effect of melatonin on CCK-8-induced increase in oxidation. Finally, phosphorylation of JNK in the presence of CCK-8 or melatonin was also observed. We conclude that melatonin, via modulation of PKC and Ca(2+) signaling, could potentially stimulate the Nrf2-mediated antioxidant response in mouse pancreatic acinar cells.
Collapse
Affiliation(s)
| | - Deborah Clea Ruy
- Facultade de Agronomia & Medicina Veterinaria, Universidade de Brasilia, 70900-100, Brasilia DF, Brazil
| | - Lourdes Garcia-Sanchez
- Cell Physiology Research Group (FICEL), Department of Physiology, University of Extremadura, Caceres, Spain
| | - Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca-CSIC, Salamanca, Spain
| | - Miguel Fernandez-Bermejo
- Cell Physiology Research Group (FICEL), Department of Physiology, University of Extremadura, Caceres, Spain; Department of Gastroenterology, San Pedro de Alcantara Hospital, E-10003 Caceres, Spain
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca-CSIC, Salamanca, Spain
| | - Gines M Salido
- Cell Physiology Research Group (FICEL), Department of Physiology, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Cell Physiology Research Group (FICEL), Department of Physiology, University of Extremadura, Caceres, Spain.
| |
Collapse
|
15
|
Weber H, Jonas L, Wakileh M, Krüger B. Beneficial effect of the bioflavonoid quercetin on cholecystokinin-induced mitochondrial dysfunction in isolated rat pancreatic acinar cells. Can J Physiol Pharmacol 2013; 92:215-25. [PMID: 24593786 DOI: 10.1139/cjpp-2013-0112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The pathogenesis of acute pancreatitis (AP) is still poorly understood. Thus, a reliable pharmacological therapy is currently lacking. In recent years, an impairment of the energy metabolism of pancreatic acinar cells, caused by Ca(2+)-mediated depolarization of the inner mitochondrial membrane and a decreased ATP supply, has been implicated as an important pathological event. In this study, we investigated whether quercetin exerts protection against mitochondrial dysfunction. Following treatment with or without quercetin, rat pancreatic acinar cells were stimulated with supramaximal cholecystokinin-8 (CCK). CCK caused a decrease in the mitochondrial membrane potential (MMP) and ATP concentration, whereas the mitochondrial dehydrogenase activity was significantly increased. Quercetin treatment before CCK application exerted no protection on MMP but increased ATP to a normal level, leading to a continuous decrease in the dehydrogenase activity. The protective effect of quercetin on mitochondrial function was accompanied by a reduction in CCK-induced changes to the cell membrane. Concerning the molecular mechanism underlying the protective effect of quercetin, an increased AMP/ATP ratio suggests that the AMP-activated protein kinase system may be activated. In addition, quercetin strongly inhibited CCK-induced trypsin activity. The results indicate that the use of quercetin may be a therapeutic strategy for reducing the severity of AP.
Collapse
Affiliation(s)
- Heike Weber
- a Institute of Clinical Chemistry and Laboratory Medicine, University of Rostock, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany
| | | | | | | |
Collapse
|
16
|
Carrasco C, Holguín-Arévalo MS, Martín-Partido G, Rodríguez AB, Pariente JA. Chemopreventive effects of resveratrol in a rat model of cerulein-induced acute pancreatitis. Mol Cell Biochem 2013; 387:217-25. [PMID: 24234420 DOI: 10.1007/s11010-013-1887-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/05/2013] [Indexed: 12/11/2022]
Abstract
In the past decades, a greater understanding of acute pancreatitis has led to improvement in mortality rates. Nevertheless, this disease continues to be a health care system problem due to its economical costs. Future strategies such as antioxidant supplementation could be very promising, regarding to beginning and progression of the disease. For this reason, this study was aimed at assessing the effect of exogenous administration of resveratrol during the induction process of acute pancreatitis caused by the cholecystokinin analog cerulein in rats. Resveratrol pretreatment reduced histological damage induced by cerulein treatment, as well as hyperamylasemia and hyperlipidemia. Altered levels of corticosterone, total antioxidant status, and glutathione peroxidase were significantly reverted to control levels by the administration of resveratrol. Lipid peroxidation was also counteracted; nevertheless, superoxide dismutase enzyme was overexpressed due to resveratrol pretreatment. Related to immune response, resveratrol pretreatment reduced pro-inflammatory cytokine IL-1β levels and increased anti-inflammatory cytokine IL-10 levels. In addition, pretreatment with resveratrol in cerulein-induced pancreatitis rats was able to reverse, at least partially, the abnormal calcium signal induced by treatment with cerulein. In conclusion, this study confirms antioxidant and immunomodulatory properties of resveratrol as chemopreventive in cerulein-induced acute pancreatitis.
Collapse
|
17
|
Armstrong JA, Cash N, Soares PMG, Souza MHLP, Sutton R, Criddle DN. Oxidative stress in acute pancreatitis: lost in translation? Free Radic Res 2013; 47:917-33. [PMID: 23952531 DOI: 10.3109/10715762.2013.835046] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative stress has been implicated in the pathogenesis of acute pancreatitis, a severe and debilitating inflammation of the pancreas that carries a significant mortality, and which imposes a considerable financial burden on the health system due to patient care. Although extensive efforts have been directed towards the elucidation of critical underlying mechanisms and the identification of novel therapeutic targets, the disease remains without a specific therapy. In experimental animal models of acute pancreatitis, increased oxidative stress and decreased antioxidant defences have been observed, changes also detected in patients clinically. However, despite the promise of studies evaluating the effects of antioxidants in these model systems, translation to the clinic has thus far been disappointing. This may reflect many factors involved in the design of both preclinical and clinical evaluations of antioxidant therapy, not least the fact that most experimental studies have focussed on pre-treatment rather than post-injury assessment. This review has examined evidence relating to the involvement of oxidative stress in the pathophysiology of acute pancreatitis, focussing on experimental models and the clinical experience, including the experimental techniques employed and potential of antioxidant therapy.
Collapse
Affiliation(s)
- J A Armstrong
- NIHR Liverpool Pancreas Biomedical Research Unit, RLBUHT , Liverpool , UK
| | | | | | | | | | | |
Collapse
|
18
|
Gonzalez A, Santofimia-Castaño P, Rivera-Barreno R, Salido GM. Cinnamtannin B-1, a natural antioxidant that reduces the effects of H(2)O(2) on CCK-8-evoked responses in mouse pancreatic acinar cells. J Physiol Biochem 2012; 68:181-191. [PMID: 22120978 DOI: 10.1007/s13105-011-0130-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 11/07/2011] [Indexed: 01/12/2023]
Abstract
This work was designed in order to gain an insight on the mechanisms by which antioxidants prevent pancreatic disorders. We have examined the properties of cinnamtannin B-1, which belongs to the class of polyphenols, against the effect of hydrogen peroxide (H(2)O(2)) in mouse pancreatic acinar cells. We have studied Ca(2+) mobilization, oxidative state, amylase secretion, and cell viability of cells treated with cinnamtannin B-1 in the presence of various concentrations of H(2)O(2). We found that H(2)O(2) (0.1-100 μM) increased CM-H(2)DCFDA-derived fluorescence, reflecting an increase in oxidation. Cinnamtannin B-1 (10 μM) reduced H(2)O(2)-induced oxidation of CM-H(2)DCFDA. CCK-8 induced oxidation of CM-H(2)DCFDA in a similar way to low micromolar concentrations of H(2)O(2), and cinnamtannin B-1 reduced the oxidant effect of CCK-8. In addition, H(2)O(2) induced a slow and progressive increase in intracellular free Ca(2+) concentration ([Ca(2+)](c)). Cinnamtannin B-1 reduced the effect of H(2)O(2) on [Ca(2+)](c), but only at the lower concentrations of the oxidant. H(2)O(2) inhibited amylase secretion in response to cholecystokinin, and cinnamtannin B-1 reduced the inhibitory action of H(2)O(2) on enzyme secretion. Finally, H(2)O(2) reduced cell viability, and the antioxidant protected acinar cells against H(2)O(2). In conclusion, the beneficial effects of cinnamtannin B-1 appear to be mediated by reducing the intracellular Ca(2+) overload and intracellular accumulation of digestive enzymes evoked by ROS, which is a common pathological precursor that mediates pancreatitis. Our results support the beneficial effect of natural antioxidants in the therapy against oxidative stress-derived deleterious effects on cellular physiology.
Collapse
Affiliation(s)
- Antonio Gonzalez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Caceres, Spain.
| | | | | | | |
Collapse
|
19
|
No protective effect of curcumin on hydrogen peroxide-induced cytotoxicity in HepG2 cells. Pharmacol Rep 2011; 63:724-32. [DOI: 10.1016/s1734-1140(11)70584-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 11/29/2010] [Indexed: 11/23/2022]
|
20
|
Chan YC, Leung PS. Co-operative effects of angiotensin II and caerulein in NFκB activation in pancreatic acinar cells in vitro. ACTA ACUST UNITED AC 2010; 166:128-34. [PMID: 20959124 DOI: 10.1016/j.regpep.2010.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/04/2010] [Accepted: 10/13/2010] [Indexed: 01/10/2023]
Abstract
Angiotensin II is a vasoactive peptide that controls blood pressure and homeostasis. Emerging evidence shows that locally generated angiotensin II plays a crucial role in normal physiology, as well as pathophysiological conditions such as pancreatitis. We recently reported that angiotensin II activates pancreatic NFκB in obstructive pancreatitis. However, the specific cell type responsible for this activation remains unclear. In this study, we investigated whether pancreatic acinar cells respond to angiotensin II. These cells are the most abundant pancreatic cells and the most vulnerable to pancreatitis. Pancreatic acinar AR42J cells were used as an in vitro model of pancreatic inflammation. Our results demonstrated that treatment with caerulein, a cholecystokinin receptor agonist, induced hypersecretion and NFκB activation, as demonstrated by elevated amylase secretion and degradation of inhibitor of NFκB (IκBβ). Angiotensin II, either alone or in combination with caerulein, augmented IκBβ degradation. Pre-treatment with losartan, an antagonist of the angiotensin type I (AT₁) receptor, abolished NFκB activation by angiotensin II and caerulein in a dose-dependent manner. Treatment with PD123319, a blocker of the angiotensin type II (AT₂) receptor, enhanced the activation of NFκB by angiotensin II and caerulein. Preliminary data further demonstrated that angiotensin II could extend caerulein-induced ERK1/2 activation in acinar cells. These results indicated that inflammation triggered by hyperstimulation of pancreatic acinar cells is enhanced by angiotensin II, via the AT₁ receptor. In contrast, stimulation of the AT₂ receptor protects against caerulein-induced NFκB activation. The differential roles of the AT₁ and AT₂ receptors might be useful in developing potential therapies for pancreatic inflammation.
Collapse
Affiliation(s)
- Yuk Cheung Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | | |
Collapse
|
21
|
Rivera-Barreno R, del Castillo-Vaquero A, Salido GM, Gonzalez A. Effect of cinnamtannin B-1 on cholecystokinin-8-evoked responses in mouse pancreatic acinar cells. Clin Exp Pharmacol Physiol 2010; 37:980-988. [PMID: 20626416 DOI: 10.1111/j.1440-1681.2010.05424.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
1. Cinnamtannin B-1 is a naturally occurring A-type proanthocyanidin that belongs to a class of polyphenols widely distributed throughout the plant kingdom and exhibiting anti-oxidant properties. 2. In the present study, we examined the effects of cinnamtannin B-1 on cholecystokinin octapeptide (CCK-8)-evoked Ca(2+) mobilization, reactive oxygen species (ROS) production and amylase secretion in the exocrine pancreas. 3. Stimulation of cells with 1 nmol/L CCK-8 led to a transient increase in the cytosolic free calcium concentration ([Ca(2+) ](c) ), followed by a decrease towards a value close to the prestimulation level. In the presence of 10 μmol/L cinnamtannin B-1, stimulation of cells with CCK-8 resulted in a smaller [Ca(2+) ](c) peak response, a faster rate of decay of [Ca(2+) ](c) and lower values for the steady state of [Ca(2+) ](c) , compared with the effect of CCK-8 alone. Cinnamtannin B-1 decreased Ca(2+) influx after depletion of intracellular stores by either CCK-8 or thapsigargin (1 μmol/L). Conversely, CCK-8 increased the fluorescence of 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester (CM-H(2) DCFDA), reflecting an increase in oxidation. Cinnamtannin B-1 reduced CCK-8-induced oxidation of CM-H(2) DCFDA. Cholecystokinin-8 had a biphasic effect on amylase secretion, producing maximum at a concentration of 0.1 nmol/L and reducing secretion at higher concentrations. Pre-incubation of cells with 10 μmol/L cinnamtannin B-1 significantly attenuated the inhibition of enzyme secretion in response to high concentrations of CCK-8 (i.e. >10(-10) mol/L). Finally, the anti-oxidant protected acinar cells against CCK-8-induced cell death. 4. The beneficial effects of cinnamtannin B-1 appear to be mediated by a reduction in intracellular Ca(2+) overload, ROS production and intracellular accumulation of digestive enzymes, which is a common pathological precursor that mediates pancreatitis.
Collapse
Affiliation(s)
- Ramon Rivera-Barreno
- Department of Medical Sciences, Institute of Biomedical Sciences, Autonomous University of Juarez, Ciudad Juarez, México
| | | | | | | |
Collapse
|
22
|
del Castillo-Vaquero A, Salido GM, Gonzalez A. Melatonin induces calcium release from CCK-8- and thapsigargin-sensitive cytosolic stores in pancreatic AR42J cells. J Pineal Res 2010; 49:256-263. [PMID: 20626590 DOI: 10.1111/j.1600-079x.2010.00790.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Melatonin is produced following circadian rhythm with high levels being released at night and has been implicated in the regulation of physiological processes in major tissues, including the pancreas. The aim of our study was to examine the effects of melatonin on intracellular free Ca(2+) concentration ([Ca(2+) ](c)) in AR42J pancreatic cells. Our results show that stimulation of cells with 1 nm cholecystokinin (CCK)-8 led to a transient increase in [Ca(2+) ](c) followed by a decrease towards a value close to the prestimulation level. Melatonin (at the concentrations 1, 10, 100 μm and 1 mm) induced changes in [Ca(2+) ](c) that consisted of single or short lasting spikes in the form of oscillations or slow transient increases followed by a slow reduction towards a value close to the resting level. Depletion of intracellular Ca(2+) stores by stimulation of cells with 1 nm CCK-8 or 1 μm thapsigargin (Tps) blocked Ca(2+) responses evoked by melatonin in the majority of cells. Conversely, prior stimulation of cells with 1 mm melatonin in the absence of extracellular Ca(2+) inhibited Ca(2+) mobilization in response to a secondary application of CCK-8 or Tps. In summary, our results show that melatonin releases Ca(2+) from intracellular stores and can therefore modulate the responses of the pancreas to CCK-8. The source for Ca(2+) mobilization most probably is the endoplasmic reticulum. These data raise the possibility that melatonin also involves Ca(2+) signalling, in addition to other intracellular messengers, to modulate cellular function.
Collapse
|
23
|
Del Castillo-Vaquero A, Salido GM, González A. Increased calcium influx in the presence of ethanol in mouse pancreatic acinar cells. Int J Exp Pathol 2010; 91:114-124. [PMID: 20002836 PMCID: PMC2965897 DOI: 10.1111/j.1365-2613.2009.00691.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 09/15/2009] [Indexed: 12/15/2022] Open
Abstract
The effects of alcohol on Ca(2+) signalling remains poorly understood. Here we have investigated the effects of acute ethanol exposure on Ca(2+) influx in mouse pancreatic acinar cells. Cells were loaded with fura-2 and the changes in fluorescence were monitored by spectrofluorimetry and imaging analysis. Stimulation of cells with 20 pM cholecystokinin evoked an oscillatory pattern in [Ca(2+)](c), both in the presence and in the absence of extracellular Ca(2+). Stimulation of cells with cholecystokinin in the presence of 50 mM ethanol led to a transformation of physiological oscillations into a single transient increase in [Ca(2+)](c). This effect was observed when Ca(2+) was present in the extracellular medium, and did not appear in its absence. Addition of 1 mM CaCl(2) to the extracellular medium, following release of Ca(2+) from intracellular stores by stimulation of cells with 1 nM cholecystokinin or 1 microM thapsigargin in the absence of extracellular Ca(2+), was followed by an increase in [Ca(2+)](c). Ca(2+) influx was increased in the presence of 50 mM ethanol. The anti-oxidant cinnamtannin B-1 (10 microM) or inhibition of alcohol dehydrogenase by 4-MP (1 mM), significantly reduced Ca(2+) influx evoked by cholecystokinin in the presence of ethanol. In summary, intoxicating concentrations of ethanol may lead to over stimulation of pancreatic acinar cells by cholecystokinin. This might be partially explained by the generation of reactive oxygen species and an increased Ca(2+) entry in the presence of ethanol. Potentially ethanol might lead to Ca(2+) overload, which is a common pathological precursor that is implicated in pancreatitis.
Collapse
|
24
|
González A, Salido GM. Ethanol alters the physiology of neuron-glia communication. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:167-98. [PMID: 19897078 DOI: 10.1016/s0074-7742(09)88007-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the central nervous system (CNS), both neurones and astrocytes play crucial roles. On a cellular level, brain activity involves continuous interactions within complex cellular circuits established between neural cells and glia. Although it was initially considered that neurones were the major cell type in cerebral function, nowadays astrocytes are considered to contribute to cerebral function too. Astrocytes support normal neuronal activity, including synaptic function, by regulating the extracellular environment with respect to ions and neurotransmitters. There is a plethora of noxious agents which can lead to the development of alterations in organs and functional systems, and that will end in a chronic prognosis. Among the potentially harmful external agents we can find ethanol consumption, whose consequences have been recognized as a major public health concern. Deregulation of cell cycle has devastating effects on the integrity of cells, and has been closely associated with the development of pathologies which can lead to dysfunction and cell death. An alteration of normal neuronal-glial physiology could represent the basis of neurodegenerative processes. In this review we will pay attention on to the recent findings in astrocyte function and their role toward neurons under ethanol consumption.
Collapse
Affiliation(s)
- Antonio González
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10071, Cáceres, Spain
| | | |
Collapse
|
25
|
González A, Pariente JA, Salido GM. Ethanol impairs calcium homeostasis following CCK-8 stimulation in mouse pancreatic acinar cells. Alcohol 2008; 42:565-573. [PMID: 18774672 DOI: 10.1016/j.alcohol.2008.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/09/2008] [Accepted: 06/09/2008] [Indexed: 12/15/2022]
Abstract
Alcohol consumption has long been associated with cell damage, and it is thought that it is involved in approximately 40% of cases of acute pancreatitis. In the present study, we have investigated the early effects of acute ethanol exposure on cholecystokinin octapeptide (CCK-8)-evoked calcium (Ca2+) signals in mouse pancreatic acinar cells. Cells were loaded with fura-2 and the changes in fluorescence were monitorized using a spectrofluorimeter. Our results show that stimulation of cells with 1 nM CCK-8 led to a transient increase in [Ca2+]c, which consisted of an initial increase followed by a decrease of [Ca2+]c toward a value close to the prestimulation level. In the presence of 50mM ethanol, CCK-8 lead to a greater Ca2+ mobilization compared to that obtained with CCK-8 alone. The peak of CCK-8-evoked Ca2+ response, the "steady-state level" reached 5 min after stimulation, the rate of decay of [Ca2+]c toward basal values and the total Ca2+ mobilization were significantly affected by ethanol pretreatment. Thapsigargin (Tps) induced an increase in [Ca2+]c due to its release from intracellular stores. After stimulation of cells with CCK-8 or Tps in the presence of 50mM ethanol, a greater [Ca2+]c peak response, a slower rate of decay of [Ca2+]c, and higher values of [Ca2+]c were observed. The effects of ethanol might result from a delayed or reduced Ca2+ extrusion from the cytosol toward the extracellular space by plasma membrane Ca2+ adenosine triphosphatase (ATPase), or into the cytosolic stores by the sarcoendoplasmic reticulum Ca2+-ATPase. Participation of mitochondria in Ca2+ handling is also demonstrated. The actions of ethanol on CCK-8 stimulation of cells create a situation potentially leading to Ca2+ overload, which is a common pathological precursor that mediates pancreatitis.
Collapse
Affiliation(s)
- Antonio González
- Department of Physiology, Cell Physiology Research Group, Faculty of Veterinary Sciences, University of Extremadura, Avenida Universidad s/n, PO Box 643, Cáceres, Spain.
| | | | | |
Collapse
|
26
|
Mata A, Marques D, Martínez-Burgos MA, Silveira J, Marques J, Mesquita MF, Pariente JA, Salido GM, Singh J. Effect of hydrogen peroxide on secretory response, calcium mobilisation and caspase-3 activity in the isolated rat parotid gland. Mol Cell Biochem 2008; 319:23-31. [DOI: 10.1007/s11010-008-9873-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 07/03/2008] [Indexed: 11/24/2022]
|
27
|
Binker MG, Binker-Cosen AA, Gaisano HY, Cosen-Binker LI. Inhibition of Rac1 decreases the severity of pancreatitis and pancreatitis-associated lung injury in mice. Exp Physiol 2008; 93:1091-103. [PMID: 18567599 DOI: 10.1113/expphysiol.2008.043141] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pancreatitis is a disease with high morbidity and mortality. In vitro experiments on pancreatic acini showed that supramaximal but not submaximal cholecystokinin (CCK) stimulation induces effects in the acinar cell that can be correlated with acinar morphological changes observed in the in vivo experimental model of cerulein-induced pancreatitis. The GTPase Rac1 was previously reported to be involved in CCK-evoked amylase release from pancreatic acinar cells. Here, we demonstrate that pretreatment with the Rac1 inhibitor NSC23766 (100 microM, 2 h) effectively blocked Rac1 translocation and activation in CCK-stimulated pancreatic acini, without affecting activation of its closely related GTPase, RhoA. This specific Rac1 inhibition decreased supramaximal (10 nM) CCK-stimulated acinar amylase release (27.% reduction), which seems to be connected to the reduction observed in serum amylase (46.6% reduction) and lipase levels (46.1% reduction) from cerulein-treated mice receiving NSC23766 (100 nmol h(-1)). The lack of Rac1 activation also reduced formation of reactive oxygen species (ROS; 20.8% reduction) and lactate dehydrogenase release (LDH; 24.3% reduction), but did not alter calcium signaling or trypsinogen activation in 10 nM CCK-stimulated acini. In the in vivo model, the cerulein-treated mice receiving NSC23766 also presented a decrease in both pancreatic and lung histopathological scores (reduction in oedema, 32.4 and 66.4%; haemorrhage, 48.3 and 60.2%; and leukocyte infiltrate, 53.5 and 43.6%, respectively; reduction in pancreatic necrosis, 65.6%) and inflammatory parameters [reduction in myeloperoxidase, 52.2 and 38.9%; nuclear factor kappaB (p65), 61.3 and 48.6%; and nuclear factor kappaB (p50), 46.9 and 44.9%, respectively], together with lower serum levels for inflammatory (TNF-alpha, 40.4% reduction) and cellular damage metabolites (LDH, 52.7% reduction). Collectively, these results suggest that pharmacological Rac1 inhibition ameliorates the severity of pancreatitis and pancreatitis-associated lung injury through the reduction of pancreatic acinar damage induced by pathological digestive enzyme secretion and overproduction of ROS.
Collapse
Affiliation(s)
- Marcelo G Binker
- CBRHC Research Center, Arribenos 1697, P.1, Buenos Aires, 1426, Argentina
| | | | | | | |
Collapse
|
28
|
González A, Pariente JA, Salido GM. Ethanol stimulates ROS generation by mitochondria through Ca2+ mobilization and increases GFAP content in rat hippocampal astrocytes. Brain Res 2007; 1178:28-37. [PMID: 17888892 DOI: 10.1016/j.brainres.2007.08.040] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 06/29/2007] [Accepted: 08/12/2007] [Indexed: 01/04/2023]
Abstract
We have employed rat hippocampal astrocytes in culture to investigate the effect of ethanol on reactive oxygen species (ROS) production as well as its effect on [Ca2+]c and GFAP expression. Cells were loaded with the fluorescent probes fura-2 and H2DCFDA for the determination of changes in [Ca2+]c and ROS production respectively, employing spectrofluorimetry. GFAP content was determined by immunocytochemistry and confocal scanning microscopy. Our results show ROS production in response to 50 mM ethanol, that was reduced in Ca2+-free medium (containing 0.5 mM EGTA) and in the presence of the intracellular Ca2+ chelator BAPTA (10 microM). The effect of ethanol on ROS production was significantly reduced in the presence of the alcohol dehydrogenase inhibitor 4-methylpyrazole (1 mM), and the antioxidants resveratrol (100 microM) or catalase (300 U/ml). Preincubation of astrocytes in the presence of 10 microM antimycin plus 10 microM oligomycin to inhibit mitochondria completely blocked ethanol-evoked ROS production. In addition, ethanol led to a sustained increase in [Ca2+]c that reached a constant level over the prestimulation values. Finally, incubation of astrocytes in the presence of ethanol increased the content of GFAP that was significantly reduced in the absence of extracellular Ca2+ and by resveratrol and catalase pretreatment. The data obtained in the present study suggest that astrocytes are able to metabolize ethanol, which induces two effects on intracellular homeostasis: an immediate response (Ca2+ release and ROS generation) and later changes involving GFAP expression. Both effects may underline various signaling pathways which are important for cell proliferation, differentiation and function.
Collapse
Affiliation(s)
- Antonio González
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Cáceres, Spain.
| | | | | |
Collapse
|
29
|
Bruce JIE, Elliott AC. Oxidant-impaired intracellular Ca2+ signaling in pancreatic acinar cells: role of the plasma membrane Ca2+-ATPase. Am J Physiol Cell Physiol 2007; 293:C938-50. [PMID: 17494627 DOI: 10.1152/ajpcell.00582.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pancreatitis is an inflammatory disease of pancreatic acinar cells whereby intracellular calcium concentration ([Ca(2+)](i)) signaling and enzyme secretion are impaired. Increased oxidative stress has been suggested to mediate the associated cell injury. The present study tested the effects of the oxidant, hydrogen peroxide, on [Ca(2+)](i) signaling in rat pancreatic acinar cells by simultaneously imaging fura-2, to measure [Ca(2+)](i), and dichlorofluorescein, to measure oxidative stress. Millimolar concentrations of hydrogen peroxide increased cellular oxidative stress and irreversibly increased [Ca(2+)](i), which was sensitive to antioxidants and removal of external Ca(2+), and ultimately led to cell lysis. Responses were also abolished by pretreatment with (sarco)endoplasmic reticulum Ca(2+)-ATPase inhibitors, unless cells were prestimulated with cholecystokinin to promote mitochondrial Ca(2+) uptake. This suggests that hydrogen peroxide promotes Ca(2+) release from the endoplasmic reticulum and the mitochondria and that it promotes Ca(2+) influx. Lower concentrations of hydrogen peroxide (10-100 muM) increased [Ca(2+)](i) and altered cholecystokinin-evoked [Ca(2+)](i) oscillations with marked heterogeneity, the severity of which was directly related to oxidative stress, suggesting differences in cellular antioxidant capacity. These changes in [Ca(2+)](i) also upregulated the activity of the plasma membrane Ca(2+)-ATPase in a Ca(2+)-dependent manner, whereas higher concentrations (0.1-1 mM) inactivated the plasma membrane Ca(2+)-ATPase. This may be important in facilitating "Ca(2+) overload," resulting in cell injury associated with pancreatitis.
Collapse
Affiliation(s)
- Jason I E Bruce
- Faculty of Life Sciences, 2nd Floor Core Technology Facility, 46 Grafton St., The Univ. of Manchester, Manchester M13 9NT, UK.
| | | |
Collapse
|
30
|
Jin SW, Zhang L, Lian QQ, Yao SL, Wu P, Zhou XY, Xiong W, Ye DY. Close functional coupling between Ca2+ release-activated Ca2+ channels and reactive oxygen species production in murine macrophages. Mediators Inflamm 2007; 2006:36192. [PMID: 17392583 PMCID: PMC1775034 DOI: 10.1155/mi/2006/36192] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim. To investigate the role of Ca2+ release-activated Ca2+ (CRAC) channels in the ROS production in macrophages. Methods. The intracellular [Ca2+]i was analyzed by confocal laser microscopy. The production of ROS was assayed by flow cytometry. Results. Both LPS and thapsigargin induced an increase in intracellular [Ca2+]i, either in the presence or absence of extracellular Ca2+ in murine macrophages. The Ca2+ signal was sustained in the presence of external Ca2+ and only initiated a mild and transient rise in the absence of external Ca2+. CRAC channel inhibitor 2-APB completely suppressed the Ca2+ entry signal evoked by thapsigargin, and suppressed approximately 93% of the Ca2+ entry signal evoked by LPS. The increase in intracellular [Ca2+]i was associated with increased ROS production, which was completely abolished in the absence of extracellular Ca2+ or in the presence of CRAC channel inhibitors 2-APB and Gd3+. The mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxy-phenylhydrazone and the inhibitor of the electron transport chain, antimycin, evoked a marked increase in ROS production and completely inhibited thapsigargin and LPS-evoked responses. Conclusions. These findings indicate that the LPS-induced intracellular [Ca2+]i increase depends on the Ca2+ entry through CRAC channels, and close functional coupling between CRAC and ROS production in murine macrophages.
Collapse
Affiliation(s)
- Sheng-Wei Jin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan 430022, China
- Department of Anesthesiology, Second Affiliated Hospital, Wenzhou Medical College, Wenzhou 325027, China
- *Sheng-Wei Jin:
| | - Li Zhang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qin-Quan Lian
- Department of Anesthesiology, Second Affiliated Hospital, Wenzhou Medical College, Wenzhou 325027, China
| | - Shang-Long Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan 430022, China
| | - Ping Wu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao-Yan Zhou
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Xiong
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Du-Yun Ye
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
31
|
Bejarano I, Terrón MP, Paredes SD, Barriga C, Rodríguez AB, Pariente JA. Hydrogen peroxide increases the phagocytic function of human neutrophils by calcium mobilisation. Mol Cell Biochem 2006; 296:77-84. [PMID: 16955226 DOI: 10.1007/s11010-006-9301-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
We have studied the effect of exogenous administration of hydrogen peroxide (H(2)O(2)) on phagocytic activity of human neutrophils. The treatment of cells with increasing concentrations of H(2)O(2) evoke a significant elevation of phagocytic function assayed as phagocytic index, percentage and efficiency; and was similar to that induced by the calcium mobilising agonist formyl-methionyl-leucyl-phenylalanine (fMLP). This stimulatory effect was reduced by pre-treatment of neutrophils with catalase and abolished in neutrophils loaded with the intracellular calcium quelator dimethyl BAPTA. In the absence of extracellular calcium, treatment of cells with H(2)O(2) resulted in a increase in [Ca(2+)]( i ), indicating the release of calcium from intracellular stores. H(2)O(2) abolished the typical calcium release stimulated by the physiological agonist fMLP, while depletion of agonist-sensitive calcium pools by fMLP was able to prevent H(2)O(2)-induced calcium release. We conclude that H(2)O(2) induces calcium release from agonist-sensitive stores and consequently increase the phagocytosis process.
Collapse
Affiliation(s)
- I Bejarano
- Department of Physiology, Faculty of Science, University of Extremadura, Av. De Elvas s/n, Badajoz 06071, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Bogeski I, Bozem M, Sternfeld L, Hofer HW, Schulz I. Inhibition of protein tyrosine phosphatase 1B by reactive oxygen species leads to maintenance of Ca2+ influx following store depletion in HEK 293 cells. Cell Calcium 2006; 40:1-10. [PMID: 16678897 DOI: 10.1016/j.ceca.2006.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 03/10/2006] [Accepted: 03/16/2006] [Indexed: 11/18/2022]
Abstract
Depletion of inositol 1,4,5 trisphosphate-sensitive Ca2+ stores generates a yet unknown signal, which leads to increase in Ca2+ influx in different cell types [J.W. Putney Jr., A model for receptor-regulated calcium entry, Cell Calcium 7 (1986) 1-12]. Here, we describe a mechanism that modulates this store-operated Ca2+ entry (SOC). Ca2+ influx leads to inhibition of protein tyrosine phosphatase 1B (PTP1B) activity in HEK 293 cells [L. Sternfeld, et al., Tyrosine phosphatase PTP1B interacts with TRPV6 in vivo and plays a role in TRPV6-mediated calcium influx in HEK293 cells, Cell Signal 17 (2005) 951-960]. Since Ca2+ does not directly inhibit PTP1B, we assumed an intermediate signal, which links the rise in cytosolic Ca2+ concentration and PTP1B inhibition. We now show that Ca2+ influx is followed by generation of reactive oxygen species (ROS) and that it is reduced in cells preincubated with catalase. Furthermore, Ca2+-dependent inhibition of PTP1B can be abolished in the presence of catalase. H2O2 (100 microM) directly added to cells inhibits PTP1B and leads to increase in Ca2+ influx after store depletion. PP1, an inhibitor of the Src family tyrosine kinases, prevents H2O2-induced Ca2+ influx. Our results show that ROS act as fine tuning modulators of Ca2+ entry. We assume that the Ca2+ influx channel or a protein involved in its regulation remains tyrosine phosphorylated as a consequence of PTP1B inhibition by ROS. This leads to maintained Ca2+ influx in the manner of a positive feedback loop.
Collapse
Affiliation(s)
- Ivan Bogeski
- Physiological Institute, University of the Saarland, 66421 Homburg/Saar, Germany
| | | | | | | | | |
Collapse
|
33
|
Granados MP, Salido GM, González A, Pariente JA. Dose-dependent effect of hydrogen peroxide on calcium mobilization in mouse pancreatic acinar cells. Biochem Cell Biol 2006; 84:39-48. [PMID: 16462888 DOI: 10.1139/o05-150] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have employed confocal laser scanning microscopy to investigate how intracellular free calcium concentration ([Ca2+]i) is influenced by hydrogen peroxide (H2O2) in collagenase-dispersed mouse pancreatic acinar cells. In the absence of extracellular calcium, treatment of cells with increasing concentrations of H2O2 resulted in an increase in [Ca2+]i, indicating the release of calcium from intracellular stores. Micromolar concentrations of H2O2 induced an oscillatory pattern, whereas 1 mmol H2O2/L caused a slow and sustained increase in [Ca2+]i. H2O2 abolished the typical calcium release stimulated by thapsigargin or by the physiological agonist cholecystokinin octapeptide (CCK-8). Depletion of either agonist-sensitive or mitochondrial calcium pools was unable to prevent calcium release induced by 1 mmol H2O2/L, but depletion of both stores abolished it. Additionally, lower H2O2 concentrations were able to release calcium only after depletion of mitochondrial calcium stores. Treatment with either the phospholipase C inhibitor U-73122 or the inhibitor of the inositol 1,4,5-trisphosphate (IP3) receptor xestospongin C did not modify calcium release from the agonist-sensitive pool induced by 100 micromol H2O2/L, suggesting the involvement of a mechanism independent of IP3 generation. In addition, H2O2 reduced amylase release stimulated by CCK-8. Finally, either the H2O2-induced calcium mobilization or the inhibitory effect of H2O2 on CCK-8-induced amylase secretion was abolished by dithiothreitol, a sulphydryl reducing agent. We conclude that H2O2 at micromolar concentrations induces calcium release from agonist-sensitive stores, and at millimolar concentrations H2O2 can also evoke calcium release from the mitochondria. The action of H2O2 is mediated by oxidation of sulphydryl groups of calcium ATPases independently of IP3 generation.
Collapse
Affiliation(s)
- María P Granados
- Department of Physiology, Faculty of Veterinary Sc., University of Extremadura, Cáceres, Spain
| | | | | | | |
Collapse
|
34
|
González A, Núñez AM, Granados MP, Pariente JA, Salido GM. Ethanol impairs CCK-8-evoked amylase secretion through Ca2+-mediated ROS generation in mouse pancreatic acinar cells. Alcohol 2006; 38:51-57. [PMID: 16762692 DOI: 10.1016/j.alcohol.2006.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/21/2006] [Accepted: 03/21/2006] [Indexed: 11/27/2022]
Abstract
In the present study, we have investigated the effect of ethanol on amylase release in response to cholecystokinin octapeptide (CCK-8). We have also studied the effect of ethanol on cytosolic free Ca(2+) concentration ([Ca(2+)](c)) and reactive oxygen species (ROS) production by loading of cells with fura-2 and 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H(2)DCFDA), respectively. Our results show that stimulation of pancreatic acinar cells with CCK-8 induced a dose-dependent amylase secretion, resulting in a maximum at 0.3nM of 19.39+/-2.73% of the total content of amylase. Treatment of pancreatic acini with ethanol did not induce any significant effect on amylase release at a wide range of concentrations (1-50mM). In contrast, incubation of cells with 50mM ethanol clearly reduced amylase release stimulated by CCK-8. The inhibitory effect of ethanol on CCK-8-induced amylase secretion was abolished by dithiothreitol, a sulfhydryl reducing agent. Ethanol induced an increase in [Ca(2+)](c) resulting in a level higher than the prestimulation level both in the presence and in the absence of extracellular Ca(2+). Additionally, ethanol led to an increase in fluorescence of CM-H(2)DCFDA, reflecting an increase in oxidation. A decrease in oxidation was observed in the absence of extracellular Ca(2+) and in the presence of ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid. Similarly, when the cells were challenged in the presence of the intracellular Ca(2+) chelator 1,2-Bis(2-amino-5-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) and in the absence of extracellular Ca(2+), the responses to ethanol were reduced, although not completely inhibited. Taken together, our results suggest that ethanol induces generation of ROS by a Ca(2+)-dependent mechanism and reduces CCK-8-evoked amylase secretion in exocrine pancreatic cells.
Collapse
Affiliation(s)
- Antonio González
- Department of Physiology, Faculty of Veterinary Sciences, University of Extremadura, Avenida Universidad s/n, E-10071, Cáceres, Spain.
| | | | | | | | | |
Collapse
|
35
|
Thomas P, Bagrij T, Campos-Toimil M, Edwardson JM. Mitochondria play a critical role in shaping the exocytotic response of rat pancreatic acinar cells. Cell Calcium 2005; 39:57-63. [PMID: 16242773 DOI: 10.1016/j.ceca.2005.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 09/03/2005] [Accepted: 09/09/2005] [Indexed: 10/25/2022]
Abstract
We have previously demonstrated [M. Campos-Toimil, T. Bagrij, J.M. Edwardson, P. Thomas, Two modes of secretion in pancreatic acinar cells: involvement of phosphatidylinositol 3-kinase and regulation by capacitative Ca(2+) entry, Curr. Biol. 12 (2002) 211-215] that in rat pancreatic acinar cells, Gd(3+)-sensitive Ca(2+) entry is instrumental in governing which second messenger pathways control secretory activity. However, in those studies, we were unable to demonstrate a significant increase in cytoplasmic [Ca(2+)] during agonist application as a result of this entry pathway. In the present study, we combined pharmacology with ratiometric imaging of fura-2 fluorescence to resolve this issue. We found that 2 microM Gd(3+) significantly inhibits store-mediated Ca(2+) entry. Furthermore, both the protonophore, CCCP (5 microM) and the mitochondrial Ca(2+)-uptake blocker, RU360 (10 microM), led to an enhancement of the plateau phase of the biphasic Ca(2+) response induced by acetylcholine (1 microM). This enhancement was completely abolished by Gd(3+); and as has been previously shown for Gd(3+), RU360 led to a switch to a wortmannin-sensitive form of exocytosis. Using MitoTracker Red staining we found a close association of mitochondria with the lateral plasma membrane. We propose that in rat pancreatic acinar cells, capacitative Ca(2+) entry is targeted directly to mitochondria; and that as a result of Ca(2+) uptake, these mitochondria release "third" messengers which both enhance exocytosis and suppress phosphatidylinositol 3-kinase-dependent secretion.
Collapse
Affiliation(s)
- Paul Thomas
- Henry Wellcome Laboratory for Cell Imaging, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | | | | |
Collapse
|