1
|
Lopez-Pier MA, Marino VA, Vazquez-Loreto AC, Skaria RS, Cannon DK, Hoyer-Kimura CH, Solomon AE, Lipovka Y, Doubleday K, Pier M, Chu M, Mayfield R, Behunin SM, Hu T, Langlais PR, McKinsey TA, Konhilas JP. Myocardial transcriptomic and proteomic landscapes across the menopausal continuum in a murine model of chemically induced accelerated ovarian failure. Physiol Genomics 2025; 57:409-430. [PMID: 40266891 DOI: 10.1152/physiolgenomics.00133.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/17/2024] [Accepted: 03/21/2025] [Indexed: 04/25/2025] Open
Abstract
Risk of cardiovascular disease (CVD) in women increases with the menopausal transition. Using a chemical model (4-vinylcyclohexene diepoxide; VCD) of accelerated ovarian failure, we previously demonstrated that menopausal females are more susceptible to CVD compared with peri- or premenopausal females like humans. Yet, the cellular and molecular mechanisms underlying this shift in CVD susceptibility across the pre- to peri- to menopause continuum remain understudied. In this work using the VCD mouse model, we phenotyped cellular and molecular signatures from hearts at each hormonally distinct stage that included transcriptomic, proteomic, and cell biological analyses. The transcriptional profile of premenopausal hearts clustered separately from perimenopausal and menopausal hearts, which clustered more similarly. Proteomics also revealed hormonal clustering; perimenopausal hearts grouped more closely with premenopausal than menopausal hearts. Both proteomes and transcriptomes showed similar trends in genes associated with atherothrombosis, contractility, and impaired nuclear signaling between pre-, peri-, and menopausal murine hearts. Further analysis of posttranslational modifications (PTMs) showed hormone-dependent shifts in the phosphoproteome and acetylome. To further interrogate these findings, we triggered pathological remodeling using angiotensin II (Ang II). Phosphorylation of AMP-activated protein kinase (AMPK) signaling and histone deacetylase (HDAC) activity were found to be dependent on hormonal status and Ang II stimulation. Finally, knockdown of anti-inflammatory regulatory T cells (Treg) exacerbated Ang II-dependent fibrosis implicating HDAC-mediated epigenetic suppression of Treg activity. Taken together, we demonstrated unique cellular and molecular profiles underlying the cardiac phenotype of pre-, peri-, and menopausal mice supporting the necessity to study CVD in females across the hormonal transition.NEW & NOTEWORTHY Cycling and perimenopausal females are protected from cardiovascular disease (CVD) whereas menopausal females are more susceptible to CVD and other pathological sequalae. The cellular and molecular mechanisms underlying loss of CVD protection across the pre- to peri- to menopause transition remain understudied. Using the murine 4-vinylcyclohexene diepoxide (VCD) model of menopause we highlight cellular and molecular signatures from hearts at each hormonally distinct stage that included transcriptomic, proteomic, and cell biological analyses.
Collapse
Affiliation(s)
- Marissa A Lopez-Pier
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, United States
| | - Vito A Marino
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
| | | | - Rinku S Skaria
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
- College of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Danielle K Cannon
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
| | | | - Alice E Solomon
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States
| | - Yulia Lipovka
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Kevin Doubleday
- College of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Maricela Pier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States
| | - Meinsung Chu
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States
| | - Rachel Mayfield
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States
| | - Samantha M Behunin
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States
| | - Tianjing Hu
- Division of Cardiology and Consortium for Fibrosis Research & Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Paul R Langlais
- Department of Endocrinology, University of Arizona, Tucson, Arizona, United States
- College of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Timothy A McKinsey
- Division of Cardiology and Consortium for Fibrosis Research & Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - John P Konhilas
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
2
|
Yang Y, Luo W, Feng Z, Chen X, Li J, Zuo L, Duan M, He X, Wang W, He F, Liu F. An integrative analysis combining bioinformatics, network pharmacology and experimental methods identified key genes of EGCG targets in Nasopharyngeal Carcinoma. Discov Oncol 2025; 16:742. [PMID: 40355769 PMCID: PMC12069167 DOI: 10.1007/s12672-025-02365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Epigallocatechin gallate (EGCG), a frequently studied catechin in green tea, has been shown to be involved in the antiproliferation and apoptosis of human Nasopharyngeal carcinoma (NPC) cells. However, the pharmacological targets and mechanism by which EGCG can combat NPC patients remain to be studied in detail. METHODS Network pharmacology and bioinformatics were employed to investigate the molecular mechanisms underlying EGCG's therapeutic effects on NPC, with an emphasis on developing a prognostic risk model and identifying potential therapeutic targets. RESULTS A novel prognostic risk model was developed using univariate Cox regression, LASSO regression and multivariable Cox regression analyses, incorporating six genes to stratify patients into low- and highrisk groups. Kaplan-Meier analysis demonstrated significantly shorter progression-free survival in the high-risk group. The model's accuracy was further validated using time-dependent Receiver Operating Characteristic (ROC) curves. ESTIMATE analysis revealed significantly higher immune, stromal and overall ESTIMATE scores in the low-risk group compared to the high-risk group. Immune profiling indicated significant differences in five immune cell subtypes (memory B cells, regulatory T cells (Tregs), gamma delta T cells, activated NK cells and activated dendritic cells) between the two risk groups. Additionally, the low-risk group showed greater sensitivity to conventional chemotherapeutic agents. Immunohistochemistry and molecular docking analyses identified CYCS and MYL12B as promising targets for EGCG treatment. CONCLUSION This study utilised network pharmacology and bioinformatics to identify shared genes between EGCG and NPC, aiming to elucidate the molecular mechanisms through which EGCG inhibits NPC and to develop a prognostic model for assessing patient outcomes. The findings provide potential insights for the development of anti-NPC therapies and their clinical applications.
Collapse
Affiliation(s)
- Yuhang Yang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Wenqi Luo
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Zhang Feng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Xiaoyu Chen
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Jinqing Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Long Zuo
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Meijiao Duan
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Xiaosong He
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Wenhua Wang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Feng He
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Fangxian Liu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| |
Collapse
|
3
|
Bartkowiak A, Szczesny-Malysiak E, Dybas J. Tracking heme biology with resonance Raman spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141065. [PMID: 39999941 DOI: 10.1016/j.bbapap.2025.141065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/31/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Heme proteins are a large group of biomolecules with heme incorporated as a prosthetic group. Apart from cytochromes present in almost all cell types, many other specific heme proteins are expressed in different kinds of cells, e.g. hemoglobin in the erythrocytes, myoglobin (skeletal and vascular smooth muscle cells), cytoglobin (fibroblasts) and neuroglobin (neurons and retina). Among their wide and diverse biological functions, the most important is their unique ability to bind, store, and transport gaseous molecules, such as oxygen, carbon monoxide, and nitric oxide. Resonance Raman (RR) spectroscopy is an exceptional analytical tool that allows for qualitative and quantitative characterization of heme proteins in biological systems. Due to its high sensitivity, even subtle structural alterations of the heme group can be monitored and tracked during cellular processes. Resonance Raman excitation within the Soret absorption band (390-440 nm) provides rich information on the environment of heme's active site, allowing differentiation of the iron ion oxidation and spin states, and tracking the movement of the porphyrin ring plane in response to the changes in oxygenation status. Herein, we summarize and discuss recent developments in RR applications aimed to link the structure-function relationship of heme proteins within biological systems, connected, e.g., with the formation of hemoglobin (Hb) adducts (nitrosylhemoglobin, cyanhemoglobin, sulfhemoglobin), irreversible Hb alterations deteriorating oxygen binding and differentiation of heme proteins oxidation state within live cells in situ.
Collapse
Affiliation(s)
- Amanda Bartkowiak
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University 14 Bobrzyńskiego St., 30-348 Krakow, Poland
| | - Ewa Szczesny-Malysiak
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University 14 Bobrzyńskiego St., 30-348 Krakow, Poland
| | - Jakub Dybas
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University 14 Bobrzyńskiego St., 30-348 Krakow, Poland.
| |
Collapse
|
4
|
Yousaf MA, Meli M, Colombo G, Savoia A, Pastore A. A computational study of the fold and stability of cytochrome c with implications for disease. Int J Biol Macromol 2025; 308:142336. [PMID: 40120881 DOI: 10.1016/j.ijbiomac.2025.142336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Cytochrome c (Cyt-c), encoded by the CYCS gene, is crucial for electron transport, peroxidase activity, and apoptosis. Mutations in CYCS cause thrombocytopenia 4 (THC4), a disorder with low platelet counts. We have, for instance, recently described six Italian families with five different heterozygous missense CYCS variants. These mutations likely enhance peroxidase and apoptotic activities, yet the mechanisms causing reduced platelet production and increased apoptosis are unclear. This study investigates clinically-related Cyt-c variants using an integrated bioinformatics approach. Our findings reveal that all variants are at evolutionarily conserved sites, potentially disrupting Cyt-c function and contributing to disease phenotypes. Specific variants are predicted to affect phosphorylation (T20I, V21G, Y49H), and ubiquitination (G42S, A52T, A52V, T103I). Molecular dynamics simulations (500 ns) revealed significant structural deviations from the wild-type protein, with mutants showing reduced stability and increased unfolding and flexibility, particularly in the Ω-loops. These changes result in the displacement of the Ω-loops away from the heme iron, weakening critical hydrogen bonds and consequently opening the heme active site. This open conformation may enhance accessibility to small molecules such as H₂O₂, thereby promoting peroxidase activity, which may enhance apoptosis and likely impact megakaryopoiesis and platelet homeostasis in THC4.
Collapse
Affiliation(s)
- Muhammad Abrar Yousaf
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimiliano Meli
- Institute of Chemical Sciences and Technologies "Giulio Natta" - SCITEC, National Research Council (CNR), Milan, Italy
| | | | - Anna Savoia
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Annalisa Pastore
- Department of Clinical Neuroscience, King's College London, Denmark Hill Campus, London, United Kingdom; Elettra Sincrotrone Trieste, s.s. 14 km 163,500 in Area Science Park, Basovizza, Trieste, Italy.
| |
Collapse
|
5
|
Shivanka S, Shiri F, Chibuike M, McKinney C, Verber M, Choi J, Park S, Hall AR, Soper SA. Insights on using plastic-based dual in-plane nanopore sensors for differentiation and shape determinations of single protein molecules. Sci Rep 2025; 15:13742. [PMID: 40258844 PMCID: PMC12012063 DOI: 10.1038/s41598-025-96232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
Techniques to analyze proteins often involves complex workflows and/or sophisticated equipment with modest limits-of-detection. While fluorescence spectroscopy can interrogate single molecules, it often requires fluorescence labeling with lasers and microscopes. We report herein a label-free approach for analyzing intact proteins using resistive pulse sensing (RPS). RPS data were secured using a unique RPS device, which we call a dual in-plane nanopore sensor, fabricated in a thermoplastic. The nanopore sensor was produced via nano-injection molding with critical structures of 30 nm, enabling the detection of individual protein molecules and providing an approach toward their identification. Following nano-injection molding, the pore size could be reduced to ∼ 10 nm using thermal fusion bonding of a cover plate to the molded substrate. The device architecture contained two in-plane nanopores flanking a nanochannel (50 × 50 nm width × depth and 5 µm length) that facilitated the measurement of the apparent electrophoretic mobilities of protein molecules in a label free manner via their molecular-dependent time-of-flight (ToF; time-difference between two consecutive RPS events-peak pair). We investigated four model proteins and collected multiple characteristics including RPS peak amplitude and dwell time, as well as an RPS-independent value, which was the ToF. Furthermore, we analyzed the temporal profiles of RPS events revealing distinct peak shapes for spherical and non-spherical proteins that were influenced by their rotational motion when resident within the nanopore.
Collapse
Affiliation(s)
- Suresh Shivanka
- Department of Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, USA
| | - Farhad Shiri
- Department of Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, USA
| | - Maximillian Chibuike
- Department of Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, USA
| | - Collin McKinney
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, USA
- University of North Carolina, Chapel Hill, USA
| | - Matthew Verber
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, USA
- University of North Carolina, Chapel Hill, USA
| | - Junseo Choi
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, USA
- Department of Engineering Technology, Texas State University, San Marcos, TX, 78666, USA
| | - Sunggook Park
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, USA
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Adam R Hall
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, USA
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, USA
| | - Steven A Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS, 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, USA.
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS, 66045, USA.
- Bioengineering Program, The University of Kansas, Lawrence, KS, 66045, USA.
- KU Cancer Center, Medical Center, University of Kansas, Kansas City, KS, 66160, USA.
| |
Collapse
|
6
|
Song X, Zhou Z, Liu J, Li J, Yu C, Zeh HJ, Klionsky DJ, Stockwell BR, Wang J, Kang R, Kroemer G, Tang D. Cytosolic cytochrome c represses ferroptosis. Cell Metab 2025:S1550-4131(25)00149-4. [PMID: 40233758 DOI: 10.1016/j.cmet.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/08/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
The release of cytochrome c, somatic (CYCS) from mitochondria to the cytosol is an established trigger of caspase-dependent apoptosis. Here, we unveil an unexpected role for cytosolic CYCS in inhibiting ferroptosis-a form of oxidative cell death driven by uncontrolled lipid peroxidation. Mass spectrometry and site-directed mutagenesis revealed the existence of a cytosolic complex composed of inositol polyphosphate-4-phosphatase type I A (INPP4A) and CYCS. This CYCS-INPP4A complex is distinct from the CYCS-apoptotic peptidase activating factor 1 (APAF1)-caspase-9 apoptosome formed during mitochondrial apoptosis. CYCS boosts INPP4A activity, leading to increased formation of phosphatidylinositol-3-phosphate, which prevents phospholipid peroxidation and plasma membrane rupture, thus averting ferroptotic cell death. Unbiased screening led to the identification of the small-molecule compound 10A3, which disrupts the CYCS-INPP4A interaction. 10A3 sensitized cultured cells and tumors implanted in immunocompetent mice to ferroptosis. Collectively, these findings redefine our understanding of cytosolic CYCS complexes that govern diverse cell death pathways.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhuan Zhou
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Department of Critical Care Medicine, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Jingbo Li
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800 Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Ekaney ML, Bartl NE, McKillop IH, Evans SL. Comparative analysis of cold-stored apheresis platelet units in additive solution with or without pathogen reduction: Implications of cytochrome c supplementation. J Trauma Acute Care Surg 2025; 98:327-336. [PMID: 39722184 DOI: 10.1097/ta.0000000000004502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
BACKGROUND Platelets are limited in supply, and the preservation of platelet function during storage remains challenging. Novel storage approaches are being explored to improve platelet quality, extend shelf life, and reduce risk of infection. This study sought to elucidate platelet function in cold-stored apheresis units in additive solution (platelet additive solution [PAS]) and subjected to pathogen reduction (PR) as well as the impact of cytochrome c (cyt c) supplementation. We hypothesized that the PR would decrease stored platelet function, regardless of cyt c supplementation. METHODS Platelet apheresis units (PAS) were collected (N = 5 volunteers) and divided into PR or no PR (PAS) and supplemented with vehicle or cyt c (100 μM). Units were stored at 4°C for 15 days, sequential aliquots were removed, and platelet/mitochondrial respiratory function and biochemical parameters were analyzed. RESULTS There was no difference in platelet aggregation in response to adenosine diphosphate between PAS and PR platelets. Aggregation function in response to arachidonic acid was higher in PR versus PAS platelets. Maximum clot strength was not different between PAS and PR from Day 0 to Day 5 but declined in PR platelets on Days 10 and 15. Oxygen consumption declined at the same rate in PAS and PR platelets, while rate of lactate and TCO 2 decrease was greater in PR platelets than in PAS platelets. Supplementation with cyt c did not alter platelet function or biochemical parameters in PAS or PR platelets. CONCLUSION Platelet additive solution and PR platelets show similar declines in respiratory capacity, and biochemical parameters during cold storage, but PR platelets demonstrated significantly increased arachidonic acid-induced aggregation across all time points. Further understanding this mechanism may provide a means to prolong platelet shelf life.
Collapse
Affiliation(s)
- Michael L Ekaney
- From the FH "Sammy" Ross Trauma Center, Department of Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | | | | | | |
Collapse
|
8
|
Gupta M, Vaidya M, Kumar S, Singh G, Osei-Amponsah R, Chauhan SS. Heat stress: a major threat to ruminant reproduction and mitigating strategies. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025; 69:209-224. [PMID: 39432081 DOI: 10.1007/s00484-024-02805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Stress is an external event or condition that puts pressure on a biological system. Heat stress is defined as the combination of internal and external factors acting on an animal to cause an increase in body temperature and elicit a physiological response. Heat stress is a set of conditions caused by overexposure to or overexertion at excess ambient temperature and leads to the inability of animals to dissipate enough heat to sustain homeostasis. Heat exhaustion, heat stroke, and cramps are among the symptoms. For the majority of mammalian species, including ruminants, heat stress has a negative impact on physiological, reproductive, and nutritional requirements. Reproductive functions, including the male and female reproductive systems, are negatively affected by heat stress. It decreases libido and spermatogenic activity in males and negatively affects follicle development, oogenesis, oocyte maturation, fertilization, implantation, and embryo-fetal development in females. These effects lead to a decrease in the rate of reproduction and financial losses for the livestock industry. Understanding the impact of heat stress on reproductive tissues will aid in the development of strategies for preventing heat stress and improving reproductive functions. Modification of the microenvironment, nutritional control, genetic development of heat-tolerant breeds, hormonal treatment, estrous synchronization, timed artificial insemination, and embryo transfer are among the strategies used to reduce the detrimental effects of heat stress on reproduction. These strategies may also increase the likelihood of establishing pregnancy in farm animals.
Collapse
Affiliation(s)
- Mahesh Gupta
- Maharashtra Animal & Fishery Sciences University, Nagpur, Maharashtra, 440001, India.
- Department of Veterinary Physiology, Nagpur Veterinary College, MAFSU, Nagpur, M.S, 440006, India.
| | - Mangesh Vaidya
- Maharashtra Animal & Fishery Sciences University, Nagpur, Maharashtra, 440001, India
| | - Sachin Kumar
- ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Gyanendra Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Richard Osei-Amponsah
- School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science, Dookie College, The University of Melbourne, Dookie College, Melbourne, VIC, 3647, Australia
- Department of Animal Science, School of Agriculture, University of Ghana, Legon, Ghana
| | - Surinder Singh Chauhan
- School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science, Dookie College, The University of Melbourne, Dookie College, Melbourne, VIC, 3647, Australia
| |
Collapse
|
9
|
Salbreiter M, Frempong SB, Even S, Wagenhaus A, Girnus S, Rösch P, Popp J. Lighting the Path: Raman Spectroscopy's Journey Through the Microbial Maze. Molecules 2024; 29:5956. [PMID: 39770046 PMCID: PMC11870064 DOI: 10.3390/molecules29245956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 03/03/2025] Open
Abstract
The rapid and precise identification of microorganisms is essential in environmental science, pharmaceuticals, food safety, and medical diagnostics. Raman spectroscopy, valued for its ability to provide detailed chemical and structural information, has gained significant traction in these fields, especially with the adoption of various excitation wavelengths and tailored optical setups. The choice of wavelength and setup in Raman spectroscopy is influenced by factors such as applicability, cost, and whether bulk or single-cell analysis is performed, each impacting sensitivity and specificity in bacterial detection. In this study, we investigate the potential of different excitation wavelengths for bacterial identification, utilizing a mock culture composed of six bacterial species: three Gram-positive (S. warneri, S. cohnii, and E. malodoratus) and three Gram-negative (P. stutzeri, K. terrigena, and E. coli). To improve bacterial classification, we applied machine learning models to analyze and extract unique spectral features from Raman data. The results indicate that the choice of excitation wavelength significantly influences the bacterial spectra obtained, thereby impacting the accuracy and effectiveness of the subsequent classification results.
Collapse
Affiliation(s)
- Markus Salbreiter
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (M.S.); (S.B.F.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Sandra Baaba Frempong
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (M.S.); (S.B.F.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Sabrina Even
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (M.S.); (S.B.F.); (J.P.)
| | - Annette Wagenhaus
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (M.S.); (S.B.F.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Sophie Girnus
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (M.S.); (S.B.F.); (J.P.)
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (M.S.); (S.B.F.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (M.S.); (S.B.F.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
10
|
Alshehri B. Cytochrome c and cancer cell metabolism: A new perspective. Saudi Pharm J 2024; 32:102194. [PMID: 39564377 PMCID: PMC11570848 DOI: 10.1016/j.jsps.2024.102194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
Cytochrome c is a vital electron carrier in the mitochondrial respiratory chain. When the outer membrane of mitochondria becomes permeable, cytochrome c is discharged into the cytoplasm, where it initiates the intrinsic apoptosis pathway. The complex interaction between cytochrome c and apoptosis protease-activating factor-1 (Apaf-1) leads to the formation of the apoptosome and activation of a cascade of caspases, highlighting the critical role of cytochrome c in controlling cell death mechanisms. Additionally, cytochrome c undergoes post-translational modifications, especially phosphorylation, which intricately regulate its roles in both respiration and apoptosis. These modifications add layers of complexity to how cytochrome c effectively controls cellular functions. cytochrome c becomes a lighthouse in the intricate web of cancer, its expression patterns providing hints about prognosis and paths toward treatment. Reduced levels of cytochrome c have been observed in cancer tissues, indicating a potential inhibition of apoptosis. For instance, in glioma tissues, cytochrome c levels were lower compared to healthy tissues, and this reduction became more pronounced in advanced stages of the disease. However, the role of cytochrome c in cancer becomes more intricate as it becomes intertwined with the metabolic reprogramming of cancer cells. This suggests that cytochrome c plays a crucial role in tumor progression and resistance to treatment. Viewing cytochrome c as a molecular mosaic reveals that it is not merely a protein, but also a central player in determining cellular fate. This realization opens up exciting avenues for potential advancements in cancer diagnosis and treatment strategies. Despite the advancements made, the narrative surrounding cytochrome c remains incomplete, urging further exploration into its complexities and the biological implications linked to cancer. cytochrome c stands as a beacon of hope and a promising target for therapy in the battle against cancer, particularly due to its significant involvement in tumor metabolism. It holds the potential for a future where innovative solutions can be developed to address the intricate challenges of cellular fate. In this review, we have endeavored to illuminate the multifaceted domain of cytochrome c drawing connections among apoptosis, metabolic reprogramming, and the Warburg effect in the context of cancer.
Collapse
Affiliation(s)
- Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Almajmaah-11952, Saudi Arabia
| |
Collapse
|
11
|
Ma Y, Dong X, Wang Y, Wang Z, Xie Y, Zhang W, Pan D, Zhou H, Xu B. New findings on post-mortem chicken quality changes: The ROS-influenced MAPK-JNK signaling pathway affects chicken quality by regulating muscle cell apoptosis. Food Chem 2024; 459:140298. [PMID: 39018616 DOI: 10.1016/j.foodchem.2024.140298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/20/2024] [Accepted: 06/29/2024] [Indexed: 07/19/2024]
Abstract
Research conducted previously has demonstrated that apoptosis significantly influences the chicken quality. While ROS are acknowledged as significant activators of apoptosis, the precise mechanism by which they influence muscle cell apoptosis in the post-mortem remains unclear. In this study, chicken samples were treated with rosemarinic acid and H2O2 to induce varying ROS levels, and the ROS-triggered apoptosis mechanism in chicken muscle cells in post-mortem was analyzed. The TUNEL results revealed that elevated ROS levels in chicken were associated with a greater degree of muscle cell apoptosis. Western-blot results suggested that sarcoplasmic ROS could initiate apoptosis through the mitochondrial pathway by activating the MAPK-JNK signaling pathway. Moreover, TEM and shear force results demonstrated that muscle cell apoptosis initiates myofiber fragmentation and structural damage to sarcomeres, ultimately reducing chicken tenderness. This study enhances our understanding of post-mortem muscle cell apoptosis, providing valuable insights for regulating chicken quality.
Collapse
Affiliation(s)
- Yunhao Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinran Dong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ying Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Zhaoming Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Wendi Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Daodong Pan
- College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Mengcheng Prepared Dishes Industry Development Research Institute, Mengcheng 233500, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
12
|
Banach K, Kowalska J, Maszczyk M, Rzepka Z, Rok J, Wrześniok D. An In Vitro Strategy to Evaluate Ketoprofen Phototoxicity at the Molecular and Cellular Levels. Int J Mol Sci 2024; 25:12647. [PMID: 39684359 DOI: 10.3390/ijms252312647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Phototoxicity is a significant problem that occurs in a large part of the population and is often caused by commonly used pharmaceuticals, including over-the-counter drugs. Therefore, testing drugs with photosensitizing potential is very important. The aim of this study is to analyze the cytotoxicity and phototoxicity of ketoprofen towards human melanocytes and fibroblasts in three different treatment schemes in order to optimize the study. Cytometric tests (studies of viability, proliferation, intracellular thiol levels, mitochondrial potential, cell cycle, and DNA fragmentation), Western blot analysis (cytochrome c and p44/p42 protein levels), and confocal microscopy imaging were performed to assess the impact of the developed treatments on skin cells. Research on experimental schemes may help reduce or eliminate the risk of phototoxic reactions. In the case of ketoprofen, we found that the strongest phototoxic potential was exhibited in the treatment where the drug was present in the solution during the irradiation of cells, both pigmented and non-pigmented cells. These results indicate that the greatest risk of photosensitivity reactions related to ketoprofen occurs after direct contact with the drug and UV exposure.
Collapse
Affiliation(s)
- Klaudia Banach
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Justyna Kowalska
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Mateusz Maszczyk
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
13
|
Zhang J, Ni Z, Zhang Y, Guo Y, Zhai R, Wang M, Gong Z, Wang M, Zeng F, Gu Z, Chen Q, Liu L, Wang Z, Zhu W. DAZAP1 Phase Separation Regulates Mitochondrial Metabolism to Facilitate Invasion and Metastasis of Oral Squamous Cell Carcinoma. Cancer Res 2024; 84:3818-3833. [PMID: 39120588 DOI: 10.1158/0008-5472.can-24-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/21/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Tumor invasion and metastasis are the underlying causes of high mortality rate due to oral squamous cell carcinoma (OSCC). Energy metabolism reprogramming has been identified as a crucial process mediating tumor metastasis, thus indicating an urgent need for an in-depth investigation of the specific mechanisms of tumor energy metabolism. Here, we identified an RNA-binding protein, DAZ-associated protein 1 (DAZAP1), as a tumor-promoting factor with an important role in OSCC progression. DAZAP1 was significantly upregulated in OSCC, which enhanced the migration and invasion of OSCC cells and induced the epithelial-mesenchymal transition (EMT). RNA sequencing analysis and experimental validation demonstrated that DAZAP1 regulates mitochondrial energy metabolism in OSCC. Mechanistically, DAZAP1 underwent liquid-liquid phase separation to accumulate in the nucleus where it enhanced cytochrome c oxidase 16 (COX16) expression by regulating pre-mRNA alternative splicing, thereby promoting OSCC invasion and mitochondrial respiration. In mouse OSCC models, loss of DAZAP1 suppressed EMT, downregulated COX16, and reduced tumor growth and metastasis. In samples from patients with OSCC, expression of DAZAP1 positively correlated with COX16 and a high expression of both proteins was associated with poor patient prognosis. Together, these findings revealed a mechanism by which DAZAP1 supports mitochondrial metabolism and tumor development of OSCC, suggesting the potential of therapeutic strategies targeting DAZAP1 to block OSCC invasion and metastasis. Significance: The RNA-binding protein DAZAP1 undergoes phase separation to enhance COX16 expression and mediate metabolic reprogramming that enables tumor metastasis, highlighting DAZAP1 as a potential metabolic target for cancer therapy.
Collapse
Affiliation(s)
- Jiayi Zhang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Zihui Ni
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yu Zhang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Guo
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Rundong Zhai
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Mengqi Wang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Zizhen Gong
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Mengyao Wang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Fanrui Zeng
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ziyue Gu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Laikui Liu
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Zhiyong Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Weiwen Zhu
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Spanolios EM, Lewis RE, Caldwell RN, Jilani SZ, Haynes CL. Progress and limitations in reactive oxygen species quantitation. Chem Commun (Camb) 2024; 60:12487-12501. [PMID: 39373601 DOI: 10.1039/d4cc03578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Reactive oxygen species (ROS) are a set of oxygen- and nitrogen-containing radicals. They are produced from a wide range of sources. In biological contexts, cellular stress leads to an overproduction of ROS, which can lead to genetic damage and disease development. In industry, ROS are often productively used for water purification or for analyzing the possible toxicity of an industrial process. Because of their ubiquity, detection of ROS has been an analytical goal across a range of fields. To understand complicated systems and origins of ROS production, it is necessary to move from qualitative detection to quantitation. Analytical techniques that combine quantitation, high spatial and temporal resolution, and good specificity represent detection methods that can fill critical gaps in ROS research. Herein, we discuss the continued progress and limitations of fluorescence, electrochemical, and electron paramagnetic resonance detection of ROS over the last ten years, giving suggestions for the future of the field.
Collapse
|
15
|
Kumar M, Mehan S, Kumar A, Sharma T, Khan Z, Tiwari A, Das Gupta G, Narula AS. Therapeutic efficacy of Genistein in activation of neuronal AC/cAMP/CREB/PKA and mitochondrial ETC-Complex pathways in experimental model of autism: Evidence from CSF, blood plasma and brain analysis. Brain Res 2024; 1846:149251. [PMID: 39384128 DOI: 10.1016/j.brainres.2024.149251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/11/2024]
Abstract
Autism is a complex neurodevelopmental condition characterized by repetitive behaviors, impaired social communication, and various associated conditions such as depression and anxiety. Its multifactorial etiology includes genetic, environmental, dietary, and gastrointestinal contributions. Pathologically, Autism is linked to mitochondrial dysfunction, oxidative stress, neuroinflammation, and neurotransmitter imbalances involving GABA, glutamate, dopamine, and oxytocin. Propionic acid (PRPA) is a short-chain fatty acid produced by gut bacteria, influencing central nervous system functions. Elevated PRPA levels can exacerbate Autism-related symptoms by disrupting metabolic processes and crossing the blood-brain barrier. Our research investigates the neuroprotective potential of Genistein (GNT), an isoflavone compound with known benefits in neuropsychiatric and neurodegenerative disorders, through modulation of the AC/cAMP/CREB/PKA signaling pathway and mitochondrial ETC complex (I-IV) function. In silico analyses revealed GNT's high affinity for these targets. Subsequent in vitro and in vivo experiments using a PRPA-induced rat model of autism demonstrated that GNT (40 and 80 mg/kg., orally) significantly improves locomotion, neuromuscular coordination, and cognitive functions in PRPA-treated rodents. Behavioral assessments showed reduced immobility in the forced swim test, enhanced Morris water maze performance, and restored regular locomotor activity. On a molecular level, GNT restored levels of key signaling molecules (AC, cAMP, CREB, PKA) and mitochondrial complexes (I-V), disrupted by PRPA exposure. Additionally, GNT reduced neuroinflammation and apoptosis, normalized neurotransmitter levels, and improved the complete blood count profile. Histopathological analyses confirmed that GNT ameliorated PRPA-induced brain injuries, restored normal brain morphology, reduced demyelination, and promoted neurogenesis. The study supports GNT's potential in autism treatment by modulating neural pathways, reducing inflammation, and restoring neurotransmitter balance.
Collapse
Affiliation(s)
- Manjeet Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India.
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India; Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
16
|
Schweitzer-Stenner R. Probing the versatility of cytochrome c by spectroscopic means: A Laudatio on resonance Raman spectroscopy. J Inorg Biochem 2024; 259:112641. [PMID: 38901065 DOI: 10.1016/j.jinorgbio.2024.112641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Over the last 50 years resonance Raman spectroscopy has become an invaluable tool for the exploration of chromophores in biological macromolecules. Among them, heme proteins and metal complexes have attracted considerable attention. This interest results from the fact that resonance Raman spectroscopy probes the vibrational dynamics of these chromophores without direct interference from the surrounding. However, the indirect influence via through-bond and through-space chromophore-protein interactions can be conveniently probed and analyzed. This review article illustrates this point by focusing on class 1 cytochrome c, a comparatively simple heme protein generally known as electron carrier in mitochondria. The article demonstrates how through selective excitation of resonance Raman active modes information about the ligation, the redox state and the spin state of the heme iron can be obtained from band positions in the Raman spectra. The investigation of intensities and depolarization ratios emerged as tools for the analysis of in-plane and out-of-plane deformations of the heme macrocycle. The article further shows how resonance Raman spectroscopy was used to characterize partially unfolded states of oxidized cytochrome c. Finally, it describes its use for exploring structural changes due to the protein's binding to anionic surfaces like cardiolipin containing membranes.
Collapse
|
17
|
Kaniraja G, Karthikeyan M, Dhinesh Kumar M, Ananthappan P, Arunsunai Kumar K, Shanmugaiah V, Sivasamy Vasantha V, Karunakaran C. Cytochrome c electrochemical detection utilizing molecularly imprinted poly(3, 4-ethylenedioxythiophene) on a disposable screen printed carbon electrode. Anal Biochem 2024; 692:115557. [PMID: 38718955 DOI: 10.1016/j.ab.2024.115557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Cytochrome c (cyt c) has been found to play a function in apoptosis in cell-free models. This work presents the creation of molecularly imprinted conducting poly(3, 4-ethylenedioxythiopene) (MIPEDOT) on the surface of a screen printed carbon electrode (SPCE) for cyt c. Cyt c was imprinted by electropolymerization due to the presence of an EDOT monomer hydrophobic functional group on SPCE, using CV to obtain highly selective materials with excellent molecular recognition ability. MIPEDOT was characterized by CV, EIS, and DPV using ferricyanide/ferrocyanide as a redox probe. Further, the characterization of the sensor was accomplished using SEM for surface morphological confirmation. Using CV, the peak current measured at the potential of +1 to -1 V (vs. Ag/AgCl) is linear in the cyt c concentration range from 1 to 1200 pM, showing a remarkably low detection limit of 0.5 pM (sensitivity:0.080 μA pM). Moreover, the applicability of the approach was successfully confirmed with the detection of cyt c in biological samples (human plasma). Similarly, our research has proven a low-cost, simple, and efficient sensing platform for cyt c detection, rendering it a viable tool for the future improvement of reliable and exact non-encroaching cell death detection.
Collapse
Affiliation(s)
- Ganesan Kaniraja
- Department of Chemistry, Virudhunagar Hindu Nadars' Senthikumara Nadar College (Autonomous & Affiliated to Madurai Kamaraj University), Virudhunagar, 626 001, Tamil Nadu, India
| | - Murugesan Karthikeyan
- Department of Chemistry, Virudhunagar Hindu Nadars' Senthikumara Nadar College (Autonomous & Affiliated to Madurai Kamaraj University), Virudhunagar, 626 001, Tamil Nadu, India
| | - Marimuthu Dhinesh Kumar
- Department of Chemistry, Virudhunagar Hindu Nadars' Senthikumara Nadar College (Autonomous & Affiliated to Madurai Kamaraj University), Virudhunagar, 626 001, Tamil Nadu, India
| | - Periyasamy Ananthappan
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu, India
| | - Karuppiah Arunsunai Kumar
- Department of Chemistry, Virudhunagar Hindu Nadars' Senthikumara Nadar College (Autonomous & Affiliated to Madurai Kamaraj University), Virudhunagar, 626 001, Tamil Nadu, India
| | - Vellasamy Shanmugaiah
- Department of Microbial Technology, School of Biological Science, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu, India
| | - Vairathevar Sivasamy Vasantha
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu, India
| | - Chandran Karunakaran
- Department of Chemistry, Virudhunagar Hindu Nadars' Senthikumara Nadar College (Autonomous & Affiliated to Madurai Kamaraj University), Virudhunagar, 626 001, Tamil Nadu, India.
| |
Collapse
|
18
|
Zhao Q, Han B, Peng C, Zhang N, Huang W, He G, Li JL. A promising future of metal-N-heterocyclic carbene complexes in medicinal chemistry: The emerging bioorganometallic antitumor agents. Med Res Rev 2024; 44:2194-2235. [PMID: 38591229 DOI: 10.1002/med.22039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
Metal complexes based on N-heterocyclic carbene (NHC) ligands have emerged as promising broad-spectrum antitumor agents in bioorganometallic medicinal chemistry. In recent decades, studies on cytotoxic metal-NHC complexes have yielded numerous compounds exhibiting superior cytotoxicity compared to cisplatin. Although the molecular mechanisms of these anticancer complexes are not fully understood, some potential targets and modes of action have been identified. However, a comprehensive review of their biological mechanisms is currently absent. In general, apoptosis caused by metal-NHCs is common in tumor cells. They can cause a series of changes after entering cells, such as mitochondrial membrane potential (MMP) variation, reactive oxygen species (ROS) generation, cytochrome c (cyt c) release, endoplasmic reticulum (ER) stress, lysosome damage, and caspase activation, ultimately leading to apoptosis. Therefore, a detailed understanding of the influence of metal-NHCs on cancer cell apoptosis is crucial. In this review, we provide a comprehensive summary of recent advances in metal-NHC complexes that trigger apoptotic cell death via different apoptosis-related targets or signaling pathways, including B-cell lymphoma 2 (Bcl-2 family), p53, cyt c, ER stress, lysosome damage, thioredoxin reductase (TrxR) inhibition, and so forth. We also discuss the challenges, limitations, and future directions of metal-NHC complexes to elucidate their emerging application in medicinal chemistry.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Dermatology & Venerolog, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gu He
- Department of Dermatology & Venerolog, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Anti-Infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
19
|
Bufka J, Vaňková L, Sýkora J, Daumová M, Bouř P, Schwarz J. Insights into the molecular basis of gastric mucosa as a first step for using Raman microscopy in paediatrics. Heliyon 2024; 10:e36231. [PMID: 39262989 PMCID: PMC11388393 DOI: 10.1016/j.heliyon.2024.e36231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/12/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
Recent advances in endoscopic technology have allowed detailed observation of the gastric mucosa, including Raman microscopy and spectroscopy. To explore the possibilities for future diagnostic use, we discuss the measurements and molecular markers found in this tissue. The Raman spectra of 16 samples of antral mucosa and 16 samples of corpus gastric mucosa obtained from healthy donors were analysed. A stable protocol for measuring reproducible spectra was established. These data suggest that many biomarkers can be used for the rapid analysis of metabolic states and future investigations into the pathogenesis of gastrointestinal diseases.
Collapse
Affiliation(s)
- Jiří Bufka
- Department of Paediatrics, Faculty of Medicine in Pilsen, Faculty Hospital, Charles University in Prague, Pilsen, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Prague, Czech Republic
| | - Lenka Vaňková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Czech Republic
| | - Josef Sýkora
- Department of Paediatrics, Faculty of Medicine in Pilsen, Faculty Hospital, Charles University in Prague, Pilsen, Czech Republic
| | - Magdaléna Daumová
- Sikl's Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Prague, Czech Republic
| | - Jan Schwarz
- Department of Paediatrics, Faculty of Medicine in Pilsen, Faculty Hospital, Charles University in Prague, Pilsen, Czech Republic
| |
Collapse
|
20
|
Xing Y, Xie SY, Deng W, Tang QZ. Cardiolipin in myocardial ischaemia-reperfusion injury: From molecular mechanisms to clinical strategies. Biomed Pharmacother 2024; 176:116936. [PMID: 38878685 DOI: 10.1016/j.biopha.2024.116936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
Myocardial reperfusion injury occurs when blood flow is restored after ischemia, an essential process to salvage ischemic tissue. However, this phenomenon is intricate, characterized by various harmful effects. Tissue damage in ischemia-reperfusion injury arises from various factors, including the production of reactive oxygen species, the sequestration of proinflammatory immune cells in ischemic tissues, the induction of endoplasmic reticulum stress, and the occurrence of postischemic capillary no-reflow. Secretory phospholipase A2 (sPLA2) plays a crucial role in the eicosanoid pathway by releasing free arachidonic acid from membrane phospholipids' sn-2 position. This liberated arachidonic acid serves as a substrate for various eicosanoid biosynthetic enzymes, including cyclooxygenases, lipoxygenases, and cytochromes P450, ultimately resulting in inflammation and an elevated risk of reperfusion injury. Therefore, the activation of sPLA2 directly correlates with the heightened and accelerated damage observed in myocardial ischemia-reperfusion injury (MIRI). Presently, clinical trials are in progress for medications aimed at sPLA2, presenting promising avenues for intervention. Cardiolipin (CL) plays a crucial role in maintaining mitochondrial function, and its alteration is closely linked to mitochondrial dysfunction observed in MIRI. This paper provides a critical analysis of CL modifications concerning mitochondrial dysfunction in MIRI, along with its associated molecular mechanisms. Additionally, it delves into various pharmacological approaches to prevent or alleviate MIRI, whether by directly targeting mitochondrial CL or through indirect means.
Collapse
Affiliation(s)
- Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Sai-Yang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
21
|
Marzollo A, Zampieri S, Barozzi S, Yousaf MA, Quartararo J, De Rocco D, Faleschini M, Marconi C, Ceccatelli Berti C, Bozzi V, Russo G, Giordano P, Goffrini P, Bresolin S, Pastore A, Savoia A, Pecci A. Thrombocytopenia 4 (THC4): Six novel families with mutations of the cytochrome c gene. Br J Haematol 2024; 205:306-315. [PMID: 38815995 DOI: 10.1111/bjh.19567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
Thrombocytopenia 4 (THC4) is an autosomal-dominant thrombocytopenia caused by mutations in CYCS, the gene encoding cytochrome c (CYCS), a small haeme protein essential for electron transport in mitochondria and cell apoptosis. THC4 is considered an extremely rare condition since only a few patients have been reported so far. These subjects presented mild thrombocytopenia and no or mild bleeding tendency. In this study, we describe six Italian families with five different heterozygous missense CYCS variants: p.Gly42Ser and p.Tyr49His previously associated with THC4, and three novel variants (p.Ala52Thr, p.Arg92Gly, and p.Leu99Val), which have been classified as pathogenic by bioinformatics and segregation analyses. Moreover, we supported functional effects of p.Ala52Thr and p.Arg92Gly on oxidative growth and respiratory activity in a yeast model. The clinical characterization of the 22 affected individuals, the largest series of THC4 patients ever reported, showed that this disorder is characterized by mild-to-moderate thrombocytopenia, normal platelet size, and function, low risk of bleeding, and no additional clinical phenotypes associated with reduced platelet count. Finally, we describe a significant correlation between the region of CYCS affected by mutations and the extent of thrombocytopenia, which could reflect different degrees of impairment of CYCS functions caused by different pathogenetic variants.
Collapse
Affiliation(s)
- Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Stefania Zampieri
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Serena Barozzi
- Medicina Generale 1, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Muhammad Abrar Yousaf
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Jade Quartararo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Daniela De Rocco
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Michela Faleschini
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Caterina Marconi
- Departement of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Camilla Ceccatelli Berti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Valeria Bozzi
- Medicina Generale 1, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Giovanna Russo
- Pediatric Hematology Oncology, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Paola Giordano
- Interdisciplinary Department of Medicine, Pediatric Section, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Silvia Bresolin
- Maternal and Child Health Department, Padua University, Padua, Italy
- Pediatric Hematology, Oncology, and Hematopoietic Cell and Gene Therapy, Pediatric Research Institute "Città Della Speranza", Padua, Italy
| | - Annalisa Pastore
- Department of Clinical Neuroscience, King's College London, Denmark Hill Campus, London, UK
- European Synchrotron Radiation Facility 71, Grenoble, France
| | - Anna Savoia
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Alessandro Pecci
- Medicina Generale 1, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
22
|
Wani MY, Srivastava V, El-Said WA, Al-Bogami AS, Ahmad A. Inhibition of apoptosis and biofilm formation in Candida auris by click-synthesized triazole-bridged quinoline derivatives. RSC Adv 2024; 14:21190-21202. [PMID: 38966810 PMCID: PMC11223670 DOI: 10.1039/d4ra03728f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
Candida auris, a recent addition to the Candida species, poses a significant threat with its association to numerous hospital outbreaks globally, particularly affecting immunocompromised individuals. Given its resistance to existing antifungal therapies, there is a pressing need for innovative treatments. In this study, novel triazole bridged quinoline derivatives were synthesized and evaluated for their antifungal activity against C. auris. The most promising compound, QT7, demonstrated exceptional efficacy with a minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of 0.12 μg mL-1 and 0.24 μg mL-1, respectively. Additionally, QT7 effectively disrupted mature biofilms, inhibiting them by 81.98% ± 8.51 and 89.57 ± 5.47 at MFC and 2× MFC values, respectively. Furthermore, QT7 induced cellular apoptosis in a dose-dependent manner, supported by various apoptotic markers such as phosphatidylserine externalization, mitochondrial depolarization, and reduced cytochrome c and oxidase activity. Importantly, QT7 exhibited low hemolytic activity, highlighting its potential for further investigation. Additionally, the physicochemical properties of this compound suggest its potential as a lead drug candidate, warranting further exploration in drug discovery efforts against Candida auris infections.
Collapse
Affiliation(s)
- Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah 21589 Jeddah Saudi Arabia
| | - Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand South Africa
| | - Waleed Ahmed El-Said
- Department of Chemistry, College of Science, University of Jeddah 21589 Jeddah Saudi Arabia
| | | | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand South Africa
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center Pittsburgh PA 15213 USA
| |
Collapse
|
23
|
Olarewaju O, Hu Y, Tsay HC, Yuan Q, Eimterbäumer S, Xie Y, Qin R, Ott M, Sharma AD, Balakrishnan A. MicroRNA miR-20a-5p targets CYCS to inhibit apoptosis in hepatocellular carcinoma. Cell Death Dis 2024; 15:456. [PMID: 38937450 PMCID: PMC11211328 DOI: 10.1038/s41419-024-06841-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Hepatocellular carcinoma is a primary liver cancer, characterised by diverse etiology, late diagnoses, and poor prognosis. Hepatocellular carcinoma is mostly resistant to current treatment options, therefore, identification of more effective druggable therapeutic targets is needed. We found microRNA miR-20a-5p is upregulated during mouse liver tumor progression and in human hepatocellular carcinoma patients. In this study, we elucidated the therapeutic potential of targeting oncogenic miR-20a-5p, in vivo, in a xenograft model and in two transgenic hepatocellular carcinoma mouse models via adeno-associated virus-mediated miR-20a-Tough-Decoy treatment. In vivo knockdown of miR-20a-5p attenuates tumor burden and prolongs survival in the two independent hepatocellular carcinoma mouse models. We identified and validated cytochrome c as a novel target of miR-20a-5p. Cytochrome c plays a key role in initiation of the apoptotic cascade and in the electron transport chain. We show for the first time, that miR-20a modulation affects both these key functions of cytochrome c during HCC development. Our study thus demonstrates the promising 'two birds with one stone' approach of therapeutic in vivo targeting of an oncogenic miRNA, whereby more than one key deregulated cellular process is affected, and unequivocally leads to more effective attenuation of HCC progression and significantly longer overall survival.
Collapse
Affiliation(s)
- Olaniyi Olarewaju
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
- AAV Gene Therapy Research Group, Research Beyond Borders (RBB), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88400, Germany
| | - Yuhai Hu
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Hsin-Chieh Tsay
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Simon Eimterbäumer
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Yu Xie
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Michael Ott
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany.
- Research Group RNA Therapeutics & Liver Regeneration, REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| | - Asha Balakrishnan
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
24
|
Shafaei Pishabad Z, Ledgerwood EC. The Y49H cytochrome c variant enhances megakaryocytic maturation of K-562 cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167134. [PMID: 38531481 DOI: 10.1016/j.bbadis.2024.167134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Five pathogenic variants in the gene encoding cytochrome c (CYCS) associated with mild autosomal dominant thrombocytopenia have been reported. Previous studies of peripheral blood CD34+ or CD45+ cells from subjects with the G42S CYCS variant showed an acceleration in megakaryopoiesis compared to wild-type (WT) cells. To determine whether this result reflects a common feature of the CYCS variants, the c.145T>C mutation (Y49H variant) was introduced into the endogenous CYCS locus in K-562 cells, which undergo megakaryocytic maturation in response to treatment with a phorbol ester. The c.145T>C (Y49H) variant enhanced the megakaryocyte maturation of the K-562 cells, and this effect was seen when the cells were cultured at both 18 % and 5 % oxygen. Thus, alteration of megakaryopoiesis is common to both the G42S and Y49H CYCS variants and may contribute to the low platelet phenotype. The Y49H CYCS variant has previously been reported to impair mitochondrial respiratory chain function in vitro, however using extracellular flux analysis the c.145T>C (Y49H) variant does not alter mitochondrial bioenergetics of the K-562 cells, consistent with the lack of a phenotype characteristic of mitochondrial diseases in CYCS variant families. The Y49H variant has also been reported to enhance the ability of cytochrome c to trigger caspase activation in the intrinsic apoptosis pathway. However, as seen in peripheral blood cells from G42S CYCS variant carriers, the presence of Y49H cytochrome c in K-562 cells did not significantly change their response to an apoptotic stimulus.
Collapse
Affiliation(s)
- Zahra Shafaei Pishabad
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Elizabeth C Ledgerwood
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
25
|
Adekunbi DA, Yang B, Huber HF, Riojas AM, Moody AJ, Li C, Olivier M, Nathanielsz PW, Clarke GD, Cox LA, Salmon AB. Perinatal maternal undernutrition in baboons modulates hepatic mitochondrial function but not metabolites in aging offspring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592246. [PMID: 38746316 PMCID: PMC11092655 DOI: 10.1101/2024.05.02.592246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We previously demonstrated in baboons that maternal undernutrition (MUN), achieved by 70 % of control nutrition, impairs fetal liver function, but long-term changes associated with aging in this model remain unexplored. Here, we assessed clinical phenotypes of liver function, mitochondrial bioenergetics, and protein abundance in adult male and female baboons exposed to MUN during pregnancy and lactation and their control counterparts. Plasma liver enzymes were assessed enzymatically. Liver glycogen, choline, and lipid concentrations were quantified by magnetic resonance spectroscopy. Mitochondrial respiration in primary hepatocytes under standard culture conditions and in response to metabolic (1 mM glucose) and oxidative (100 µM H2O2) stress were assessed with Seahorse XFe96. Hepatocyte mitochondrial membrane potential (MMP) and protein abundance were determined by tetramethylrhodamine ethyl ester staining and immunoblotting, respectively. Liver enzymes and metabolite concentrations were largely unaffected by MUN, except for higher aspartate aminotransferase levels in MUN offspring when male and female data were combined. Oxygen consumption rate, extracellular acidification rate, and MMP were significantly higher in male MUN offspring relative to control animals under standard culture. However, in females, cellular respiration was similar in control and MUN offspring. In response to low glucose challenge, only control male hepatocytes were resistant to low glucose-stimulated increase in basal and ATP-linked respiration. H2O2 did not affect hepatocyte mitochondrial respiration. Protein markers of mitochondrial respiratory chain subunits, biogenesis, dynamics, and antioxidant enzymes were unchanged. Male-specific increases in mitochondrial bioenergetics in MUN offspring may be associated with increased energy demand in these animals. The similarity in systemic liver parameters suggests that changes in hepatocyte bioenergetics capacity precede detectable circulatory hepatic defects in MUN offspring and that the mitochondria may be an orchestrator of liver programming outcome.
Collapse
Affiliation(s)
- Daniel A Adekunbi
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, Texas, USA
| | - Bowen Yang
- Research Imaging Institute, Long School of Medicine, The University of Texas Health Science Center at San Antonio, Ant Texas, USA
| | - Hillary F Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Angelica M Riojas
- Research Imaging Institute, Long School of Medicine, The University of Texas Health Science Center at San Antonio, Ant Texas, USA
| | - Alexander J Moody
- Research Imaging Institute, Long School of Medicine, The University of Texas Health Science Center at San Antonio, Ant Texas, USA
| | - Cun Li
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Michael Olivier
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Peter W Nathanielsz
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Geoffery D Clarke
- Research Imaging Institute, Long School of Medicine, The University of Texas Health Science Center at San Antonio, Ant Texas, USA
| | - Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Adam B Salmon
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, Texas, USA
- Geriatric Research Education and Clinical Center, Audie L. Murphy Hospital, Southwest Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
26
|
Kim KH, Lee CB. Socialized mitochondria: mitonuclear crosstalk in stress. Exp Mol Med 2024; 56:1033-1042. [PMID: 38689084 PMCID: PMC11148012 DOI: 10.1038/s12276-024-01211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 05/02/2024] Open
Abstract
Traditionally, mitochondria are considered sites of energy production. However, recent studies have suggested that mitochondria are signaling organelles that are involved in intracellular interactions with other organelles. Remarkably, stressed mitochondria appear to induce a beneficial response that restores mitochondrial function and cellular homeostasis. These mitochondrial stress-centered signaling pathways have been rapidly elucidated in multiple organisms. In this review, we examine current perspectives on how mitochondria communicate with the rest of the cell, highlighting mitochondria-to-nucleus (mitonuclear) communication under various stresses. Our understanding of mitochondria as signaling organelles may provide new insights into disease susceptibility and lifespan extension.
Collapse
Affiliation(s)
- Kyung Hwa Kim
- Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan, 49315, Korea.
| | - Cho Bi Lee
- Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan, 49315, Korea
| |
Collapse
|
27
|
Kamalakshan A, Jamuna NA, Chittilappilly Devassy AM, Mandal S. Dual Optical Response Strategy for the Detection of Cytochrome c Using Highly Luminescent Lanthanide-Based Nanotubular Sensor Arrays. ACS APPLIED BIO MATERIALS 2024; 7:2460-2471. [PMID: 38517347 DOI: 10.1021/acsabm.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Here, we demonstrate a label-free dual optical response strategy for the detection of cytochrome c (Cyt c) with ultrahigh sensitivity using highly luminescent lanthanides containing inorganic-organic hybrid nanotubular sensor arrays. These sensor arrays are formed by the sequential incorporation of the photosensitizers 2,3-dihydroxynaphthalene (DHN) or 1,10-phenanthroline (Phen), and trivalent lanthanide terbium ions (Tb3+) into sodium lithocholate (NaLC) nanotube templates. Our sensing platform relies on the detection and quantification of Cyt c in solution by providing dual photoluminescence quenching responses from the nanotubular hybrid arrays in the presence of Cyt c. The large quenching of the sensitized Tb3+ emission within the DHN/Phen-Tb3+-NaLC nanotubular sensor arrays caused by the strong binding of the photosensitizers to Cyt c provides an important signal response for the selective detection of Cyt c. This long-lived lanthanide emission response-based sensing strategy can be highly advantageous for the detection of Cyt c in a cellular environment eliminating background fluorescence and scattering signals through time-gated measurements. The DHN containing nanotubular sensor arrays (DHN-NaLC and DHN-Tb3+-NaLC) provide an additional quenching response characterized by a unique spectral valley splitting with quantized quenching dip on the DHN fluorescence emission. This spectral quenching dip resulting from efficient FRET between the protein bound DHN photosensitizer and the heme group of Cyt c serves as an important means for specific detection and quantification of Cyt c in the concentration range of 0-30 μM with a low detection limit of around 20 nM.
Collapse
Affiliation(s)
- Adithya Kamalakshan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Nidhi Anilkumar Jamuna
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | | | - Sarthak Mandal
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| |
Collapse
|
28
|
Yang Z, Wang X, Yu D, Chen G, Ma K, Zhang P, Xu Y. Granulation characteristics of anammox sludge in response to different signal-molecule-stimulants; mediated through programmed cell death. CHEMOSPHERE 2024; 354:141497. [PMID: 38452981 DOI: 10.1016/j.chemosphere.2024.141497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024]
Abstract
During the anammox process, mitigation of biomass washout to increase sludge retention is an important parameter of process efficiency. Signal molecular stimulants (SMS) initiate the sludge granulations controlled by programmed cell death (PCD) of microorganisms. In this study, the aerobic granular sludge (AGS), cell fragments, extracellular polymeric substances (EPS), and AGS process effluent were tested as SMS to identify their effect on anammox granulation. The results showed that the addition of SMS increased the nitrogen removal efficiency to varying degrees, whereas the addition of AGS process supernatant, as SMS, increased the ammonia removal efficiency up to 96%. The addition of SMS was also found to increase EPS production and contributed to sludge granulation. In this process, the proportion of PCD increased and both Gaiella and Denitratisoma abundance increased from 3.54% to 5.59%, and from 1.8% to 3.42%, respectively. In conclusion, PCD was found important to increase anaerobic ammonia oxidation performance through the granulation mechanism.
Collapse
Affiliation(s)
- Zifeng Yang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Xueping Wang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Guanghui Chen
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, PR China.
| | - Kang Ma
- Qingdao Licun River Sewage Treatment Plant, Qingdao, 266000, PR China
| | - Peiyu Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Yanmin Xu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| |
Collapse
|
29
|
Fuentes JM, Morcillo P. The Role of Cardiolipin in Mitochondrial Function and Neurodegenerative Diseases. Cells 2024; 13:609. [PMID: 38607048 PMCID: PMC11012098 DOI: 10.3390/cells13070609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
Cardiolipin (CL) is a mitochondria-exclusive phospholipid synthesized in the inner mitochondrial membrane. CL plays a key role in mitochondrial membranes, impacting a plethora of functions this organelle performs. Consequently, it is conceivable that abnormalities in the CL content, composition, and level of oxidation may negatively impact mitochondrial function and dynamics, with important implications in a variety of diseases. This review concentrates on papers published in recent years, combined with basic and underexplored research in CL. We capture new findings on its biological functions in the mitochondria, as well as its association with neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease. Lastly, we explore the potential applications of CL as a biomarker and pharmacological target to mitigate mitochondrial dysfunction.
Collapse
Affiliation(s)
- José M. Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Patricia Morcillo
- Departmentof Neurology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
30
|
Torp MK, Stensløkken KO, Vaage J. When Our Best Friend Becomes Our Worst Enemy: The Mitochondrion in Trauma, Surgery, and Critical Illness. J Intensive Care Med 2024:8850666241237715. [PMID: 38505947 DOI: 10.1177/08850666241237715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Common for major surgery, multitrauma, sepsis, and critical illness, is a whole-body inflammation. Tissue injury is able to trigger a generalized inflammatory reaction. Cell death causes release of endogenous structures termed damage associated molecular patterns (DAMPs) that initiate a sterile inflammation. Mitochondria are evolutionary endosymbionts originating from bacteria, containing molecular patterns similar to bacteria. These molecular patterns are termed mitochondrial DAMPs (mDAMPs). Mitochondrial debris released into the extracellular space or into the circulation is immunogenic and damaging secondary to activation of the innate immune system. In the circulation, released mDAMPS are either free or exist in extracellular vesicles, being able to act on every organ and cell in the body. However, the role of mDAMPs in trauma and critical care is not fully clarified. There is a complete lack of knowledge how they may be counteracted in patients. Among mDAMPs are mitochondrial DNA, cardiolipin, N-formyl peptides, cytochrome C, adenosine triphosphate, reactive oxygen species, succinate, and mitochondrial transcription factor A. In this overview, we present the different mDAMPs, their function, release, targets, and inflammatory potential. In light of present knowledge, the role of mDAMPs in the pathophysiology of major surgery and trauma as well as sepsis, and critical care is discussed.
Collapse
Affiliation(s)
- May-Kristin Torp
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
- Department of Research, Østfold Hospital Trust, Grålum, Norway
| | - Kåre-Olav Stensløkken
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Jarle Vaage
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Morse PT, Arroum T, Wan J, Pham L, Vaishnav A, Bell J, Pavelich L, Malek MH, Sanderson TH, Edwards BF, Hüttemann M. Phosphorylations and Acetylations of Cytochrome c Control Mitochondrial Respiration, Mitochondrial Membrane Potential, Energy, ROS, and Apoptosis. Cells 2024; 13:493. [PMID: 38534337 PMCID: PMC10969761 DOI: 10.3390/cells13060493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Cytochrome c (Cytc) has both life-sustaining and cellular death-related functions, depending on subcellular localization. Within mitochondria, Cytc acts as a single electron carrier as part of the electron transport chain (ETC). When released into the cytosol after cellular insult, Cytc triggers the assembly of the apoptosome, committing the cell to intrinsic apoptosis. Due to these dual natures, Cytc requires strong regulation by the cell, including post-translational modifications, such as phosphorylation and acetylation. Six phosphorylation sites and three acetylation sites have been detected on Cytc in vivo. Phosphorylations at T28, S47, Y48, T49, T58, and Y97 tend to be present under basal conditions in a tissue-specific manner. In contrast, the acetylations at K8, K39, and K53 tend to be present in specific pathophysiological conditions. All of the phosphorylation sites and two of the three acetylation sites partially inhibit respiration, which we propose serves to maintain an optimal, intermediate mitochondrial membrane potential (ΔΨm) to minimize reactive oxygen species (ROS) production. Cytc phosphorylations are lost during ischemia, which drives ETC hyperactivity and ΔΨm hyperpolarization, resulting in exponential ROS production thus causing reperfusion injury following ischemia. One of the acetylation sites, K39, shows a unique behavior in that it is gained during ischemia, stimulating respiration while blocking apoptosis, demonstrating that skeletal muscle, which is particularly resilient to ischemia-reperfusion injury compared to other organs, possesses a different metabolic strategy to handle ischemic stress. The regulation of Cytc by these post-translational modifications underscores the importance of Cytc for the ETC, ΔΨm, ROS production, apoptosis, and the cell as a whole.
Collapse
Affiliation(s)
- Paul T. Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
| | - Lucynda Pham
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
| | - Asmita Vaishnav
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Jamie Bell
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
- Division of Pediatric Critical Care, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI 48201, USA
| | - Lauren Pavelich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Moh H. Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Thomas H. Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brian F.P. Edwards
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
32
|
Chin TC, Wilbanks SM, Ledgerwood EC. Altered conformational dynamics contribute to species-specific effects of cytochrome c mutations on caspase activation. J Biol Inorg Chem 2024; 29:169-176. [PMID: 38472487 PMCID: PMC11098916 DOI: 10.1007/s00775-024-02044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/08/2024] [Indexed: 03/14/2024]
Abstract
Variants in the gene encoding human cytochrome c (CYCS) cause mild autosomal dominant thrombocytopenia. Despite high sequence conservation between mouse and human cytochrome c, this phenotype is not recapitulated in mice for the sole mutant (G41S) that has been investigated. The effect of the G41S mutation on the in vitro activities of cytochrome c is also not conserved between human and mouse. Peroxidase activity is increased in both mouse and human G41S variants, whereas apoptosome activation is increased for human G41S cytochrome c but decreased for mouse G41S cytochrome c. These apoptotic activities of cytochrome c are regulated at least in part by conformational dynamics of the main chain. Here we use computational and in vitro approaches to understand why the impact of the G41S mutation differs between mouse and human cytochromes c. The G41S mutation increases the inherent entropy and main chain mobility of human but not mouse cytochrome c. Exclusively in human G41S cytochrome c this is accompanied by a decrease in occupancy of H-bonds between protein and heme during simulations. These data demonstrate that binding of cytochrome c to Apaf-1 to trigger apoptosome formation, but not the peroxidase activity of cytochrome c, is enhanced by increased mobility of the native protein conformation.
Collapse
Affiliation(s)
- Thomas C Chin
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sigurd M Wilbanks
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Elizabeth C Ledgerwood
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
33
|
Paradisi A, Bellei M, Bortolotti CA, Di Rocco G, Ranieri A, Borsari M, Sola M, Battistuzzi G. Effects of removal of the axial methionine heme ligand on the binding of S. cerevisiae iso-1 cytochrome c to cardiolipin. J Inorg Biochem 2024; 252:112455. [PMID: 38141433 DOI: 10.1016/j.jinorgbio.2023.112455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
The cleavage of the axial S(Met) - Fe bond in cytochrome c (cytc) upon binding to cardiolipin (CL), a glycerophospholipid of the inner mitochondrial membrane, is one of the key molecular changes that impart cytc with (lipo)peroxidase activity essential to its pro-apoptotic function. In this work, UV - VIS, CD, MCD and fluorescence spectroscopies were used to address the role of the Fe - M80 bond in controlling the cytc-CL interaction, by studying the binding of the Met80Ala (M80A) variant of S. cerevisiae iso-1 cytc (ycc) to CL liposomes in comparison with the wt protein [Paradisi et al. J. Biol. Inorg. Chem. 25 (2020) 467-487]. The results show that the integrity of the six-coordinate heme center along with the distal heme site containing the Met80 ligand is a not requisite for cytc binding to CL. Indeed, deletion of the Fe - S(Met80) bond has a little impact on the mechanism of ycc-CL interaction, although it results in an increased heme accessibility to solvent and a reduced structural stability of the protein. In particular, M80A features a slightly tighter binding to CL at low CL/cytc ratios compared to wt ycc, possibly due to the lift of some constraints to the insertion of the CL acyl chains into the protein hydrophobic core. M80A binding to CL maintains the dependence on the CL-to-cytc mixing scheme displayed by the wt species.
Collapse
Affiliation(s)
- Alessandro Paradisi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Marzia Bellei
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Carlo Augusto Bortolotti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Antonio Ranieri
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Marco Borsari
- Department of Chemistry and Geology, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Marco Sola
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Gianantonio Battistuzzi
- Department of Chemistry and Geology, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy.
| |
Collapse
|
34
|
Chahar D, Jha I, Arumugam J, Venkatesu P. Impact of Choline Hydroxide-Supported Magnetic Nanoparticles on Peroxidase Activity and Conformational Stability of Cytochrome c. ACS APPLIED BIO MATERIALS 2024; 7:1135-1145. [PMID: 38262058 DOI: 10.1021/acsabm.3c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Nanotechnology has advanced significantly; however, little is known about the potential implications on human health-related issues, particularly blood carrying enzymes. Ionic liquids are also well-recognized for maintaining the structure and activity of enzymes. In this regard, we delineate a facile synthetic approach of preparation of Fe3O4 nanoparticles (NPs) as well as choline hydroxide [CH][OH] ionic liquid (IL)-supported Fe3O4 NPs (Fe3O4-CHOH). This approach of combining magnetic nanoparticles (MNPs) with IL results in distinctive properties, which may offer enormous utility in the field of biomedical research due to the effortless separation of MNPs by an external magnetic field. Detailed characterization of MNPs including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) was carried out. The biomolecular interactions of Fe3O4 and Fe3O4-CHOH NPs with cytochrome c (Cyt c) were studied in detail using various spectroscopic and microscopic techniques. From spectroscopic studies, it can be concluded that the secondary structure of Cyt c is more stable in the presence of Fe3O4-CHOH NPs than Fe3O4 NPs. The binding constant of Cyt c in the presence of MNPs was also calculated using the Benesi-Hildebrand equation. Furthermore, dynamic light scattering (DLS), ζ-potential, and microscopic studies were performed to study the interaction of Cyt c with MNPs. These studies provided evidence favoring the formation of bionanoconjugates of Cyt c with MNPs. Moreover, the enzymatic activity of Cyt c increases in the presence of both MNPs. The peroxidase activity of Cyt c in MNPs explicitly elucidates that the enzyme is preserved for a long time in the presence of Fe3O4-CHOH NPs. Later on, TEM and field emission scanning electron microscopy (FESEM) were also performed to gather more information regarding the morphology of Cyt c in the presence of MNPs.
Collapse
Affiliation(s)
- Deepak Chahar
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Indrani Jha
- Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
| | - Jayamani Arumugam
- Department of Chemistry, University of Delhi, Delhi 110 007, India
- Department of Sciences Program Chemistry, Manav Rachna University, Faridabad 121004, India
| | | |
Collapse
|
35
|
Bezerra de Araujo CM, Rios AG, Ghislandi MG, Ferreira AFP, Alves da Motta Sobrinho M, Rodrigues AE. Separation of the heme protein cytochrome C using a 3D structured graphene oxide bionanocomposite as an adsorbent. SOFT MATTER 2024; 20:1475-1485. [PMID: 38263875 DOI: 10.1039/d3sm01053h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Proteins are of great importance for medicine and the pharmaceutical and food industries. However, proteins need to be purified prior to their application. This work investigated the application of a hydrogel bionanocomposite based on agar and graphene oxide (GO) for capturing cytochrome C (Cyto C) heme protein by adsorption from aqueous solutions with other proteins. Although applications of GO-based materials in adsorption are widely studied, the focus on semi-continuous processes remains limited. Adsorption experiments were carried out in batch and fixed bed columns. The effect of pH and ionic strength on adsorption was investigated, and there is evidence that electrostatic interactions between Cyto C and the nanocomposite were favoured at pH = 7; the adsorption capacity decreased as NaCl and KCl concentrations increased, ascribed to the weak electrostatic interaction between the protein and GO active sites in the bionanocomposite. All adsorption isotherm models (Langmuir, Freundlich, Sips) used gave suitable adjustments to the equilibrium experimental data and the kinetic models applied. The maximum adsorption capacity predicted by the Langmuir isotherm was ∼400 mgCytoC gadsorbent,dry-1, and the adsorption thermodynamics indicated a physisorption process. Tests were performed to evaluate the co-adsorption in batch, and the composite was effective in adsorbing Cyto C in solution with bovine serum albumin (BSA) and L-phenylalanine. Fixed bed tests were performed, and although protein adsorption onto nanoparticles can be challenging, the Cyto C adsorbed could be successfully recovered after desorption. Overall, the GO-based hydrogel was an effective method for cytochrome C adsorption, exhibiting a notorious potential for applications in protein separation processes.
Collapse
Affiliation(s)
| | - Albertina Gonçalves Rios
- Faculty of Engineering, University of Porto, s/n, R. Dr Roberto Frias, 4200-465, Porto, Portugal.
| | - Marcos Gomes Ghislandi
- Federal Rural University of Pernambuco, R. Cento e Sessenta e Três, 300, Cabo de Santo Agostinho, PE, Brazil
| | | | | | - Alírio Egídio Rodrigues
- Faculty of Engineering, University of Porto, s/n, R. Dr Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
36
|
Wang Y, Wang J, Tao SY, Liang Z, Xie R, Liu NN, Deng R, Zhang Y, Deng D, Jiang G. Mitochondrial damage-associated molecular patterns: A new insight into metabolic inflammation in type 2 diabetes mellitus. Diabetes Metab Res Rev 2024; 40:e3733. [PMID: 37823338 DOI: 10.1002/dmrr.3733] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/18/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023]
Abstract
The pathogenesis of diabetes is accompanied by increased levels of inflammatory factors, also known as "metabolic inflammation", which runs through the whole process of the occurrence and development of the disease. Mitochondria, as the key site of glucose and lipid metabolism, is often accompanied by mitochondrial function damage in type 2 diabetes mellitus (T2DM). Damaged mitochondria release pro-inflammatory factors through damage-related molecular patterns that activate inflammation pathways and reactions to oxidative stress, further aggravate metabolic disorders, and form a vicious circle. Currently, the pathogenesis of diabetes is still unclear, and clinical treatment focuses primarily on symptomatic intervention of the internal environment of disorders of glucose and lipid metabolism with limited clinical efficacy. The proinflammatory effect of mitochondrial damage-associated molecular pattern (mtDAMP) in T2DM provides a new research direction for exploring the pathogenesis and intervention targets of T2DM. Therefore, this review covers the most recent findings on the molecular mechanism and related signalling cascades of inflammation caused by mtDAMP in T2DM and discusses its pathogenic role of it in the pathological process of T2DM to search potential intervention targets.
Collapse
Affiliation(s)
- Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jingwu Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Si-Yu Tao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | | | - Rong Xie
- Xinjiang Medical University, Urumqi, China
| | - Nan-Nan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ruxue Deng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuelin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Deqiang Deng
- Department of Endocrinology, Urumqi Hospital of Traditional Chinese Medicine, Urumqi, China
| | - Guangjian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
37
|
Ding Y, Liu S, Zhang M, Su M, Shao B. Suppression of NLRP3 inflammasome activation by astragaloside IV via promotion of mitophagy to ameliorate radiation-induced renal injury in mice. Transl Androl Urol 2024; 13:25-41. [PMID: 38404552 PMCID: PMC10891390 DOI: 10.21037/tau-23-323] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/24/2023] [Indexed: 02/27/2024] Open
Abstract
Background Irradiation (IR) promotes inflammation and apoptosis by inducing oxidative stress and/or mitochondrial dysfunction (MD). The kidneys are rich in mitochondria, and mitophagy maintains normal renal function by eliminating damaged mitochondria and minimizing oxidative stress. However, whether astragaloside IV (AS-IV) can play a protective role through the mitophagy pathway is not known. Methods We constructed a radiation injury model using hematoxylin and eosin (HE) staining, blood biochemical analysis, immunohistochemistry, TdT-mediated dUTP nick end labeling (TUNEL) staining, ultrastructural observation, and Western blot analysis to elucidate the AS-IV resistance mechanism for IR-induced renal injury. Results IR induced mitochondrial damage; the increase of creatinine (SCr), blood urea nitrogen (BUN) and uric acid (UA); and the activation of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome and apoptosis in renal tissue. AS-IV administration attenuated the IR-induced MD and reactive oxygen species (ROS) levels in the kidney; enhanced the levels of mitophagy-associated protein [PTEN-induced putative kinase 1 (PINK1)], parkin proteins, and microtubule-associated protein 1 light 3 (LC3) II/I ratio in renal tissues; diminished NLRP3 inflammasome activation-mediated proteins [cleaved cysteinyl aspartate-specific proteinase-1 (caspase-1), interleukin-1β (IL-1β)] and apoptosis-related proteins [cleaved caspase-9, cleaved caspase-3, BCL2-associated X (Bax)]; reduced SCr, BUN, and UA levels; and attenuated the histopathological alterations in renal tissue. Conversely, mitophagy inhibitor cyclosporin A (CsA) suppressed the AS-IV-mediated protection of renal tissue. Conclusions AS-IV can strongly diminish the activation and apoptosis of NLRP3 inflammasome, thus attenuating the renal injury induced by radiation by promoting the PINK1/parkin-mediated mitophagy. These findings suggest that AS-IV is a promising drug for treating IR-induced kidney injury.
Collapse
Affiliation(s)
- Yanping Ding
- School of Life Science, Northwest Normal University, Lanzhou, China
| | - Shuning Liu
- School of Life Science, Northwest Normal University, Lanzhou, China
| | - Mengqing Zhang
- School of Life Science, Northwest Normal University, Lanzhou, China
| | - Meile Su
- School of Life Science, Northwest Normal University, Lanzhou, China
| | - Baoping Shao
- School of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
38
|
Didamson OC, Chandran R, Abrahamse H. Aluminium phthalocyanine-mediated photodynamic therapy induces ATM-related DNA damage response and apoptosis in human oesophageal cancer cells. Front Oncol 2024; 14:1338802. [PMID: 38347844 PMCID: PMC10859414 DOI: 10.3389/fonc.2024.1338802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Introduction Photodynamic therapy (PDT) is a light-based technique used in the treatment of malignant and non-malignant tissue. Aluminium-phthalocyanine chloride tetra sulfonate (AlPcS4Cl)-mediated PDT has been well investigated on several cancer types, including oesophageal cancer. However, the effects of (AlPcS4Cl)-mediated PDT on DNA damage response and the mechanism of cell death in oesophageal cancer needs further investigation. Methods Here, we examined the in vitro effects of AlPcS4Cl-mediated PDT on cell cycle, DNA damage response, oxidative stress, and intrinsic apoptotic cell death pathway in HKESC-1 oesophageal cancer cells. The HKESC-1 cells were exposed to PDT using a semiconductor laser diode (673.2 nm, 5 J/cm2 fluency). Cell viability and cytotoxicity were determined by the ATP cell viability assay and the lactate dehydrogenase (LDH) release assay, respectively. Cell cycle and DNA damage response (DDR) analyses were conducted using the Muse™ cell cycle kit and the Muse® multi-color DNA damage kit, respectively. The mode of cell death was identified using the Annexin V-FITC/PI detection assay and Muse® Autophagy LC3 antibody-based kit. The intrinsic apoptotic pathway was investigated by measuring the cellular reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔΨm) function, cytochrome c levels and the activity of caspase 3/7 enzymes. Results The results show that AlPcS4Cl-based PDT reduced cell viability, induced cytotoxicity, cell cycle arrest at the G0/G1 phase, and DNA double-strand break (DSB) through the upregulation of the ataxia telangiectasia mutated (ATM), a DNA damage sensor. In addition, the findings showed that AlPcS4Cl-based PDT induced cell death via apoptosis, which is observed through increased ROS production, reduced ΔΨm, increased cytochrome c release, and activation of caspase 3/7 enzyme. Finally, no autophagy was observed in the AlPcS4Cl-mediated PDT-treated cells. Conclusion Our findings showed that apoptotic cell death is the main cell death mechanism triggered by AlPcS4Cl-mediated PDT in oesophageal cancer cells.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
39
|
Tomar MS, Kumar A, Shrivastava A. Mitochondrial metabolism as a dynamic regulatory hub to malignant transformation and anti-cancer drug resistance. Biochem Biophys Res Commun 2024; 694:149382. [PMID: 38128382 DOI: 10.1016/j.bbrc.2023.149382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Glycolysis is the fundamental cellular process that permits cancer cells to convert energy and grow anaerobically. Recent developments in molecular biology have made it evident that mitochondrial respiration is critical to tumor growth and treatment response. As the principal organelle of cellular energy conversion, mitochondria can rapidly alter cellular metabolic processes, thereby fueling malignancies and contributing to treatment resistance. This review emphasizes the significance of mitochondrial biogenesis, turnover, DNA copy number, and mutations in bioenergetic system regulation. Tumorigenesis requires an intricate cascade of metabolic pathways that includes rewiring of the tricarboxylic acid (TCA) cycle, electron transport chain and oxidative phosphorylation, supply of intermediate metabolites of the TCA cycle through amino acids, and the interaction between mitochondria and lipid metabolism. Cancer recurrence or resistance to therapy often results from the cooperation of several cellular defense mechanisms, most of which are connected to mitochondria. Many clinical trials are underway to assess the effectiveness of inhibiting mitochondrial respiration as a potential cancer therapeutic. We aim to summarize innovative strategies and therapeutic targets by conducting a comprehensive review of recent studies on the relationship between mitochondrial metabolism, tumor development and therapeutic resistance.
Collapse
Affiliation(s)
- Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal, 462020, Madhya Pradesh, India
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.
| |
Collapse
|
40
|
Li JY, Sun XA, Wang X, Yang NH, Xie HY, Guo HJ, Lu L, Xie X, Zhou L, Liu J, Zhang W, Lu LM. PGAM5 exacerbates acute renal injury by initiating mitochondria-dependent apoptosis by facilitating mitochondrial cytochrome c release. Acta Pharmacol Sin 2024; 45:125-136. [PMID: 37684381 PMCID: PMC10770374 DOI: 10.1038/s41401-023-01151-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/03/2023] [Indexed: 09/10/2023]
Abstract
Acute kidney injury (AKI) is a worldwide public health problem characterized by the massive loss of tubular cells. However, the precise mechanism for initiating tubular cell death has not been fully elucidated. Here, we reported that phosphoglycerate mutase 5 (PGAM5) was upregulated in renal tubular epithelial cells during ischaemia/reperfusion or cisplatin-induced AKI in mice. PGAM5 knockout significantly alleviated the activation of the mitochondria-dependent apoptosis pathway and tubular apoptosis. Apoptosis inhibitors alleviated the activation of the mitochondria-dependent apoptosis pathway. Mechanistically, as a protein phosphatase, PGAM5 could dephosphorylate Bax and facilitate Bax translocation to the mitochondrial membrane. The translocation of Bax to mitochondria increased membrane permeability, decreased mitochondrial membrane potential and facilitated the release of mitochondrial cytochrome c (Cyt c) into the cytoplasm. Knockdown of Bax attenuated PGAM5 overexpression-induced Cyt c release and tubular cell apoptosis. Our results demonstrated that the increase in PGAM5-mediated Bax dephosphorylation and mitochondrial translocation was implicated in the development of AKI by initiating mitochondrial Cyt c release and activating the mitochondria-dependent apoptosis pathway. Targeting this axis might be beneficial for alleviating AKI.
Collapse
Affiliation(s)
- Jing-Yao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xi-Ang Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ning-Hao Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Hong-Yan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Heng-Jiang Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Li Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dali University, Dali, Yunnan, 671013, China
| | - Xin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Li-Min Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, 201102, China.
| |
Collapse
|
41
|
Kreiman AN, Yeasmin T, Sutherland MC. Recombinant Biogenesis and Analysis of Cytochrome c Species. Methods Mol Biol 2024; 2839:195-211. [PMID: 39008254 DOI: 10.1007/978-1-0716-4043-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Recombinant expression and biogenesis of cytochrome c species is a simple and efficient method for the production of holocytochrome c species, thus presenting an avenue for the study of cytochrome c or the cytochrome c biogenesis pathways responsible for heme attachment. Here, we describe a method for recombinant E. coli production of holocytochrome c utilizing the System I (CcmABCDEFGH) bacterial cytochrome c biogenesis pathway, followed by analysis of cytochrome c species by cell lysis and heme stain.
Collapse
Affiliation(s)
- Alicia N Kreiman
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Tania Yeasmin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Molly C Sutherland
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
42
|
James MR, Aufiero MA, Vesely EM, Dhingra S, Liu KW, Hohl TM, Cramer RA. Aspergillus fumigatus cytochrome c impacts conidial survival during sterilizing immunity. mSphere 2023; 8:e0030523. [PMID: 37823656 PMCID: PMC10871163 DOI: 10.1128/msphere.00305-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Aspergillus fumigatus can cause a life-threatening infection known as invasive pulmonary aspergillosis (IPA), which is marked by fungus-attributable mortality rates of 20%-30%. Individuals at risk for IPA harbor genetic mutations or incur pharmacologic defects that impair myeloid cell numbers and/or function, exemplified by bone marrow transplant recipients, patients that receive corticosteroid therapy, or patients with chronic granulomatous disease (CGD). However, treatments for Aspergillus infections remain limited, and resistance to the few existing drug classes is emerging. Recently, the World Health Organization classified A. fumigatus as a critical priority fungal pathogen. Our cell death research identifies an important aspect of fungal biology that impacts susceptibility to leukocyte killing. Furthering our understanding of mechanisms that mediate the outcome of fungal-leukocyte interactions will increase our understanding of both the underlying fungal biology governing cell death and innate immune evasion strategies utilized during mammalian infection pathogenesis. Consequently, our studies are a critical step toward leveraging these mechanisms for novel therapeutic advances.
Collapse
Affiliation(s)
- Matthew R. James
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, USA
| | - Mariano A. Aufiero
- Louis V Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elisa M. Vesely
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, USA
| | - Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, USA
| | - Ko-Wei Liu
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, USA
| | - Tobias M. Hohl
- Louis V Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Infectious Disease Service, Department of Medicine, Memorial Hospital, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
43
|
Dasari TW, Chakraborty P, Mukli P, Akhtar K, Yabluchanskiy A, Cunningham MW, Csiszar A, Po SS. Noninvasive low-level tragus stimulation attenuates inflammation and oxidative stress in acute heart failure. Clin Auton Res 2023; 33:767-775. [PMID: 37943335 DOI: 10.1007/s10286-023-00997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE Acute decompensated heart failure (ADHF) is associated with inflammation, oxidative stress, and excess sympathetic drive. It is unknown whether neuromodulation would improve inflammation and oxidative stress in acute heart failure. We, therefore, performed this proof-of-concept study to evaluate the effects of neuromodulation using noninvasive low-level tragus stimulation on inflammation and oxidative stress in ADHF. METHODS Nineteen patients with ejection fraction < 40% were randomized to neuromodulation 4 h twice daily (6-10 a.m. and 6-10 p.m.) (n = 8) or sham stimulation (n = 11) during hospital admission. All patients received standard-of-care treatment. Blood samples were collected at admission and discharge. Serum cytokines were assayed using standard immunosorbent techniques. Reactive oxygen species inducibility from cultured coronary endothelial cells exposed to patient sera was determined using a dihydrodichlorofluorescein probe test (expressed as fluorescein units). RESULTS Compared to sham stimulation, neuromodulation was associated with a significant reduction of circulating serum interleukin-6 levels (-78% vs. -9%; p = 0.012). Similarly, neuromodulation led to a reduction of endothelial cell oxidative stress in the neuromodulation group (1363 units to 978 units, p = 0.003) compared to sham stimulation (1146 units to 1083 units, p = 0.094). No significant differences in heart rate, blood pressure, or renal function were noted between the two groups. CONCLUSION In this proof-of-concept pilot study, in acute decompensated heart failure, neuromodulation was feasible and safe and was associated with a reduction in systemic inflammation and attenuation of coronary endothelial cellular oxidative stress. CLINICAL TRIAL REGISTRATION NCT02898181.
Collapse
Affiliation(s)
- Tarun W Dasari
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 SL Young Blvd, COM 5400, Oklahoma City, OK, 73104, USA.
| | - Praloy Chakraborty
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 SL Young Blvd, COM 5400, Oklahoma City, OK, 73104, USA
| | - Peter Mukli
- Department of Neurosurgery, University of Oklahoma HSC, Oklahoma City, OK, USA
| | - Khawaja Akhtar
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 SL Young Blvd, COM 5400, Oklahoma City, OK, 73104, USA
| | | | - Madeleine W Cunningham
- Department of Microbiology and Immunology, University of Oklahoma HSC, Oklahoma City, OK, USA
| | - Anna Csiszar
- Department of Neurosurgery, University of Oklahoma HSC, Oklahoma City, OK, USA
| | - Sunny S Po
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 SL Young Blvd, COM 5400, Oklahoma City, OK, 73104, USA
| |
Collapse
|
44
|
Li AL, Lian L, Chen XN, Cai WH, Fan XB, Fan YJ, Li TT, Xie YY, Zhang JP. The role of mitochondria in myocardial damage caused by energy metabolism disorders: From mechanisms to therapeutics. Free Radic Biol Med 2023; 208:236-251. [PMID: 37567516 DOI: 10.1016/j.freeradbiomed.2023.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Myocardial damage is the most serious pathological consequence of cardiovascular diseases and an important reason for their high mortality. In recent years, because of the high prevalence of systemic energy metabolism disorders (e.g., obesity, diabetes mellitus, and metabolic syndrome), complications of myocardial damage caused by these disorders have attracted widespread attention. Energy metabolism disorders are independent of traditional injury-related risk factors, such as ischemia, hypoxia, trauma, and infection. An imbalance of myocardial metabolic flexibility and myocardial energy depletion are usually the initial changes of myocardial injury caused by energy metabolism disorders, and abnormal morphology and functional destruction of the mitochondria are their important features. Specifically, mitochondria are the centers of energy metabolism, and recent evidence has shown that decreased mitochondrial function, caused by an imbalance in mitochondrial quality control, may play a key role in myocardial injury caused by energy metabolism disorders. Under chronic energy stress, mitochondria undergo pathological fission, while mitophagy, mitochondrial fusion, and biogenesis are inhibited, and mitochondrial protein balance and transfer are disturbed, resulting in the accumulation of nonfunctional and damaged mitochondria. Consequently, damaged mitochondria lead to myocardial energy depletion and the accumulation of large amounts of reactive oxygen species, further aggravating the imbalance in mitochondrial quality control and forming a vicious cycle. In addition, impaired mitochondria coordinate calcium homeostasis imbalance, and epigenetic alterations participate in the pathogenesis of myocardial damage. These pathological changes induce rapid progression of myocardial damage, eventually leading to heart failure or sudden cardiac death. To intervene more specifically in the myocardial damage caused by metabolic disorders, we need to understand the specific role of mitochondria in this context in detail. Accordingly, promising therapeutic strategies have been proposed. We also summarize the existing therapeutic strategies to provide a reference for clinical treatment and developing new therapies.
Collapse
Affiliation(s)
- Ao-Lin Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lu Lian
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xin-Nong Chen
- Department of Traditional Chinese Medicine, Tianjin First Central Hospital, Tianjin, 300190, China
| | - Wen-Hui Cai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xin-Biao Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ya-Jie Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ting-Ting Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ying-Yu Xie
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Jun-Ping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China.
| |
Collapse
|
45
|
Fear EJ, Torkelsen FH, Zamboni E, Chen K, Scott M, Jeffery G, Baseler H, Kennerley AJ. Use of 31 P magnetisation transfer magnetic resonance spectroscopy to measure ATP changes after 670 nm transcranial photobiomodulation in older adults. Aging Cell 2023; 22:e14005. [PMID: 37803929 PMCID: PMC10652330 DOI: 10.1111/acel.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
Mitochondrial function declines with age, and many pathological processes in neurodegenerative diseases stem from this dysfunction when mitochondria fail to produce the necessary energy required. Photobiomodulation (PBM), long-wavelength light therapy, has been shown to rescue mitochondrial function in animal models and improve human health, but clinical uptake is limited due to uncertainty around efficacy and the mechanisms responsible. Using 31 P magnetisation transfer magnetic resonance spectroscopy (MT-MRS) we quantify, for the first time, the effects of 670 nm PBM treatment on healthy ageing human brains. We find a significant increase in the rate of ATP synthase flux in the brain after PBM in a cohort of older adults. Our study provides initial evidence of PBM therapeutic efficacy for improving mitochondrial function and restoring ATP flux with age, but recognises that wider studies are now required to confirm any resultant cognitive benefits.
Collapse
Affiliation(s)
- Elizabeth J. Fear
- Hull York Medical SchoolUniversity of YorkYorkUK
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | | | - Elisa Zamboni
- Department of PsychologyUniversity of YorkYorkUK
- School of PsychologyUniversity of NottinghamNottinghamUK
| | | | - Martin Scott
- Department of PsychologyUniversity of YorkYorkUK
- Department of PsychologyStanford UniversityStanfordCaliforniaUSA
| | - Glenn Jeffery
- Faculty of Brain SciencesInstitute of Ophthalmology, UCLLondonUK
| | - Heidi Baseler
- Hull York Medical SchoolUniversity of YorkYorkUK
- Department of PsychologyUniversity of YorkYorkUK
| | - Aneurin J. Kennerley
- Department of ChemistryUniversity of YorkYorkUK
- Institute of SportManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
46
|
Chertkova RV, Oleynikov IP, Pakhomov AA, Sudakov RV, Orlov VN, Semenova MA, Arutyunyan AM, Ptushenko VV, Kirpichnikov MP, Dolgikh DA, Vygodina TV. Mutant Cytochrome C as a Potential Detector of Superoxide Generation: Effect of Mutations on the Function and Properties. Cells 2023; 12:2316. [PMID: 37759538 PMCID: PMC10528150 DOI: 10.3390/cells12182316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Cytochrome c (CytC) is a single-electron carrier between complex bc1 and cytochrome c-oxidase (CcO) in the electron transport chain (ETC). It is also known as a good radical scavenger but its participation in electron flow through the ETC makes it impossible to use CytC as a radical sensor. To solve this problem, a series of mutants were constructed with substitutions of Lys residues in the universal binding site (UBS) which interact electrostatically with negatively charged Asp and Glu residues at the binding sites of CytC partners, bc1 complex and CcO. The aim of this study was to select a mutant that had lost its function as an electron carrier in the ETC, retaining the structure and ability to quench radicals. It was shown that a mutant CytC with substitutions of five (8Mut) and four (5Mut) Lys residues in the UBS was almost inactive toward CcO. However, all mutant proteins kept their antioxidant activity sufficiently with respect to the superoxide radical. Mutations shifted the dipole moment of the CytC molecule due to seriously changed electrostatics on the surface of the protein. In addition, a decrease in the redox potential of the protein as revealed by the redox titrations of 8Mut was detected. Nevertheless, the CD spectrum and dynamic light scattering suggested no significant changes in the secondary structure or aggregation of the molecules of CytC 8Mut. Thus, a variant 8Mut with multiple mutations in the UBS which lost its ability to electron transfer and saved most of its physico-chemical properties can be effectively used as a detector of superoxide generation both in mitochondria and in other systems.
Collapse
Affiliation(s)
- Rita V. Chertkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
| | - Ilya P. Oleynikov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
| | - Alexey A. Pakhomov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
| | - Roman V. Sudakov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
| | - Victor N. Orlov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
| | - Marina A. Semenova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
| | - Alexander M. Arutyunyan
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
| | - Vasily V. Ptushenko
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
- N.M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
- Biology Department, M.V. Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
- Biology Department, M.V. Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Tatiana V. Vygodina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
| |
Collapse
|
47
|
Kamra A, Das S, Bhatt P, Solra M, Maity T, Rana S. A transient vesicular glue for amplification and temporal regulation of biocatalytic reaction networks. Chem Sci 2023; 14:9267-9282. [PMID: 37712020 PMCID: PMC10498679 DOI: 10.1039/d3sc00195d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
Regulation of enzyme activity and biocatalytic cascades on compartmentalized cellular components is key to the adaptation of cellular processes such as signal transduction and metabolism in response to varying external conditions. Synthetic molecular glues have enabled enzyme inhibition and regulation of protein-protein interactions. So far, all the molecular glue systems based on covalent interactions operated under steady-state conditions. To emulate dynamic biological processes under dissipative conditions, we introduce herein a transient supramolecular glue with a controllable lifetime. The transient system uses multivalent supramolecular interactions between guanidinium group-bearing surfactants and adenosine triphosphate (ATP), resulting in bilayer vesicle structures. Unlike the conventional chemical agents for dissipative assemblies, ATP here plays the dual role of providing a structural component for the assembly as well as presenting active functional groups to "glue" enzymes on the surface. While gluing of the enzymes on the vesicles achieves augmented catalysis, oscillation of ATP concentration allows temporal control of the catalytic activities similar to the dissipative cellular nanoreactors. We further demonstrate temporal upregulation and control of complex biocatalytic reaction networks on the vesicles. Altogether, the temporal activation of biocatalytic cascades on the dissipative vesicular glue presents an adaptable and dynamic system emulating heterogeneous cellular processes, opening up avenues for effective protocell construction and therapeutic interventions.
Collapse
Affiliation(s)
- Alisha Kamra
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Sourav Das
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Preeti Bhatt
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Manju Solra
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Tanmoy Maity
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Subinoy Rana
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| |
Collapse
|
48
|
Abramczyk H, Surmacki JM. Control of Mitochondrial Electron Transport Chain Flux and Apoptosis by Retinoic Acid: Raman Imaging In Vitro Human Bronchial and Lung Cancerous Cells. Cancers (Basel) 2023; 15:4535. [PMID: 37760504 PMCID: PMC10526773 DOI: 10.3390/cancers15184535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The multiple functions of cytochrome c (cyt c) and their regulation in life and death decisions of the mammalian cell go beyond respiration, apoptosis, ROS scavenging, and oxidation of cardiolipine. It has become increasingly evident that cyt c is involved in the propagation of mitogenic signals. It has been proposed that the mitogenic signals occur via the PKCδ-retinoic acid signal complex comprising the protein kinase Cδ, the adapter protein Src homologous collagen homolog (p66Shc), and cyt c. We showed the importance of retinoic acid in regulating cellular processes monitored by the Raman bands of cyt c. To understand the role of retinoids in regulating redox status of cyt c, we recorded the Raman spectra and images of cells receiving redox stimuli by retinoic acid at in vitro cell cultures. For these purposes, we incubated bronchial normal epithelial lung (BEpC) and lung cancer cells (A549) with retinoic acid at concentrations of 1, 10, and 50 µM for 24 and 48 h of incubations. The new role of retinoic acid in a change of the redox status of iron ion in the heme group of cyt c from oxidized Fe3+ to reduced Fe2+ form may have serious consequences on ATPase effectiveness and aborting the activation of the conventional mitochondrial signaling protein-dependent pathways, lack of triggering programmed cell death through apoptosis, and lack of cytokine induction. To explain the effect of retinoids on the redox status of cyt c in the electron transfer chain, we used the quantum chemistry models of retinoid biology. It has been proposed that retinol catalyzes resonance energy transfer (RET) reactions in cyt c. The paper suggests that RET is pivotally important for mitochondrial energy homeostasis by controlling oxidative phosphorylation by switching between activation and inactivation of glycolysis and regulation of electron flux in the electron transport chain. The key role in this process is played by protein kinase C δ (PKCδ), which triggers a signal to the pyruvate dehydrogenase complex. The PKCδ-retinoic acid complex reversibly (at normal physiological conditions) or irreversibly (cancer) responds to the redox potential of cyt c that changes with the electron transfer chain flux.
Collapse
Affiliation(s)
| | - Jakub Maciej Surmacki
- Laboratory of Laser Molecular Spectroscopy, Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
49
|
Dasari T, Chakraborty P, Mukli P, Akhtar K, Yabluchanskiy A, Cunningham MW, Csiszar A, Po SS. Noninvasive low-level tragus stimulation attenuates inflammation and oxidative stress in acute heart failure. RESEARCH SQUARE 2023:rs.3.rs-3323086. [PMID: 37790298 PMCID: PMC10543293 DOI: 10.21203/rs.3.rs-3323086/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Purpose Acute decompensated heart failure is associated with inflammation, oxidative stress, and excess sympathetic drive. It is unknown if neuromodulation would improve inflammation and oxidative stress in acute heart failure. We, therefore, performed this proof-of-concept study to evaluate the effects of neuromodulation using noninvasive low-level Tragus stimulation on inflammation and oxidative stress in ADHF. Methods 19 patients with ejection fraction < 40% were randomized to neuromodulation- 4 hours twice daily (6 AM-10 AM and 6 PM-10 PM) (n = 8) or sham stimulation (n = 11) during hospital admission. All patients received standard-of-care treatment. Blood samples were collected at admission and discharge. Serum cytokines were assayed using standard immunosorbent techniques. Reactive oxygen species inducibility from cultured coronary endothelial cells exposed to patient sera was determined using dihydrodichlorofluorescein probe test (expressed as fluorescein units). Results Compared to sham stimulation, neuromodulation was associated with a significant reduction of circulating serum Interleukin-6 levels (-78% vs -9%; p = 0.012). Similarly, neuromodulation led to reduction of endothelial cell oxidative stress, in the neuromodulation group (1363 units to 978 units, p = 0.003) compared to sham stimulation (1146 units to 1083 units, p = 0.094). No significant difference in heart rate, blood pressure or renal function were noted between the two groups. Conclusion In this proof-of-concept pilot study, in acute systolic heart failure, neuromodulation was feasible and safe and was associated with a reduction in systemic inflammation and attenuation of cellular oxidative stress. Clinical trial NCT02898181.
Collapse
Affiliation(s)
- Tarun Dasari
- University of Oklahoma: The University of Oklahoma
| | | | - Peter Mukli
- University of Oklahoma: The University of Oklahoma
| | | | | | | | - Anna Csiszar
- University of Oklahoma: The University of Oklahoma
| | - Sunny S Po
- University of Oklahoma: The University of Oklahoma
| |
Collapse
|
50
|
Li H, Zhang R, Hu Y, Li J, Yang Y, Wu D, Gu X, Zhang F, Zhou H, Yang C. Axitinib attenuates the progression of liver fibrosis by restoring mitochondrial function. Int Immunopharmacol 2023; 122:110555. [PMID: 37399607 DOI: 10.1016/j.intimp.2023.110555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Liver fibrosis can progress to cirrhosis and hepatocellular carcinoma, which may eventually lead to liver failure and even death. No direct anti-fibrosis drugs are available at present. Axitinib is a new generation of potent multitarget tyrosine kinase receptor inhibitors, but its role in liver fibrosis remains unclear. In this study, a CCl4-induced hepatic fibrosis mouse model and a TGF-β1-induced hepatic stellate cell model were used to explore the effect and mechanism of axitinib on hepatic fibrosis. Results confirmed that axitinib could alleviate the pathological damage of liver tissue induced by CCl4 and inhibit the production of glutamic-oxalacetic transaminase and glutamic-pyruvic transaminase. It also inhibited collagen and hydroxyproline deposition and the protein expression of Col-1 and α-SMA in CCl4-induced liver fibrosis. In addition, axitinib inhibited the expression of CTGF and α-SMA in TGF-β1-induced hepatic stellate cells. Further studies showed that axitinib inhibited mitochondrial damage and reduced oxidative stress and NLRP3 maturation. The use of rotenone and antimycin A confirmed that axitinib could restore the activity of mitochondrial complexes I and III, thereby inhibiting the maturation of NLRP3. In summary, axitinib inhibits the activation of HSCs by enhancing the activity of mitochondrial complexes I and III, thereby alleviating the progression of liver fibrosis. This study reveals the strong potential of axitinib in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Hailong Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Ruotong Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300350, China
| | - Yayue Hu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300350, China
| | - Jinhe Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300350, China
| | - Ying Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Dan Wu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Xiaoting Gu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Fubo Zhang
- Organ Transplantation Center, Tianjin First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin 300192, China.
| | - Honggang Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300350, China.
| | - Cheng Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300350, China.
| |
Collapse
|