1
|
Goolab S, Terburgh K, du Plessis C, Scholefield J, Louw R. CRISPR-Cas9 mediated knockout of NDUFS4 in human iPSCs: A model for mitochondrial complex I deficiency. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167569. [PMID: 39547516 DOI: 10.1016/j.bbadis.2024.167569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Mitochondrial diseases, often caused by defects in complex I (CI) of the oxidative phosphorylation system, currently lack curative treatments. Human-relevant, high-throughput drug screening platforms are crucial for the discovery of effective therapeutics, with induced pluripotent stem cells (iPSCs) emerging as a valuable technology for this purpose. Here, we present a novel iPSC model of NDUFS4-related CI deficiency that displays a strong metabolic phenotype in the pluripotent state. Human iPSCs were edited using CRISPR-Cas9 to target the NDUFS4 gene, generating isogenic NDUFS4 knockout (KO) cell lines. Sanger sequencing detected heterozygous biallelic deletions, whereas no indel mutations were found in isogenic control cells. Western blotting confirmed the absence of NDUFS4 protein in KO iPSCs and CI enzyme kinetics showed a ~56 % reduction in activity compared to isogenic controls. Comprehensive metabolomic profiling revealed a distinct metabolic phenotype in NDUFS4 KO iPSCs, predominantly associated with an elevated NADH/NAD+ ratio, consistent with alterations observed in other models of mitochondrial dysfunction. Additionally, β-lapachone, a recognized NAD+ modulator, alleviated reductive stress in KO iPSCs by modifying the redox state in both the cytosol and mitochondria. Although undifferentiated iPSCs cannot fully replicate the complex cellular dynamics of the disease seen in vivo, these findings highlight the utility of iPSCs in providing a relevant metabolic milieu that can facilitate early-stage, high-throughput exploration of therapeutic strategies for mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shivani Goolab
- Bioengineering and Integrated Genomics Group, Future Productions: Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Karin Terburgh
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Charl du Plessis
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Janine Scholefield
- Bioengineering and Integrated Genomics Group, Future Productions: Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa; Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
2
|
Barrera-Paez JD, Bacman SR, Balla T, Van Booven D, Gannamedi DP, Stewart JB, Mok B, Liu DR, Lombard DB, Griswold AJ, Nedialkova DD, Moraes CT. Correcting a pathogenic mitochondrial DNA mutation by base editing in mice. Sci Transl Med 2025; 17:eadr0792. [PMID: 39879319 DOI: 10.1126/scitranslmed.adr0792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/27/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025]
Abstract
Primary mitochondrial disorders are most often caused by deleterious mutations in the mitochondrial DNA (mtDNA). Here, we used a mitochondrial DddA-derived cytosine base editor (DdCBE) to introduce a compensatory edit in a mouse model that carries the pathological mutation in the mitochondrial transfer RNA (tRNA) alanine (mt-tRNAAla) gene. Because the original m.5024C→T mutation (G→A in the mt-tRNAAla) destabilizes the mt-tRNAAla aminoacyl stem, we designed a compensatory m.5081G→A edit (C→T in the mt-tRNAAla) that could restore the secondary structure of the tRNAAla aminoacyl stem. For this, the DdCBE gene construct was initially tested in an m.5024C→T mutant cell line. The reduced mt-tRNAAla amounts in these cells were increased after editing up to 78% of the mtDNA. Then, DdCBE was packaged in recombinant adeno-associated virus 9 (AAV9) and intravenously administered by retro-orbital injections into mice. Expression of the transduced DdCBE was observed in the heart and skeletal muscle. Total mt-tRNAAla amounts were restored in heart and muscle by the m.5081G→A edit in a dose-dependent manner. Lactate amounts, which were increased in the heart, were also decreased in treated mice. However, the highest dose tested of AAV9-DdCBE also induced severe adverse effects in vivo because of the extensive mtDNA off-target editing that it generated. These results show that although DdCBE is a promising gene therapy tool for mitochondrial disorders, the doses of the therapeutic constructs must be carefully monitored to avoid deleterious off-target editing.
Collapse
Affiliation(s)
- Jose D Barrera-Paez
- Graduate Program in Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue (M-860), Miami, FL 33136, USA
| | - Sandra R Bacman
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Rm. 7044, Miami, FL 33136, USA
| | - Till Balla
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Derek Van Booven
- Department of Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, BRB 318, Miami, FL 33136, USA
| | - Durga P Gannamedi
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, BRB708, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, BRB708, Miami, FL 33136, USA
| | - James B Stewart
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Beverly Mok
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Harvard University, 75 Ames Street, Cambridge, MA 02142, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Harvard University, 75 Ames Street, Cambridge, MA 02142, USA
| | - David B Lombard
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, BRB708, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, BRB708, Miami, FL 33136, USA
- Miami VA Healthcare System, 1501 NW 10th Avenue, BRB708, Miami, FL 33136, USA
| | - Anthony J Griswold
- Department of Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, BRB 318, Miami, FL 33136, USA
| | - Danny D Nedialkova
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching 85748, Germany
| | - Carlos T Moraes
- Graduate Program in Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue (M-860), Miami, FL 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Rm. 7044, Miami, FL 33136, USA
| |
Collapse
|
3
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
4
|
Khaghani F, Hemmati M, Ebrahimi M, Salmaninejad A. Emerging Multi-omic Approaches to the Molecular Diagnosis of Mitochondrial Disease and Available Strategies for Treatment and Prevention. Curr Genomics 2024; 25:358-379. [PMID: 39323625 PMCID: PMC11420563 DOI: 10.2174/0113892029308327240612110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 09/27/2024] Open
Abstract
Mitochondria are semi-autonomous organelles present in several copies within most cells in the human body that are controlled by the precise collaboration of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) encoding mitochondrial proteins. They play important roles in numerous metabolic pathways, such as the synthesis of adenosine triphosphate (ATP), the predominant energy substrate of the cell generated through oxidative phosphorylation (OXPHOS), intracellular calcium homeostasis, metabolite biosynthesis, aging, cell cycles, and so forth. Previous studies revealed that dysfunction of these multi-functional organelles, which may arise due to mutations in either the nuclear or mitochondrial genome, leads to a diverse group of clinically and genetically heterogeneous disorders. These diseases include neurodegenerative and metabolic disorders as well as cardiac and skeletal myopathies in both adults and newborns. The plethora of phenotypes and defects displayed leads to challenges in the diagnosis and treatment of mitochondrial diseases. In this regard, the related literature proposed several diagnostic options, such as high throughput mitochondrial genomics and omics technologies, as well as numerous therapeutic options, such as pharmacological approaches, manipulating the mitochondrial genome, increasing the mitochondria content of the affected cells, and recently mitochondrial diseases transmission prevention. Therefore, the present article attempted to review the latest advances and challenges in diagnostic and therapeutic options for mitochondrial diseases.
Collapse
Affiliation(s)
- Faeze Khaghani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboobeh Hemmati
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Ebrahimi
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Arash Salmaninejad
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
5
|
Ichegiri A, Kodolikar K, Bagade V, Selukar M, Dey T. Mitochondria: A source of potential biomarkers for non-communicable diseases. Adv Clin Chem 2024; 121:334-365. [PMID: 38797544 DOI: 10.1016/bs.acc.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mitochondria, as an endosymbiont of eukaryotic cells, controls multiple cellular activities, including respiration, reactive oxygen species production, fatty acid synthesis, and death. Though the majority of functional mitochondrial proteins are translated through a nucleus-controlled process, very few of them (∼10%) are translated within mitochondria through their own machinery. Germline and somatic mutations in mitochondrial and nuclear DNA significantly impact mitochondrial homeostasis and function. Such modifications disturbing mitochondrial biogenesis, metabolism, or mitophagy eventually resulted in cellular pathophysiology. In this chapter, we discussed the impact of mitochondria and its dysfunction on several non-communicable diseases like cancer, diabetes, neurodegenerative, and cardiovascular problems. Mitochondrial dysfunction and its outcome could be screened by currently available omics-based techniques, flow cytometry, and high-resolution imaging. Such characterization could be evaluated as potential biomarkers to assess the disease burden and prognosis.
Collapse
Affiliation(s)
- Amulya Ichegiri
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Kshitij Kodolikar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Vaibhavi Bagade
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Mrunal Selukar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Tuli Dey
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
6
|
Nakamura E, Aoki T, Endo Y, Kazmi J, Hagiwara J, Kuschner CE, Yin T, Kim J, Becker LB, Hayashida K. Organ-Specific Mitochondrial Alterations Following Ischemia-Reperfusion Injury in Post-Cardiac Arrest Syndrome: A Comprehensive Review. Life (Basel) 2024; 14:477. [PMID: 38672748 PMCID: PMC11050834 DOI: 10.3390/life14040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction, which is triggered by systemic ischemia-reperfusion (IR) injury and affects various organs, is a key factor in the development of post-cardiac arrest syndrome (PCAS). Current research on PCAS primarily addresses generalized mitochondrial responses, resulting in a knowledge gap regarding organ-specific mitochondrial dynamics. This review focuses on the organ-specific mitochondrial responses to IR injury, particularly examining the brain, heart, and kidneys, to highlight potential therapeutic strategies targeting mitochondrial dysfunction to enhance outcomes post-IR injury. METHODS AND RESULTS We conducted a narrative review examining recent advancements in mitochondrial research related to IR injury. Mitochondrial responses to IR injury exhibit considerable variation across different organ systems, influenced by unique mitochondrial structures, bioenergetics, and antioxidative capacities. Each organ demonstrates distinct mitochondrial behaviors that have evolved to fulfill specific metabolic and functional needs. For example, cerebral mitochondria display dynamic responses that can be both protective and detrimental to neuronal activity and function during ischemic events. Cardiac mitochondria show vulnerability to IR-induced oxidative stress, while renal mitochondria exhibit a unique pattern of fission and fusion, closely linked to their susceptibility to acute kidney injury. This organ-specific heterogeneity in mitochondrial responses requires the development of tailored interventions. Progress in mitochondrial medicine, especially in the realms of genomics and metabolomics, is paving the way for innovative strategies to combat mitochondrial dysfunction. Emerging techniques such as mitochondrial transplantation hold the potential to revolutionize the management of IR injury in resuscitation science. CONCLUSIONS The investigation into organ-specific mitochondrial responses to IR injury is pivotal in the realm of resuscitation research, particularly within the context of PCAS. This nuanced understanding holds the promise of revolutionizing PCAS management, addressing the unique mitochondrial dysfunctions observed in critical organs affected by IR injury.
Collapse
Affiliation(s)
- Eriko Nakamura
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Tomoaki Aoki
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Yusuke Endo
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Jacob Kazmi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Jun Hagiwara
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Cyrus E. Kuschner
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Junhwan Kim
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Lance B. Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
7
|
Strauss-Kruger M, Pieters M, van Zyl T, Gafane-Matemane LF, Mokwatsi GG, Jacobs A, Schutte AE, Louw R, Mels CM. Metabolomic Insights on Potassium Excretion, Blood Pressure, and Glucose Homeostasis: The African-PREDICT Study. J Nutr 2024; 154:435-445. [PMID: 38110181 DOI: 10.1016/j.tjnut.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/09/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Low-potassium intake is associated with a higher risk of type 2 diabetes and hypertension. Both conditions occur more frequently in Black populations, who also consume less potassium-rich foods. OBJECTIVES Using metabolomics to identify dysregulated metabolic pathways associated with low-potassium excretion may procure more accurate entry points for nutritional prevention and intervention for type 2 diabetes and hypertension. METHODS A total of 440 White and 350 Black adults from the African-PREDICT study (aged 20-30 y) were included. Twenty-four-hour blood pressure (BP) was measured. Potassium, sodium, and fasting glucose concentrations were analyzed in 24-h urine and plasma samples. Liquid chromatography-tandem mass spectrometry-based metabolomics included the analyses of amino acids and acylcarnitines in spot urine samples. RESULTS Black participants had lower urinary potassium concentrations than Whites (36.6 compared with 51.1 mmol/d; P < 0.001). In White but not Black adults, urinary potassium correlated positively with 2-aminoadipic acid (2-AAA) (r = 0.176), C3-[propionyl]carnitine (r = 0.137), C4-[butyryl]carnitine (r = 0.169) and C5-[isovaleryl]carnitine (r = 0.167) in unadjusted and 2-AAA (r = 0.158) and C4-carnitine (r = 0.160) in adjusted analyses (all P < 0.05 and q < 0.05). Elevated C0-, C3-, and C5-carnitine in turn were positively associated with systolic BP (Black and White groups), diastolic BP (Black group), and glucose (White group) (all P < 0.05). CONCLUSIONS Racial differences are an important consideration when investigating nutrient-metabolite relationships and the role thereof in cardiovascular disease. Only in White adults did urinary potassium associate with 2-AAA and short-chain acylcarnitines. These metabolites were positively related to BP and fasting plasma glucose concentrations. In White adults, the metabolomic profiles related to potassium excretion may contribute to BP regulation and glucose homeostasis. This trial was registered at clinicaltrials.gov as NCT03292094.
Collapse
Affiliation(s)
- Michél Strauss-Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, North-West Province, South Africa; MRC Extramural Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West Province, South Africa
| | - Marlien Pieters
- MRC Extramural Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West Province, South Africa; Centre of Excellence for Nutrition (CEN), North-West University, Potchefstroom, North-West Province, South Africa
| | - Tertia van Zyl
- MRC Extramural Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West Province, South Africa; Centre of Excellence for Nutrition (CEN), North-West University, Potchefstroom, North-West Province, South Africa
| | - Lebo F Gafane-Matemane
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, North-West Province, South Africa; MRC Extramural Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West Province, South Africa
| | - Gontse G Mokwatsi
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, North-West Province, South Africa; MRC Extramural Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West Province, South Africa
| | - Adriaan Jacobs
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, North-West Province, South Africa; MRC Extramural Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West Province, South Africa
| | - Aletta E Schutte
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, North-West Province, South Africa; MRC Extramural Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West Province, South Africa; School of Population Health, University of New South Wales, Sydney, New South Wales, Australia; The George Institute for Global Health, Sydney, New South Wales, Australia
| | - Roan Louw
- Human Metabolomics, North-West University, Potchefstroom, North-West Province, South Africa
| | - Catharina Mc Mels
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, North-West Province, South Africa; MRC Extramural Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West Province, South Africa.
| |
Collapse
|
8
|
Arai K, Nishizawa Y, Nagata O, Sakimoto H, Sasaki N, Sano A, Nakamura M. The Role of Chorein Deficiency in Late Spermatogenesis. Biomedicines 2024; 12:240. [PMID: 38275411 PMCID: PMC10813020 DOI: 10.3390/biomedicines12010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
VPS13A, also known as chorein, whose loss of function causes chorea-acanthocytosis (ChAc), is characterized by Huntington's-disease-like neurodegeneration and neuropsychiatric symptoms in addition to acanthocytosis in red blood cells. We previously reported that ChAc-model mice with a loss of chorein function exhibited male infertility, with asthenozoospermia and mitochondrial dysmorphology in the spermatozoa. Here, we report a novel aspect of chorein dysfunction in male fertility, particularly its role in spermatogenesis and mitochondrial integrity. An increase in anti-malondialdehyde antibody immunoreaction within the testes, predominantly observed at the advanced stages of sperm formation in chorein-deficient mice, suggests oxidative stress as a contributing factor to mitochondrial dysfunction and impaired sperm maturation. The chorein immunoreactivity in spermatids of wild-type mice accentuates its significance in sperm development. ChAc-model mice exhibit mitochondrial ultrastructural abnormalities, specifically during the late stages of sperm maturation, suggesting a critical timeframe for chorein's action in spermiogenesis. We observed an increase in TOM20 protein levels, indicative of disrupted mitochondrial import mechanisms. The concurrent decrease in metabolic enzymes such as IDH3A, LDHC, PGK2, and ACAT1 suggests a complex chorein-mediated metabolic network that is essential for sperm vitality. Additionally, heightened separation of cytoplasmic droplets from sperm highlights the potential membrane instability in chorein-deficient spermatozoa. Metabolomic profiling further suggests a compensatory metabolic shift, with elevated glycolytic and TCA-cycle substrates. Our findings suggest that chorein is involved in anti-ferroptosis and the maturation of mitochondrial morphology in the late stages of spermatogenesis, and its deficiency leads to asthenozoospermia characterized by membrane instability, abnormal cytosolic glycolysis, abnormal mitochondrial function, and a disrupted TCA cycle. Further analyses are required to unravel the molecular mechanisms that directly link these findings and to elucidate the role of chorein in spermatogenesis as well as its broader implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Masayuki Nakamura
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan; (K.A.)
| |
Collapse
|
9
|
Moaddel R, Ubaida‐Mohien C, Tanaka T, Tian Q, Candia J, Moore AZ, Lovett J, Fantoni G, Shehadeh N, Turek L, Collingham V, Kaileh M, Chia CW, Sen R, Egan JM, Ferrucci L. Cross-sectional analysis of healthy individuals across decades: Aging signatures across multiple physiological compartments. Aging Cell 2024; 23:e13902. [PMID: 37350292 PMCID: PMC10776121 DOI: 10.1111/acel.13902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/28/2023] [Accepted: 05/27/2023] [Indexed: 06/24/2023] Open
Abstract
The study of age-related biomarkers from different biofluids and tissues within the same individual might provide a more comprehensive understanding of age-related changes within and between compartments as these changes are likely highly interconnected. Understanding age-related differences by compartments may shed light on the mechanism of their reciprocal interactions, which may contribute to the phenotypic manifestations of aging. To study such possible interactions, we carried out a targeted metabolomic analysis of plasma, skeletal muscle, and urine collected from healthy participants, age 22-92 years, and identified 92, 34, and 35 age-associated metabolites, respectively. The metabolic pathways that were identified across compartments included inflammation and cellular senescence, microbial metabolism, mitochondrial health, sphingolipid metabolism, lysosomal membrane permeabilization, vascular aging, and kidney function.
Collapse
Affiliation(s)
- Ruin Moaddel
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | | | - Toshiko Tanaka
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Qu Tian
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Julián Candia
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Ann Zenobia Moore
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Jacqueline Lovett
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Giovanna Fantoni
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Nader Shehadeh
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Lisa Turek
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Victoria Collingham
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Mary Kaileh
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Chee W. Chia
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Ranjan Sen
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Josephine M. Egan
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Luigi Ferrucci
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| |
Collapse
|
10
|
Moritz L, Schumann A, Pohl M, Köttgen A, Hannibal L, Spiekerkoetter U. A systematic review of metabolomic findings in adult and pediatric renal disease. Clin Biochem 2024; 123:110703. [PMID: 38097032 DOI: 10.1016/j.clinbiochem.2023.110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023]
Abstract
Chronic kidney disease (CKD) affects over 0.5 billion people worldwide across their lifetimes. Despite a growingly ageing world population, an increase in all-age prevalence of kidney disease persists. Adult-onset forms of kidney disease often result from lifestyle-modifiable metabolic illnesses such as type 2 diabetes. Pediatric and adolescent forms of renal disease are primarily caused by morphological abnormalities of the kidney, as well as immunological, infectious and inherited metabolic disorders. Alterations in energy metabolism are observed in CKD of varying causes, albeit the molecular mechanisms underlying pathology are unclear. A systematic indexing of metabolites identified in plasma and urine of patients with kidney disease alongside disease enrichment analysis uncovered inborn errors of metabolism as a framework that links features of adult and pediatric kidney disease. The relationship of genetics and metabolism in kidney disease could be classified into three distinct landscapes: (i) Normal genotypes that develop renal damage because of lifestyle and / or comorbidities; (ii) Heterozygous genetic variants and polymorphisms that result in unique metabotypes that may predispose to the development of kidney disease via synergistic heterozygosity, and (iii) Homozygous genetic variants that cause renal impairment by perturbing metabolism, as found in children with monogenic inborn errors of metabolism. Interest in the identification of early biomarkers of onset and progression of CKD has grown steadily in the last years, though it has not translated into clinical routine yet. This systematic review indexes findings of differential concentration of metabolites and energy pathway dysregulation in kidney disease and appraises their potential use as biomarkers.
Collapse
Affiliation(s)
- Lennart Moritz
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Anke Schumann
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Martin Pohl
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany.
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
11
|
Ueda S, Yagi M, Tomoda E, Matsumoto S, Ueyanagi Y, Do Y, Setoyama D, Matsushima Y, Nagao A, Suzuki T, Ide T, Mori Y, Oyama N, Kang D, Uchiumi T. Mitochondrial haplotype mutation alleviates respiratory defect of MELAS by restoring taurine modification in tRNA with 3243A > G mutation. Nucleic Acids Res 2023; 51:7480-7495. [PMID: 37439353 PMCID: PMC10415116 DOI: 10.1093/nar/gkad591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
The 3243A > G in mtDNA is a representative mutation in mitochondrial diseases. Mitochondrial protein synthesis is impaired due to decoding disorder caused by severe reduction of 5-taurinomethyluridine (τm5U) modification of the mutant mt-tRNALeu(UUR) bearing 3243A > G mutation. The 3243A > G heteroplasmy in peripheral blood reportedly decreases exponentially with age. Here, we found three cases with mild respiratory symptoms despite bearing high rate of 3243A > G mutation (>90%) in blood mtDNA. These patients had the 3290T > C haplotypic mutation in addition to 3243A > G pathogenic mutation in mt-tRNALeu(UUR) gene. We generated cybrid cells of these cases to examine the effects of the 3290T > C mutation on mitochondrial function and found that 3290T > C mutation improved mitochondrial translation, formation of respiratory chain complex, and oxygen consumption rate of pathogenic cells associated with 3243A > G mutation. We measured τm5U frequency of mt-tRNALeu(UUR) with 3243A > G mutation in the cybrids by a primer extension method assisted with chemical derivatization of τm5U, showing that hypomodification of τm5U was significantly restored by the 3290T > C haplotypic mutation. We concluded that the 3290T > C is a haplotypic mutation that suppresses respiratory deficiency of mitochondrial disease by restoring hypomodified τm5U in mt-tRNALeu(UUR) with 3243A > G mutation, implying a potential therapeutic measure for mitochondrial disease associated with pathogenic mutations in mt-tRNAs.
Collapse
Affiliation(s)
- Saori Ueda
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ena Tomoda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinya Matsumoto
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasushi Ueyanagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuichi Matsushima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yusuke Mori
- Department of Internal Medicine Kitakyushu City Yahata Hospital, 2-6-2 Ogura, Yahatahigashi-ku, Kitakyushu 805-8534, Japan
| | - Noriko Oyama
- Department of Endocrinology and Metabolism, Fukuoka Children's Hospital, 5-1-1 Kashiiteriha, Higashi-ku, Fukuoka 813-0017, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
12
|
Bester R, Stander Z, Mason S, Keane KM, Howatson G, Clifford T, Stevenson EJ, Loots DT. The metabolic recovery of marathon runners: an untargeted 1H-NMR metabolomics perspective. Front Physiol 2023; 14:1117687. [PMID: 37215177 PMCID: PMC10192615 DOI: 10.3389/fphys.2023.1117687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Extreme endurance events may result in numerous adverse metabolic, immunologic, and physiological perturbations that may diminish athletic performance and adversely affect the overall health status of an athlete, especially in the absence of sufficient recovery. A comprehensive understanding of the post-marathon recovering metabolome, may aid in the identification of new biomarkers associated with marathon-induced stress, recovery, and adaptation, which can facilitate the development of improved training and recovery programs and personalized monitoring of athletic health/recovery/performance. Nevertheless, an untargeted, multi-disciplinary elucidation of the complex underlying biochemical mechanisms involved in recovery after such an endurance event is yet to be demonstrated. Methods: This investigation employed an untargeted proton nuclear magnetic resonance metabolomics approach to characterize the post-marathon recovering metabolome by systematically comparing the pre-, immediately post, 24, and 48 h post-marathon serum metabolite profiles of 15 athletes. Results and Discussion: A total of 26 metabolites were identified to fluctuate significantly among post-marathon and recovery time points and were mainly attributed to the recovery of adenosine triphosphate, redox balance and glycogen stores, amino acid oxidation, changes to gut microbiota, and energy drink consumption during the post-marathon recovery phase. Additionally, metabolites associated with delayed-onset muscle soreness were observed; however, the mechanisms underlying this commonly reported phenomenon remain to be elucidated. Although complete metabolic recovery of the energy-producing pathways and fuel substrate stores was attained within the 48 h recovery period, several metabolites remained perturbed throughout the 48 h recovery period and/or fluctuated again following their initial recovery to pre-marathon-related levels.
Collapse
Affiliation(s)
- Rachelle Bester
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Zinandré Stander
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Shayne Mason
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Karen M. Keane
- Department of Sport Exercise and Nutrition, School of Science and Computing, Atlantic Technological University, Galway, Ireland
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- Water Research Group, School of Environmental Sciences and Development, North-West University, Potchefstroom, South Africa
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Emma J. Stevenson
- Human and Exercise Nutrition Research Centre, School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Du Toit Loots
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
13
|
Tschopp R, König RS, Rejmer P, Paris DH. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A preliminary survey among patients in Switzerland. Heliyon 2023; 9:e15595. [PMID: 37131449 PMCID: PMC10149204 DOI: 10.1016/j.heliyon.2023.e15595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 03/07/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a multi-factorial systemic chronic debilitating disease of poorly understood etiology and limited systematic evidence. The questionnaire and interview-based survey included 169 ME/CFS patients from the Swiss ME/CFS association. The majority of patients were females (72.2%), single (55.7%) and without children (62.5%). Only one third were working (full/part-time). The mean onset of ME/CFS was 31.6 years of age with 15% of patients being symptomatic before their 18th birthday. In this cohort, patients had documented ME/CFS for a mean 13.7 years, whereby half (50.3%) stated their condition was progressively worsening. Triggering events and times of disease onset were recalled by 90% of the participants. An infectious disease was associated with a singular or part of multiple events by 72.9% and 80.6%, respectively. Prior to disease onset, a third of the patients reported respiratory infections; followed by gastro-intestinal infections (15.4%) and tick-borne diseases (16.2%). Viral infections were recalled by 77.8% of the respondents, with Epstein Barr Virus being the most commonly reported agent. Patients self-reported an average number of 13 different symptoms, all described specific triggers of symptoms exacerbation and 82.2% suffered from co-morbidities. This study collated clinically relevant information on ME/CFS patients in Switzerland, highlighting the extent of disease severity, the associated factors negatively affecting daily life activities and work status as well as potential socio-economic impact.
Collapse
Affiliation(s)
- Rea Tschopp
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- University of University of Basel, Switzerland
- Armauer Hansen Research Institute, Jimma Road, PO Box 1005, Addis Ababa, Ethiopia
- Corresponding author. Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland.
| | - Rahel S. König
- Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
| | - Protazy Rejmer
- Seegarten Clinic, Seestrasse 155A, 8802 Kilchberg ZH, Switzerland
| | - Daniel H. Paris
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- University of University of Basel, Switzerland
| |
Collapse
|
14
|
Gill EL, Wang J, Viaene AN, Master SR, Ganetzky RD. Methodologies in Mitochondrial Testing: Diagnosing a Primary Mitochondrial Respiratory Chain Disorder. Clin Chem 2023:7143230. [PMID: 37099687 DOI: 10.1093/clinchem/hvad037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/03/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Mitochondria are cytosolic organelles within most eukaryotic cells. Mitochondria generate the majority of cellular energy in the form of adenosine triphosphate (ATP) through oxidative phosphorylation (OxPhos). Pathogenic variants in mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) lead to defects in OxPhos and physiological malfunctions (Nat Rev Dis Primer 2016;2:16080.). Patients with primary mitochondrial disorders (PMD) experience heterogeneous symptoms, typically in multiple organ systems, depending on the tissues affected by mitochondrial dysfunction. Because of this heterogeneity, clinical diagnosis is challenging (Annu Rev Genomics Hum Genet 2017;18:257-75.). Laboratory diagnosis of mitochondrial disease depends on a multipronged analysis that can include biochemical, histopathologic, and genetic testing. Each of these modalities has complementary strengths and limitations in diagnostic utility. CONTENT The primary focus of this review is on diagnosis and testing strategies for primary mitochondrial diseases. We review tissue samples utilized for testing, metabolic signatures, histologic findings, and molecular testing approaches. We conclude with future perspectives on mitochondrial testing. SUMMARY This review offers an overview of the current biochemical, histologic, and genetic approaches available for mitochondrial testing. For each we review their diagnostic utility including complementary strengths and weaknesses. We identify gaps in current testing and possible future avenues for test development.
Collapse
Affiliation(s)
- Emily L Gill
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jing Wang
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen R Master
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Rebecca D Ganetzky
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Human Genetics, Children's Hospital of Philadelphia, Mitochondrial Medicine Frontier Program, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
15
|
Coradduzza D, Congiargiu A, Chen Z, Cruciani S, Zinellu A, Carru C, Medici S. Humanin and Its Pathophysiological Roles in Aging: A Systematic Review. BIOLOGY 2023; 12:558. [PMID: 37106758 PMCID: PMC10135985 DOI: 10.3390/biology12040558] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Senescence is a cellular aging process in all multicellular organisms. It is characterized by a decline in cellular functions and proliferation, resulting in increased cellular damage and death. These conditions play an essential role in aging and significantly contribute to the development of age-related complications. Humanin is a mitochondrial-derived peptide (MDP), encoded by mitochondrial DNA, playing a cytoprotective role to preserve mitochondrial function and cell viability under stressful and senescence conditions. For these reasons, humanin can be exploited in strategies aiming to counteract several processes involved in aging, including cardiovascular disease, neurodegeneration, and cancer. Relevance of these conditions to aging and disease: Senescence appears to be involved in the decay in organ and tissue function, it has also been related to the development of age-related diseases, such as cardiovascular conditions, cancer, and diabetes. In particular, senescent cells produce inflammatory cytokines and other pro-inflammatory molecules that can participate to the development of such diseases. Humanin, on the other hand, seems to contrast the development of such conditions, and it is also known to play a role in these diseases by promoting the death of damaged or malfunctioning cells and contributing to the inflammation often associated with them. Both senescence and humanin-related mechanisms are complex processes that have not been fully clarified yet. Further research is needed to thoroughly understand the role of such processes in aging and disease and identify potential interventions to target them in order to prevent or treat age-related conditions. OBJECTIVES This systematic review aims to assess the potential mechanisms underlying the link connecting senescence, humanin, aging, and disease.
Collapse
Affiliation(s)
| | | | - Zhichao Chen
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Control Quality Unit, Azienda-Ospedaliera Universitaria (AOU), 07100 Sassari, Italy
| | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
16
|
Genetics of mitochondrial diseases: Current approaches for the molecular diagnosis. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:141-165. [PMID: 36813310 DOI: 10.1016/b978-0-12-821751-1.00011-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Mitochondrial diseases are a genetically and phenotypically variable set of monogenic disorders. The main characteristic of mitochondrial diseases is a defective oxidative phosphorylation. Both nuclear and mitochondrial DNA encode the approximately 1500 mitochondrial proteins. Since identification of the first mitochondrial disease gene in 1988 a total of 425 genes have been associated with mitochondrial diseases. Mitochondrial dysfunctions can be caused both by pathogenic variants in the mitochondrial DNA or the nuclear DNA. Hence, besides maternal inheritance, mitochondrial diseases can follow all modes of Mendelian inheritance. The maternal inheritance and tissue specificity distinguish molecular diagnostics of mitochondrial disorders from other rare disorders. With the advances made in the next-generation sequencing technology, whole exome sequencing and even whole-genome sequencing are now the established methods of choice for molecular diagnostics of mitochondrial diseases. They reach a diagnostic rate of more than 50% in clinically suspected mitochondrial disease patients. Moreover, next-generation sequencing is delivering a constantly growing number of novel mitochondrial disease genes. This chapter reviews mitochondrial and nuclear causes of mitochondrial diseases, molecular diagnostic methodologies, and their current challenges and perspectives.
Collapse
|
17
|
du Toit LDV, Prinsloo A, Steel HC, Feucht U, Louw R, Rossouw TM. Immune and Metabolic Alterations in Children with Perinatal HIV Exposure. Viruses 2023; 15:v15020279. [PMID: 36851493 PMCID: PMC9966389 DOI: 10.3390/v15020279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
With the global rollout of mother-to-child prevention programs for women living with HIV, vertical transmission has been all but eliminated in many countries. However, the number of children who are exposed in utero to HIV and antiretroviral therapy (ART) is ever-increasing. These children who are HIV-exposed-but-uninfected (CHEU) are now well recognized as having persistent health disparities compared to children who are HIV-unexposed-and-uninfected (CHUU). Differences reported between these two groups include immune dysfunction and higher levels of inflammation, cognitive and metabolic abnormalities, as well as increased morbidity and mortality in CHEU. The reasons for these disparities remain largely unknown. The present review focuses on a proposed link between immunometabolic aberrations and clinical pathologies observed in the rapidly expanding CHEU population. By drawing attention, firstly, to the significance of the immune and metabolic alterations observed in these children, and secondly, the impact of their healthcare requirements, particularly in low- and middle-income countries, this review aims to sensitize healthcare workers and policymakers about the long-term risks of in utero exposure to HIV and ART.
Collapse
Affiliation(s)
- Louise D V du Toit
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
| | - Andrea Prinsloo
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
- Department of Hematology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Helen C Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Ute Feucht
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
- Department of Pediatrics, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Theresa M Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
| |
Collapse
|
18
|
Mensah EA, Sarfo B, Yawson AE, Arthur J, Ocloo A. Knowledge and awareness of mitochondrial diseases among physicians in the tertiary hospitals in Ghana. PLoS One 2022; 17:e0276549. [PMID: 36264964 PMCID: PMC9584519 DOI: 10.1371/journal.pone.0276549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/08/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mitochondrial diseases/disorders (MDs), for decades, have been identified as a key underlying condition for many chronic diseases globally. However, data on the knowledge and prevalence of MDs in many countries in sub-Saharan Africa are lacking. This study assessed the knowledge, and awareness, of MDs among senior medical doctors in the five tertiary hospitals in Ghana. METHOD Data were collected from one hundred and twenty-eight (128) medical doctors in the five Tertiary Hospitals in Ghana using both closed and open-ended questionnaires and analysed using descriptive statistics. RESULTS Of the 128 respondents, 70.32% were senior medical officers and above, 87% of them indicated that they were aware of MDs and over 90% said physicians do not often diagnose MDs in Ghana. About 81% indicated that MDs are associated with chronic illnesses whilst 72% said the disease is diagnosed in both males and females. About 45% of the respondents alluded to the fact that MDs are difficult to diagnose, are associated with mutations in both the mitochondrial and the nuclear DNA, and are non-infectious diseases. Approximately 85% said nervous system dysfunction and muscle weakness are some of the symptoms associated with MDs whilst 77% said fatigue is also one of the symptoms. About 38% of the respondents specified that they encounter myopathies. A majority (70%) did not know about the availability of any consensus or standard diagnostic procedure and/or drugs for MDs. CONCLUSION There is a high level of knowledge and awareness of MDs among the respondents. However, there is a low disease encounter, which could be due to a lack of diagnostic protocols or a low disease prevalence. It is, therefore recommend that a patient perspective study, which looks at clinical records and laboratory data be conducted to fully ascertain the prevalence of MDs in Ghana and that appropriate educational strategies and interventions aimed at improving the diagnosis of mitochondrial diseases in Ghana be put in place.
Collapse
Affiliation(s)
- Eric A. Mensah
- Department of Biochemistry, Cell & Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- West African Centre for the Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - Bismark Sarfo
- Department of Epidemiology and Disease Control, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Alfred E. Yawson
- Department of Community Health, University of Ghana Medical School, College of Health Sciences, University of Ghana Korle Bu, Accra, Ghana
| | - Joshua Arthur
- Public Health Unit, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Augustine Ocloo
- Department of Biochemistry, Cell & Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- * E-mail:
| |
Collapse
|
19
|
Xu W, Grindler S, Kenéz Á, Dänicke S, Frahm J, Huber K. Changes of the liver metabolome following an intravenous lipopolysaccharide injection in Holstein cows supplemented with dietary carnitine. J Anim Sci Biotechnol 2022; 13:94. [PMID: 35945561 PMCID: PMC9364515 DOI: 10.1186/s40104-022-00741-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Carnitine facilitates the flux of long-chain fatty acids for hepatic mitochondrial beta-oxidation, which acts to ameliorate the negative energy balance commonly affecting high-yielding dairy cows. Inflammation triggered by lipopolysaccharide (LPS) load can however pose a challenge to the metabolic integrity via the expression of pro-inflammatory mediators, leading to immune system activation and respective metabolic alterations. The effect of enhanced carnitine availability on hepatic metabolome profiles during an inflammatory challenge has not yet been determined in dairy cows. Herein, Holstein cows were supplemented with 25 g/d rumen-protected carnitine from 42 d prepartum until 126 d postpartum (n = 16) or assigned to the control group with no supplementation during the same period (n = 14). We biopsied the liver of the cows before (100 d postpartum) and after (112 d postpartum) an intravenous injection of 0.5 µg/kg LPS. Liver samples were subjected to a targeted metabolomics analysis using the AbsoluteIDQ p180 Kit (Biocrates Life Sciences AG, Innsbruck, Austria). Results Multivariate statistical analyses revealed that hepatic metabolome profiles changed in relation to both the carnitine supplementation and the LPS challenge. Comparing the metabolite profiles on 100 d, carnitine increased the concentration of short- and long-chain acyl-carnitines, which may be explained by an enhanced mitochondrial fatty acid shuttle and hence greater energy availability. The LPS injection affected hepatic metabolite profiles only in the carnitine supplemented group, particularly altering the concentration of biogenic amines. Conclusions Our results point to interactions between an acute hepatic inflammatory response and biogenic amine metabolism, depending on energy availability. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00741-z.
Collapse
Affiliation(s)
- Wei Xu
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing, 100097, China.,Department of Biosystems, Biosystems Technology Cluster, Campus Geel, Kleinhoefstraat 4, 2440 Geel, Leuven, KU, Belgium
| | - Sandra Grindler
- Institute of Animal Science, Faculty of Agricultural Sciences, University of Hohenheim, 70599, Stuttgart, Germany
| | - Ákos Kenéz
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Block 1, 4/F, To Yuen Building, 31 To Yuen Street, Kowloon, Hong Kong SAR, China.
| | - Sven Dänicke
- Institute of Animal Nutrition, Federal Research Institute for Animal Health (Friedrich-Loeffler-Institut), 38116, Brunswick, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Federal Research Institute for Animal Health (Friedrich-Loeffler-Institut), 38116, Brunswick, Germany
| | - Korinna Huber
- Institute of Animal Science, Faculty of Agricultural Sciences, University of Hohenheim, 70599, Stuttgart, Germany
| |
Collapse
|
20
|
Romero-Morales AI, Robertson GL, Rastogi A, Rasmussen ML, Temuri H, McElroy GS, Chakrabarty RP, Hsu L, Almonacid PM, Millis BA, Chandel NS, Cartailler JP, Gama V. Human iPSC-derived cerebral organoids model features of Leigh syndrome and reveal abnormal corticogenesis. Development 2022; 149:275911. [PMID: 35792828 PMCID: PMC9357378 DOI: 10.1242/dev.199914] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 05/18/2022] [Indexed: 01/12/2023]
Abstract
Leigh syndrome (LS) is a rare, inherited neurometabolic disorder that presents with bilateral brain lesions caused by defects in the mitochondrial respiratory chain and associated nuclear-encoded proteins. We generated human induced pluripotent stem cells (iPSCs) from three LS patient-derived fibroblast lines. Using whole-exome and mitochondrial sequencing, we identified unreported mutations in pyruvate dehydrogenase (GM0372, PDH; GM13411, MT-ATP6/PDH) and dihydrolipoyl dehydrogenase (GM01503, DLD). These LS patient-derived iPSC lines were viable and capable of differentiating into progenitor populations, but we identified several abnormalities in three-dimensional differentiation models of brain development. LS patient-derived cerebral organoids showed defects in neural epithelial bud generation, size and cortical architecture at 100 days. The double mutant MT-ATP6/PDH line produced organoid neural precursor cells with abnormal mitochondrial morphology, characterized by fragmentation and disorganization, and showed an increased generation of astrocytes. These studies aim to provide a comprehensive phenotypic characterization of available patient-derived cell lines that can be used to study Leigh syndrome.
Collapse
Affiliation(s)
| | - Gabriella L. Robertson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Anuj Rastogi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Megan L. Rasmussen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Hoor Temuri
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Gregory Scott McElroy
- Feinberg School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ram Prosad Chakrabarty
- Feinberg School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lawrence Hsu
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology,Vanderbilt University,Nashville, TN 37232, USA
| | | | - Bryan A. Millis
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA,Vanderbilt Biophotonics Center,Vanderbilt University, Nashville, TN 37232, USA
| | - Navdeep S. Chandel
- Feinberg School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL 60611, USA,Feinberg School of Medicine, Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Jean-Philippe Cartailler
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology,Vanderbilt University,Nashville, TN 37232, USA
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA,Creative Data Solutions, Vanderbilt Center for Stem Cell Biology,Vanderbilt University,Nashville, TN 37232, USA,Vanderbilt Brain Institute,Vanderbilt University,Nashville, TN 37232, USA,Author for correspondence ()
| |
Collapse
|
21
|
Adant I, Bird M, Decru B, Windmolders P, Wallays M, de Witte P, Rymen D, Witters P, Vermeersch P, Cassiman D, Ghesquière B. Pyruvate and uridine rescue the metabolic profile of OXPHOS dysfunction. Mol Metab 2022; 63:101537. [PMID: 35772644 PMCID: PMC9287363 DOI: 10.1016/j.molmet.2022.101537] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/31/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Primary mitochondrial diseases (PMD) are a large, heterogeneous group of genetic disorders affecting mitochondrial function, mostly by disrupting the oxidative phosphorylation (OXPHOS) system. Understanding the cellular metabolic re-wiring occurring in PMD is crucial for the development of novel diagnostic tools and treatments, as PMD are often complex to diagnose and most of them currently have no effective therapy. Objectives To characterize the cellular metabolic consequences of OXPHOS dysfunction and based on the metabolic signature, to design new diagnostic and therapeutic strategies. Methods In vitro assays were performed in skin-derived fibroblasts obtained from patients with diverse PMD and validated in pharmacological models of OXPHOS dysfunction. Proliferation was assessed using the Incucyte technology. Steady-state glucose and glutamine tracing studies were performed with LC-MS quantification of cellular metabolites. The therapeutic potential of nutritional supplements was evaluated by assessing their effect on proliferation and on the metabolomics profile. Successful therapies were then tested in a in vivo lethal rotenone model in zebrafish. Results OXPHOS dysfunction has a unique metabolic signature linked to an NAD+/NADH imbalance including depletion of TCA intermediates and aspartate, and increased levels of glycerol-3-phosphate. Supplementation with pyruvate and uridine fully rescues this altered metabolic profile and the subsequent proliferation deficit. Additionally, in zebrafish, the same nutritional treatment increases the survival after rotenone exposure. Conclusions Our findings reinforce the importance of the NAD+/NADH imbalance following OXPHOS dysfunction in PMD and open the door to new diagnostic and therapeutic tools for PMD. OXPHOS deficiency causes a distinct metabolic profile linked to a NAD+/NADH imbalance. Depleted intracellular aspartic acid is a potential biomarker for OXPHOS dysfunction. Therapy with pyruvate and uridine corrects the metabolic profile of OXPHOS deficiency. Pyruvate and uridine treatment increases survival in a lethal rotenone zebrafish model.
Collapse
Affiliation(s)
- Isabelle Adant
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, 3000, Belgium; Metabolomics Expertise Center, Center for Cancer Biology, CCB-VIB, VIB, Leuven, 3000, Belgium
| | - Matthew Bird
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, 3000, Belgium; Metabolomics Expertise Center, Center for Cancer Biology, CCB-VIB, VIB, Leuven, 3000, Belgium; Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Bram Decru
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, 3000, Belgium; Metabolomics Expertise Center, Center for Cancer Biology, CCB-VIB, VIB, Leuven, 3000, Belgium
| | - Petra Windmolders
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, 3000, Belgium
| | - Marie Wallays
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, 3000, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium
| | - Daisy Rymen
- Metabolic Centre, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Peter Witters
- Metabolic Centre, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, 3000, Belgium; Department of Cardiovascular Sciences, KU Leuven, Leuven, 3000, Belgium
| | - David Cassiman
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, 3000, Belgium; Metabolic Centre, University Hospitals Leuven, Leuven, 3000, Belgium.
| | - Bart Ghesquière
- Metabolomics Expertise Center, Center for Cancer Biology, CCB-VIB, VIB, Leuven, 3000, Belgium; Metabolomics Expertise Center, Department of Oncology, KU Leuven, Leuven, 3000, Belgium.
| |
Collapse
|
22
|
Kiiskilä JM, Hassinen IE, Kettunen J, Kytövuori L, Mikkola I, Härkönen P, Jokelainen JJ, Keinänen-Kiukaanniemi S, Perola M, Majamaa K. Association between mitochondrial DNA haplogroups J and K, serum branched-chain amino acids and lowered capability for endurance exercise. BMC Sports Sci Med Rehabil 2022; 14:95. [PMID: 35619160 PMCID: PMC9137050 DOI: 10.1186/s13102-022-00485-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/17/2022] [Indexed: 11/11/2022]
Abstract
Background Endurance exercise training promotes the catabolism of branched-chain amino acids (BCAAs) in skeletal muscles. We have previously shown that mitochondrial DNA (mtDNA) haplogroups J and K are markers of low responders in endurance training. In this paper, we hypothesize that BCAA catabolism is a surrogate marker of lower respiratory chain activity attributed to these haplogroups. We evaluated whether exercise-induced changes in amino acid concentrations differ between subjects harbouring mtDNA haplogroups J or K and those with non-JK haplogroups. Methods Finnish male conscripts (N = 633) undertook the 12-min Cooper running test at the beginning and end of their military service. The intervention during the service mainly included endurance aerobic exercise and sports-related muscle training. Concentrations of seven amino acids were analysed in the serum using a high-throughput 1H NMR metabolomics platform. Total DNA was extracted from whole blood, and restriction fragment analysis was used to determine mtDNA haplogroups J and K. Results The concentrations of the seven amino acids were higher following the intervention, with the exception of phenylalanine; interestingly, the increase in the concentrations of three BCAAs was larger in subjects with haplogroup J or K than in subjects with non-JK haplogroups (p = 0.029). MtDNA haplogroups J and K share two common nonsynonymous variants. Structural analysis based on crystallographic data on bovine complexes I and III revealed that the Leu18 variant in cytochrome b encoded by m.14798T > C may interfere with ubiquinone binding at the Qi site in complex III. Conclusions The increase in the concentrations of serum BCAAs following exercise intervention differs between subjects harbouring mtDNA haplogroup J or K and those harbouring non-JK haplogroups. Lower response in endurance training and difference in exercise-induced increase in the concentrations of serum BCAAs suggest decreased respiratory chain activity. Haplogroups J and K share m.14798T > C in MT-CYB, which may hamper the function of complex III. Supplementary information The online version contains supplementary material available at 10.1186/s13102-022-00485-3.
Collapse
Affiliation(s)
- Jukka M Kiiskilä
- Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland. .,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland.
| | - Ilmo E Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Johannes Kettunen
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Laura Kytövuori
- Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | | | - Pirjo Härkönen
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Unit of General Practice, Oulu University Hospital, Oulu, Finland
| | - Jari J Jokelainen
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Unit of General Practice, Oulu University Hospital, Oulu, Finland
| | - Sirkka Keinänen-Kiukaanniemi
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Unit of Primary Health Care, Oulu University Hospital, Oulu, Finland.,Healthcare and Social Services of Selänne, Pyhäjärvi, Finland
| | - Markus Perola
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Kari Majamaa
- Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
23
|
Lima TRR, de Oliveira Lima E, Delafiori J, Ramos Catharino R, Viana de Camargo JL, Pereira LC. Molecular signatures associated with diuron exposure on rat urothelial mitochondria. Toxicol Mech Methods 2022; 32:628-635. [PMID: 35379061 DOI: 10.1080/15376516.2022.2062271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Diuron, 3- (3,4-dichlorophenyl)-1,1-dimethylurea, is a worldwide used herbicide whose biotransformation gives rise to the metabolites, 3-(3,4-dichlorophenyl)-1-methylurea (DCPMU) and 3,4-dichloroaniline (DCA). Previous studies indicate that diuron and/or its metabolites are toxic to the bladder urothelium of the Wistar rats where, under certain conditions of exposure, they may induce successively urothelial cell degeneration, necrosis, hyperplasia and eventually tumors. The hypothesis was raised that the molecular initiating event (MIE) of this Adverse Outcome Pathway (AOP) is the mitochondrial toxicity of those compounds. Therefore, this study aimed to investigate in vitro the metabolic alterations resulting from urothelial mitochondria isolated from male Wistar rats exposure to diuron, DCPMU and DCA at 10 and 100 µM. A non-targeted metabolomic analysis using mass spectrometry showed discriminative clustering among groups and alterations in the intensity abundance of membrane-associated molecules phosphatidylcholine (PC), phosphatidylinositol (PI) and phosphatidylserine (PS), in addition to methylhexanoyl-CoA and, particularly for diuron 100 µM, dehydro-L-gulonate, all of them involved in critical mitochondrial metabolism. Collectively, these data indicate the mitochondrial dysfunction as a MIE that triggers cellular damage and death observed in previous studies.
Collapse
Affiliation(s)
- Thania Rios Rossi Lima
- São Paulo State University (Unesp), Medical School, Botucatu.,Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Unesp, Medical School, Botucatu
| | | | - Jeany Delafiori
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas
| | - Rodrigo Ramos Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas
| | - João Lauro Viana de Camargo
- São Paulo State University (Unesp), Medical School, Botucatu.,Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Unesp, Medical School, Botucatu
| | - Lílian Cristina Pereira
- São Paulo State University (Unesp), Medical School, Botucatu.,São Paulo State University (Unesp), School of Agriculture, Botucatu.,Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Unesp, Medical School, Botucatu
| |
Collapse
|
24
|
Gautam M, Gunay A, Chandel NS, Ozdinler PH. Mitochondrial dysregulation occurs early in ALS motor cortex with TDP-43 pathology and suggests maintaining NAD + balance as a therapeutic strategy. Sci Rep 2022; 12:4287. [PMID: 35277554 PMCID: PMC8917163 DOI: 10.1038/s41598-022-08068-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial defects result in dysregulation of metabolomics and energy homeostasis that are detected in upper motor neurons (UMNs) with TDP-43 pathology, a pathology that is predominantly present in both familial and sporadic cases of amyotrophic lateral sclerosis (ALS). While same mitochondrial problems are present in the UMNs of ALS patients with TDP-43 pathology and UMNs of TDP-43 mouse models, and since pathologies are shared at a cellular level, regardless of species, we first analyzed the metabolite profile of both healthy and diseased motor cortex to investigate whether metabolomic changes occur with respect to TDP-43 pathology. High-performance liquid chromatography, high-resolution mass spectrometry and tandem mass spectrometry (HPLC-MS/MS) for metabolite profiling began to suggest that reduced levels of NAD+ is one of the underlying causes of metabolomic problems. Since nicotinamide mononucleotide (NMN) was reported to restore NAD+ levels, we next investigated whether NMN treatment would improve the health of diseased corticospinal motor neurons (CSMN, a.k.a. UMN in mice). prpTDP-43A315T-UeGFP mice, the CSMN reporter line with TDP-43 pathology, allowed cell-type specific responses of CSMN to NMN treatment to be assessed in vitro. Our results show that metabolomic defects occur early in ALS motor cortex and establishing NAD+ balance could offer therapeutic benefit to UMNs with TDP-43 pathology.
Collapse
Affiliation(s)
- Mukesh Gautam
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Aksu Gunay
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - P Hande Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA. .,Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60611, USA. .,Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA. .,Feinberg School of Medicine, Les Turner ALS Center at Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
25
|
Schoen MS, Singh RH. Plasma metabolomic profile changes in females with phenylketonuria following a camp intervention. Am J Clin Nutr 2022; 115:811-821. [PMID: 34864852 PMCID: PMC8895208 DOI: 10.1093/ajcn/nqab400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND There remains a limited understanding of the metabolic perturbations, beyond phenylalanine (Phe) metabolism, that contribute to phenotypic variability in phenylketonuria (PKU). OBJECTIVES This study aimed to characterize changes in the PKU plasma metabolome following a 5-d metabolic camp intervention and to compare PKU profiles with those of matched healthy controls. METHODS In 28 females (aged 12-57 y), fasting plasma samples were collected on the first (day 1) and final (day 5) days of camp to measure metabolic control and to complete untargeted metabolomic profiling. Three-day dietary records were collected to assess changes in dietary adherence and composition. Univariate (Wilcoxon signed-rank and Mann-Whitney U test) and multivariate (random forest, hierarchical clustering) analyses were performed to identify clinical and metabolic features that were associated with the intervention and disease state. RESULTS Relative to healthy controls, Phe catabolites, ketones, and carnitine- and glycine-conjugated fatty acids were elevated in females with PKU at baseline, whereas fatty acylcholine metabolites were substantially lower. After the camp intervention, plasma Phe concentrations decreased [median change: -173 µmol/L (IQR: -325, -28 µmol/L)] and 70% of PKU participants demonstrated improved dietary adherence by decreasing Phe intake and/or increasing medical food consumption. This was accompanied by a shift in abundance for 223 metabolites (q < 0.05). Compounds associated with the metabolism of Phe, fatty acids, and choline contributed most to profile differences between camp days 1 and 5. CONCLUSIONS In females with PKU, untargeted metabolomics identified prominent perturbations in amino acid and lipid metabolites associated with bioenergetic impairment and oxidative stress. Choline-conjugated lipids could have fundamental roles in these pathways and they have not been previously evaluated in PKU. A short-term camp intervention was effective for improving or fully normalizing the abundance of the identified discriminatory metabolites.
Collapse
Affiliation(s)
- Meriah S Schoen
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Rani H Singh
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
26
|
Denmark D, Ruhoy I, Wittmann B, Ashki H, Koran LM. Altered Plasma Mitochondrial Metabolites in Persistently Symptomatic Individuals after a GBCA-Assisted MRI. TOXICS 2022; 10:56. [PMID: 35202243 PMCID: PMC8879776 DOI: 10.3390/toxics10020056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
Abstract
Despite the impressive safety of gadolinium (Gd)-based contrast agents (GBCAs), a small number of patients report the onset of new, severe, ongoing symptoms after even a single exposure-a syndrome termed Gadolinium Deposition Disease (GDD). Mitochondrial dysfunction and oxidative stress have been repeatedly implicated by animal and in vitro studies as mechanisms of Gd/GBCA-related toxicity, and as pathogenic in other diseases with similarities in presentation. Here, we aimed to molecularly characterize and explore potential metabolic associations with GDD symptoms. Detailed clinical phenotypes were systematically obtained for a small cohort of individuals (n = 15) with persistent symptoms attributed to a GBCA-enhanced MRI and consistent with provisional diagnostic criteria for GDD. Global untargeted mass spectroscopy-based metabolomics analyses were performed on plasma samples and examined for relevance with both single marker and pathways approaches. In addition to GDD criteria, frequently reported symptoms resembled those of patients with known mitochondrial-related diseases. Plasma differences compared to a healthy, asymptomatic reference cohort were suggested for 45 of 813 biochemicals. A notable proportion of these are associated with mitochondrial function and related disorders, including nucleotide and energy superpathways, which were over-represented. Although early evidence, coincident clinical and biochemical indications of potential mitochondrial involvement in GDD are remarkable in light of preclinical models showing adverse Gd/GBCA effects on multiple aspects of mitochondrial function. Further research on the potential contributory role of these markers and pathways in persistent symptoms attributed to GBCA exposure is recommended.
Collapse
Affiliation(s)
- DeAunne Denmark
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3710 SW US Veterans Hospital Road, Mail Code R&D40, Portland, OR 97239, USA;
| | - Ilene Ruhoy
- Mount Sinai South Nassau Chiari-EDS Center, 1420 Broadway, Hewlett, NY 11557, USA;
| | - Bryan Wittmann
- Owlstone Medical, 600 Park Offices Drive, Suite 140, Research Triangle Park, NC 27709, USA;
| | - Haleh Ashki
- Prime Genomics, Inc., 319 Bernardo Avenue, Mountain View, CA 94041, USA;
| | - Lorrin M. Koran
- Department of Psychiatry and Behavioral Sciences, OCD Clinic, Stanford University Medical Center, 401 Quarry Road, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Qin S, Zhang Y, Tian Y, Xu F, Zhang P. Subcellular metabolomics: Isolation, measurement, and applications. J Pharm Biomed Anal 2021; 210:114557. [PMID: 34979492 DOI: 10.1016/j.jpba.2021.114557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/26/2022]
Abstract
Metabolomics, a technique that profiles global small molecules in biological samples, has been a pivotal tool for disease diagnosis and mechanism research. The sample type in metabolomics covers a wide range, including a variety of body fluids, tissues, and cells. However, little attention was paid to the smaller, relatively independent partition systems in cells, namely the organelles. The organelles are specific compartments/places where diverse metabolic activities are happening in an orderly manner. Metabolic disorders of organelles were found to occur in various pathological conditions such as inherited metabolic diseases, diabetes, cancer, and neurodegenerative diseases. However, at the cellular level, the metabolic outcomes of organelles and cytoplasm are superimposed interactively, making it difficult to describe the changes in subcellular compartments. Therefore, characterizing the metabolic pool in the compartmentalized system is of great significance for understanding the role of organelles in physiological functions and diseases. So far, there are very few research articles or reviews related to subcellular metabolomics. In this review, subcellular fractionation and metabolite analysis methods, as well as the application of subcellular metabolomics in the physiological and pathological studies are systematically reviewed, as a practical reference to promote the continued advancement in subcellular metabolomics.
Collapse
Affiliation(s)
- Siyuan Qin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuxin Zhang
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
28
|
van de Wal M, Adjobo-Hermans M, Keijer J, Schirris T, Homberg J, Wieckowski MR, Grefte S, van Schothorst EM, van Karnebeek C, Quintana A, Koopman WJH. Ndufs4 knockout mouse models of Leigh syndrome: pathophysiology and intervention. Brain 2021; 145:45-63. [PMID: 34849584 PMCID: PMC8967107 DOI: 10.1093/brain/awab426] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 11/14/2022] Open
Abstract
Mitochondria are small cellular constituents that generate cellular energy (ATP) by oxidative phosphorylation (OXPHOS). Dysfunction of these organelles is linked to a heterogeneous group of multisystemic disorders, including diabetes, cancer, ageing-related pathologies and rare mitochondrial diseases. With respect to the latter, mutations in subunit-encoding genes and assembly factors of the first OXPHOS complex (complex I) induce isolated complex I deficiency and Leigh syndrome. This syndrome is an early-onset, often fatal, encephalopathy with a variable clinical presentation and poor prognosis due to the lack of effective intervention strategies. Mutations in the nuclear DNA-encoded NDUFS4 gene, encoding the NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4) of complex I, induce ‘mitochondrial complex I deficiency, nuclear type 1’ (MC1DN1) and Leigh syndrome in paediatric patients. A variety of (tissue-specific) Ndufs4 knockout mouse models were developed to study the Leigh syndrome pathomechanism and intervention testing. Here, we review and discuss the role of complex I and NDUFS4 mutations in human mitochondrial disease, and review how the analysis of Ndufs4 knockout mouse models has generated new insights into the MC1ND1/Leigh syndrome pathomechanism and its therapeutic targeting.
Collapse
Affiliation(s)
- Melissa van de Wal
- Department of Pediatrics, Amalia Children's Hospital, RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands
| | - Merel Adjobo-Hermans
- Department of Biochemistry (286), RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Tom Schirris
- Department of Pharmacology and Toxicology, RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands
| | - Judith Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | | | - Clara van Karnebeek
- Department of Pediatrics, Amalia Children's Hospital, RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands.,Department of Pediatrics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Albert Quintana
- Mitochondrial Neuropathology Laboratory, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands.,Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
29
|
Terburgh K, Lindeque JZ, van der Westhuizen FH, Louw R. Cross-comparison of systemic and tissue-specific metabolomes in a mouse model of Leigh syndrome. Metabolomics 2021; 17:101. [PMID: 34792662 DOI: 10.1007/s11306-021-01854-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The value of metabolomics in multi-systemic mitochondrial disease research has been increasingly recognized, with the ability to investigate a variety of biofluids and tissues considered a particular advantage. Although minimally invasive biofluids are the generally favored sample type, it remains unknown whether systemic metabolomes provide a clear reflection of tissue-specific metabolic alterations. OBJECTIVES Here we cross-compare urine and tissue-specific metabolomes in the Ndufs4 knockout mouse model of Leigh syndrome-a complex neurometabolic MD defined by progressive focal lesions in specific brain regions-to identify and evaluate the extent of common and unique metabolic alterations on a systemic and brain regional level. METHODS Untargeted and semi-targeted multi-platform metabolomics were performed on urine, four brain regions, and two muscle types of Ndufs4 KO (n≥19) vs wildtype (n≥20) mice. RESULTS Widespread alterations were evident in alanine, aspartate, glutamate, and arginine metabolism in Ndufs4 KO mice; while brain-region specific metabolic signatures include the accumulation of branched-chain amino acids, proline, and glycolytic intermediates. Furthermore, we describe a systemic dysregulation in one-carbon metabolism and the tricarboxylic acid cycle, which was not clearly reflected in the Ndufs4 KO brain. CONCLUSION Our results confirm the value of urinary metabolomics when evaluating MD-associated metabolites, while cautioning against mechanistic studies relying solely on systemic biofluids.
Collapse
Affiliation(s)
- Karin Terburgh
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Jeremie Z Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Francois H van der Westhuizen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.
| |
Collapse
|
30
|
Blood biomarkers for assessment of mitochondrial dysfunction: An expert review. Mitochondrion 2021; 62:187-204. [PMID: 34740866 DOI: 10.1016/j.mito.2021.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022]
Abstract
Although mitochondrial dysfunction is the known cause of primary mitochondrial disease, mitochondrial dysfunction is often difficult to measure and prove, especially when biopsies of affected tissue are not available. In order to identify blood biomarkers of mitochondrial dysfunction, we reviewed studies that measured blood biomarkers in genetically, clinically or biochemically confirmed primary mitochondrial disease patients. In this way, we were certain that there was an underlying mitochondrial dysfunction which could validate the biomarker. We found biomarkers of three classes: 1) functional markers measured in blood cells, 2) biochemical markers of serum/plasma and 3) DNA markers. While none of the reviewed single biomarkers may perfectly reveal all underlying mitochondrial dysfunction, combining biomarkers that cover different aspects of mitochondrial impairment probably is a good strategy. This biomarker panel may assist in the diagnosis of primary mitochondrial disease patients. As mitochondrial dysfunction may also play a significant role in the pathophysiology of multifactorial disorders such as Alzheimer's disease and glaucoma, the panel may serve to assess mitochondrial dysfunction in complex multifactorial diseases as well and enable selection of patients who could benefit from therapies targeting mitochondria.
Collapse
|
31
|
Yang C, Han L, Li P, Ding Y, Zhu Y, Huang Z, Dan X, Shi Y, Kang X. Characterization and Duodenal Transcriptome Analysis of Chinese Beef Cattle With Divergent Feed Efficiency Using RNA-Seq. Front Genet 2021; 12:741878. [PMID: 34675965 PMCID: PMC8524388 DOI: 10.3389/fgene.2021.741878] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Residual feed intake (RFI) is an important measure of feed efficiency for agricultural animals. Factors associated with cattle RFI include physiology, dietary factors, and the environment. However, a precise genetic mechanism underlying cattle RFI variations in duodenal tissue is currently unavailable. The present study aimed to identify the key genes and functional pathways contributing to variance in cattle RFI phenotypes using RNA sequencing (RNA-seq). Six bulls with extremely high or low RFIs were selected for detecting differentially expressed genes (DEGs) by RNA-seq, followed by conducting GO, KEGG enrichment, protein-protein interaction (PPI), and co-expression network (WGCNA, n = 10) analysis. A total of 380 differentially expressed genes was obtained from high and low RFI groups, including genes related to energy metabolism (ALDOA, HADHB, INPPL1), mitochondrial function (NDUFS1, RFN4, CUL1), and feed intake behavior (CCK). Two key sub-networks and 26 key genes were detected using GO analysis of DEGs and PPI analysis, such as TPM1 and TPM2, which are involved in mitochondrial pathways and protein synthesis. Through WGCNA, a gene network was built, and genes were sorted into 27 modules, among which the blue (r = 0.72, p = 0.03) and salmon modules (r = -0.87, p = 0.002) were most closely related with RFI. DEGs and genes from the main sub-networks and closely related modules were largely involved in metabolism; oxidative phosphorylation; glucagon, ribosome, and N-glycan biosynthesis, and the MAPK and PI3K-Akt signaling pathways. Through WGCNA, five key genes, including FN1 and TPM2, associated with the biological regulation of oxidative processes and skeletal muscle development were identified. Taken together, our data suggest that the duodenum has specific biological functions in regulating feed intake. Our findings provide broad-scale perspectives for identifying potential pathways and key genes involved in the regulation of feed efficiency in beef cattle.
Collapse
Affiliation(s)
- Chaoyun Yang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Liyun Han
- Ningxia Agriculture Reclamation Helanshan Diary Co.Ltd., Yinchuan, China
| | - Peng Li
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Yanling Ding
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Yun Zhu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Zengwen Huang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Xingang Dan
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Yuangang Shi
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Xiaolong Kang
- School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
32
|
van der Walt G, Lindeque JZ, Mason S, Louw R. Sub-Cellular Metabolomics Contributes Mitochondria-Specific Metabolic Insights to a Mouse Model of Leigh Syndrome. Metabolites 2021; 11:metabo11100658. [PMID: 34677373 PMCID: PMC8537744 DOI: 10.3390/metabo11100658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Direct injury of mitochondrial respiratory chain (RC) complex I by Ndufs4 subunit mutations results in complex I deficiency (CID) and a progressive encephalomyopathy, known as Leigh syndrome. While mitochondrial, cytosolic and multi-organelle pathways are known to be involved in the neuromuscular LS pathogenesis, compartment-specific metabolomics has, to date, not been applied to murine models of CID. We thus hypothesized that sub-cellular metabolomics would be able to contribute organelle-specific insights to known Ndufs4 metabolic perturbations. To that end, whole brains and skeletal muscle from late-stage Ndufs4 mice and age/sex-matched controls were harvested for mitochondrial and cytosolic isolation. Untargeted 1H-NMR and semi-targeted LC-MS/MS metabolomics was applied to the resulting cell fractions, whereafter important variables (VIPs) were selected by univariate statistics. A predominant increase in multiple targeted amino acids was observed in whole-brain samples, with a more prominent effect at the mitochondrial level. Similar pathways were implicated in the muscle tissue, showing a greater depletion of core metabolites with a compartment-specific distribution, however. The altered metabolites expectedly implicate altered redox homeostasis, alternate RC fueling, one-carbon metabolism, urea cycling and dysregulated proteostasis to different degrees in the analyzed tissues. A first application of EDTA-chelated magnesium and calcium measurement by NMR also revealed tissue- and compartment-specific alterations, implicating stress response-related calcium redistribution between neural cell compartments, as well as whole-cell muscle magnesium depletion. Altogether, these results confirm the ability of compartment-specific metabolomics to capture known alterations related to Ndufs4 KO and CID while proving its worth in elucidating metabolic compartmentalization in said pathways that went undetected in the diluted whole-cell samples previously studied.
Collapse
|
33
|
Characterizing Marathon-Induced Metabolic Changes Using 1H-NMR Metabolomics. Metabolites 2021; 11:metabo11100656. [PMID: 34677371 PMCID: PMC8541139 DOI: 10.3390/metabo11100656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Although physical activity is a health-promoting, popular global pastime, regular engagement in strenuous exercises, such as long-distance endurance running races, has been associated with a variety of detrimental physiological and immunological health effects. The resulting altered physiological state has previously been associated with fluctuations in various key metabolite concentrations; however, limited literature exists pertaining to the global/holistic metabolic changes that are induced by such. This investigation subsequently aims at elucidating the metabolic changes induced by a marathon by employing an untargeted proton nuclear magnetic resonance (1H-NMR) spectrometry metabolomics approach. A principal component analysis (PCA) plot revealed a natural differentiation between pre- and post-marathon metabolic profiles of the 30-athlete cohort, where 17 metabolite fluctuations were deemed to be statistically significant. These included reduced concentrations of various amino acids (AA) along with elevated concentrations of ketone bodies, glycolysis, tricarboxylic acid (TCA) cycle, and AA catabolism intermediates. Moreover, elevated concentrations of creatinine and creatine in the post-marathon group supports previous findings of marathon-induced muscle damage. Collectively, the results of this investigation characterize the strenuous metabolic load induced by a marathon and the consequential regulation of main energy-producing pathways to accommodate this, and a better description of the cause of the physiological changes seen after the completion of a marathon.
Collapse
|
34
|
Bam S, Buchanan E, Mahony C, O'Ryan C. DNA Methylation of PGC-1α Is Associated With Elevated mtDNA Copy Number and Altered Urinary Metabolites in Autism Spectrum Disorder. Front Cell Dev Biol 2021; 9:696428. [PMID: 34381777 PMCID: PMC8352569 DOI: 10.3389/fcell.2021.696428] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex disorder that is underpinned by numerous dysregulated biological pathways, including pathways that affect mitochondrial function. Epigenetic mechanisms contribute to this dysregulation and DNA methylation is an important factor in the etiology of ASD. We measured DNA methylation of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α), as well as five genes involved in regulating mitochondrial homeostasis to examine mitochondrial dysfunction in an ASD cohort of South African children. Using targeted Next Generation bisulfite sequencing, we found differential methylation (p < 0.05) at six key genes converging on mitochondrial biogenesis, fission and fusion in ASD, namely PGC-1α, STOML2, MFN2, FIS1, OPA1, and GABPA. PGC-1α, the transcriptional regulator of biogenesis, was significantly hypermethylated at eight CpG sites in the gene promoter, one of which contained a putative binding site for CAMP response binding element 1 (CREB1) (p = 1 × 10–6). Mitochondrial DNA (mtDNA) copy number, a marker of mitochondrial function, was elevated (p = 0.002) in ASD compared to controls and correlated significantly with DNA methylation at the PGC-1α promoter and there was a positive correlation between methylation at PGC-1α CpG#1 and mtDNA copy number (Spearman’s r = 0.2, n = 49, p = 0.04) in ASD. Furthermore, DNA methylation at PGC-1α CpG#1 and mtDNA copy number correlated significantly (p < 0.05) with levels of urinary organic acids associated with mitochondrial dysfunction, oxidative stress, and neuroendocrinology. Our data show differential methylation in ASD at six key genes converging on PGC-1α-dependent regulation of mitochondrial biogenesis and function. We demonstrate that methylation at the PGC-1α promoter is associated with elevated mtDNA copy number and metabolomic evidence of mitochondrial dysfunction in ASD. This highlights an unexplored role for DNA methylation in regulating specific pathways involved in mitochondrial biogenesis, fission and fusion contributing to mitochondrial dysfunction in ASD.
Collapse
Affiliation(s)
- Sophia Bam
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Erin Buchanan
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Caitlyn Mahony
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Colleen O'Ryan
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
35
|
Sukhorukov VS, Mudzhiri NM, Voronkova AS, Baranich TI, Glinkina VV, Illarioshkin SN. Mitochondrial Disorders in Alzheimer's Disease. BIOCHEMISTRY (MOSCOW) 2021; 86:667-679. [PMID: 34225590 DOI: 10.1134/s0006297921060055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease is the most common age-related neurodegenerative disease. Understanding of its etiology and pathogenesis is constantly expanding. Thus, the increasing attention of researchers is directed to the study of the role of mitochondrial disorders. In addition, in recent years, the concept of Alzheimer's disease as a stress-induced disease has begun to form more and more actively. The stress-induced damage to the neuronal system can trigger a vicious circle of pathological processes, among which mitochondrial dysfunctions have a significant place, since mitochondria represent a substantial component in the anti-stress activity of the cell. The study of mitochondrial disorders in Alzheimer's disease is relevant for at least two reasons: first, as important pathogenetic component in this disease; second, due to vital role of mitochondria in formation of the body resistance to various conditions, including stressful ones, throughout the life. This literature review analyzes the results of a number of recent studies assessing potential significance of the mitochondrial disorders in Alzheimer's disease. The probable mechanisms of mitochondrial disorders associated with the development of this disease are considered: bioenergetic dysfunctions, changes in mitochondrial DNA (including assessment of the significance of its haplogroup features), disorders in the dynamics of these organelles, oxidative damage to calcium channels, damage to MAM complexes (membranes associated with mitochondria; mitochondria-associated membranes), disruptions of the mitochondrial quality control system, mitochondrial permeability, etc. The issues of the "primary" or "secondary" mitochondrial damage in Alzheimer's disease are discussed. Potentials for the development of new methods for diagnosis and therapy of mitochondrial disorders in Alzheimer's disease are considered.
Collapse
Affiliation(s)
| | | | | | - Tatiana I Baranich
- Research Center of Neurology, Moscow, 125367, Russia.,Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, 117997, Russia
| | - Valeria V Glinkina
- Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, 117997, Russia
| | | |
Collapse
|
36
|
Preston G, Emmerzaal T, Radenkovic S, Lanza IR, Oglesbee D, Morava E, Kozicz T. Cerebellar and multi-system metabolic reprogramming associated with trauma exposure and post-traumatic stress disorder (PTSD)-like behavior in mice. Neurobiol Stress 2021; 14:100300. [PMID: 33604421 PMCID: PMC7872981 DOI: 10.1016/j.ynstr.2021.100300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial metabolism is increasingly implicated in psychopathologies and mood disorders, including post-traumatic stress disorder (PTSD). We recently reported that mice exposed to a novel paradigm for the induction of PTSD-like behavior displayed reduced mitochondrial electron transport chain (mtETC) complex activity as well as decreased multi-system fatty acid oxidation (FAO) flux. Based on these results, we hypothesized that stressed and PTSD-like animals would display evidence of metabolic reprogramming in both cerebellum and plasma consistent with increased energetic demand, mitochondrial metabolic reprogramming, and increased oxidative stress. We performed targeted metabolomics in both cerebellar tissue and plasma, as well as untargeted nuclear magnetic resonance (NMR) spectroscopy in the cerebellum of 6 PTSD-like and 7 resilient male mice as well as 7 trauma-naïve controls. We identified numerous differences in amino acids and tricarboxylic acid (TCA) cycle metabolite concentrations in the cerebellum and plasma consistent with altered mitochondrial energy metabolism in trauma exposed and PTSD-like animals. Pathway analysis identified metabolic pathways with significant metabolic pathway shifts associated with trauma exposure, including the tricarboxylic acid cycle, pyruvate, and branched-chain amino acid metabolism in both cerebellar tissue and plasma. Altered glutamine and glutamate metabolism, and arginine biosynthesis was evident uniquely in cerebellar tissue, while ketone body levels were modified in plasma. Importantly, we also identified several cerebellar metabolites (e.g. choline, adenosine diphosphate, beta-alanine, taurine, and myo-inositol) that were sufficient to discriminate PTSD-like from resilient animals. This multilevel analysis provides a comprehensive understanding of local and systemic metabolite fingerprints associated with PTSD-like behavior, and subsequently altered brain bioenergetics. Notably, several transformed metabolic pathways observed in the cerebellum were also reflected in plasma, connecting central and peripheral biosignatures of PTSD-like behavior. These preliminary findings could direct further mechanistic studies and offer insights into potential metabolic interventions, either pharmacological or dietary, to improve PTSD resilience.
Collapse
Affiliation(s)
- Graeme Preston
- Department of Clinical Genomics, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tim Emmerzaal
- Department of Clinical Genomics, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Department of Anatomy, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, Netherlands
| | - Silvia Radenkovic
- Metabolomic Expertise Center, CCB, VIB- KU Leuven, Oude Markt 13, 3000, Leuven, Belgium
- Laboratory of Hepatology, Department of CHROMETA, KU Leuven, Oude Markt 13, 3000, Leuven, Belgium
| | - Ian R. Lanza
- Division of Endocrinology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| |
Collapse
|
37
|
Li H, Uittenbogaard M, Hao L, Chiaramello A. Clinical Insights into Mitochondrial Neurodevelopmental and Neurodegenerative Disorders: Their Biosignatures from Mass Spectrometry-Based Metabolomics. Metabolites 2021; 11:233. [PMID: 33920115 PMCID: PMC8070181 DOI: 10.3390/metabo11040233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are dynamic multitask organelles that function as hubs for many metabolic pathways. They produce most ATP via the oxidative phosphorylation pathway, a critical pathway that the brain relies on its energy need associated with its numerous functions, such as synaptic homeostasis and plasticity. Therefore, mitochondrial dysfunction is a prevalent pathological hallmark of many neurodevelopmental and neurodegenerative disorders resulting in altered neurometabolic coupling. With the advent of mass spectrometry (MS) technology, MS-based metabolomics provides an emerging mechanistic understanding of their global and dynamic metabolic signatures. In this review, we discuss the pathogenetic causes of mitochondrial metabolic disorders and the recent MS-based metabolomic advances on their metabolomic remodeling. We conclude by exploring the MS-based metabolomic functional insights into their biosignatures to improve diagnostic platforms, stratify patients, and design novel targeted therapeutic strategies.
Collapse
Affiliation(s)
- Haorong Li
- Department of Chemistry, George Washington University, Science and Engineering Hall 4000, 800 22nd St., NW, Washington, DC 20052, USA;
| | - Martine Uittenbogaard
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 I Street N.W. Ross Hall 111, Washington, DC 20037, USA;
| | - Ling Hao
- Department of Chemistry, George Washington University, Science and Engineering Hall 4000, 800 22nd St., NW, Washington, DC 20052, USA;
| | - Anne Chiaramello
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 I Street N.W. Ross Hall 111, Washington, DC 20037, USA;
| |
Collapse
|
38
|
Gusic M, Prokisch H. Genetic basis of mitochondrial diseases. FEBS Lett 2021; 595:1132-1158. [PMID: 33655490 DOI: 10.1002/1873-3468.14068] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are monogenic disorders characterized by a defect in oxidative phosphorylation and caused by pathogenic variants in one of over 340 different genes. The implementation of whole-exome sequencing has led to a revolution in their diagnosis, duplicated the number of associated disease genes, and significantly increased the diagnosed fraction. However, the genetic etiology of a substantial fraction of patients exhibiting mitochondrial disorders remains unknown, highlighting limitations in variant detection and interpretation, which calls for improved computational and DNA sequencing methods, as well as the addition of OMICS tools. More intriguingly, this also suggests that some pathogenic variants lie outside of the protein-coding genes and that the mechanisms beyond the Mendelian inheritance and the mtDNA are of relevance. This review covers the current status of the genetic basis of mitochondrial diseases, discusses current challenges and perspectives, and explores the contribution of factors beyond the protein-coding regions and monogenic inheritance in the expansion of the genetic spectrum of disease.
Collapse
Affiliation(s)
- Mirjana Gusic
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Germany
| |
Collapse
|
39
|
Targeting Mitochondria by SS-31 Ameliorates the Whole Body Energy Status in Cancer- and Chemotherapy-Induced Cachexia. Cancers (Basel) 2021; 13:cancers13040850. [PMID: 33670497 PMCID: PMC7923037 DOI: 10.3390/cancers13040850] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Cancer cachexia is a debilitating syndrome, caused by both tumor growth and chemotherapy. The skeletal muscle is one of the main tissues affected during cachexia, presenting with altered metabolism and function, leading to progressive tissue wasting. In the current study we aimed at counteracting cachexia by pharmacologically improving metabolic function with the mitochondria-targeted compound SS-31. Experimental cancer cachexia was obtained using C26-bearing mice either receiving chemotherapy (oxaliplatin plus 5-fluorouracil) or not. SS-31 proved effective in rescuing some of the metabolic impairments imposed by both tumor and chemotherapy in the skeletal muscle and the liver, improving systemic energy control. Unfortunately, such effects were no longer present at late disease stages when refractory cachexia ensued. Overall, we provide evidence of potential new treatments targeting mitochondrial function in order to counteract or delay cancer cachexia. Abstract Objective: Cachexia is a complex metabolic syndrome frequently occurring in cancer patients and exacerbated by chemotherapy. In skeletal muscle of cancer hosts, reduced oxidative capacity and low intracellular ATP resulting from abnormal mitochondrial function were described. Methods: The present study aimed at evaluating the ability of the mitochondria-targeted compound SS-31 to counteract muscle wasting and altered metabolism in C26-bearing (C26) mice either receiving chemotherapy (OXFU: oxaliplatin plus 5-fluorouracil) or not. Results: Mitochondrial dysfunction in C26-bearing (C26) mice associated with alterations of cardiolipin fatty acid chains. Selectively targeting cardiolipin with SS-31 partially counteracted body wasting and prevented the reduction of glycolytic myofiber area. SS-31 prompted muscle mitochondrial succinate dehydrogenase (SDH) activity and rescued intracellular ATP levels, although it was unable to counteract mitochondrial protein loss. Progressively increased dosing of SS-31 to C26 OXFU mice showed transient (21 days) beneficial effects on body and muscle weight loss before the onset of a refractory end-stage condition (28 days). At day 21, SS-31 prevented mitochondrial loss and abnormal autophagy/mitophagy. Skeletal muscle, liver and plasma metabolomes were analyzed, showing marked energy and protein metabolism alterations in tumor hosts. SS-31 partially modulated skeletal muscle and liver metabolome, likely reflecting an improved systemic energy homeostasis. Conclusions: The results suggest that targeting mitochondrial function may be as important as targeting protein anabolism/catabolism for the prevention of cancer cachexia. With this in mind, prospective multi-modal therapies including SS-31 are warranted.
Collapse
|
40
|
Terburgh K, Coetzer J, Lindeque JZ, van der Westhuizen FH, Louw R. Aberrant BCAA and glutamate metabolism linked to regional neurodegeneration in a mouse model of Leigh syndrome. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166082. [PMID: 33486097 DOI: 10.1016/j.bbadis.2021.166082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/23/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
The dysfunction of respiratory chain complex I (CI) is the most common form of mitochondrial disease that most often presents as Leigh syndrome (LS) in children - a severe neurometabolic disorder defined by progressive focal lesions in specific brain regions. The mechanisms underlying this region-specific vulnerability to CI deficiency, however, remain elusive. Here, we examined brain regional respiratory chain enzyme activities and metabolic profiles in a mouse model of LS with global CI deficiency to gain insight into regional vulnerability to neurodegeneration. One lesion-resistant and three lesion-prone brain regions were investigated in Ndufs4 knockout (KO) mice at the late stage of LS. Enzyme assays confirmed significantly decreased (60-80%) CI activity in all investigated KO brain regions, with the lesion-resistant region displaying the highest residual CI activity (38% of wild type). A higher residual CI activity, and a less perturbed NADH/NAD+ ratio, correlate with less severe metabolic perturbations in KO brain regions. Moreover, less perturbed BCAA oxidation and increased glutamate oxidation seem to distinguish lesion-resistant from -prone KO brain regions, thereby identifying key areas of metabolism to target in future therapeutic intervention studies.
Collapse
Affiliation(s)
- Karin Terburgh
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Janeé Coetzer
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Jeremy Z Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Francois H van der Westhuizen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa.
| |
Collapse
|
41
|
Gilhooley MJ, Owen N, Moosajee M, Yu Wai Man P. From Transcriptomics to Treatment in Inherited Optic Neuropathies. Genes (Basel) 2021; 12:147. [PMID: 33499292 PMCID: PMC7912133 DOI: 10.3390/genes12020147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Inherited optic neuropathies, including Leber Hereditary Optic Neuropathy (LHON) and Dominant Optic Atrophy (DOA), are monogenetic diseases with a final common pathway of mitochondrial dysfunction leading to retinal ganglion cell (RGC) death and ultimately loss of vision. They are, therefore, excellent models with which to investigate this ubiquitous disease process-implicated in both common polygenetic ocular diseases (e.g., Glaucoma) and late-onset central nervous system neurodegenerative diseases (e.g., Parkinson disease). In recent years, cellular and animal models of LHON and DOA have matured in parallel with techniques (such as RNA-seq) to determine and analyze the transcriptomes of affected cells. This confluence leaves us at a particularly exciting time with the potential for the identification of novel pathogenic players and therapeutic targets. Here, we present a discussion of the importance of inherited optic neuropathies and how transcriptomic techniques can be exploited in the development of novel mutation-independent, neuroprotective therapies.
Collapse
Affiliation(s)
- Michael James Gilhooley
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK; (N.O.); (M.M.); (P.Y.W.M.)
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK
| | - Nicholas Owen
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK; (N.O.); (M.M.); (P.Y.W.M.)
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK; (N.O.); (M.M.); (P.Y.W.M.)
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK
- The Francis Crick Institute, 1 Midland Road, Somers Town, London NW1 1AT, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Patrick Yu Wai Man
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK; (N.O.); (M.M.); (P.Y.W.M.)
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK
- Department of Clinical Neurosciences, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
42
|
Bocca C, Le Paih V, Chao de la Barca JM, Kouassy Nzoughet J, Amati-Bonneau P, Blanchet O, Védie B, Géromin D, Simard G, Procaccio V, Bonneau D, Lenaers G, Orssaud C, Reynier P. A plasma metabolomic signature of Leber hereditary optic neuropathy showing taurine and nicotinamide deficiencies. Hum Mol Genet 2021; 30:21-29. [PMID: 33437983 PMCID: PMC8033144 DOI: 10.1093/hmg/ddab013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/02/2023] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is the most common disorder due to mitochondrial DNA mutations and complex I deficiency. It is characterized by an acute vision loss, generally in young adults, with a higher penetrance in males. How complex I dysfunction induces the peculiar LHON clinical presentation remains an unanswered question. To gain an insight into this question, we carried out a non-targeted metabolomic investigation using the plasma of 18 LHON patients, during the chronic phase of the disease, comparing them to 18 healthy controls. A total of 500 metabolites were screened of which 156 were accurately detected. A supervised Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) highlighted a robust model for disease prediction with a Q2 (cum) of 55.5%, with a reliable performance during the permutation test (cross-validation analysis of variance, P-value = 5.02284e-05) and a good prediction of a test set (P = 0.05). This model highlighted 10 metabolites with variable importance in the projection (VIP) > 0.8. Univariate analyses revealed nine discriminating metabolites, six of which were the same as those found in the Orthogonal Projections to Latent Structures Discriminant Analysis model. In total, the 13 discriminating metabolites identified underlining dietary metabolites (nicotinamide, taurine, choline, 1-methylhistidine and hippurate), mitochondrial energetic substrates (acetoacetate, glutamate and fumarate) and purine metabolism (inosine). The decreased concentration of taurine and nicotinamide (vitamin B3) suggest interesting therapeutic targets, given their neuroprotective roles that have already been demonstrated for retinal ganglion cells. Our results show a reliable predictive metabolomic signature in the plasma of LHON patients and highlighted taurine and nicotinamide deficiencies.
Collapse
Affiliation(s)
- Cinzia Bocca
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Victor Le Paih
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France
| | - Juan Manuel Chao de la Barca
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | | | - Patrizia Amati-Bonneau
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Odile Blanchet
- Centre de Ressources Biologiques, BB-0033-00038, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Benoit Védie
- Plateformes Centre de Ressources Biologiques et Tumorothèque, BB-0033-00063, Hôpital Européen Georges Pompidou, Paris, France.,Hôpital Européen Georges Pompidou, Département de Biochimie, Assistance Publique - Hôpitaux de Paris (AP-HP), Université Paris Descartes, Paris, France
| | - Daniela Géromin
- Plateformes Centre de Ressources Biologiques et Tumorothèque, BB-0033-00063, Hôpital Européen Georges Pompidou, Paris, France
| | - Gilles Simard
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Vincent Procaccio
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Dominique Bonneau
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Guy Lenaers
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France
| | - Christophe Orssaud
- Unité Fonctionnelle d'Ophtalmologie, CRMR Ophtara, Hôpital Européen Georges Pompidou (HEGP), GH Paris Centre, Assistance Publique - Hôpitaux de Paris (AP-HP), 75015 Paris, France.,Service d'Ophtalmologie, Ophtara Hôpital Necker-Enfants Malades, GH Paris Centre, AP-HP, 149, rue de Sèvres, 75015 Paris, France
| | - Pascal Reynier
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| |
Collapse
|
43
|
Esterhuizen K, Lindeque JZ, Mason S, van der Westhuizen FH, Rodenburg RJ, de Laat P, Smeitink JAM, Janssen MCH, Louw R. One mutation, three phenotypes: novel metabolic insights on MELAS, MIDD and myopathy caused by the m.3243A > G mutation. Metabolomics 2021; 17:10. [PMID: 33438095 DOI: 10.1007/s11306-020-01769-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The m.3243A > G mitochondrial DNA mutation is one of the most common mitochondrial disease-causing mutations, with a carrier rate as high as 1:400. This point mutation affects the MT-TL1 gene, ultimately affecting the oxidative phosphorylation system and the cell's energy production. Strikingly, the m.3243A > G mutation is associated with different phenotypes, including mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), maternally inherited diabetes and deafness (MIDD) and myopathy. OBJECTIVES We investigated urine metabolomes of MELAS, MIDD and myopathy patients in order to identify affected metabolic pathways and possible treatment options. METHODS A multiplatform metabolomics approach was used to comprehensively analyze the metabolome and compare metabolic profiles of different phenotypes caused by the m.3243A > G mutation. Our analytical array consisted of NMR spectroscopy, LC-MS/MS and GC-TOF-MS. RESULTS The investigation revealed phenotypic specific metabolic perturbations, as well as metabolic similarities between the different phenotypes. We show that glucose metabolism is highly disturbed in the MIDD phenotype, but not in MELAS or myopathy, remodeled fatty acid oxidation is characteristic of the MELAS patients, while one-carbon metabolism is strongly modified in both MELAS and MIDD, but not in the myopathy group. Lastly we identified increased creatine in the urine of the myopathy patients, but not in MELAS or MIDD. CONCLUSION We conclude by giving novel insight on the phenotypes of the m.3243A > G mutation from a metabolomics point of view. Directives are also given for future investigations that could lead to better treatment options for patients suffering from this debilitating disease.
Collapse
Affiliation(s)
- Karien Esterhuizen
- Mitochondria Research Laboratory, Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - J Zander Lindeque
- Mitochondria Research Laboratory, Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Shayne Mason
- Mitochondria Research Laboratory, Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | | - Richard J Rodenburg
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Paul de Laat
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Mirian C H Janssen
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud Center for Mitochondrial Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Roan Louw
- Mitochondria Research Laboratory, Human Metabolomics, North-West University, Potchefstroom, South Africa.
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, South Africa.
| |
Collapse
|
44
|
Mitochondrial Dysfunction in Alzheimer's Disease: A Biomarker of the Future? Biomedicines 2021; 9:biomedicines9010063. [PMID: 33440662 PMCID: PMC7827030 DOI: 10.3390/biomedicines9010063] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide and is characterised pathologically by the accumulation of amyloid beta and tau protein aggregates. Currently, there are no approved disease modifying therapies for clearance of either of these proteins from the brain of people with AD. As well as abnormalities in protein aggregation, other pathological changes are seen in this condition. The function of mitochondria in both the nervous system and rest of the body is altered early in this disease, and both amyloid and tau have detrimental effects on mitochondrial function. In this review article, we describe how the function and structure of mitochondria change in AD. This review summarises current imaging techniques that use surrogate markers of mitochondrial function in both research and clinical practice, but also how mitochondrial functions such as ATP production, calcium homeostasis, mitophagy and reactive oxygen species production are affected in AD mitochondria. The evidence reviewed suggests that the measurement of mitochondrial function may be developed into a future biomarker for early AD. Further work with larger cohorts of patients is needed before mitochondrial functional biomarkers are ready for clinical use.
Collapse
|
45
|
Gueguen N, Lenaers G, Reynier P, Weissig V, Edeas M. Mitochondrial Dysfunction in Mitochondrial Medicine: Current Limitations, Pitfalls, and Tomorrow. Methods Mol Biol 2021; 2276:1-29. [PMID: 34060029 DOI: 10.1007/978-1-0716-1266-8_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Until recently restricted to hereditary mitochondrial diseases, mitochondrial dysfunction is now recognized as a key player and strategic factor in the pathophysiological of many human diseases, ranging from the metabolism, vascular, cardiac, and neurodegenerative diseases to cancer. Because of their participation in a myriad of cellular functions and signaling pathways, precisely identifying the cause of mitochondrial "dysfunctions" can be challenging and requires robust and controlled techniques. Initially limited to the analysis of the respiratory chain functioning, these analytical techniques now enlarge to the analyses of mitochondrial and cellular metabolism, based on metabolomic approaches.Here, we address the methods used to assay mitochondrial dysfunction, with a highlight on the techniques used in diagnosis on tissues and cells derived from patients, the information they provide, and their strength and weakness.Targeting mitochondrial dysfunction by various strategies is a huge challenge, requires robust methods of evaluation, and should be able to take into consideration the mitochondria dynamics and localization. The future of mitochondrial medicine is strongly related to a perfect comprehension of its dysfunction.
Collapse
Affiliation(s)
- Naig Gueguen
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, University of Angers, Angers, France.,Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France
| | - Guy Lenaers
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, University of Angers, Angers, France
| | - Pascal Reynier
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, University of Angers, Angers, France.,Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France
| | - Volkmar Weissig
- Department of Pharmaceutical Sciences and Nanocenter of Excellence, Midwestern University College of Pharmacy at Glendale, Glendale, AZ, USA
| | - Marvin Edeas
- Université de Paris, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France. .,Laboratory of Excellence GR-Ex, Paris, France.
| |
Collapse
|
46
|
Souza AL, Patti GJ. A Protocol for Untargeted Metabolomic Analysis: From Sample Preparation to Data Processing. Methods Mol Biol 2021; 2276:357-382. [PMID: 34060055 PMCID: PMC9284939 DOI: 10.1007/978-1-0716-1266-8_27] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Untargeted metabolomics has rapidly become a profiling method of choice in many areas of research, including mitochondrial biology. Most commonly, untargeted metabolomics is performed with liquid chromatography/mass spectrometry because it enables measurement of a relatively wide range of physiochemically diverse molecules. Specifically, to assess energy pathways that are associated with mitochondrial metabolism, hydrophilic interaction liquid chromatography (HILIC) is often applied before analysis with a high-resolution accurate mass instrument. The workflow produces large, complex data files that are impractical to analyze manually. Here, we present a protocol to perform untargeted metabolomics on biofluids such as plasma, urine, and cerebral spinal fluid with a HILIC separation and an Orbitrap mass spectrometer. Our protocol describes each step of the analysis in detail, from preparation of solvents for chromatography to selecting parameters during data processing.
Collapse
Affiliation(s)
- Amanda L Souza
- Life Science Mass Spectrometry Division, Thermo Fisher Scientific, San Jose, CA, USA.
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA
| |
Collapse
|
47
|
Miller HC, Louw R, Mereis M, Venter G, Boshoff JD, Mienie L, van Reenen M, Venter M, Lindeque JZ, Domínguez-Martínez A, Quintana A, van der Westhuizen FH. Metallothionein 1 Overexpression Does Not Protect Against Mitochondrial Disease Pathology in Ndufs4 Knockout Mice. Mol Neurobiol 2021; 58:243-262. [PMID: 32918239 DOI: 10.1007/s12035-020-02121-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/05/2020] [Indexed: 01/24/2023]
Abstract
Mitochondrial diseases (MD), such as Leigh syndrome (LS), present with severe neurological and muscular phenotypes in patients, but have no known cure and limited treatment options. Based on their neuroprotective effects against other neurodegenerative diseases in vivo and their positive impact as an antioxidant against complex I deficiency in vitro, we investigated the potential protective effect of metallothioneins (MTs) in an Ndufs4 knockout mouse model (with a very similar phenotype to LS) crossed with an Mt1 overexpressing mouse model (TgMt1). Despite subtle reductions in the expression of neuroinflammatory markers GFAP and IBA1 in the vestibular nucleus and hippocampus, we found no improvement in survival, growth, locomotor activity, balance, or motor coordination in the Mt1 overexpressing Ndufs4-/- mice. Furthermore, at a cellular level, no differences were detected in the metabolomics profile or gene expression of selected one-carbon metabolism and oxidative stress genes, performed in the brain and quadriceps, nor in the ROS levels of macrophages derived from these mice. Considering these outcomes, we conclude that MT1, in general, does not protect against the impaired motor activity or improve survival in these complex I-deficient mice. The unexpected absence of increased oxidative stress and metabolic redox imbalance in this MD model may explain these observations. However, tissue-specific observations such as the mildly reduced inflammation in the hippocampus and vestibular nucleus, as well as differential MT1 expression in these tissues, may yet reveal a tissue- or cell-specific role for MTs in these mice.
Collapse
Affiliation(s)
- Hayley Christy Miller
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Michelle Mereis
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Gerda Venter
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - John-Drew Boshoff
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Liesel Mienie
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Mari van Reenen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Marianne Venter
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Jeremie Zander Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Adán Domínguez-Martínez
- Institut de Neurociències i Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Albert Quintana
- Institut de Neurociències i Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francois Hendrikus van der Westhuizen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.
| |
Collapse
|
48
|
Montano V, Gruosso F, Simoncini C, Siciliano G, Mancuso M. Clinical features of mtDNA-related syndromes in adulthood. Arch Biochem Biophys 2020; 697:108689. [PMID: 33227288 DOI: 10.1016/j.abb.2020.108689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 01/26/2023]
Abstract
Mitochondrial diseases are the most common inheritable metabolic diseases, due to defects in oxidative phosphorylation. They are caused by mutations of nuclear or mitochondrial DNA in genes involved in mitochondrial function. The peculiarity of "mitochondrial DNA genetics rules" in part explains the marked phenotypic variability, the complexity of genotype-phenotype correlations and the challenge of genetic counseling. The new massive genetic sequencing technologies have changed the diagnostic approach, enhancing mitochondrial DNA-related syndromes diagnosis and often avoiding the need of a tissue biopsy. Here we present the most common phenotypes associated with a mitochondrial DNA mutation with the recent advances in diagnosis and in therapeutic perspectives.
Collapse
Affiliation(s)
- V Montano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - F Gruosso
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - C Simoncini
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - G Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - M Mancuso
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy.
| |
Collapse
|
49
|
Long N, Min JE, Anh NH, Kim SJ, Park S, Kim HM, Yoon SJ, Lim J, Lee SJ, Kwon SW. Isolation and Metabolic Assessment of Cancer Cell Mitochondria. ACS OMEGA 2020; 5:27304-27313. [PMID: 33134693 PMCID: PMC7594158 DOI: 10.1021/acsomega.0c03612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Mitochondrial metabolism plays an essential role in various biological processes of cancer cells. Herein, we established an experimental procedure for the metabolic assessment of mitochondria in cancer cells. We examined procedures for mitochondrial isolation coupled with various mitochondrial extraction buffers in three major cancer cell lines (PANC1, A549, and MDA-MB-231) and identified a potentially optimal and generalized approach. The purity of the mitochondrial fraction isolated by the selected protocol was verified using specific protein markers of cellular components, and the ultrastructure of the isolated mitochondria was also analyzed by transmission electron microscopy. The isolation procedure, involving a bead beater for cell lysis, a modified sucrose buffer, and differential centrifugation, appeared to be a suitable method for the extraction of mitochondria from cancer cells. Electron micrographs indicated an intact two-layer membrane and inner structures of mitochondria isolated by this procedure. Metabolomic and lipidomic analyses were conducted to examine the metabolic phenotypes of the mitochondria-enriched fractions and associated bulk cancer cells. A total of 44 metabolites, including malate and succinate, occurred at significantly higher levels in the mitochondrial fractions, whereas 51 metabolites, including citrate, oxaloacetate, and fumarate of the Krebs cycle and the oncometabolites glutamine and glutamate, were reduced in mitochondria compared to that in the corresponding bulk cells of PANC1. Similar patterns were observed in mitochondria and bulk cells of MDA-MB-231 and A549 cell lines. A clear difference between the lipid profiles of bulk PANC1, MDA-MB-231, and A549 and corresponding mitochondrial fractions of these cell lines was detected by principal component analysis. In conclusion, we developed an experimental procedure for a large-scale metabolic assessment for suborganelle metabolic profiling and multiple omics data integration in cancer cells with broad applications.
Collapse
Affiliation(s)
- Nguyen
Phuoc Long
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Eun Min
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Nguyen Hoang Anh
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Jo Kim
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongoh Park
- Department
of Statistics, Sungshin Women’s University, Seoul 02844, Republic of Korea
| | - Hyung Min Kim
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Jun Yoon
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Johan Lim
- Department
of Statistics, Seoul National University, Seoul 08826, Republic of Korea
| | - Seul Ji Lee
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Won Kwon
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Plant
Genomics and Breeding Institute, Seoul National
University, Seoul 08826, Republic of Korea
| |
Collapse
|
50
|
Yoon YG. Transfer of Xenomitochondria Containing the Entire Mouse Mitochondrial Genome into a Genetically Modified Yeast Expressing Mitochondrial Transcription Factor A. J Microbiol Biotechnol 2020; 30:1290-1296. [PMID: 32627757 PMCID: PMC9728338 DOI: 10.4014/jmb.2004.04033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022]
Abstract
Recently, it was reported that entire mammalian mtDNA genomes could be transplanted into the mitochondrial networks of yeast, where they were accurately and stably maintained without rearrangement as intact genomes. Here, it was found that engineered mtDNA genomes could be readily transferred to and steadily maintained in the mitochondria of genetically modified yeast expressing the mouse mitochondrial transcription factor A (Tfam), one of the mitochondrial nucleoid proteins. The transferred mtDNA genomes were stably retained in the Tfam-expressing yeast cells for many generations. These results indicated that the engineered mouse mtDNA genomes introduced in yeast mitochondria could be relocated into the mitochondria of other cells and that the transferred genomes could be maintained within a mitochondrial environment that is highly amenable to mimicry of the biological conditions in mammalian mitochondria.
Collapse
Affiliation(s)
- Young Geol Yoon
- Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk 28024, Republic of Korea,Corresponding author Phone: +82-43-830-8681 Fax: +82-43-830-8579 E-mail:
| |
Collapse
|