1
|
Zhao J, Zhang C, Xu Y, Li X, Lin X, Lin Z, Luan T. Intestinal toxicity and resistance gene threat assessment of multidrug-resistant Shigella: A novel biotype pollutant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120551. [PMID: 36332708 DOI: 10.1016/j.envpol.2022.120551] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/02/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Multidrug-resistant bacteria, especially pathogens, pose a serious threat to disease treatment and recovery, but their potential toxicity to animal development is not entirely clear. As the most important site for nutrient absorption, we studied the intestinal microbiome of Xenopus tropicalis by analyzing the effect of multidrug-resistant Shigella on its intestinal health. Unlike in the control, Shigella intake promoted the secretion of neutral mucus and inhibited intestinal development and weight gain. Following 60 days of exposure, intestinal crypt atrophy, intestinal villus shortening, internal cavity enlargement, and external mucosal muscle disintegration were observed. The circular and longitudinal intestinal muscles became thinner with increasing pathogen exposure. In addition, the presence of Shigella altered the expression of multiple cytokines and classic antioxidant enzyme activities in the gut, which may have caused the intestinal lesions that we observed. 16 S rDNA sequencing analysis of intestinal samples showed that exposure to Shigella destroyed the normal gut microbial abundance and diversity and increased the functional bacterial ratio. Notably, the increased abundance of intestinal antibiotic resistance genes (ARGs) may imply that the resistance genes carried by Shigella easily migrate and transmit within the intestine. Our results expand existing knowledge concerning multidrug-resistant Shigella-induced intestinal toxicity in X. tropicalis and provide new insights for the threat assessment of resistance genes carried by drug-resistant pathogens.
Collapse
Affiliation(s)
- Jianbin Zhao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Guangdong University of Technology, Jieyang, 515200, China
| | - Chaonan Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xinyan Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Guangdong University of Technology, Jieyang, 515200, China
| | - Xiaojun Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zitao Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Guangdong University of Technology, Jieyang, 515200, China.
| |
Collapse
|
2
|
Luo W, Dai W, Zhang X, Zheng L, Zhao J, Xie X, Xu Y. Effects of Shigella flexneri exposure on development of Xenopus Tropicals embryo and its immune response. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128153. [PMID: 34979394 DOI: 10.1016/j.jhazmat.2021.128153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Shigella sp. is a highly infectious intestinal pathogen worthy of serious attention that is widely present in aquaculture water and some other polluted water types and might inhibit embryonic development as a biological pollutant. In this study, acute toxicity tests in which Xenopus tropical embryos were exposed to Shigella flexneri at subpathogenic concentrations (106, 107, and 108 CFU·mL-1) for 96 h were carried out to evaluate toxicity indicators such as mortality, hatching rate, malformation rate and enzyme activity. Meanwhile, the expression of related genes was also studied to reveal the toxicity and mechanism of S. flexneri involved in embryonic development. Under S. flexneri exposure, embryo mortality, heart rate and malformation rate increased, but the hatching rate decreased and even led to embryonic gene misexpression, oxidative stress and immune responses. The results showed that S. flexneri might affect the growth and development of embryos by causing differences in the expression of genes related to embryonic development, oxidative stress and immune disorders. Its target organs are the intestine and heart, whose toxic effects are positively correlated with exposure concentration. This result provides a certain theoretical reference for rational evaluation of the influence of Shigella on the early embryos of amphibians.
Collapse
Affiliation(s)
- Wenshi Luo
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wencan Dai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiaochun Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianbin Zhao
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao Xie
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Ribitsch I, Bileck A, Egerbacher M, Gabner S, Mayer RL, Janker L, Gerner C, Jenner F. Fetal Immunomodulatory Environment Following Cartilage Injury-The Key to CARTILAGE Regeneration? Int J Mol Sci 2021; 22:ijms222312969. [PMID: 34884768 PMCID: PMC8657887 DOI: 10.3390/ijms222312969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 01/15/2023] Open
Abstract
Fetal cartilage fully regenerates following injury, while in adult mammals cartilage injury leads to osteoarthritis (OA). Thus, in this study, we compared the in vivo injury response of fetal and adult ovine articular cartilage histologically and proteomically to identify key factors of fetal regeneration. In addition, we compared the secretome of fetal ovine mesenchymal stem cells (MSCs) in vitro with injured fetal cartilage to identify potential MSC-derived therapeutic factors. Cartilage injury caused massive cellular changes in the synovial membrane, with macrophages dominating the fetal, and neutrophils the adult, synovial cellular infiltrate. Correspondingly, proteomics revealed differential regulation of pro- and anti-inflammatory mediators and growth-factors between adult and fetal joints. Neutrophil-related proteins and acute phase proteins were the two major upregulated protein groups in adult compared to fetal cartilage following injury. In contrast, several immunomodulating proteins and growth factors were expressed significantly higher in the fetus than the adult. Comparison of the in vitro MSCs proteome with the in vivo fetal regenerative signature revealed shared upregulation of 17 proteins, suggesting their therapeutic potential. Biomimicry of the fetal paracrine signature to reprogram macrophages and modulate inflammation could be an important future research direction for developing novel therapeutics.
Collapse
Affiliation(s)
- Iris Ribitsch
- VETERM, Equine Surgery Unit, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (A.B.); (R.L.M.); (L.J.)
| | - Monika Egerbacher
- Administrative Unit Veterinary Medicine, UMIT—Private University for Health Sciences, Medical Informatics and Technology GmbH, 6060 Hall in Tirol, Austria;
| | - Simone Gabner
- Histology & Embryology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Rupert L. Mayer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (A.B.); (R.L.M.); (L.J.)
| | - Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (A.B.); (R.L.M.); (L.J.)
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (A.B.); (R.L.M.); (L.J.)
- Correspondence: (C.G.); (F.J.)
| | - Florien Jenner
- VETERM, Equine Surgery Unit, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Correspondence: (C.G.); (F.J.)
| |
Collapse
|
4
|
Pentagna N, Pinheiro da Costa T, Soares Dos Santos Cardoso F, Martins de Almeida F, Blanco Martinez AM, Abreu JG, Levin M, Carneiro K. Epigenetic control of myeloid cells behavior by Histone Deacetylase activity (HDAC) during tissue and organ regeneration in Xenopus laevis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103840. [PMID: 32858087 DOI: 10.1016/j.dci.2020.103840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
In the present work we have focused on the Histone Deacetylase (HDAC) control of myeloid cells behavior during Xenopus tail regeneration. Here we show that myeloid differentiation is crucial to modulate the regenerative ability of Xenopus tadpoles in a HDAC activity-dependent fashion. HDAC activity inhibition during the first wave of myeloid differentiation disrupted myeloid cells dynamics in the regenerative bud as well the mRNA expression pattern of myeloid markers, such as LURP, MPOX, Spib and mmp7. We also functionally bridge the spatial and temporal dynamics of lipid droplets, the main platform of lipid mediators synthesis in myeloid cells during the inflammatory response, and the regenerative ability of Xenopus tadpoles. In addition, we showed that 15-LOX activity is necessary during tail regeneration. Taken together our results support a role for the epigenetic control of myeloid behavior during tissue and organ regeneration, which may positively impact translational approaches for regenerative medicine.
Collapse
Affiliation(s)
- Nathalia Pentagna
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco F Sala F2-01, Rio de Janeiro, 21941-902, Brazil; Programa de Pós-graduação Em Medicina (Anatomia Patológica), Faculdade de Medicina, Universidade Federal Do Rio de Janeiro, R. Prof. Rodolpho Paulo Rocco, 255, Rio de Janeiro, 21941-590, Brazil.
| | - Thayse Pinheiro da Costa
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco F Sala F2-01, Rio de Janeiro, 21941-902, Brazil
| | - Fellipe Soares Dos Santos Cardoso
- Programa de Pós-graduação Em Medicina (Anatomia Patológica), Faculdade de Medicina, Universidade Federal Do Rio de Janeiro, R. Prof. Rodolpho Paulo Rocco, 255, Rio de Janeiro, 21941-590, Brazil.
| | - Fernanda Martins de Almeida
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco F Sala F2-01, Rio de Janeiro, 21941-902, Brazil; Programa de Pós-graduação Em Medicina (Anatomia Patológica), Faculdade de Medicina, Universidade Federal Do Rio de Janeiro, R. Prof. Rodolpho Paulo Rocco, 255, Rio de Janeiro, 21941-590, Brazil.
| | - Ana Maria Blanco Martinez
- Programa de Pós-graduação Em Medicina (Anatomia Patológica), Faculdade de Medicina, Universidade Federal Do Rio de Janeiro, R. Prof. Rodolpho Paulo Rocco, 255, Rio de Janeiro, 21941-590, Brazil.
| | - José Garcia Abreu
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco F Sala F2-01, Rio de Janeiro, 21941-902, Brazil.
| | - Michael Levin
- Allen Discovery Center, Tufts University, School of Arts and Science, Department of Biology, Suite, 4600, Medford, MA, United States.
| | - Katia Carneiro
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco F Sala F2-01, Rio de Janeiro, 21941-902, Brazil; Programa de Pós-graduação Em Medicina (Anatomia Patológica), Faculdade de Medicina, Universidade Federal Do Rio de Janeiro, R. Prof. Rodolpho Paulo Rocco, 255, Rio de Janeiro, 21941-590, Brazil.
| |
Collapse
|
5
|
Mosser DM, Hamidzadeh K, Goncalves R. Macrophages and the maintenance of homeostasis. Cell Mol Immunol 2020; 18:579-587. [PMID: 32934339 PMCID: PMC7491045 DOI: 10.1038/s41423-020-00541-3] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
There have been many chapters written about macrophage polarization. These chapters generally focus on the role of macrophages in orchestrating immune responses by highlighting the T-cell-derived cytokines that shape these polarizing responses. This bias toward immunity is understandable, given the importance of macrophages to host defense. However, macrophages are ubiquitous and are involved in many different cellular processes, and describing them as immune cells is undoubtedly an oversimplification. It disregards their important roles in development, tissue remodeling, wound healing, angiogenesis, and metabolism, to name just a few processes. In this chapter, we propose that macrophages function as transducers in the body. According to Wikipedia, “A transducer is a device that converts energy from one form to another.” The word transducer is a term used to describe both the “sensor,” which can interpret a wide range of energy forms, and the “actuator,” which can switch voltages or currents to affect the environment. Macrophages are able to sense a seemingly endless variety of inputs from their environment and transduce these inputs into a variety of different response outcomes. Thus, rather than functioning as immune cells, they should be considered more broadly as cellular transducers that interpret microenvironmental changes and actuate vital tissue responses. In this chapter, we will describe some of the sensory stimuli that macrophages perceive and the responses they make to these stimuli to achieve their prime directive, which is the maintenance of homeostasis.
Collapse
Affiliation(s)
- David M Mosser
- The Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, 20742, USA.
| | - Kajal Hamidzadeh
- The Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, 20742, USA
| | - Ricardo Goncalves
- The Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
Zhang L, Shi X, Gu C, Chen B, Wang M, Yu Y, Sun K, Zhang R. Identification of cell-to-cell interactions by ligand-receptor pairs in human fetal heart. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165917. [PMID: 32800943 DOI: 10.1016/j.bbadis.2020.165917] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/24/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
The heart is the first organ to form during embryogenesis and its development is a complex process. In this study, we identified 120 ligand-receptor pairs including 65 ligands and 58 receptors specifically expressed in one of the nine cell types. The correlation analysis of the cell proportions revealed that the cell-to-cell contact exhibited spatial patterns in human fetal heart. Specifically, the cardiomyocytes (CMs) proportion might have negative correlation with proportion of endothelial cell in left atrium and ventricle during the heart development. In contrast, fibroblast-like cells and macrophages were jointly increased with the gestation. Furthermore, the ligand in CM, NPPA (Natriuretic Peptide A), and receptor in endothelial cell (EC), NPR3 (Natriuretic Peptide Receptor 3), were specifically expressed in atrial CM and endocardial cells, respectively, indicating that the atrial CM might communicate with endocardial cells via NPPA-NRP3 interaction. Moreover, the interplay between fibroblast-like cell and macrophage was observed in both left and right atriums via the ligand-receptor interactions of COL1A1/COL1A2 (Collagen Type I Alpha 1/2 Chain)-CD36 and CTGF (connective tissue growth factor)-ITGB2 (Integrin Subunit Beta 2). Functional enrichment analysis revealed that the ligand-receptor interactions might be associated with the intracellular activation of cGMP-PKG signaling pathway in ECs, PDGF-beta signaling pathway in fibroblast-like cell, and Toll-like receptor signaling in macrophage, respectively. Collectively, the present study unveiled the potential cell-cell communication and underlying mechanism involved in cardiac development, which broadened our insights into developmental biology of heart.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE, School of Statistics, East China Normal University, Shanghai, China
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China; Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Gu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bo Chen
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Wang
- Department of Cardiology, Huadong Hospital, Fudan University, Shanghai, China
| | - Yu Yu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Institute for Development and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Riquan Zhang
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE, School of Statistics, East China Normal University, Shanghai, China.
| |
Collapse
|
7
|
Hwang WY, Marquez J, Khokha MK. Xenopus: Driving the Discovery of Novel Genes in Patient Disease and Their Underlying Pathological Mechanisms Relevant for Organogenesis. Front Physiol 2019; 10:953. [PMID: 31417417 PMCID: PMC6682594 DOI: 10.3389/fphys.2019.00953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
Frog model organisms have been appreciated for their utility in exploring physiological phenomena for nearly a century. Now, a vibrant community of biologists that utilize this model organism has poised Xenopus to serve as a high throughput vertebrate organism to model patient-driven genetic diseases. This has facilitated the investigation of effects of patient mutations on specific organs and signaling pathways. This approach promises a rapid investigation into novel mechanisms that disrupt normal organ morphology and function. Considering that many disease states are still interrogated in vitro to determine relevant biological processes for further study, the prospect of interrogating genetic disease in Xenopus in vivo is an attractive alternative. This model may more closely capture important aspects of the pathology under investigation such as cellular micro environments and local forces relevant to a specific organ's development and homeostasis. This review aims to highlight recent methodological advances that allow investigation of genetic disease in organ-specific contexts in Xenopus as well as provide examples of how these methods have led to the identification of novel mechanisms and pathways important for understanding human disease.
Collapse
Affiliation(s)
| | | | - Mustafa K. Khokha
- Department of Pediatrics and Genetics, The Pediatric Genomics Discovery Program, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
8
|
DeBerge M, Zhang S, Glinton K, Grigoryeva L, Hussein I, Vorovich E, Ho K, Luo X, Thorp EB. Efferocytosis and Outside-In Signaling by Cardiac Phagocytes. Links to Repair, Cellular Programming, and Intercellular Crosstalk in Heart. Front Immunol 2017; 8:1428. [PMID: 29163503 PMCID: PMC5671945 DOI: 10.3389/fimmu.2017.01428] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022] Open
Abstract
Phagocytic sensing and engulfment of dying cells and extracellular bodies initiate an intracellular signaling cascade within the phagocyte that can polarize cellular function and promote communication with neighboring non-phagocytes. Accumulating evidence links phagocytic signaling in the heart to cardiac development, adult myocardial homeostasis, and the resolution of cardiac inflammation of infectious, ischemic, and aging-associated etiology. Phagocytic clearance in the heart may be carried out by professional phagocytes, such as macrophages, and non-professional cells, including myofibrolasts and potentially epithelial cells. During cardiac development, phagocytosis initiates growth cues for early cardiac morphogenesis. In diseases of aging, including myocardial infarction, heightened levels of cell death require efficient phagocytic debridement to salvage further loss of terminally differentiated adult cardiomyocytes. Additional risk factors, including insulin resistance and other systemic risk factors, contribute to inefficient phagocytosis, altered phagocytic signaling, and delayed cardiac inflammation resolution. Under such conditions, inflammatory presentation of myocardial antigen may lead to autoimmunity and even possible rejection of transplanted heart allografts. Increased understanding of these basic mechanisms offers therapeutic opportunities.
Collapse
Affiliation(s)
- Matthew DeBerge
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Shuang Zhang
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kristofor Glinton
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Luba Grigoryeva
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Islam Hussein
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Esther Vorovich
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Karen Ho
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Xunrong Luo
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Edward B Thorp
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
9
|
Imai Y, Ishida K, Nemoto M, Nakata K, Kato T, Maéno M. Multiple origins of embryonic and tadpole myeloid cells in Xenopus laevis. Cell Tissue Res 2017; 369:341-352. [PMID: 28374149 DOI: 10.1007/s00441-017-2601-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 02/23/2017] [Indexed: 11/25/2022]
Abstract
Rabbit anti-serum against a myeloid-cell-specific peroxidase (Mpo) of Xenopus laevis was generated to identify myeloid cells in adult and larval animals. Smears of blood samples from adult hematopoietic organs were co-stained with Mpo and with XL-2, a mouse monoclonal antibody against a leukocyte common antigen. Lymphocytes found in the thymus and spleen were XL-2+Mpo- and granulocytes found in peripheral blood cells and the spleen were XL-2+Mpo+, indicating that double-staining with these two antibodies allowed classification of the leukocyte lineages. Immunohistochemical analysis of larval organs showed that XL-2+Mpo- cells were scattered throughout the liver, whereas XL-2+Mpo+ cells were present mainly in the cortex region. Interestingly, a cluster of XL-2+Mpo+ cells was found in the region of the larval mesonephric rudiment. The ratio of XL-2+Mpo+ cells to XL-2+ cells in the mesonephric region was approximately 80%, which was much higher than that found in other hematopoietic organs. In order to elucidate the embryonic origin of the myeloid cells in the tadpole mesonephros, grafting experiments between X. laevis and X. borealis embryos were performed to trace the X. borealis cells as donor cells. Among the embryonic tissues examined, the tailbud tissue at the early neurula stage contributed greatly to the myeloid cluster in the mesonephric region at stage 48. Therefore, at least four independent origins of the myeloid cell population can be traced in the Xenopus embryo.
Collapse
Affiliation(s)
- Yasutaka Imai
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Keisuke Ishida
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Maya Nemoto
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Keisuke Nakata
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Takashi Kato
- Department of Biology, School of Education, Center for Advanced Biomedical Science, Waseda University, TWIns building, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Mitsugu Maéno
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan.
| |
Collapse
|
10
|
Abstract
Macrophages are found in all tissues and regulate tissue morphogenesis during development through trophic and scavenger functions. The colony stimulating factor-1 (CSF-1) receptor (CSF-1R) is the major regulator of tissue macrophage development and maintenance. In combination with receptor activator of nuclear factor κB (RANK), the CSF-1R also regulates the differentiation of the bone-resorbing osteoclast and controls bone remodeling during embryonic and early postnatal development. CSF-1R-regulated macrophages play trophic and remodeling roles in development. Outside the mononuclear phagocytic system, the CSF-1R directly regulates neuronal survival and differentiation, the development of intestinal Paneth cells and of preimplantation embryos, as well as trophoblast innate immune function. Consistent with the pleiotropic roles of the receptor during development, CSF-1R deficiency in most mouse strains causes embryonic or perinatal death and the surviving mice exhibit multiple developmental and functional deficits. The CSF-1R is activated by two dimeric glycoprotein ligands, CSF-1, and interleukin-34 (IL-34). Homozygous Csf1-null mutations phenocopy most of the deficits of Csf1r-null mice. In contrast, Il34-null mice have no gross phenotype, except for decreased numbers of Langerhans cells and microglia, indicating that CSF-1 plays the major developmental role. Homozygous inactivating mutations of the Csf1r or its ligands have not been reported in man. However, heterozygous inactivating mutations in the Csf1r lead to a dominantly inherited adult-onset progressive dementia, highlighting the importance of CSF-1R signaling in the brain.
Collapse
Affiliation(s)
- Violeta Chitu
- Albert Einstein College of Medicine, Bronx, NY, United States
| | | |
Collapse
|
11
|
Smith SJ, Towers N, Saldanha JW, Shang CA, Mahmood SR, Taylor WR, Mohun TJ. The cardiac-restricted protein ADP-ribosylhydrolase-like 1 is essential for heart chamber outgrowth and acts on muscle actin filament assembly. Dev Biol 2016; 416:373-88. [PMID: 27217161 PMCID: PMC4990356 DOI: 10.1016/j.ydbio.2016.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 12/22/2022]
Abstract
Adprhl1, a member of the ADP-ribosylhydrolase protein family, is expressed exclusively in the developing heart of all vertebrates. In the amphibian Xenopus laevis, distribution of its mRNA is biased towards actively growing chamber myocardium. Morpholino oligonucleotide-mediated knockdown of all Adprhl1 variants inhibits striated myofibril assembly and prevents outgrowth of the ventricle. The resulting ventricles retain normal electrical conduction and express markers of chamber muscle differentiation but are functionally inert. Using a cardiac-specific Gal4 binary expression system, we show that the abundance of Adprhl1 protein in tadpole hearts is tightly controlled through a negative regulatory mechanism targeting the 5′-coding sequence of Xenopus adprhl1. Over-expression of full length (40 kDa) Adprhl1 variants modified to escape such repression, also disrupts cardiac myofibrillogenesis. Disarrayed myofibrils persist that show extensive branching, with sarcomere division occurring at the actin-Z-disc boundary. Ultimately, Adprhl1-positive cells contain thin actin threads, connected to numerous circular branch points. Recombinant Adprhl1 can localize to stripes adjacent to the Z-disc, suggesting a direct role for Adprhl1 in modifying Z-disc and actin dynamics as heart chambers grow. Modelling the structure of Adprhl1 suggests this cardiac-specific protein is a pseudoenzyme, lacking key residues necessary for ADP-ribosylhydrolase catalytic activity. Adprhl1 is expressed exclusively in the heart of all vertebrates. Morpholino knockdown of Adprhl1 prevents outgrowth of the ventricle. Elevated 40 kDa Adprhl1 produces disarrayed myofibrils that show extensive branching. The 5′-coding sequence of Xenopus adprhl1 influences the synthesis of Adprhl1 protein. Two Adprhl1 proteins, 40+23 kDa exist in Xenopus embryos and are conserved in mouse.
Collapse
Affiliation(s)
- Stuart J Smith
- Heart Formation in Vertebrates Laboratory, The Francis Crick Institute - Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Norma Towers
- Heart Formation in Vertebrates Laboratory, The Francis Crick Institute - Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - José W Saldanha
- Mathematical Biology Laboratory, The Francis Crick Institute - Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Catherine A Shang
- Heart Formation in Vertebrates Laboratory, The Francis Crick Institute - Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - S Radma Mahmood
- Experimental Histopathology, The Francis Crick Institute - Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - William R Taylor
- Mathematical Biology Laboratory, The Francis Crick Institute - Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Timothy J Mohun
- Heart Formation in Vertebrates Laboratory, The Francis Crick Institute - Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
12
|
Agricola ZN, Jagpal AK, Allbee AW, Prewitt AR, Shifley ET, Rankin SA, Zorn AM, Kenny AP. Identification of genes expressed in the migrating primitive myeloid lineage of Xenopus laevis. Dev Dyn 2015; 245:47-55. [PMID: 26264370 DOI: 10.1002/dvdy.24314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/23/2015] [Accepted: 07/13/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND During primitive hematopoiesis in Xenopus, cebpa and spib expressing myeloid cells emerge from the anterior ventral blood island. Primitive myeloid cells migrate throughout the embryo and are critical for immunity, healing, and development. Although definitive hematopoiesis has been studied extensively, molecular mechanisms leading to the migration of primitive myelocytes remain poorly understood. We hypothesized these cells have specific extracellular matrix modifying and cell motility gene expression. RESULTS In situ hybridization screens of transcripts expressed in Xenopus foregut mesendoderm at stage 23 identified seven genes with restricted expression in primitive myeloid cells: destrin; coronin actin binding protein, 1a; formin-like 1; ADAM metallopeptidase domain 28; cathepsin S; tissue inhibitor of metalloproteinase-1; and protein tyrosine phosphatase nonreceptor 6. A detailed in situ hybridization analysis revealed these genes are initially expressed in the aVBI but become dispersed throughout the embryo as the primitive myeloid cells become migratory, similar to known myeloid markers. Morpholino-mediated loss-of-function and mRNA-mediated gain-of-function studies revealed the identified genes are downstream of Spib.a and Cebpa, key transcriptional regulators of the myeloid lineage. CONCLUSIONS We have identified genes specifically expressed in migratory primitive myeloid progenitors, providing tools to study how different gene networks operate in these primitive myelocytes during development and immunity.
Collapse
Affiliation(s)
- Zachary N Agricola
- Perinatal Institute, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio.,Division of Neonatology, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Amrita K Jagpal
- Perinatal Institute, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio.,Division of Neonatology, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Andrew W Allbee
- Perinatal Institute, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio.,Division of Neonatology, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Allison R Prewitt
- Perinatal Institute, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio.,Division of Neonatology, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Emily T Shifley
- Perinatal Institute, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio.,Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Scott A Rankin
- Perinatal Institute, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio.,Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Aaron M Zorn
- Perinatal Institute, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio.,Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Alan P Kenny
- Perinatal Institute, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio.,Division of Neonatology, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
13
|
Sakata H, Maéno M. Nkx2.5 is involved in myeloid cell differentiation at anterior ventral blood islands in the Xenopus embryo. Dev Growth Differ 2014; 56:544-54. [PMID: 25283688 DOI: 10.1111/dgd.12155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 11/28/2022]
Abstract
We have shown previously that two populations of myeloid cells emerge in the anterior and posterior ventral blood islands (aVBI and pVBI) at the different stages in Xenopus laevis embryo. In order to elucidate the regulatory mechanism of myeloid cell differentiation in the aVBI, we examined the role of Nkx2.5, an essential transcription factor for heart differentiation, in regulation of the myeloid cell differentiation in this region. Knockdown of endogenous Nkx2.5 by introducing MO into the dorsal marginal zone (DMZ) suppressed the expression of MHCα as well as that of mpo and spib in the resultant embryos and in DMZ explants made from the injected embryos. Expression of c/ebpα was less affected in the embryos injected with Nkx2.5 MO. The effect of Nkx2.5 MO in myeloid cell differentiation was recovered by coinjection of nkx2.5 or c/ebpα mRNA, indicating that Nkx2.5 functions at the same or the upper level of C/EBPα for the specification of myeloid cells. An attempt to identify transcription factors for myeloid cell differentiation in ventral marginal zone (VMZ) explants demonstrated that coinjection of two transcription factors out of three factors, namely C/EBPα, Nkx2.5 and GATA4, was sufficient to induce a certain amount of mpo expression. We suggest that C/EBPα is an unequivocal factor for myeloid cell differentiation in the aVBI and that Nkx2.5 and GATA4 cooperate with C/EBPα for promotion of myeloid cell differentiation.
Collapse
Affiliation(s)
- Hiroyuki Sakata
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | | |
Collapse
|
14
|
Jones CV, Ricardo SD. Macrophages and CSF-1: implications for development and beyond. Organogenesis 2013; 9:249-60. [PMID: 23974218 DOI: 10.4161/org.25676] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent focus on the diversity of macrophage phenotype and function signifies that these trophic cells are no longer of exclusive interest to the field of immunology. As key orchestrators of organogenesis, the contribution of macrophages to fetal development is worthy of greater attention. This review summarizes the key functions of macrophages and their primary regulator, colony-stimulating factor (CSF)-1, during development; highlighting trophic mechanisms beyond phagocytosis and outlining their roles in a range of developing organ systems. Advances in the understanding of macrophage polarization and functional heterogeneity are discussed from a developmental perspective. In addition, this review highlights the relevance of CSF-1 as a pleiotropic developmental growth factor and summarizes recent experimental evidence and clinical advancements in the area of CSF-1 and macrophage manipulation in reproduction and organogenic settings. Interrogation of embryonic macrophages also has implications beyond development, with recent attention focused on yolk sac macrophage ontogeny and their role in homeostasis and mediating tissue regeneration. The regulatory networks that govern development involve a complex range of growth factors, signaling pathways and transcriptional regulators arising from epithelial, mesenchymal and stromal origins. A component of the organogenic milieu common to the majority of developing organs is the tissue macrophage. These hemopoietic cells are part of the mononuclear phagocyte system regulated primarily by colony-stimulating factor (CSF)-1 (1, 2). There is a resurgence in the field of CSF-1 and macrophage biology; where greater understanding of the heterogeneity of these cells is revealing contributions to tissue repair and regeneration beyond the phagocytic and inflammatory functions for which they were traditionally ascribed (3-6). The accumulation of macrophages during tissue injury is no longer viewed as simply a surrogate for disease severity, with macrophages now known to be vital in governing tissue regeneration in many settings (7-11). In particular it is the influence of CSF-1 in regulating an alternative macrophage activation state that is increasingly linked to organ repair in a range of disease models (12-17). With many similarities drawn between organogenesis and regeneration, it is pertinent to re-examine the role of CSF-1 and macrophages in organ development.
Collapse
Affiliation(s)
- Christina V Jones
- Department of Anatomy and Developmental Biology; Monash University; Clayton, VIC Australia
| | - Sharon D Ricardo
- Department of Anatomy and Developmental Biology; Monash University; Clayton, VIC Australia
| |
Collapse
|
15
|
del Viso F, Bhattacharya D, Kong Y, Gilchrist MJ, Khokha MK. Exon capture and bulk segregant analysis: rapid discovery of causative mutations using high-throughput sequencing. BMC Genomics 2012; 13:649. [PMID: 23171430 PMCID: PMC3526394 DOI: 10.1186/1471-2164-13-649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/15/2012] [Indexed: 11/21/2022] Open
Abstract
Background Exome sequencing has transformed human genetic analysis and may do the same for other vertebrate model systems. However, a major challenge is sifting through the large number of sequence variants to identify the causative mutation for a given phenotype. In models like Xenopus tropicalis, an incomplete and occasionally incorrect genome assembly compounds this problem. To facilitate cloning of X. tropicalis mutants identified in forward genetic screens, we sought to combine bulk segregant analysis and exome sequencing into a single step. Results Here we report the first use of exon capture sequencing to identify mutations in a non-mammalian, vertebrate model. We demonstrate that bulk segregant analysis coupled with exon capture sequencing is not only able to identify causative mutations but can also generate linkage information, facilitate the assembly of scaffolds, identify misassembles, and discover thousands of SNPs for fine mapping. Conclusion Exon capture sequencing and bulk segregant analysis is a rapid, inexpensive method to clone mutants identified in forward genetic screens. With sufficient meioses, this method can be generalized to any model system with a genome assembly, polished or unpolished, and in the latter case, it also provides many critical genomic resources.
Collapse
Affiliation(s)
- Florencia del Viso
- Department of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|