1
|
Tintó-Font E, Cortés A. Malaria parasites do respond to heat. Trends Parasitol 2022; 38:435-449. [PMID: 35301987 DOI: 10.1016/j.pt.2022.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/09/2023]
Abstract
The capacity of malaria parasites to respond to changes in their environment at the transcriptional level has been the subject of debate, but recent evidence has unambiguously demonstrated that Plasmodium spp. can produce adaptive transcriptional responses when exposed to some specific types of stress. These include metabolic conditions and febrile temperature. The Plasmodium falciparum protective response to thermal stress is similar to the response in other organisms, but it is regulated by a transcription factor evolutionarily unrelated to the conserved transcription factor that drives the heat shock (HS) response in most eukaryotes. Of the many genes that change expression during HS, only a subset constitutes an authentic response that contributes to parasite survival.
Collapse
Affiliation(s)
- Elisabet Tintó-Font
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Alfred Cortés
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain; ICREA, Barcelona 08010, Catalonia, Spain.
| |
Collapse
|
2
|
Tintó-Font E, Michel-Todó L, Russell TJ, Casas-Vila N, Conway DJ, Bozdech Z, Llinás M, Cortés A. A heat-shock response regulated by the PfAP2-HS transcription factor protects human malaria parasites from febrile temperatures. Nat Microbiol 2021; 6:1163-1174. [PMID: 34400833 PMCID: PMC8390444 DOI: 10.1038/s41564-021-00940-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Periodic fever is a characteristic clinical feature of human malaria, but how parasites survive febrile episodes is not known. Although the genomes of Plasmodium species encode a full set of chaperones, they lack the conserved eukaryotic transcription factor HSF1, which activates the expression of chaperones following heat shock. Here, we show that PfAP2-HS, a transcription factor in the ApiAP2 family, regulates the protective heat-shock response in Plasmodium falciparum. PfAP2-HS activates the transcription of hsp70-1 and hsp90 at elevated temperatures. The main binding site of PfAP2-HS in the entire genome coincides with a tandem G-box DNA motif in the hsp70-1 promoter. Engineered parasites lacking PfAP2-HS have reduced heat-shock survival and severe growth defects at 37 °C but not at 35 °C. Parasites lacking PfAP2-HS also have increased sensitivity to imbalances in protein homeostasis (proteostasis) produced by artemisinin, the frontline antimalarial drug, or the proteasome inhibitor epoxomicin. We propose that PfAP2-HS contributes to the maintenance of proteostasis under basal conditions and upregulates specific chaperone-encoding genes at febrile temperatures to protect the parasite against protein damage.
Collapse
Affiliation(s)
- Elisabet Tintó-Font
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Lucas Michel-Todó
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Timothy J. Russell
- Department of Biochemistry & Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park 16802, PA, USA
| | - Núria Casas-Vila
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - David J. Conway
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park 16802, PA, USA,Department of Chemistry, Pennsylvania State University, University Park 16802, PA, USA
| | - Alfred Cortés
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona 08036, Catalonia, Spain,ICREA, Barcelona 08010, Catalonia, Spain,Correspondence: (Alfred Cortés)
| |
Collapse
|
3
|
Sahu T, Gehrke EJ, Flores-Garcia Y, Mlambo G, Romano JD, Coppens I. Chemoprophylaxis vaccination with a Plasmodium liver stage autophagy mutant affords enhanced and long-lasting protection. NPJ Vaccines 2021; 6:98. [PMID: 34376691 PMCID: PMC8355287 DOI: 10.1038/s41541-021-00360-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 07/06/2021] [Indexed: 11/09/2022] Open
Abstract
Genetically attenuated sporozoite vaccines can elicit long-lasting protection against malaria but pose risks of breakthrough infection. Chemoprophylaxis vaccination (CVac) has proven to be the most effective vaccine strategy against malaria. Here, we demonstrate that a liver stage-specific autophagy mutant of Plasmodium berghei (ATG8 overexpressor), when used as a live vaccine under a CVac regimen, provides superior long-lasting protection, in both inbred and outbred mice, as compared to WT-CVac. Uniquely, the protection elicited by this mutant is predominantly dependent on a CD8+ T-cell response through an IFN-γ-independent mechanism and is associated with a stable population of antigen-experienced CD8+ T cells. Jointly, our findings support the exploitation of liver-stage mutants as vaccines under a CVac protocol. This vaccination strategy is also a powerful model to study the mechanisms of protective immunity and discover new protective antigens.
Collapse
Affiliation(s)
- Tejram Sahu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Ella J Gehrke
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Godfree Mlambo
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Julia D Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
4
|
Messenger RNAs with large numbers of upstream open reading frames are translated via leaky scanning and reinitiation in the asexual stages of Plasmodium falciparum. Parasitology 2020; 147:1100-1113. [DOI: 10.1017/s0031182020000840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe genome of Plasmodium falciparum has one of the most skewed base-pair compositions of any eukaryote, with an AT content of 80–90%. As start and stop codons are AT-rich, the probability of finding upstream open reading frames (uORFs) in messenger RNAs (mRNAs) is high and parasite mRNAs have an average of 11 uORFs in their leader sequences. Similar to other eukaryotes, uORFs repress the translation of the downstream open reading frame (dORF) in P. falciparum, yet the parasite translation machinery is able to bypass these uORFs and reach the dORF to initiate translation. This can happen by leaky scanning and/or reinitiation.In this report, we assessed leaky scanning and reinitiation by studying the effect of uORFs on the translation of a dORF, in this case, the luciferase reporter gene, and showed that both mechanisms are employed in the asexual blood stages of P. falciparum. Furthermore, in addition to the codon usage of the uORF, translation of the dORF is governed by the Kozak sequence and length of the uORF, and inter-cistronic distance between the uORF and dORF. Based on these features whole-genome data was analysed to uncover classes of genes that might be regulated by uORFs. This study indicates that leaky scanning and reinitiation appear to be widespread in asexual stages of P. falciparum, which may require modifications of existing factors that are involved in translation initiation in addition to novel, parasite-specific proteins.
Collapse
|
5
|
Toenhake CG, Bártfai R. What functional genomics has taught us about transcriptional regulation in malaria parasites. Brief Funct Genomics 2019; 18:290-301. [PMID: 31220867 PMCID: PMC6859821 DOI: 10.1093/bfgp/elz004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/08/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
Malaria parasites are characterized by a complex life cycle that is accompanied by dynamic gene expression patterns. The factors and mechanisms that regulate gene expression in these parasites have been searched for even before the advent of next generation sequencing technologies. Functional genomics approaches have substantially boosted this area of research and have yielded significant insights into the interplay between epigenetic, transcriptional and post-transcriptional mechanisms. Recently, considerable progress has been made in identifying sequence-specific transcription factors and DNA-encoded regulatory elements. Here, we review the insights obtained from these efforts including the characterization of core promoters, the involvement of sequence-specific transcription factors in life cycle progression and the mapping of gene regulatory elements. Furthermore, we discuss recent developments in the field of functional genomics and how they might contribute to further characterization of this complex gene regulatory network.
Collapse
Affiliation(s)
- Christa G Toenhake
- Radboud University, Faculty of Science, Department of Molecular Biology, Nijmegen, the Netherlands
| | - Richárd Bártfai
- Radboud University, Faculty of Science, Department of Molecular Biology, Nijmegen, the Netherlands
| |
Collapse
|
6
|
Ruiz JL, Tena JJ, Bancells C, Cortés A, Gómez-Skarmeta JL, Gómez-Díaz E. Characterization of the accessible genome in the human malaria parasite Plasmodium falciparum. Nucleic Acids Res 2019; 46:9414-9431. [PMID: 30016465 PMCID: PMC6182165 DOI: 10.1093/nar/gky643] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022] Open
Abstract
Human malaria is a devastating disease and a major cause of poverty in resource-limited countries. To develop and adapt within hosts Plasmodium falciparum undergoes drastic switches in gene expression. To identify regulatory regions in the parasite genome, we performed genome-wide profiling of chromatin accessibility in two culture-adapted isogenic subclones at four developmental stages during the intraerythrocytic cycle by using the Assay for Transposase-Accessible Chromatin by sequencing (ATAC-seq). Tn5 transposase hypersensitivity sites (THSSs) localize preferentially at transcriptional start sites (TSSs). Chromatin accessibility by ATAC-seq is predictive of active transcription and of the levels of histone marks H3K9ac and H3K4me3. Our assay allows the identification of novel regulatory regions including TSS and enhancer-like elements. We show that the dynamics in the accessible chromatin profile matches temporal transcription during development. Motif analysis of stage-specific ATAC-seq sites predicts the in vivo binding sites and function of multiple ApiAP2 transcription factors. At last, the alternative expression states of some clonally variant genes (CVGs), including eba, phist, var and clag genes, associate with a differential ATAC-seq signal at their promoters. Altogether, this study identifies genome-wide regulatory regions likely to play an essential function in the developmental transitions and in CVG expression in P. falciparum.
Collapse
Affiliation(s)
- José Luis Ruiz
- Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas, Seville 41092, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville 41013, Spain
| | - Cristina Bancells
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia 08036, Spain
| | - Alfred Cortés
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia 08036, Spain.,ICREA, Barcelona, Catalonia 08010, Spain
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville 41013, Spain
| | - Elena Gómez-Díaz
- Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas, Seville 41092, Spain.,Instituto de Parasitología y Biomedicina 'López-Neyra' (IPBLN), Consejo Superior de Investigaciones Científicas, Granada 18016, Spain
| |
Collapse
|
7
|
Toenhake CG, Fraschka SAK, Vijayabaskar MS, Westhead DR, van Heeringen SJ, Bártfai R. Chromatin Accessibility-Based Characterization of the Gene Regulatory Network Underlying Plasmodium falciparum Blood-Stage Development. Cell Host Microbe 2018; 23:557-569.e9. [PMID: 29649445 PMCID: PMC5899830 DOI: 10.1016/j.chom.2018.03.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/05/2018] [Accepted: 03/05/2018] [Indexed: 02/07/2023]
Abstract
Underlying the development of malaria parasites within erythrocytes and the resulting pathogenicity is a hardwired program that secures proper timing of gene transcription and production of functionally relevant proteins. How stage-specific gene expression is orchestrated in vivo remains unclear. Here, using the assay for transposase accessible chromatin sequencing (ATAC-seq), we identified ∼4,000 regulatory regions in P. falciparum intraerythrocytic stages. The vast majority of these sites are located within 2 kb upstream of transcribed genes and their chromatin accessibility pattern correlates positively with abundance of the respective mRNA transcript. Importantly, these regions are sufficient to drive stage-specific reporter gene expression and DNA motifs enriched in stage-specific sets of regulatory regions interact with members of the P. falciparum AP2 transcription factor family. Collectively, this study provides initial insights into the in vivo gene regulatory network of P. falciparum intraerythrocytic stages and should serve as a valuable resource for future studies.
Collapse
Affiliation(s)
- Christa Geeke Toenhake
- Radboud University, Faculty of Science, Department of Molecular Biology, Nijmegen, 6525 GA, the Netherlands
| | | | | | - David Robert Westhead
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Simon Jan van Heeringen
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Nijmegen, 6525 GA, the Netherlands
| | - Richárd Bártfai
- Radboud University, Faculty of Science, Department of Molecular Biology, Nijmegen, 6525 GA, the Netherlands.
| |
Collapse
|
8
|
Ebrahimzadeh Z, Mukherjee A, Richard D. A map of the subcellular distribution of phosphoinositides in the erythrocytic cycle of the malaria parasite Plasmodium falciparum. Int J Parasitol 2017; 48:13-25. [PMID: 29154995 DOI: 10.1016/j.ijpara.2017.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/22/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022]
Abstract
Despite representing a small percentage of the cellular lipids of eukaryotic cells, phosphoinositides (PIPs) are critical in various processes such as intracellular trafficking and signal transduction. Central to their various functions is the differential distribution of PIP species to specific membrane compartments through the actions of kinases, phosphatases and lipases. Despite their importance in the malaria parasite lifecycle, the subcellular distribution of most PIP species in this organism is still unknown. We here localise several species of PIPs throughout the erythrocytic cycle of Plasmodium falciparum. We show that PI3P is mostly found at the apicoplast and the membrane of the food vacuole, that PI4P associates with the Golgi apparatus and the plasma membrane and that PI(4,5)P2, in addition to being detected at the plasma membrane, labels some cavity-like spherical structures. Finally, we show that the elusive PI5P localises to the plasma membrane, the nucleus and potentially to the transitional endoplasmic reticulum (ER). Our map of the subcellular distribution of PIP species in P. falciparum will be a useful tool to shed light on the dynamics of these lipids in this deadly parasite.
Collapse
Affiliation(s)
- Zeinab Ebrahimzadeh
- Centre de recherche en infectiologie, CRCHU de Québec-Université Laval, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada
| | - Angana Mukherjee
- Centre de recherche en infectiologie, CRCHU de Québec-Université Laval, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada
| | - Dave Richard
- Centre de recherche en infectiologie, CRCHU de Québec-Université Laval, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
9
|
Ubhe S, Rawat M, Verma S, Anamika K, Karmodiya K. Genome-wide identification of novel intergenic enhancer-like elements: implications in the regulation of transcription in Plasmodium falciparum. BMC Genomics 2017; 18:656. [PMID: 28836940 PMCID: PMC5569477 DOI: 10.1186/s12864-017-4052-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 08/11/2017] [Indexed: 01/28/2023] Open
Abstract
Background The molecular mechanisms of transcriptional regulation are poorly understood in Plasmodium falciparum. In addition, most of the genes in Plasmodium falciparum are transcriptionally poised and only a handful of cis-regulatory elements are known to operate in transcriptional regulation. Here, we employed an epigenetic signature based approach to identify significance of previously uncharacterised intergenic regions enriched with histone modification marks leading to discovery of enhancer-like elements. Results We found that enhancer-like elements are significantly enriched with H3K4me1, generate unique non-coding bi-directional RNAs and majority of them can function as cis-regulators. Furthermore, functional enhancer reporter assay demonstrates that the enhancer-like elements regulate transcription of target genes in Plasmodium falciparum. Our study also suggests that the Plasmodium genome segregates functionally related genes into discrete housekeeping and pathogenicity/virulence clusters, presumably for robust transcriptional control of virulence/pathogenicity genes. Conclusions This report contributes to the understanding of parasite regulatory genomics by identification of enhancer-like elements, defining their epigenetic and transcriptional features and provides a resource of functional cis-regulatory elements that may give insights into the virulence/pathogenicity of Plasmodium falciparum. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4052-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suyog Ubhe
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, 411008, India
| | - Mukul Rawat
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, 411008, India
| | - Srikant Verma
- Labs, Persistent Systems Limited, Pingala - Aryabhata, Erandwane, Pune, 411004, India
| | - Krishanpal Anamika
- Labs, Persistent Systems Limited, Pingala - Aryabhata, Erandwane, Pune, 411004, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, 411008, India.
| |
Collapse
|
10
|
Claessens A, Affara M, Assefa SA, Kwiatkowski DP, Conway DJ. Culture adaptation of malaria parasites selects for convergent loss-of-function mutants. Sci Rep 2017; 7:41303. [PMID: 28117431 PMCID: PMC5259787 DOI: 10.1038/srep41303] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/19/2016] [Indexed: 12/30/2022] Open
Abstract
Cultured human pathogens may differ significantly from source populations. To investigate the genetic basis of laboratory adaptation in malaria parasites, clinical Plasmodium falciparum isolates were sampled from patients and cultured in vitro for up to three months. Genome sequence analysis was performed on multiple culture time point samples from six monoclonal isolates, and single nucleotide polymorphism (SNP) variants emerging over time were detected. Out of a total of five positively selected SNPs, four represented nonsense mutations resulting in stop codons, three of these in a single ApiAP2 transcription factor gene, and one in SRPK1. To survey further for nonsense mutants associated with culture, genome sequences of eleven long-term laboratory-adapted parasite strains were examined, revealing four independently acquired nonsense mutations in two other ApiAP2 genes, and five in Epac. No mutants of these genes exist in a large database of parasite sequences from uncultured clinical samples. This implicates putative master regulator genes in which multiple independent stop codon mutations have convergently led to culture adaptation, affecting most laboratory lines of P. falciparum. Understanding the adaptive processes should guide development of experimental models, which could include targeted gene disruption to adapt fastidious malaria parasite species to culture.
Collapse
Affiliation(s)
- Antoine Claessens
- London School of Hygiene and Tropical Medicine, London, UK
- Medical Research Council Unit The Gambia, Atlantic Road, Fajara, P.O. Box 273, Banjul, The Gambia
| | - Muna Affara
- Medical Research Council Unit The Gambia, Atlantic Road, Fajara, P.O. Box 273, Banjul, The Gambia
| | | | | | | |
Collapse
|
11
|
Overexpression of Plasmodium berghei ATG8 by Liver Forms Leads to Cumulative Defects in Organelle Dynamics and to Generation of Noninfectious Merozoites. mBio 2016; 7:mBio.00682-16. [PMID: 27353755 PMCID: PMC4937212 DOI: 10.1128/mbio.00682-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Plasmodium parasites undergo continuous cellular renovation to adapt to various environments in the vertebrate host and insect vector. In hepatocytes, Plasmodium berghei discards unneeded organelles for replication, such as micronemes involved in invasion. Concomitantly, intrahepatic parasites expand organelles such as the apicoplast that produce essential metabolites. We previously showed that the ATG8 conjugation system is upregulated in P. berghei liver forms and that P. berghei ATG8 (PbATG8) localizes to the membranes of the apicoplast and cytoplasmic vesicles. Here, we focus on the contribution of PbATG8 to the organellar changes that occur in intrahepatic parasites. We illustrated that micronemes colocalize with PbATG8-containing structures before expulsion from the parasite. Interference with PbATG8 function by overexpression results in poor development into late liver stages and production of small merosomes that contain immature merozoites unable to initiate a blood infection. At the cellular level, PbATG8-overexpressing P. berghei exhibits a delay in microneme compartmentalization into PbATG8-containing autophagosomes and elimination compared to parasites from the parental strain. The apicoplast, identifiable by immunostaining of the acyl carrier protein (ACP), undergoes an abnormally fast proliferation in mutant parasites. Over time, the ACP staining becomes diffuse in merosomes, indicating a collapse of the apicoplast. PbATG8 is not incorporated into the progeny of mutant parasites, in contrast to parental merozoites in which PbATG8 and ACP localize to the apicoplast. These observations reveal that Plasmodium ATG8 is a key effector in the development of merozoites by controlling microneme clearance and apicoplast proliferation and that dysregulation in ATG8 levels is detrimental for malaria infectivity. IMPORTANCE Malaria is responsible for more mortality than any other parasitic disease. Resistance to antimalarial medicines is a recurring problem; new drugs are urgently needed. A key to the parasite's successful intracellular development in the liver is the metabolic changes necessary to convert the parasite from a sporozoite to a replication-competent, metabolically active trophozoite form. Our study reinforces the burgeoning concept that organellar changes during parasite differentiation are mediated by an autophagy-like process. We have identified ATG8 in Plasmodium liver forms as an important effector that controls the development and fate of organelles, e.g., the clearance of micronemes that are required for hepatocyte invasion and the expansion of the apicoplast that produces many metabolites indispensable for parasite replication. Given the unconventional properties and the importance of ATG8 for parasite development in hepatocytes, targeting the parasite's autophagic pathway may represent a novel approach to control malarial infections.
Collapse
|
12
|
Hoo R, Zhu L, Amaladoss A, Mok S, Natalang O, Lapp SA, Hu G, Liew K, Galinski MR, Bozdech Z, Preiser PR. Integrated analysis of the Plasmodium species transcriptome. EBioMedicine 2016; 7:255-66. [PMID: 27322479 PMCID: PMC4909483 DOI: 10.1016/j.ebiom.2016.04.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 01/18/2023] Open
Abstract
The genome sequence available for different Plasmodium species is a valuable resource for understanding malaria parasite biology. However, comparative genomics on its own cannot fully explain all the species-specific differences which suggests that other genomic aspects such as regulation of gene expression play an important role in defining species-specific characteristics. Here, we developed a comprehensive approach to measure transcriptional changes of the evolutionary conserved syntenic orthologs during the intraerythrocytic developmental cycle across six Plasmodium species. We show significant transcriptional constraint at the mid-developmental stage of Plasmodium species while the earliest stages of parasite development display the greatest transcriptional variation associated with critical functional processes. Modeling of the evolutionary relationship based on changes in transcriptional profile reveal a phylogeny pattern of the Plasmodium species that strictly follows its mammalian hosts. In addition, the work shows that transcriptional conserved orthologs represent potential future targets for anti-malaria intervention as they would be expected to carry out key essential functions within the parasites. This work provides an integrated analysis of orthologous transcriptome, which aims to provide insights into the Plasmodium evolution thereby establishing a framework to explore complex pathways and drug discovery in Plasmodium species with broad host range. Comparison of variations in mRNA abundance across six different Plasmodium species. Transcriptional conservation and divergence of Plasmodium syntenic orthologs. Pattern of Plasmodium transcriptome evolution are established. Transcriptionally conserved orthologs represent attractive intervention targets.
Malaria remains a major public health concern despite global efforts in the fight against this disease. The intraerythrocytic stage of the malaria parasites is currently in the spotlight for anti-malarial intervention and vaccine targets. The primary goal of this study is to generate a comprehensive and directly comparable transcriptome dataset across multiple Plasmodium species originating from different hosts. We establish that specific pathways and intraerythrocytic stages are more transcriptionally diverged than others, reflecting transcriptional evolutionary diversity. We further propose a panel of transcriptionally conserved genes as potential drug targets.
Collapse
Affiliation(s)
- Regina Hoo
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Anburaj Amaladoss
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sachel Mok
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Onguma Natalang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Stacey A Lapp
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Guangan Hu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kingsley Liew
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, USA
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore.
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
13
|
Hakimi H, Yamagishi J, Kegawa Y, Kaneko O, Kawazu SI, Asada M. Establishment of transient and stable transfection systems for Babesia ovata. Parasit Vectors 2016; 9:171. [PMID: 27008652 PMCID: PMC4806448 DOI: 10.1186/s13071-016-1439-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/09/2016] [Indexed: 11/10/2022] Open
Abstract
Background Bovine babesiosis is a tick-borne disease caused by several species of Babesia which produce acute and fatal disease in cattle and affect livestock industry worldwide. Babesia ovata is a benign species widespread in east Asian countries and causes anemia, particularly in cattle which are co-infected with Theileria orientalis. The development of genetic manipulation methods is necessary to improve our understanding of the basic biology of protozoan pathogens toward a better control of disease. Such tools have not been developed for B. ovata, and are the aim of this study. Methods In this study we transfected constructs that were designed to evaluate the ability of several B. ovata promoter candidates to drive expression of a reporter luciferase. We found that the elongation factor-1 alpha intergenic region (ef-1α IG) and the actin 5’ non-coding region (NR) had highest promoter activities. To establish a stable transfection system, we generated a plasmid construct in which the ef-1α IG promoter drives gfp expression, and the actin 5’ NR mediates expression of the selectable marker hdhfr. The plasmid was designed for episomal transfection, as well as to integrate by double cross-over homologous recombination into the ef-1α locus. Circular or linearized plasmid was transfected by electroporation into in vitro cultured B. ovata and retention of the plasmid was facilitated by drug selection with 5 nM WR99210 initiated 48 h after transfection. Results After one-week cultivation with WR99210, GFP-expressing parasites were observed by fluorescence microscopy. Integration of the plasmid construct into the ef-1α locus was confirmed by PCR, Southern blot analysis, and sequencing of recombination sites. These results confirm successful development of a stable transfection system for B. ovata. Conclusion The current study provides a fundamental molecular tool to aid in molecular and cellular studies of B. ovata. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1439-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hassan Hakimi
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan.,Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, 001-0020, Japan
| | - Yuto Kegawa
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan.,Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
| | - Shin-Ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan.
| | - Masahito Asada
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan.
| |
Collapse
|
14
|
Siciliano G, Alano P. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research. Front Microbiol 2015; 6:391. [PMID: 26029172 PMCID: PMC4426725 DOI: 10.3389/fmicb.2015.00391] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/16/2015] [Indexed: 12/31/2022] Open
Abstract
The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.
Collapse
Affiliation(s)
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di SanitàRome, Italy
| |
Collapse
|
15
|
Yamagishi J, Wakaguri H, Yokoyama N, Yamashita R, Suzuki Y, Xuan X, Igarashi I. The Babesia bovis gene and promoter model: an update from full-length EST analysis. BMC Genomics 2014; 15:678. [PMID: 25124460 PMCID: PMC4148916 DOI: 10.1186/1471-2164-15-678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/08/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Babesia bovis is an apicomplexan parasite that causes babesiosis in infected cattle. Genomes of pathogens contain promising information that can facilitate the development of methods for controlling infections. Although the genome of B. bovis is publically available, annotated gene models are not highly reliable prior to experimental validation. Therefore, we validated a preproposed gene model of B. bovis and extended the associated annotations on the basis of experimentally obtained full-length expressed sequence tags (ESTs). RESULTS From in vitro cultured merozoites, 12,286 clones harboring full-length cDNAs were sequenced from both ends using the Sanger method, and 6,787 full-length cDNAs were assembled. These were then clustered, and a nonredundant referential data set of 2,115 full-length cDNA sequences was constructed. The comparison of the preproposed gene model with our data set identified 310 identical genes, 342 almost identical genes, 1,054 genes with potential structural inconsistencies, and 409 novel genes. The median length of 5' untranslated regions (UTRs) was 152 nt. Subsequently, we identified 4,086 transcription start sites (TSSs) and 2,023 transcriptionally active regions (TARs) by examining 5' ESTs. We identified ATGGGG and CCCCAT sites as consensus motifs in TARs that were distributed around -50 bp from TSSs. In addition, we found ACACA, TGTGT, and TATAT sites, which were distributed periodically around TSSs in cycles of approximately 150 bp. Moreover, related periodical distributions were not observed in mammalian promoter regions. CONCLUSIONS The observations in this study indicate the utility of integrated bioinformatics and experimental data for improving genome annotations. In particular, full-length cDNAs with one-base resolution for TSSs enabled the identification of consensus motifs in promoter sequences and demonstrated clear distributions of identified motifs. These observations allowed the illustration of a model promoter composition, which supports the differences in transcriptional regulation frameworks between apicomplexan parasites and mammals.
Collapse
Affiliation(s)
- Junya Yamagishi
- />Tohoku Medical Megabank Organization, Tohoku University, 6-3-09, aza Aoba, Sendai, Miyagi 980-8579 Japan
- />National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho west 2-13, Obihiro, Hokkaido 080-8555 Japan
| | - Hiroyuki Wakaguri
- />Department of Medical Genome Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562 Japan
| | - Naoaki Yokoyama
- />National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho west 2-13, Obihiro, Hokkaido 080-8555 Japan
| | - Riu Yamashita
- />Tohoku Medical Megabank Organization, Tohoku University, 6-3-09, aza Aoba, Sendai, Miyagi 980-8579 Japan
| | - Yutaka Suzuki
- />Department of Medical Genome Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562 Japan
| | - Xuenan Xuan
- />National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho west 2-13, Obihiro, Hokkaido 080-8555 Japan
| | - Ikuo Igarashi
- />National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho west 2-13, Obihiro, Hokkaido 080-8555 Japan
| |
Collapse
|
16
|
Oberstaller J, Joseph SJ, Kissinger JC. Genome-wide upstream motif analysis of Cryptosporidium parvum genes clustered by expression profile. BMC Genomics 2013; 14:516. [PMID: 23895416 PMCID: PMC3734150 DOI: 10.1186/1471-2164-14-516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/09/2013] [Indexed: 11/16/2022] Open
Abstract
Background There are very few molecular genetic tools available to study the apicomplexan parasite Cryptosporidium parvum. The organism is not amenable to continuous in vitro cultivation or transfection, and purification of intracellular developmental stages in sufficient numbers for most downstream molecular applications is difficult and expensive since animal hosts are required. As such, very little is known about gene regulation in C. parvum. Results We have clustered whole-genome gene expression profiles generated from a previous study of seven post-infection time points of 3,281 genes to identify genes that show similar expression patterns throughout the first 72 hours of in vitro epithelial cell culture. We used the algorithms MEME, AlignACE and FIRE to identify conserved, overrepresented DNA motifs in the upstream promoter region of genes with similar expression profiles. The most overrepresented motifs were E2F (5′-TGGCGCCA-3′); G-box (5′-G.GGGG-3′); a well-documented ApiAP2 binding motif (5′-TGCAT-3′), and an unknown motif (5′-[A/C] AACTA-3′). We generated a recombinant C. parvum DNA-binding protein domain from a putative ApiAP2 transcription factor [CryptoDB: cgd8_810] and determined its binding specificity using protein-binding microarrays. We demonstrate that cgd8_810 can putatively bind the overrepresented G-box motif, implicating this ApiAP2 in the regulation of many gene clusters. Conclusion Several DNA motifs were identified in the upstream sequences of gene clusters that might serve as potential cis-regulatory elements. These motifs, in concert with protein DNA binding site data, establish for the first time the beginnings of a global C. parvum gene regulatory map that will contribute to our understanding of the development of this zoonotic parasite.
Collapse
Affiliation(s)
- Jenna Oberstaller
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
17
|
Hasenkamp S, Russell K, Ullah I, Horrocks P. Functional analysis of the 5' untranslated region of the phosphoglutamase 2 transcript in Plasmodium falciparum. Acta Trop 2013; 127:69-74. [PMID: 23567550 DOI: 10.1016/j.actatropica.2013.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 01/07/2023]
Abstract
Plasmodium falciparum transcripts contain long untranslated regions (UTR), with some of the longest in any eukaryote that uses monocistronic transcription. Owing to the extreme AT nucleotide bias within the intergenic regions that encode these UTR, attempts to characterise how they are apportioned over genes and to describe their contribution to the absolute and temporal control of gene expression have been limited. Here we describe a study using a typical house-keeping gene that encodes phosphoglutamase 2 (PFD0660w), whose expression is subject to developmentally linked control during intraerythrocytic development. We show that deletion of a significant proportion (80%) of the predicted 5' UTR has no apparent effect on the developmentally linked expression of a luciferase reporter cassette. Further, serial deletions reveal that whilst the absolute level of transcription is unaffected when up to 50% of the predicted 5' UTR is removed, the subsequent efficiency of translation is affected. These data provide key insights into the interplay of transcriptional and post-transcriptional mechanisms in the control of gene expression in this important human pathogen.
Collapse
Affiliation(s)
- Sandra Hasenkamp
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, United Kingdom
| | | | | | | |
Collapse
|
18
|
Russell K, Hasenkamp S, Emes R, Horrocks P. Analysis of the spatial and temporal arrangement of transcripts over intergenic regions in the human malarial parasite Plasmodium falciparum. BMC Genomics 2013; 14:267. [PMID: 23601558 PMCID: PMC3681616 DOI: 10.1186/1471-2164-14-267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/06/2013] [Indexed: 11/25/2022] Open
Abstract
Background The ability of the human malarial parasite Plasmodium falciparum to invade, colonise and multiply within diverse host environments, as well as to manifest its virulence within the human host, are activities tightly linked to the temporal and spatial control of gene expression. Yet, despite the wealth of high throughput transcriptomic data available for this organism there is very little information regarding the location of key transcriptional landmarks or their associated cis-acting regulatory elements. Here we provide a systematic exploration of the size and organisation of transcripts within intergenic regions to yield surrogate information regarding transcriptional landmarks, and to also explore the spatial and temporal organisation of transcripts over these poorly characterised genomic regions. Results Utilising the transcript data for a cohort of 105 genes we demonstrate that the untranscribed regions of mRNA are large and apportioned predominantly to the 5′ end of the open reading frame. Given the relatively compact size of the P. falciparum genome, we suggest that whilst transcriptional units are likely to spatially overlap, temporal co-transcription of adjacent transcriptional units is actually limited. Critically, the size of intergenic regions is directly dependent on the orientation of the two transcriptional units arrayed over them, an observation we extend to an analysis of the complete sequences of twelve additional organisms that share moderately compact genomes. Conclusions Our study provides a theoretical framework that extends our current understanding of the transcriptional landscape across the P. falciparum genome. Demonstration of a consensus gene-spacing rule that is shared between P. falciparum and ten other moderately compact genomes of apicomplexan parasites reveals the potential for our findings to have a wider impact across a phylum that contains many organisms important to human and veterinary health.
Collapse
Affiliation(s)
- Karen Russell
- Institute for Science and Technology in Medicine, Keele University, Huxley Building, Staffordshire ST5 5BG, United Kingdom
| | | | | | | |
Collapse
|
19
|
Cai H, Hong C, Gu J, Lilburn TG, Kuang R, Wang Y. Module-based subnetwork alignments reveal novel transcriptional regulators in malaria parasite Plasmodium falciparum. BMC SYSTEMS BIOLOGY 2012; 6 Suppl 3:S5. [PMID: 23282319 PMCID: PMC3524314 DOI: 10.1186/1752-0509-6-s3-s5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Malaria causes over one million deaths annually, posing an enormous health and economic burden in endemic regions. The completion of genome sequencing of the causative agents, a group of parasites in the genus Plasmodium, revealed potential drug and vaccine candidates. However, genomics-driven target discovery has been significantly hampered by our limited knowledge of the cellular networks associated with parasite development and pathogenesis. In this paper, we propose an approach based on aligning neighborhood PPI subnetworks across species to identify network components in the malaria parasite P. falciparum. Results Instead of only relying on sequence similarities to detect functional orthologs, our approach measures the conservation between the neighborhood subnetworks in protein-protein interaction (PPI) networks in two species, P. falciparum and E. coli. 1,082 P. falciparum proteins were predicted as functional orthologs of known transcriptional regulators in the E. coli network, including general transcriptional regulators, parasite-specific transcriptional regulators in the ApiAP2 protein family, and other potential regulatory proteins. They are implicated in a variety of cellular processes involving chromatin remodeling, genome integrity, secretion, invasion, protein processing, and metabolism. Conclusions In this proof-of-concept study, we demonstrate that a subnetwork alignment approach can reveal previously uncharacterized members of the subnetworks, which opens new opportunities to identify potential therapeutic targets and provide new insights into parasite biology, pathogenesis and virulence. This approach can be extended to other systems, especially those with poor genome annotation and a paucity of knowledge about cellular networks.
Collapse
Affiliation(s)
- Hong Cai
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
20
|
Characterization of the unusual bidirectional ves promoters driving VESA1 expression and associated with antigenic variation in Babesia bovis. EUKARYOTIC CELL 2012; 11:260-9. [PMID: 22286091 DOI: 10.1128/ec.05318-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapid clonal antigenic variation in Babesia bovis involves the variant erythrocyte surface antigen-1 (VESA1) protein expressed on the infected-erythrocyte surface. Because of the significance of this heterodimeric protein for demonstrated mechanisms of parasite survival and virulence, there is a need to understand how expression of the ves multigene family encoding this protein is controlled. As an initial step toward this goal, we present here initial characterization of the ves promoter driving transcription of VESA1a and -1b subunits. A series of transfection constructs containing various sequence elements from the in vivo locus of active ves transcription (LAT) were used to drive expression of the firefly luciferase gene in a dual luciferase-normalized assay. The results of this approach reveal the presence of two bidirectional promoter activities within the 434-bp intergenic region (IGr), influenced by putative regulatory sequences embedded within the flanking ves1α and ves1β genes. Repressor-like effects on the apposing gene were observed for intron 1 of both ves1α and ves1β. This effect is apparently not dependent upon intronic promoter activity and acts only in cis. The expression of genes within the ves family is likely modulated by local elements embedded within ves coding sequences outside the intergenic promoter region in concert with chromatin modifications. These results provide a framework to help us begin to understand gene regulation during antigenic variation in B. bovis.
Collapse
|
21
|
Rug M, Maier AG. The heat shock protein 40 family of the malaria parasite Plasmodium falciparum. IUBMB Life 2011; 63:1081-6. [DOI: 10.1002/iub.525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Panneerselvam P, Bawankar P, Kulkarni S, Patankar S. In Silico Prediction of Evolutionarily Conserved GC-Rich Elements Associated with Antigenic Proteins of Plasmodium falciparum. Evol Bioinform Online 2011; 7:235-55. [PMID: 22375094 PMCID: PMC3283219 DOI: 10.4137/ebo.s8162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The Plasmodium falciparum genome being AT-rich, the presence of GC-rich regions suggests functional significance. Evolution imposes selection pressure to retain functionally important coding and regulatory elements. Hence searching for evolutionarily conserved GC-rich, intergenic regions in an AT-rich genome will help in discovering new coding regions and regulatory elements. We have used elevated GC content in intergenic regions coupled with sequence conservation against P. reichenowi, which is evolutionarily closely related to P. falciparum to identify potential sequences of functional importance. Interestingly, ~30% of the GC-rich, conserved sequences were associated with antigenic proteins encoded by var and rifin genes. The majority of sequences identified in the 5′ UTR of var genes are represented by short expressed sequence tags (ESTs) in cDNA libraries signifying that they are transcribed in the parasite. Additionally, 19 sequences were located in the 3′ UTR of rifins and 4 also have overlapping ESTs. Further analysis showed that several sequences associated with var genes have the capacity to encode small peptides. A previous report has shown that upstream peptides can regulate the expression of var genes hence we propose that these conserved GC-rich sequences may play roles in regulation of gene expression.
Collapse
Affiliation(s)
- Porkodi Panneerselvam
- Centre for Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India
| | | | | | | |
Collapse
|
23
|
Kuss C, Gan CS, Gunalan K, Bozdech Z, Sze SK, Preiser PR. Quantitative proteomics reveals new insights into erythrocyte invasion by Plasmodium falciparum. Mol Cell Proteomics 2011; 11:M111.010645. [PMID: 22023809 DOI: 10.1074/mcp.m111.010645] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Differential expression of ligands in the human malaria parasite Plasmodium falciparum enables it to recognize different receptors on the erythrocyte surface, thereby providing alternative invasion pathways. Switching of invasion from using sialated to nonsialated erythrocyte receptors has been linked to the transcriptional activation of a single parasite ligand. We have used quantitative proteomics to show that in addition to this single known change, there are a significant number of changes in the expression of merozoite proteins that are regulated independent of transcription during invasion pathway switching. These results demonstrate a so far unrecognized mechanism by which the malaria parasite is able to adapt to variations in the host cell environment by post-transcriptional regulation.
Collapse
Affiliation(s)
- Claudia Kuss
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | | | | | | | | |
Collapse
|
24
|
Patakottu BR, Singh PK, Malhotra P, Chauhan VS, Patankar S. In vivo analysis of translation initiation sites in Plasmodium falciparum. Mol Biol Rep 2011; 39:2225-32. [PMID: 21643747 DOI: 10.1007/s11033-011-0971-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 05/26/2011] [Indexed: 11/30/2022]
Abstract
Regulation of gene expression in the malaria parasite Plasmodium falciparum is tightly controlled and little is known about the many steps involved. One step i.e. translation initiation is also poorly understood and in P. falciparum, choice of the translation initiation site (TIS) is a critical decision largely due to the high frequency of AUGs in the relatively long 5' untranslated regions of parasite mRNAs. The sequences surrounding the TIS have a major role to play in translation initiation and this report evaluates these sequences by mutational analysis of the heat shock protein 86 gene, transient transfection and reporter assays in the parasite. We find that purines at the -3 and +4 positions are essential for efficient translation in P. falciparum, similar to other eukaryotes. Interestingly, a U at the -1 position results in 2.5-fold higher reporter activity compared to wild type. Certain classes of protein biosynthetic genes show higher frequencies of U at the -1 position, suggesting that these genes may exhibit higher levels of translation. This work defines the optimal sequences for TIS choice and has implications for the design of efficient expression vectors in an important human pathogen.
Collapse
Affiliation(s)
- Balakota Reddy Patakottu
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | | | | | | |
Collapse
|
25
|
Wong EH, Hasenkamp S, Horrocks P. Analysis of the molecular mechanisms governing the stage-specific expression of a prototypical housekeeping gene during intraerythrocytic development of P. falciparum. J Mol Biol 2011; 408:205-21. [PMID: 21354176 PMCID: PMC3081073 DOI: 10.1016/j.jmb.2011.02.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/10/2011] [Accepted: 02/17/2011] [Indexed: 01/22/2023]
Abstract
Gene expression during the intraerythrocytic development cycle of the human malarial parasite Plasmodium falciparum is subject to tight temporal control, resulting in a cascade of gene expression to meet the physiological demands of growth, replication, and reinvasion. The roles of the different molecular mechanisms that drive this temporal program of gene expression are poorly understood. Here we report the use of the bxb1 integrase system to reconstitute all aspects of the absolute and temporal control of the prototypical housekeeping gene encoding the proliferating cell nuclear antigen (Pfpcna) around an integrated luciferase reporter cassette. A quantitative analysis of the effect of the serial deletion of 5′ and 3′ genetic elements and sublethal doses of histone deacetylase inhibitors demonstrates that while the absolute control of gene expression could be perturbed, no effect on the temporal control of gene expression was observed. These data provide support for a novel model for the temporal control of potentially hundreds of genes during the intraerythrocytic development of this important human pathogen.
Collapse
Affiliation(s)
- Eleanor H. Wong
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Sandra Hasenkamp
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Paul Horrocks
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
- Corresponding author. Institute for Science and Technology in Medicine, Keele University, Huxley Building, Staffordshire ST5 5BG, UK.
| |
Collapse
|
26
|
Campbell TL, De Silva EK, Olszewski KL, Elemento O, Llinás M. Identification and genome-wide prediction of DNA binding specificities for the ApiAP2 family of regulators from the malaria parasite. PLoS Pathog 2010; 6:e1001165. [PMID: 21060817 PMCID: PMC2965767 DOI: 10.1371/journal.ppat.1001165] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 09/27/2010] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms underlying transcriptional regulation in apicomplexan parasites remain poorly understood. Recently, the Apicomplexan AP2 (ApiAP2) family of DNA binding proteins was identified as a major class of transcriptional regulators that are found across all Apicomplexa. To gain insight into the regulatory role of these proteins in the malaria parasite, we have comprehensively surveyed the DNA-binding specificities of all 27 members of the ApiAP2 protein family from Plasmodium falciparum revealing unique binding preferences for the majority of these DNA binding proteins. In addition to high affinity primary motif interactions, we also observe interactions with secondary motifs. The ability of a number of ApiAP2 proteins to bind multiple, distinct motifs significantly increases the potential complexity of the transcriptional regulatory networks governed by the ApiAP2 family. Using these newly identified sequence motifs, we infer the trans-factors associated with previously reported plasmodial cis-elements and provide evidence that ApiAP2 proteins modulate key regulatory decisions at all stages of parasite development. Our results offer a detailed view of ApiAP2 DNA binding specificity and take the first step toward inferring comprehensive gene regulatory networks for P. falciparum.
Collapse
Affiliation(s)
- Tracey L. Campbell
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Erandi K. De Silva
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Kellen L. Olszewski
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Olivier Elemento
- Institute for Computational Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Manuel Llinás
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
27
|
Cohn B, Manque P, Lara AM, Serrano M, Sheth N, Buck G. Putative cis-regulatory elements associated with heat shock genes activated during excystation of Cryptosporidium parvum. PLoS One 2010; 5:e9512. [PMID: 20209102 PMCID: PMC2832001 DOI: 10.1371/journal.pone.0009512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 02/05/2010] [Indexed: 11/30/2022] Open
Abstract
Background Cryptosporidiosis is a ubiquitous infectious disease, caused by the protozoan parasites Cryptosporidium hominis and C. parvum, leading to acute, persistent and chronic diarrhea worldwide. Although the complications of this disease can be serious, even fatal, in immunocompromised patients of any age, they have also been found to lead to long term effects, including growth inhibition and impaired cognitive development, in infected immunocompetent children. The Cryptosporidium life cycle alternates between a dormant stage, the oocyst, and a highly replicative phase that includes both asexual vegetative stages as well as sexual stages, implying fine genetic regulatory mechanisms. The parasite is extremely difficult to study because it cannot be cultured in vitro and animal models are equally challenging. The recent publication of the genome sequence of C. hominis and C. parvum has, however, significantly advanced our understanding of the biology and pathogenesis of this parasite. Methodology/Principal Findings Herein, our goal was to identify cis-regulatory elements associated with heat shock response in Cryptosporidium using a combination of in silico and real time RT-PCR strategies. Analysis with Gibbs-Sampling algorithms of upstream non-translated regions of twelve genes annotated as heat shock proteins in the Cryptosporidium genome identified a highly conserved over-represented sequence motif in eleven of them. RT-PCR analyses, described herein and also by others, show that these eleven genes bearing the putative element are induced concurrent with excystation of parasite oocysts via heat shock. Conclusions/Significance Our analyses suggest that occurrences of a motif identified in the upstream regions of the Cryptosporidium heat shock genes represent parts of the transcriptional apparatus and function as stress response elements that activate expression of these genes during excystation, and possibly at other stages in the life cycle of the parasite. Since heat shock and excystation represent a critical step in the development of the infectious sporozoite form of Cryptosporidium, these results provide important insight into the pathogenicity of the parasite.
Collapse
Affiliation(s)
- Benjamin Cohn
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Patricio Manque
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ana M. Lara
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Myrna Serrano
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Nihar Sheth
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Gregory Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
28
|
Essien K, Stoeckert CJ. Conservation and divergence of known apicomplexan transcriptional regulons. BMC Genomics 2010; 11:147. [PMID: 20199665 PMCID: PMC2841118 DOI: 10.1186/1471-2164-11-147] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 03/03/2010] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The apicomplexans are a diverse phylum of parasites causing an assortment of diseases including malaria in a wide variety of animals and lymphoproliferation in cattle. Little is known about how these varied parasites regulate their transcriptional regulons. Even less is known about how regulon systems, consisting of transcription factors and target genes together with their associated biological process, evolve in these diverse parasites. RESULTS In order to obtain insights into the differences in transcriptional regulation between these parasites we compared the orthology profiles of putative malaria transcription factors across species and examined the enrichment patterns of four binding sites across eleven apicomplexans. About three-fifths of the factors are broadly conserved in several phylogenetic orders of sequenced apicomplexans. This observation suggests the existence of regulons whose regulation is conserved across this ancient phylum. Transcription factors not broadly conserved across the phylum are possibly involved in regulon systems that have diverged between species. Examining binding site enrichment patterns in light of transcription factor conservation patterns suggests a second mode via which regulon systems may diverge - rewiring of existing transcription factors and their associated binding sites in specific ways. Integrating binding sites with transcription factor conservation patterns also facilitated prediction of putative regulators for one of the binding sites. CONCLUSIONS Even though transcription factors are underrepresented in apicomplexans, the distribution of these factors and their associated regulons reflect common and family-specific transcriptional regulatory processes.
Collapse
Affiliation(s)
- Kobby Essien
- Department of Bioengineering, University of Pennsylvania, 240 SkirkanichHall, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
29
|
Regulation of gene expression in protozoa parasites. J Biomed Biotechnol 2010; 2010:726045. [PMID: 20204171 PMCID: PMC2830571 DOI: 10.1155/2010/726045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/10/2009] [Accepted: 01/08/2010] [Indexed: 12/25/2022] Open
Abstract
Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.
Collapse
|
30
|
Gopalakrishnan AM, López-Estraño C. Role of cis-regulatory elements on the ring-specific hrp3 promoter in the human parasite Plasmodium falciparum. Parasitol Res 2010; 106:833-45. [PMID: 20127361 DOI: 10.1007/s00436-010-1738-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 01/04/2010] [Indexed: 11/30/2022]
Abstract
Identification of promoter elements responsible for regulation of gene expression has been hampered by the AT richness of P. falciparum intergenic regions. Nested deletions of histidine-rich protein 3 (hrp3) promoter suggested the presence of a multipartite ring-specific element. Linker scanning (LS) of this ring-specific promoter showed that the alteration of several promoter regions decreased the luciferase activity compared to the wild-type configuration, indicating that these regions played a role in gene expression. No homology was observed by comparison of putative regulatory elements of other genes identified by bioinformatic analysis with the hrp3 enhancer, implying a different mechanism of gene regulation by the hrp3 promoter. LS and deletion analysis of the 5' untranslated region (UTR) of the hrp3 suggested that this region contains elements which interact with promoter elements to regulate gene expression. Analysis of the intron in the UTR region suggested that this region does not play a role in stage specificity in the hrp3 promoter. Together, our results indicate the presence of multiple mechanisms of gene regulation in the parasite.
Collapse
|
31
|
Bischoff E, Vaquero C. In silico and biological survey of transcription-associated proteins implicated in the transcriptional machinery during the erythrocytic development of Plasmodium falciparum. BMC Genomics 2010; 11:34. [PMID: 20078850 PMCID: PMC2821373 DOI: 10.1186/1471-2164-11-34] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 01/15/2010] [Indexed: 11/12/2022] Open
Abstract
Background Malaria is the most important parasitic disease in the world with approximately two million people dying every year, mostly due to Plasmodium falciparum infection. During its complex life cycle in the Anopheles vector and human host, the parasite requires the coordinated and modulated expression of diverse sets of genes involved in epigenetic, transcriptional and post-transcriptional regulation. However, despite the availability of the complete sequence of the Plasmodium falciparum genome, we are still quite ignorant about Plasmodium mechanisms of transcriptional gene regulation. This is due to the poor prediction of nuclear proteins, cognate DNA motifs and structures involved in transcription. Results A comprehensive directory of proteins reported to be potentially involved in Plasmodium transcriptional machinery was built from all in silico reports and databanks. The transcription-associated proteins were clustered in three main sets of factors: general transcription factors, chromatin-related proteins (structuring, remodelling and histone modifying enzymes), and specific transcription factors. Only a few of these factors have been molecularly analysed. Furthermore, from transcriptome and proteome data we modelled expression patterns of transcripts and corresponding proteins during the intra-erythrocytic cycle. Finally, an interactome of these proteins based either on in silico or on 2-yeast-hybrid experimental approaches is discussed. Conclusion This is the first attempt to build a comprehensive directory of potential transcription-associated proteins in Plasmodium. In addition, all complete transcriptome, proteome and interactome raw data were re-analysed, compared and discussed for a better comprehension of the complex biological processes of Plasmodium falciparum transcriptional regulation during the erythrocytic development.
Collapse
Affiliation(s)
- Emmanuel Bischoff
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, CNRS URA 2581, 25-28 rue du Dr Roux, 75724, Paris cedex 15, France.
| | | |
Collapse
|
32
|
Akide-Ndunge OB, Tambini E, Giribaldi G, McMillan PJ, Müller S, Arese P, Turrini F. Co-ordinated stage-dependent enhancement of Plasmodium falciparum antioxidant enzymes and heat shock protein expression in parasites growing in oxidatively stressed or G6PD-deficient red blood cells. Malar J 2009; 8:113. [PMID: 19480682 PMCID: PMC2696464 DOI: 10.1186/1475-2875-8-113] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 05/29/2009] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium falciparum-parasitized red blood cells (RBCs) are equipped with protective antioxidant enzymes and heat shock proteins (HSPs). The latter are only considered to protect against thermal stress. Important issues are poorly explored: first, it is insufficiently known how both systems are expressed in relation to the parasite developmental stage; secondly, it is unknown whether P. falciparum HSPs are redox-responsive, in view of redox sensitivity of HSP in eukaryotic cells; thirdly, it is poorly known how the antioxidant defense machinery would respond to increased oxidative stress or inhibited antioxidant defense. Those issues are interesting as several antimalarials increase the oxidative stress or block antioxidant defense in the parasitized RBC. In addition, numerous inhibitors of HSPs are currently developed for cancer therapy and might be tested as anti-malarials. Thus, the joint disruption of the parasite antioxidant enzymes/HSP system would interfere with parasite growth and open new perspectives for anti-malaria therapy. Methods Stage-dependent mRNA expression of ten representative P. falciparum antioxidant enzymes and hsp60/70–2/70–3/75/90 was studied by quantitative real-time RT-PCR in parasites growing in normal RBCs, in RBCs oxidatively-stressed by moderate H2O2 generation and in G6PD-deficient RBCs. Protein expression of antioxidant enzymes was assayed by Western blotting. The pentosephosphate-pathway flux was measured in isolated parasites after Sendai-virus lysis of RBC membrane. Results In parasites growing in normal RBCs, mRNA expression of antioxidant enzymes and HSPs displayed co-ordinated stage-dependent modulation, being low at ring, highest at early trophozoite and again very low at schizont stage. Additional exogenous oxidative stress or growth in antioxidant blunted G6PD-deficient RBCs indicated remarkable flexibility of both systems, manifested by enhanced, co-ordinated mRNA expression of antioxidant enzymes and HSPs. Protein expression of antioxidant enzymes was also increased in oxidatively-stressed trophozoites. Conclusion Results indicated that mRNA expression of parasite antioxidant enzymes and HSPs was co-ordinated and stage-dependent. Secondly, both systems were redox-responsive and showed remarkably increased and co-ordinated expression in oxidatively-stressed parasites and in parasites growing in antioxidant blunted G6PD-deficient RBCs. Lastly, as important anti-malarials either increase oxidant stress or impair antioxidant defense, results may encourage the inclusion of anti-HSP molecules in anti-malarial combined drugs.
Collapse
Affiliation(s)
- Oscar Bate Akide-Ndunge
- Department of Genetics, Biology and Biochemistry, University of Torino Medical School, Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
33
|
Jurgelenaite R, Dijkstra TMH, Kocken CHM, Heskes T. Gene regulation in the intraerythrocytic cycle of Plasmodium falciparum. ACTA ACUST UNITED AC 2009; 25:1484-91. [PMID: 19336444 DOI: 10.1093/bioinformatics/btp179] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MOTIVATION To date, there is little knowledge about one of the processes fundamental to the biology of Plasmodium falciparum, gene regulation including transcriptional control. We use noisy threshold models to identify regulatory sequence elements explaining membership to a gene expression cluster where each cluster consists of genes active during the part of the developmental cycle inside a red blood cell. Our approach is both able to capture the combinatorial nature of gene regulation and to incorporate uncertainty about the functionality of putative regulatory sequence elements. RESULTS We find a characteristic pattern where the most common motifs tend to be absent upstream of genes active in the first half of the cycle and present upstream of genes active in the second half. We find no evidence that motif's score, orientation, location and multiplicity improves prediction of gene expression. Through comparative genome analysis, we find a list of potential transcription factors and their associated motifs. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Rasa Jurgelenaite
- Institute for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
34
|
Patterns of gene-specific and total transcriptional activity during the Plasmodium falciparum intraerythrocytic developmental cycle. EUKARYOTIC CELL 2009; 8:327-38. [PMID: 19151330 DOI: 10.1128/ec.00340-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The relationships among gene regulatory mechanisms in the malaria parasite Plasmodium falciparum throughout its asexual intraerythrocytic developmental cycle (IDC) remain poorly understood. To investigate the level and nature of transcriptional activity and its role in controlling gene expression during the IDC, we performed nuclear run-on on whole-transcriptome samples from time points throughout the IDC and found a peak in RNA polymerase II-dependent transcriptional activity related to both the number of nuclei per parasite and variable transcriptional activity per nucleus over time. These differential total transcriptional activity levels allowed the calculation of the absolute transcriptional activities of individual genes from gene-specific nuclear run-on hybridization data. For half of the genes analyzed, sense-strand transcriptional activity peaked at the same time point as total activity. The antisense strands of several genes were substantially transcribed. Comparison of the transcriptional activity of the sense strand of each gene to its steady-state RNA abundance across the time points assayed revealed both correlations and discrepancies, implying transcriptional and posttranscriptional regulation, respectively. Our results demonstrate that such comparisons can effectively indicate gene regulatory mechanisms in P. falciparum and suggest that genes with diverse transcriptional activity levels and patterns combine to produce total transcriptional activity levels tied to parasite development during the IDC.
Collapse
|
35
|
Iengar P, Joshi NV. Identification of putative regulatory motifs in the upstream regions of co-expressed functional groups of genes in Plasmodium falciparum. BMC Genomics 2009; 10:18. [PMID: 19144114 PMCID: PMC2662883 DOI: 10.1186/1471-2164-10-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 01/13/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Regulation of gene expression in Plasmodium falciparum (Pf) remains poorly understood. While over half the genes are estimated to be regulated at the transcriptional level, few regulatory motifs and transcription regulators have been found. RESULTS The study seeks to identify putative regulatory motifs in the upstream regions of 13 functional groups of genes expressed in the intraerythrocytic developmental cycle of Pf. Three motif-discovery programs were used for the purpose, and motifs were searched for only on the gene coding strand. Four motifs -- the 'G-rich', the 'C-rich', the 'TGTG' and the 'CACA' motifs -- were identified, and zero to all four of these occur in the 13 sets of upstream regions. The 'CACA motif' was absent in functional groups expressed during the ring to early trophozoite transition. For functional groups expressed in each transition, the motifs tended to be similar. Upstream motifs in some functional groups showed 'positional conservation' by occurring at similar positions relative to the translational start site (TLS); this increases their significance as regulatory motifs. In the ribonucleotide synthesis, mitochondrial, proteasome and organellar translation machinery genes, G-rich, C-rich, CACA and TGTG motifs, respectively, occur with striking positional conservation. In the organellar translation machinery group, G-rich motifs occur close to the TLS. The same motifs were sometimes identified for multiple functional groups; differences in location and abundance of the motifs appear to ensure different modes of action. CONCLUSION The identification of positionally conserved over-represented upstream motifs throws light on putative regulatory elements for transcription in Pf.
Collapse
Affiliation(s)
- Prathima Iengar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| | | |
Collapse
|
36
|
Horrocks P, Wong E, Russell K, Emes RD. Control of gene expression in Plasmodium falciparum - ten years on. Mol Biochem Parasitol 2008; 164:9-25. [PMID: 19110008 DOI: 10.1016/j.molbiopara.2008.11.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 01/24/2023]
Abstract
Ten years ago this journal published a review with an almost identical title detailing how the then recent introduction of transfection technology had advanced our understanding of the molecular control of transcriptional processes in Plasmodium falciparum, particularly in terms of promoter structure and function. In the succeeding years, sequencing of several Plasmodium spp. genomes and application of high throughput global postgenomic technologies have proven as significant, if not more, as has the ability to genetically manipulate these parasites in dissecting the molecular control of gene expression. Here we aim to review our current understanding of the control of gene expression in P. falciparum, including evidence available from other Plasmodium spp. and apicomplexan parasites. Specifically, however, we will address the current polarised debate regarding the level at which control is mediated, and attempt to identify some of the challenges this field faces in the next 10 years.
Collapse
Affiliation(s)
- Paul Horrocks
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, United Kingdom.
| | | | | | | |
Collapse
|
37
|
Guo X, Silva JC. Properties of non-coding DNA and identification of putative cis-regulatory elements in Theileria parva. BMC Genomics 2008; 9:582. [PMID: 19055776 PMCID: PMC2612703 DOI: 10.1186/1471-2164-9-582] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 12/03/2008] [Indexed: 01/24/2023] Open
Abstract
Background Parasites in the genus Theileria cause lymphoproliferative diseases in cattle, resulting in enormous socio-economic losses. The availability of the genome sequences and annotation for T. parva and T. annulata has facilitated the study of parasite biology and their relationship with host cell transformation and tropism. However, the mechanism of transcriptional regulation in this genus, which may be key to understanding fundamental aspects of its parasitology, remains poorly understood. In this study, we analyze the evolution of non-coding sequences in the Theileria genome and identify conserved sequence elements that may be involved in gene regulation of these parasitic species. Results Intergenic regions and introns in Theileria are short, and their length distributions are considerably right-skewed. Intergenic regions flanked by genes in 5'-5' orientation tend to be longer and slightly more AT-rich than those flanked by two stop codons; intergenic regions flanked by genes in 3'-5' orientation have intermediate values of length and AT composition. Intron position is negatively correlated with intron length, and positively correlated with GC content. Using stringent criteria, we identified a set of high-quality orthologous non-coding sequences between T. parva and T. annulata, and determined the distribution of selective constraints across regions, which are shown to be higher close to translation start sites. A positive correlation between constraint and length in both intergenic regions and introns suggests a tight control over length expansion of non-coding regions. Genome-wide searches for functional elements revealed several conserved motifs in intergenic regions of Theileria genomes. Two such motifs are preferentially located within the first 60 base pairs upstream of transcription start sites in T. parva, are preferentially associated with specific protein functional categories, and have significant similarity to know regulatory motifs in other species. These results suggest that these two motifs are likely to represent transcription factor binding sites in Theileria. Conclusion Theileria genomes are highly compact, with selection seemingly favoring short introns and intergenic regions. Three over-represented sequence motifs were independently identified in intergenic regions of both Theileria species, and the evidence suggests that at least two of them play a role in transcriptional control in T. parva. These are prime candidates for experimental validation of transcription factor binding sites in this single-celled eukaryotic parasite. Sequences similar to two of these Theileria motifs are conserved in Plasmodium hinting at the possibility of common regulatory machinery across the phylum Apicomplexa.
Collapse
Affiliation(s)
- Xiang Guo
- The Institute for Genomic Research/J. Craig Venter Institute, 9712 Medical Center Drive, Rockville, MD 20850, USA.
| | | |
Collapse
|
38
|
Petter M, Bonow I, Klinkert MQ. Diverse expression patterns of subgroups of the rif multigene family during Plasmodium falciparum gametocytogenesis. PLoS One 2008; 3:e3779. [PMID: 19020666 PMCID: PMC2582490 DOI: 10.1371/journal.pone.0003779] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 11/02/2008] [Indexed: 12/14/2022] Open
Abstract
Background The maturation of Plasmodium falciparum gametocytes in the human host takes several days, during which the parasites need to efficiently evade the host immune system. Like asexual stage parasites, immature gametocytes can sequester at various sites in the human body, and only mature sexual stages are found in the circulation. Although the fundamental mechanisms of gametocyte immune evasion are still largely unknown, candidate molecules that may be involved include variant antigens encoded by multigene families in the P. falciparum genome, such as the PfEMP1, STEVOR and RIFIN proteins. While expression of the former two families in sexual stages has been investigated earlier, we report here RIFIN expression during gametocytogenesis. Methodology/Principal Findings Variants of two previously characterized RIFIN subfamilies (A- and B-type RIFINs) were found to be synthesized in gametocytes. Immunofluorescence experiments showed A-type RIFINs to be accumulated in a crescent-shaped pattern of discrete punctate structures at the infected erythrocyte membrane, while members of the B-type family were associated with the parasite. Transcription analysis demonstrated the existence of diverse transcriptional regulation patterns during sexual differentiation and indicated variant-specific regulation of B-type RIFINs, in contrast to group-specific regulation for A-type RIFINs. Phylogenetic analysis of 5′-upstream regions showed that the rif–gene family falls into five defined clusters, designated rups (rifupstream) A1, A2, AB, B and C. In trophozoites and early gametocytes, rif variants of the rupsA2-type were preferentially expressed. Conclusions/Significance In this work we demonstrate the expression dynamics of the rif-gene family during sexual differentiation and present indications for subgroup specific regulation patterns. Therefore, our data provide a first foundation and point to new directions for future investigations of the potential role of RIFINs in gametocyte immune evasion.
Collapse
Affiliation(s)
- Michaela Petter
- Bernhard Nocht-Institute for Tropical Medicine, Hamburg, Germany.
| | | | | |
Collapse
|
39
|
Llinás M, Deitsch KW, Voss TS. Plasmodium gene regulation: far more to factor in. Trends Parasitol 2008; 24:551-6. [PMID: 18929512 DOI: 10.1016/j.pt.2008.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/18/2008] [Accepted: 08/28/2008] [Indexed: 11/16/2022]
Abstract
Gene expression in the malaria parasite has received generous attention over the past several decades, predominantly because of the importance of var gene regulation, which is key to antigenic variation and host immune evasion. However, the role of transcriptional regulation in governing other genes expressed during the various stages of development has remained less well characterized. This mostly has been due to the lack of defined transcriptional regulators in Plasmodium parasites. Here, we describe recent advances that have become possible by joining traditional biochemistry with new technological innovations. These studies have increased our understanding of the role of transcriptional regulation, not only in the control of gene expression for antigenic variation but also in the coordination of stage-specific parasite development.
Collapse
Affiliation(s)
- Manuel Llinás
- Department of Molecular Biology, Princeton University, 246 Carl Icahn Laboratory, Princeton, NJ 08544, USA.
| | | | | |
Collapse
|
40
|
Balu B, Blair PL, Adams JH. Identification of the transcription initiation site reveals a novel transcript structure for Plasmodium falciparum maebl. Exp Parasitol 2008; 121:110-4. [PMID: 18950624 DOI: 10.1016/j.exppara.2008.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 08/12/2008] [Accepted: 10/01/2008] [Indexed: 10/21/2022]
Abstract
Strict regulation of gene expression is critical for the development of the malaria parasite within multiple host cell types. However, much remains unexplored regarding gene regulation in Plasmodium falciparum with only a few components of the gene regulation machinery identified thus far. Better characterization of transcript structures with precise mapping of transcript ends will greatly aid in the search of conserved regulatory sequences in the genome. Transcript analysis of maebl, a member of the ebl gene family, in P. falciparum intra-erythrocytic stages has revealed a unique transcript structure for maebl. The 5'-untranslated region of maebl transcript is exceptionally long (>2 kb) with a small multi-exon open reading frame, annotated as a putative mitochondrial ATP synthase (PF11_0485) in the Plasmodium database. Northern blot hybridizations and RT-PCR analysis confirmed a bicistronic message for maebl along with PF11_0485. We further identified the minimal maebl promoter to be upstream of PF11_0485 by using transient chloramphenicol acetyl transferase (CAT) reporter assays. The occurrence of a bicistronic mRNA in Plasmodium is both novel and unusual for a lower eukaryote and adds on to the complexity of gene regulation in malaria parasites.
Collapse
Affiliation(s)
- Bharath Balu
- Global Health and Infectious Disease Research, Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL 33612, USA
| | | | | |
Collapse
|
41
|
Gopalakrishnan AM, Nyindodo LA, Ross Fergus M, López-Estraño C. Plasmodium falciparum: Preinitiation complex occupancy of active and inactive promoters during erythrocytic stage. Exp Parasitol 2008; 121:46-54. [PMID: 18951895 DOI: 10.1016/j.exppara.2008.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 07/22/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022]
Abstract
Over 80% of Plasmodium falciparum genes are developmentally regulated during the parasite's life cycle with most genes expressed in a "just in time" fashion. However, the molecular mechanisms of gene regulation are still poorly understood. Analysis of P. falciparum genome shows that the parasite appears to encode relatively few transcription factors homologous to those in other eukaryotes. We used Chromatin immunoprecipitation (ChIP) to study interaction of PfTBP and PfTFIIE with stage specific Plasmodium promoters. Our results indicate that PfTBP and PfTFIIE are bound to their cognate sequence in active and inactive erythrocytic-expressed promoters. In addition, TF occupancy appears to extend beyond the promoter regions, since PfTBP interaction with the coding and 3' end regions was also detected. No PfTBP or PfTFIIE interaction was detected on csp and pfs25 genes which are not active during the erythrocytic asexual stage. Furthermore, PfTBP and PfTFIIE binding did not appear to correlate with histone 3 and/or 4 acetylation, suggesting that histone acetylation may not be a prerequisite for PfTBP or PfTFIIE promoter interaction. Based on our observations we concluded that the PfTBP/PfTFIIE-containing preinitiation complex (PIC) would be preassembled on promoters of all erythrocytic-expressed genes in a fashion independent of histone acetylation, providing support for the "poised" model. Contrary to the classical model of eukaryotic gene regulation, PIC interaction with Plasmodium promoters occurred independent of transcriptional activity and to the notion that chromatin acetylation leads to PIC assembly.
Collapse
Affiliation(s)
- Anusha M Gopalakrishnan
- Department of Biology, Life Sciences Building, Room 409B, The University of Memphis, 3774 Walker Avenue, Memphis, TN 38152, USA
| | | | | | | |
Collapse
|
42
|
Komaki-Yasuda K, Okuwaki M, Kano S, Nagata K, Kawazu SI. 5' sequence- and chromatin modification-dependent gene expression in Plasmodium falciparum erythrocytic stage. Mol Biochem Parasitol 2008; 162:40-51. [PMID: 18692528 DOI: 10.1016/j.molbiopara.2008.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 07/09/2008] [Accepted: 07/10/2008] [Indexed: 11/18/2022]
Abstract
Plasmodium falciparum, the human malaria parasite, is evolutionarily distant from other eukaryotes. Genome-wide analyses of transcription-associated proteins have revealed a relative paucity of putative regulatory transcription factors and an abundance of putative chromatin remodeling machinery, suggesting that this parasite has a transcription regulatory system that is distinct from those of other eukaryotes. Here, we have analyzed transcriptional regulation of the peroxiredoxin genes, pf1-cys-prx and pftpx-1, which show different expression patterns in P. falciparum. The reporter assays revealed the presence of putative enhancers in the 5' regions of these genes. Although pf1-cys-prx shows trophozoite/schizont stage-specific transcription, a putative cis-acting enhancer sequence in pf1-cys-prx was constitutively active when inserted into the 5' region of pftpx-1. Electrophoretic mobility shift and DNase I footprinting assays showed that this enhancer region is the target of trophozoite/schizont stage-specific DNA binding proteins. In addition, chromatin immunoprecipitation assays showed that the increased levels of histone acetylation in the 5' region of pf1-cys-prx and pftpx-1 correlate with the transcriptional activity of these genes. Recruitment of PfGCN5 histone acetyltransferase to the pf1-cys-prx enhancer in trophozoite/schizont stage was observed. These results suggest that P. falciparum possesses a sophisticated system of transcriptional regulation during intraerythrocytic stages that is managed by coordinated interactions of unique cis-elements and trans-acting factors and chromatin modifications.
Collapse
|
43
|
Coleman BI, Duraisingh MT. Transcriptional control and gene silencing in Plasmodium falciparum. Cell Microbiol 2008; 10:1935-46. [PMID: 18637022 DOI: 10.1111/j.1462-5822.2008.01203.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Infection with the apicomplexan parasite Plasmodium falciparum is associated with a high burden of morbidity and mortality across the developing world, yet the mechanisms of transcriptional control in this organism are poorly understood. While P. falciparum possesses many of the characteristics common to eukaryotic transcription, including much of the canonical machinery, it also demonstrates unique patterns of gene expression and possesses unusually AT-rich intergenic sequences. Importantly, several biological processes that are critical to parasite virulence involve highly regulated patterns of gene expression and silencing. The relative scarcity of transcription-associated proteins and specific cis-regulatory motifs recognized in the P. falciparum genome have been thought to reflect a reduced role for transcription factors in transcriptional control in these parasites. New approaches and technologies, however, have led to the discovery of many more of these elements, including an expanded family of DNA-binding proteins, and a re-assessment of this hypothesis is required. We review the current understanding of transcriptional control in P. falciparum, specifically highlighting promoter-driven and epigenetic mechanisms involved in the control of transcription initiation.
Collapse
Affiliation(s)
- Bradley I Coleman
- Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
44
|
Cui L, Miao J, Wang J, Li Q, Cui L. Plasmodium falciparum: development of a transgenic line for screening antimalarials using firefly luciferase as the reporter. Exp Parasitol 2008; 120:80-7. [PMID: 18579134 DOI: 10.1016/j.exppara.2008.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 05/20/2008] [Accepted: 05/22/2008] [Indexed: 10/22/2022]
Abstract
High-throughput screening (HTS) of small-molecule libraries against pharmacological targets is a key strategy of contemporary drug discovery. This study reports a simple, robust, and cell-based luminescent method for assaying antimalarial drugs. Using transfection technology, we generated a stable Plasmodium falciparum line with high levels of firefly luciferase expression. A luciferase assay based on this parasite line was optimized in a 96-well plate format and used to compare with the standard [(3)H] hypoxanthine radioisotope method. The 50% inhibitory concentrations (IC(50)s) of chloroquine, artesunate, artemether, dihydroartemisinin and curcumin obtained by these two methods were not significantly different (P>0.05, ANOVA). In addition, this assay could be performed conveniently with a luminescence plate reader using unsynchronized stages within as early as 12h. Furthermore, the luciferase assay is robust with a Z' score of 0.77-0.92, which suggests the feasibility for further miniaturization and automation.
Collapse
Affiliation(s)
- Long Cui
- Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
45
|
Sunil S, Chauhan VS, Malhotra P. Distinct and stage specific nuclear factors regulate the expression of falcipains, Plasmodium falciparum cysteine proteases. BMC Mol Biol 2008; 9:47. [PMID: 18477411 PMCID: PMC2409366 DOI: 10.1186/1471-2199-9-47] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 05/14/2008] [Indexed: 11/15/2022] Open
Abstract
Background Plasmodium falciparum cysteine proteases (falcipains) play indispensable roles in parasite infection and development, especially in the process of host erythrocyte rupture/invasion and hemoglobin degradation. No detailed molecular analysis of transcriptional regulation of parasite proteases especially cysteine proteases has yet been reported. In this study, using a combination of transient transfection assays and electrophoretic mobility shift assays (EMSA), we demonstrate the presence of stage specific nuclear factors that bind to unique sequence elements in the 5'upstream regions of the falcipains and probably modulate the expression of cysteine proteases. Results Falcipains differ in their timing of expression and exhibit ability to compensate each other's functions at asexual blood stages of the parasite. Present study was undertaken to study the transcriptional regulation of falcipains. Transient transfection assay employing firefly luciferase as a reporter revealed that a ~1 kb sequence upstream of translational start site is sufficient for the functional transcriptional activity of falcipain-1 gene, while falcipain-2, -2' and -3 genes that exist within 12 kb stretch on chromosome 11 require ~2 kb upstream sequences for the expression of reporter luciferase activity. EMSA analysis elucidated binding of distinct nuclear factors to specific sequences within the 5'upstream regions of falcipain genes. Analysis of falcipains' 5'upstream regulatory regions did not reveal the presence of sequences known to bind general eukaryotic factors. However, we did find parasite specific sequence elements such as poly(dA) poly(dT) tracts, CCAAT boxes and a single 7 bp-G rich sequence, (A/G)NGGGG(C/A) in the 5' upstream regulatory regions of these genes, thereby suggesting the role(s) of Plasmodium specific transcriptional factors in the regulation of falcipain genes. Conclusion Taken together, these results suggest that expression of Plasmodium cysteine proteases is regulated at the transcriptional level and parasite specific factors regulate the expression of falcipain genes. These findings open new venues for further studies in identification of parasite specific transcription factors.
Collapse
Affiliation(s)
- Sujatha Sunil
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, PO Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | | | | |
Collapse
|
46
|
Functional expression of ribozymes in Apicomplexa: Towards exogenous control of gene expression by inducible RNA-cleavage. Int J Parasitol 2008; 38:673-81. [DOI: 10.1016/j.ijpara.2007.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 10/11/2007] [Accepted: 10/12/2007] [Indexed: 11/20/2022]
|
47
|
Olivieri A, Silvestrini F, Sanchez M, Alano P. A 140-bp AT-rich sequence mediates positive and negative transcriptional control of a Plasmodium falciparum developmentally regulated promoter. Int J Parasitol 2008; 38:299-312. [DOI: 10.1016/j.ijpara.2007.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/14/2007] [Accepted: 08/15/2007] [Indexed: 11/26/2022]
|
48
|
Young JA, Johnson JR, Benner C, Yan SF, Chen K, Le Roch KG, Zhou Y, Winzeler EA. In silico discovery of transcription regulatory elements in Plasmodium falciparum. BMC Genomics 2008; 9:70. [PMID: 18257930 PMCID: PMC2268928 DOI: 10.1186/1471-2164-9-70] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 02/07/2008] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND With the sequence of the Plasmodium falciparum genome and several global mRNA and protein life cycle expression profiling projects now completed, elucidating the underlying networks of transcriptional control important for the progression of the parasite life cycle is highly pertinent to the development of new anti-malarials. To date, relatively little is known regarding the specific mechanisms the parasite employs to regulate gene expression at the mRNA level, with studies of the P. falciparum genome sequence having revealed few cis-regulatory elements and associated transcription factors. Although it is possible the parasite may evoke mechanisms of transcriptional control drastically different from those used by other eukaryotic organisms, the extreme AT-rich nature of P. falciparum intergenic regions (approximately 90% AT) presents significant challenges to in silico cis-regulatory element discovery. RESULTS We have developed an algorithm called Gene Enrichment Motif Searching (GEMS) that uses a hypergeometric-based scoring function and a position-weight matrix optimization routine to identify with high-confidence regulatory elements in the nucleotide-biased and repeat sequence-rich P. falciparum genome. When applied to promoter regions of genes contained within 21 co-expression gene clusters generated from P. falciparum life cycle microarray data using the semi-supervised clustering algorithm Ontology-based Pattern Identification, GEMS identified 34 putative cis-regulatory elements associated with a variety of parasite processes including sexual development, cell invasion, antigenic variation and protein biosynthesis. Among these candidates were novel motifs, as well as many of the elements for which biological experimental evidence already exists in the Plasmodium literature. To provide evidence for the biological relevance of a cell invasion-related element predicted by GEMS, reporter gene and electrophoretic mobility shift assays were conducted. CONCLUSION This GEMS analysis demonstrates that in silico regulatory element discovery can be successfully applied to challenging repeat-sequence-rich, base-biased genomes such as that of P. falciparum. The fact that regulatory elements were predicted from a diverse range of functional gene clusters supports the hypothesis that cis-regulatory elements play a role in the transcriptional control of many P. falciparum biological processes. The putative regulatory elements described represent promising candidates for future biological investigation into the underlying transcriptional control mechanisms of gene regulation in malaria parasites.
Collapse
Affiliation(s)
- Jason A Young
- Department of Cell Biology, ICND 202, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Garcia CRS, de Azevedo MF, Wunderlich G, Budu A, Young JA, Bannister L. Plasmodium in the postgenomic era: new insights into the molecular cell biology of malaria parasites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 266:85-156. [PMID: 18544493 DOI: 10.1016/s1937-6448(07)66003-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this review, we bring together some of the approaches toward understanding the cellular and molecular biology of Plasmodium species and their interaction with their host red blood cells. Considerable impetus has come from the development of new methods of molecular genetics and bioinformatics, and it is important to evaluate the wealth of these novel data in the context of basic cell biology. We describe how these approaches are gaining valuable insights into the parasite-host cell interaction, including (1) the multistep process of red blood cell invasion by the merozoite; (2) the mechanisms by which the intracellular parasite feeds on the red blood cell and exports parasite proteins to modify its cytoadherent properties; (3) the modulation of the cell cycle by sensing the environmental tryptophan-related molecules; (4) the mechanism used to survive in a low Ca(2+) concentration inside red blood cells; (5) the activation of signal transduction machinery and the regulation of intracellular calcium; (6) transfection technology; and (7) transcriptional regulation and genome-wide mRNA studies in Plasmodium falciparum.
Collapse
Affiliation(s)
- Celia R S Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, CEP 05508-900, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
50
|
Imamura H, Persampieri JH, Chuang JH. Sequences conserved by selection across mouse and human malaria species. BMC Genomics 2007; 8:372. [PMID: 17937810 PMCID: PMC2174483 DOI: 10.1186/1471-2164-8-372] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 10/15/2007] [Indexed: 11/22/2022] Open
Abstract
Background Little is known, either experimentally or computationally, about the genomic sequence features that regulate malaria genes. A sequence conservation analysis of the malaria species P. falciparum, P. berghei, P. yoelii, and P. chabaudi could significantly advance knowledge of malaria gene regulation. Results We computationally identify intergenic sequences conserved beyond neutral expectations, using a conservation algorithm that accounts for the strong compositional biases in malaria genomes. We first quantify the composition-specific divergence at silent positions in coding sequence. Using this as a background, we examine gene 5' regions, identifying 610 blocks conserved far beyond neutral expectations across the three mouse malariae, and 81 blocks conserved as strongly across all four species (p < 10-6). Detailed analysis of these blocks indicates that only a minor fraction are likely to be previously unknown coding sequences. Analogous noncoding conserved blocks have been shown to regulate adjacent genes in other phylogenies, making the predicted blocks excellent candidates for novel regulatory functions. We also find three potential transcription factor binding motifs which exhibit strong conservation and overrepresentation among the rodent malariae. Conclusion A broader finding of our analysis is that less malaria intergenic sequence has been conserved by selection than in yeast or vertebrate genomes. This supports the hypothesis that transcriptional regulation is simpler in malaria than other eukaryotic species. We have built a public database containing all sequence alignments and functional predictions, and we expect this to be a valuable resource to the malaria research community.
Collapse
Affiliation(s)
- Hideo Imamura
- Boston College - Department of Biology, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| | | | | |
Collapse
|