1
|
Singh P, Choi JY, Wang W, T Lam T, Lechner P, Vanderwal CD, Pou S, Nilsen A, Ben Mamoun C. A fluorescence-based assay for measuring polyamine biosynthesis aminopropyl transferase-mediated catalysis. J Biol Chem 2024; 300:107832. [PMID: 39342998 PMCID: PMC11541840 DOI: 10.1016/j.jbc.2024.107832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Polyamines are polycationic molecules that are crucial in a wide array of cellular functions. Their biosynthesis is mediated by aminopropyl transferases (APTs), which are promising targets for antimicrobial, antineoplastic, and antineurodegenerative therapies. A major limitation in studying APT enzymes, however, is the lack of high-throughput assays to measure their activity. We have developed the first fluorescence-based assay, diacetyl benzene (DAB)-APT, for the measurement of APT activity using 1,2-DAB, which forms fluorescent conjugates with putrescine, spermidine, and spermine, with fluorescence intensity increasing with the carbon chain length. The assay has been validated using APT enzymes from Saccharomyces cerevisiae and Plasmodium falciparum, and the data further validated by mass spectrometry and TLC. Using mass spectrometry analysis, the structures of the fluorescent putrescine, spermidine, and spermine 1,2-DAB adducts were determined to be substituted 1,3-dimethyl isoindoles. The DAB-APT assay is optimized for high-throughput screening, facilitating the evaluation of large chemical libraries. Given the critical roles of APTs in infectious diseases, oncology, and neurobiology, the DAB-APT assay offers a powerful tool with broad applicability, poised to drive advancements in research and drug discovery.
Collapse
Affiliation(s)
- Pallavi Singh
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jae-Yeon Choi
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Weiwei Wang
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tukiet T Lam
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Philip Lechner
- Department of Chemistry, University of California, Irvine, California, USA
| | - Christopher D Vanderwal
- Department of Chemistry, University of California, Irvine, California, USA; Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
| | - Sovitj Pou
- VA Healthcare System, Medical Research Service, Portland, Oregon, USA
| | - Aaron Nilsen
- VA Healthcare System, Medical Research Service, Portland, Oregon, USA; Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
2
|
Singh P, Choi JY, Mamoun CB. DAB-APT: a Fluorescence-Based Assay for Determining Aminopropyl Transferase Activity and Inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588734. [PMID: 38645036 PMCID: PMC11030440 DOI: 10.1101/2024.04.09.588734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Polyamines are polycationic molecules that are crucial in a wide array of cellular functions. Their biosynthesis is mediated by aminopropyl transferases (APTs), promising targets in antimicrobial, antineoplastic and antineurodegenerative therapies. A major limitation, however, is the lack of high-throughput assays to measure their activity. We developed the first fluorescence-based assay, DAB-APT, for measurement of APT activity using 1,2-diacetyl benzene, which forms fluorescent conjugates with putrescine, spermidine and spermine with fluorescence intensity increasing with increasing carbon chain length. The assay has been validated using APT enzymes from S. cerevisiae and P. falciparum and is suitable for high-throughput screening of large chemical libraries. Given the importance of APTs in infectious diseases, cancer and neurobiology, our DAB-APT assay has broad applications, holding promise for advancing research and drug discovery efforts.
Collapse
|
3
|
Gao P, Wang J, Tang H, Pang H, Liu J, Wang C, Xia F, Chen H, Xu L, Zhang J, Yuan L, Han G, Wang J, Liu G. Chemoproteomics-based profiling reveals potential antimalarial mechanism of Celastrol by disrupting spermidine and protein synthesis. Cell Commun Signal 2024; 22:139. [PMID: 38378659 PMCID: PMC10877925 DOI: 10.1186/s12964-023-01409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/24/2023] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Malaria remains a global health burden, and the emergence and increasing spread of drug resistance to current antimalarials poses a major challenge to malaria control. There is an urgent need to find new drugs or strategies to alleviate this predicament. Celastrol (Cel) is an extensively studied natural bioactive compound that has shown potentially promising antimalarial activity, but its antimalarial mechanism remains largely elusive. METHODS We first established the Plasmodium berghei ANKA-infected C57BL/6 mouse model and systematically evaluated the antimalarial effects of Cel in conjunction with in vitro culture of Plasmodium falciparum. The potential antimalarial targets of Cel were then identified using a Cel activity probe based on the activity-based protein profiling (ABPP) technology. Subsequently, the antimalarial mechanism was analyzed by integrating with proteomics and transcriptomics. The binding of Cel to the identified key target proteins was verified by a series of biochemical experiments and functional assays. RESULTS The results of the pharmacodynamic assay showed that Cel has favorable antimalarial activity both in vivo and in vitro. The ABPP-based target profiling showed that Cel can bind to a number of proteins in the parasite. Among the 31 identified potential target proteins of Cel, PfSpdsyn and PfEGF1-α were verified to be two critical target proteins, suggesting the role of Cel in interfering with the de novo synthesis of spermidine and proteins of the parasite, thus exerting its antimalarial effects. CONCLUSIONS In conclusion, this study reports for the first time the potential antimalarial targets and mechanism of action of Cel using the ABPP strategy. Our work not only support the expansion of Cel as a potential antimalarial agent or adjuvant, but also establishes the necessary theoretical basis for the development of potential antimalarial drugs with pentacyclic triterpenoid structures, as represented by Cel. Video Abstract.
Collapse
Affiliation(s)
- Peng Gao
- Department of rehabilitation medicine, Shunde Hospital, Southern Medical University, Foshan, 528300, China
| | - Jianyou Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huanhuan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiemei Liu
- Department of rehabilitation medicine, Shunde Hospital, Southern Medical University, Foshan, 528300, China
| | - Chen Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Honglin Chen
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Liting Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lixia Yuan
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China.
| | - Guang Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Jigang Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology; Second Clinical Medical College of Jinan University, Shenzhen, 518020, China.
| | - Gang Liu
- Department of rehabilitation medicine, Shunde Hospital, Southern Medical University, Foshan, 528300, China.
| |
Collapse
|
4
|
Kina UY, Kamil M, Deveci G, Rafiqi AM, Matuschewski K, Aly ASI. A Candidate Bacterial-Type Amino Acid Decarboxylase Is Essential for Male Gamete Exflagellation and Mosquito Transmission of the Malaria Parasite. Infect Immun 2023; 91:e0016723. [PMID: 37260388 PMCID: PMC10353352 DOI: 10.1128/iai.00167-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 06/02/2023] Open
Abstract
A frequent side effect of chemotherapy against malaria parasite blood infections is a dramatic induction of the sexual blood stages, thereby enhancing the risk of future malaria transmissions. The polyamine biosynthesis pathway has been suggested as a candidate target for transmission-blocking anti-malarial drug development. Herein, we describe the role of a bacterial-type amino acid decarboxylase (AAD) in the life cycle of the malaria model parasite Plasmodium yoelii. Hallmarks of AAD include a conserved catalytic lysine residue and high-level homology to arginine/lysine/ornithine decarboxylases of pathogenic bacteria. By targeted gene deletion, we show that AAD plays an essential role in the exflagellation of microgametes, resulting in complete absence of sporozoites in the mosquito vector. These data highlight the central role of the biosysthesis of polyamines in the final steps of male gamete sexual development of the malaria parasite and, hence, onward transmission to mosquitoes.
Collapse
Affiliation(s)
- Umit Y. Kina
- Aly lab, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
- Department of Biotechnology, Institute of Health Sciences, Bezmialem Vakif University, Istanbul, Turkey
| | - Mohd Kamil
- Aly lab, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Gozde Deveci
- Aly lab, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Ab. Matteen Rafiqi
- Aly lab, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Ahmed S. I. Aly
- Aly lab, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
- School of Science and Engineering, Al Akhawayn University, Ifrane, Morocco
| |
Collapse
|
5
|
Kaiser A. The Role of Spermidine and Its Key Metabolites in Important, Pathogenic Human Viruses and in Parasitic Infections Caused by Plasmodium falciparum and Trypanosoma brucei. Biomolecules 2023; 13:biom13050803. [PMID: 37238673 DOI: 10.3390/biom13050803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The triamine spermidine is a key metabolite of the polyamine pathway. It plays a crucial role in many infectious diseases caused by viral or parasitic infections. Spermidine and its metabolizing enzymes, i.e., spermidine/spermine-N1-acetyltransferase, spermine oxidase, acetyl polyamine oxidase, and deoxyhypusine synthase, fulfill common functions during infection in parasitic protozoa and viruses which are obligate, intracellular parasites. The competition for this important polyamine between the infected host cell and the pathogen determines the severity of infection in disabling human parasites and pathogenic viruses. Here, we review the impact of spermidine and its metabolites in disease development of the most important, pathogenic human viruses such as SARS-CoV-2, HIV, Ebola, and in the human parasites Plasmodium and Trypanosomes. Moreover, state-of-the-art translational approaches to manipulate spermidine metabolism in the host and the pathogen are discussed to accelerate drug development against these threatful, infectious human diseases.
Collapse
Affiliation(s)
- Annette Kaiser
- Medical Research Centre, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| |
Collapse
|
6
|
Kim S, Chang JH. Structural Analysis of Spermidine Synthase from Kluyveromyces lactis. Molecules 2023; 28:molecules28083446. [PMID: 37110680 PMCID: PMC10146546 DOI: 10.3390/molecules28083446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Spermidine is a polyamine molecule that performs various cellular functions, such as DNA and RNA stabilization, autophagy modulation, and eIF5A formation, and is generated from putrescine by aminopropyltransferase spermidine synthase (SpdS). During synthesis, the aminopropyl moiety is donated from decarboxylated S-adenosylmethionine to form putrescine, with 5'-deoxy-5'-methylthioadenosine being produced as a byproduct. Although the molecular mechanism of SpdS function has been well-established, its structure-based evolutionary relationships remain to be fully understood. Moreover, only a few structural studies have been conducted on SpdS from fungal species. Here, we determined the crystal structure of an apo-form of SpdS from Kluyveromyces lactis (KlSpdS) at 1.9 Å resolution. Structural comparison with its homologs revealed a conformational change in the α6 helix linked to the gate-keeping loop, with approximately 40° outward rotation. This change caused the catalytic residue Asp170 to move outward, possibly due to the absence of a ligand in the active site. These findings improve our understanding of the structural diversity of SpdS and provide a missing link that expands our knowledge of the structural features of SpdS in fungal species.
Collapse
Affiliation(s)
- Seongjin Kim
- Department of Biology Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Science Education Research Institute, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| |
Collapse
|
7
|
Mitochondrial Spermidine Synthase is Essential for Blood-stage growth of the Malaria Parasite. Microbiol Res 2022; 265:127181. [PMID: 36162149 DOI: 10.1016/j.micres.2022.127181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/14/2022] [Accepted: 08/28/2022] [Indexed: 11/21/2022]
Abstract
Positively-charged polyamines are essential molecules for the replication of eukaryotic cells and are particularly important for the rapid proliferation of parasitic protozoa and cancer cells. Unlike in Trypanosoma brucei, the inhibition of the synthesis of intermediate polyamine Putrescine caused only partial defect in malaria parasite blood-stage growth. In contrast, reducing the intracellular concentrations of Spermidine and Spermine by polyamine analogs caused significant defects in blood-stage growth in Plasmodium yoelii and P. falciparum. However, little is known about the synthesizing enzyme of Spermidine and Spermine in the malaria parasite. Herein, malaria parasite conserved Spermidine Synthase (SpdS) gene was targeted for deletion/complementation analyses by knockout/knock-in constructs in P. yoelii. SpdS was found to be essential for blood-stage growth. Live fluorescence imaging in blood-stages and sporozoites confirmed a specific mitochondrial localization, which is not known for any polyamine-synthesizing enzyme so far. This study identifies SpdS as an excellent drug targeting candidate against the malaria parasite, which is localized to the parasite mitochondrion.
Collapse
|
8
|
Grube CD, Gill CP, Roy H. Development of a continuous assay for high throughput screening to identify inhibitors of the purine salvage pathway in Plasmodium falciparum. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:114-120. [PMID: 35058189 DOI: 10.1016/j.slasd.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Malaria, an infectious disease caused by protozoan parasites from the genus Plasmodium, represents a serious global health threat. The continued emergence of drug resistant strains has severely decreased current antimalarial drug efficacy and led to a perpetual race for drug discovery. Most protozoan parasites, including Plasmodium spp., are unable to synthesize purines de novo and instead rely on an essential purine salvage pathway for acquisition of purines from the infected host. Because purines are essential for Plasmodium growth and survival, the enzymes of the purine salvage pathway represent promising targets for drug discovery. Target-based high-throughput screening (HTS) assays traditionally focus on a single target, which severely limits the screening power of this type of approach. To circumvent this limitation, we have reconstituted the purine salvage pathway from Plasmodium falciparum in an assay combining four drug targets. This assay was developed for HTS and optimized to detect partial inhibition of any of the four enzymes in the pathway. Inhibitors of several enzymes in the pathway were identified in a pilot screen, with several compounds exhibiting effective inhibition when provided in micromolar amounts.
Collapse
Affiliation(s)
- Christopher D Grube
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Cameron P Gill
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Hervé Roy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA.
| |
Collapse
|
9
|
Sissoko A, Vásquez-Ocmín P, Maciuk A, Barbieri D, Neveu G, Rondepierre L, Grougnet R, Leproux P, Blaud M, Hammad K, Michel S, Lavazec C, Clain J, Houzé S, Duval R. A Chemically Stable Fluorescent Mimic of Dihydroartemisinin, Artemether, and Arteether with Conserved Bioactivity and Specificity Shows High Pharmacological Relevance to the Antimalarial Drugs. ACS Infect Dis 2020; 6:1532-1547. [PMID: 32267151 DOI: 10.1021/acsinfecdis.9b00430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Three novel tracers designed as fluorescent surrogates of artemisinin-derived antimalarial drugs (i.e., dihydroartemisinin, artemether, arteether, and artemisone) were synthesized from dihydroartemisinin. One of these tracers, corresponding to a dihydroartemisinin/artemether/arteether mimic, showed a combination of excellent physicochemical and biological properties such as hydrolytic stability, high inhibitory potency against blood-stage parasites, similar ring-stage survival assay values than the clinical antimalarials, high cytopermeability and specific labeling of live P. falciparum cells, alkylation of heme, as well as specific covalent labeling of drug-sensitive and drug-resistant P. falciparum proteomes at physiological concentrations, consistent with a multitarget action of the drugs. Our study demonstrates that probes containing the complete structural core of clinical artemisinin derivatives can be stable in biochemical and cellular settings, and recapitulate the complex mechanisms of these frontline, yet threatened, antimalarial drugs.
Collapse
Affiliation(s)
- Abdoulaye Sissoko
- Université de Paris, MERIT, IRD, F-75006 Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | | | - Alexandre Maciuk
- Université Paris-Saclay, CNRS, BioCIS, F-92290 Châtenay-Malabry, France
| | - Daniela Barbieri
- Laboratoire d’Excellence GR-Ex, Paris, France
- Université de Paris, U1016, INSERM, and UMR 8104,
CNRS, F-75014 Paris, France
| | - Gaëlle Neveu
- Laboratoire d’Excellence GR-Ex, Paris, France
- Université de Paris, U1016, INSERM, and UMR 8104,
CNRS, F-75014 Paris, France
| | - Laurine Rondepierre
- Université de Paris, MERIT, IRD, F-75006 Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | | | | | - Magali Blaud
- Université de Paris, CiTCoM, CNRS, F-75006 Paris, France
| | - Karim Hammad
- Université de Paris, CiTCoM, CNRS, F-75006 Paris, France
| | - Sylvie Michel
- Université de Paris, CiTCoM, CNRS, F-75006 Paris, France
| | - Catherine Lavazec
- Laboratoire d’Excellence GR-Ex, Paris, France
- Université de Paris, U1016, INSERM, and UMR 8104,
CNRS, F-75014 Paris, France
| | - Jérôme Clain
- Université de Paris, MERIT, IRD, F-75006 Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Sandrine Houzé
- Université de Paris, MERIT, IRD, F-75006 Paris, France
- CNR du Paludisme, AP-HP, Hôpital Bichat − Claude-Bernard, F-75018 Paris, France
| | - Romain Duval
- Université de Paris, MERIT, IRD, F-75006 Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| |
Collapse
|
10
|
Yadav DK, Kumar S, Teli MK, Yadav R, Chaudhary S. Molecular Targets for Malarial Chemotherapy: A Review. Curr Top Med Chem 2019; 19:861-873. [DOI: 10.2174/1568026619666190603080000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 11/22/2022]
Abstract
The malaria parasite resistance to the existing drugs is a serious problem to the currently used
antimalarials and, thus, highlights the urgent need to develop new and effective anti-malarial molecules.
This could be achieved either by the identification of the new drugs for the validated targets or by further
refining/improving the existing antimalarials; or by combining previously effective agents with
new/existing drugs to have a synergistic effect that counters parasite resistance; or by identifying novel
targets for the malarial chemotherapy. In this review article, a comprehensive collection of some of the
novel molecular targets has been enlisted for the antimalarial drugs. The targets which could be deliberated
for developing new anti-malarial drugs could be: membrane biosynthesis, mitochondrial system,
apicoplasts, parasite transporters, shikimate pathway, hematin crystals, parasite proteases, glycolysis,
isoprenoid synthesis, cell cycle control/cycline dependent kinase, redox system, nucleic acid metabolism,
methionine cycle and the polyamines, folate metabolism, the helicases, erythrocyte G-protein, and
farnesyl transferases. Modern genomic tools approaches such as structural biology and combinatorial
chemistry, novel targets could be identified followed by drug development for drug resistant strains providing
wide ranges of novel targets in the development of new therapy. The new approaches and targets
mentioned in the manuscript provide a basis for the development of new unique strategies for antimalarial
therapy with limited off-target effects in the near future.
Collapse
Affiliation(s)
- Dharmendra K. Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, 191, Yeonsu-gu, Incheon 406-799, South Korea
| | - Surendra Kumar
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, 191, Yeonsu-gu, Incheon 406-799, South Korea
| | - Mahesh K. Teli
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, 191, Yeonsu-gu, Incheon 406-799, South Korea
| | - Ravikant Yadav
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur-302017, India
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur-302017, India
| |
Collapse
|
11
|
El Bissati K, Redel H, Ting LM, Lykins JD, McPhillie MJ, Upadhya R, Woster PM, Yarlett N, Kim K, Weiss LM. Novel Synthetic Polyamines Have Potent Antimalarial Activities in vitro and in vivo by Decreasing Intracellular Spermidine and Spermine Concentrations. Front Cell Infect Microbiol 2019; 9:9. [PMID: 30838177 PMCID: PMC6382690 DOI: 10.3389/fcimb.2019.00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/14/2019] [Indexed: 01/09/2023] Open
Abstract
Twenty-two compounds belonging to several classes of polyamine analogs have been examined for their ability to inhibit the growth of the human malaria parasite Plasmodium falciparum in vitro and in vivo. Four lead compounds from the thiourea sub-series and one compound from the urea-based analogs were found to be potent inhibitors of both chloroquine-resistant (Dd2) and chloroquine-sensitive (3D7) strains of Plasmodium with IC50 values ranging from 150 to 460 nM. In addition, the compound RHW, N1,N7-bis (3-(cyclohexylmethylamino) propyl) heptane-1,7-diamine tetrabromide was found to inhibit Dd2 with an IC50 of 200 nM. When RHW was administered to P. yoelii-infected mice at 35 mg/kg for 4 days, it significantly reduced parasitemia. RHW was also assayed in combination with the ornithine decarboxylase inhibitor difluoromethylornithine, and the two drugs were found not to have synergistic antimalarial activity. Furthermore, these inhibitors led to decreased cellular spermidine and spermine levels in P. falciparum, suggesting that they exert their antimalarial activities by inhibition of spermidine synthase.
Collapse
Affiliation(s)
- Kamal El Bissati
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL, United States
| | - Henry Redel
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Li-Min Ting
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Joseph D Lykins
- Department of Internal Medicine and Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, United States
| | | | - Rajendra Upadhya
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Patrick M Woster
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Nigel Yarlett
- Haskins Laboratories, Department of Chemistry and Physical Sciences, Pace University, New York, NY, United States
| | - Kami Kim
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States.,Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Louis M Weiss
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States.,Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
12
|
Abstract
Polyamines are polycationic organic amines that are required for all eukaryotic life, exemplified by the polyamine spermidine, which plays an essential role in translation. They also play more specialized roles that differ across species, and their chemical versatility has been fully exploited during the evolution of protozoan pathogens. These eukaryotic pathogens, which cause some of the most globally widespread infectious diseases, have acquired species-specific polyamine-derived metabolites with essential cellular functions and have evolved unique mechanisms that regulate their core polyamine biosynthetic pathways. Many of these parasitic species have lost enzymes and or transporters from the polyamine metabolic pathway that are found in the human host. These pathway differences have prompted drug discovery efforts to target the parasite polyamine pathways, and indeed, the only clinically approved drug targeting the polyamine biosynthetic pathway is used to manage human African trypanosomiasis. This Minireview will primarily focus on polyamine metabolism and function in Trypanosoma, Leishmania, and Plasmodium species, which are the causative agents of human African trypanosomiasis (HAT) and Chagas disease, Leishmaniasis, and malaria, respectively. Aspects of polyamine metabolism across a diverse group of protozoan pathogens will also be explored.
Collapse
Affiliation(s)
- Margaret A Phillips
- From the Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9038
| |
Collapse
|
13
|
V M V, Dubey VK, Ponnuraj K. Identification of two natural compound inhibitors of Leishmania donovani Spermidine Synthase (SpdS) through molecular docking and dynamic studies. J Biomol Struct Dyn 2017; 36:2678-2693. [PMID: 28797195 DOI: 10.1080/07391102.2017.1366947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Visceral leishmaniasis caused by the protozoan Leishmania donovani is the most severe form of leishmaniasis and it is potentially lethal if untreated. Despite the availability of drugs for treating the disease, the current drug regime suffers from drawbacks like antibiotic resistance and toxicity. New drugs have to be discovered in order to overcome these limitations. Our aim is to identify natural compounds from plant sources as putative inhibitors considering the occurrence of structural diversity in plant sources. Spermidine Synthase (SpdS) was chosen as the target enzyme as it plays a vital role in growth, survival, and due to its contribution in virulence. Our initial investigation started with a literature survey in identifying natural compounds that showed antileishmanial activity. Subsequently, we identified two monoterpenoid compounds, namely Geraniol and Linalool, that were structurally analogous to one of the substrates (putrescine) of SpdS. In the present study, homology model of L. donovani SpdS was generated and the binding affinity of the identified compounds was analyzed and also compared with the putrescine through molecular docking and dynamic studies. The pharmacokinetic properties of the identified compounds were validated and the binding efficiency of these ligands over the original substrate has been demonstrated. Based on these studies, Geraniol and Linalool can be considered as lead molecules for future investigations targeting SpdS. This study further emphasizes the choice of natural compounds as a good source of therapeutic agents.
Collapse
Affiliation(s)
- Vidhya V M
- a Centre of Advanced Study in Crystallography and Biophysics , University of Madras , Guindy Campus, Chennai - 600 025 , India
| | - Vikash Kumar Dubey
- b Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati - 781039 , India
| | - Karthe Ponnuraj
- a Centre of Advanced Study in Crystallography and Biophysics , University of Madras , Guindy Campus, Chennai - 600 025 , India
| |
Collapse
|
14
|
Pothipongsa A, Jantaro S, Salminen TA, Incharoensakdi A. Molecular characterization and homology modeling of spermidine synthase from Synechococcus sp. PCC 7942. World J Microbiol Biotechnol 2017; 33:72. [PMID: 28299555 DOI: 10.1007/s11274-017-2242-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
Abstract
Spermidine synthase (Spds) catalyzes the formation of spermidine by transferring the aminopropyl group from decarboxylated S-adenosylmethionine (dcSAM) to putrescine. The Synechococcus spds gene encoding Spds was expressed in Escherichia coli. The purified recombinant enzyme had a molecular mass of 33 kDa and showed optimal activity at pH 7.5, 37 °C. The enzyme had higher affinity for dcSAM (K m, 20 µM) than for putrescine (K m, 111 µM) and was highly specific towards the diamine putrescine with no activity observed towards longer chain diamines. The three-dimensional structural model for Synechococcus Spds revealed that most of the ligand binding residues in Spds from Synechococcus sp. PCC 7942 are identical to those of human and parasite Spds. Based on the model, the highly conserved acidic residues, Asp89, Asp159 and Asp162, are involved in the binding of substrates putrescine and dcSAM and Pro166 seems to confer substrate specificity towards putrescine.
Collapse
Affiliation(s)
- Apiradee Pothipongsa
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Saowarath Jantaro
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
15
|
Sprenger J, Carey J, Svensson B, Wengel V, Persson L. Binding and Inhibition of Spermidine Synthase from Plasmodium falciparum and Implications for In Vitro Inhibitor Testing. PLoS One 2016; 11:e0163442. [PMID: 27661085 PMCID: PMC5035006 DOI: 10.1371/journal.pone.0163442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/08/2016] [Indexed: 11/23/2022] Open
Abstract
The aminopropyltransferase spermidine synthase (SpdS) is a promising drug target in cancer and in protozoan diseases including malaria. Plasmodium falciparum SpdS (PfSpdS) transfers the aminopropyl group of decarboxylated S-adenosylmethionine (dcAdoMet) to putrescine or to spermidine to form spermidine or spermine, respectively. In an effort to understand why efficient inhibitors of PfSpdS have been elusive, the present study uses enzyme activity assays and isothermal titration calorimetry with verified or predicted inhibitors of PfSpdS to analyze the relationship between binding affinity as assessed by KD and inhibitory activity as assessed by IC50. The results show that some predicted inhibitors bind to the enzyme with high affinity but are poor inhibitors. Binding studies with PfSpdS substrates and products strongly support an ordered sequential mechanism in which the aminopropyl donor (dcAdoMet) site must be occupied before the aminopropyl acceptor (putrescine) site can be occupied. Analysis of the results also shows that the ordered sequential mechanism adequately accounts for the complex relationship between IC50 and KD and may explain the limited success of previous efforts at structure-based inhibitor design for PfSpdS. Based on PfSpdS active-site occupancy, we suggest a classification of ligands that can help to predict the KD−IC50 relations in future design of new inhibitors. The present findings may be relevant for other drug targets that follow an ordered sequential mechanism.
Collapse
Affiliation(s)
- Janina Sprenger
- Center for Molecular Protein Science, Lund University, SE-221 00, Lund, Sweden
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Jannette Carey
- Chemistry Department, Princeton University, Princeton, New Jersey, 08544, United States of America
| | - Bo Svensson
- SARomics Biostructures AB, Medicon Village, SE-223 81, Lund, Sweden
| | - Verena Wengel
- Center for Molecular Protein Science, Lund University, SE-221 00, Lund, Sweden
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Lo Persson
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
- * E-mail:
| |
Collapse
|
16
|
Sprenger J, Svensson B, Hålander J, Carey J, Persson L, Al-Karadaghi S. Three-dimensional structures of Plasmodium falciparum spermidine synthase with bound inhibitors suggest new strategies for drug design. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:484-93. [PMID: 25760598 PMCID: PMC4356361 DOI: 10.1107/s1399004714027011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 12/09/2014] [Indexed: 01/06/2023]
Abstract
The enzymes of the polyamine-biosynthesis pathway have been proposed to be promising drug targets in the treatment of malaria. Spermidine synthase (SpdS; putrescine aminopropyltransferase) catalyzes the transfer of the aminopropyl moiety from decarboxylated S-adenosylmethionine to putrescine, leading to the formation of spermidine and 5'-methylthioadenosine (MTA). In this work, X-ray crystallography was used to examine ligand complexes of SpdS from the malaria parasite Plasmodium falciparum (PfSpdS). Five crystal structures were determined of PfSpdS in complex with MTA and the substrate putrescine, with MTA and spermidine, which was obtained as a result of the enzymatic reaction taking place within the crystals, with dcAdoMet and the inhibitor 4-methylaniline, with MTA and 4-aminomethylaniline, and with a compound predicted in earlier in silico screening to bind to the active site of the enzyme, benzimidazol-(2-yl)pentan-1-amine (BIPA). In contrast to the other inhibitors tested, the complex with BIPA was obtained without any ligand bound to the dcAdoMet-binding site of the enzyme. The complexes with the aniline compounds and BIPA revealed a new mode of ligand binding to PfSpdS. The observed binding mode of the ligands, and the interplay between the two substrate-binding sites and the flexible gatekeeper loop, can be used in the design of new approaches in the search for new inhibitors of SpdS.
Collapse
Affiliation(s)
- Janina Sprenger
- Center for Molecular Protein Science, Lund University, SE-221 00 Lund, Sweden
- Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Bo Svensson
- Center for Molecular Protein Science, Lund University, SE-221 00 Lund, Sweden
- SARomics Biostructures AB, Box 724, SE-220 07 Lund, Sweden
| | - Jenny Hålander
- Center for Molecular Protein Science, Lund University, SE-221 00 Lund, Sweden
| | - Jannette Carey
- Chemistry Department, Princeton University, Princeton, New Jersey, USA
| | - Lo Persson
- Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Salam Al-Karadaghi
- Center for Molecular Protein Science, Lund University, SE-221 00 Lund, Sweden
| |
Collapse
|
17
|
A novel inhibitor of Plasmodium falciparum spermidine synthase: a twist in the tail. Malar J 2015; 14:54. [PMID: 25651815 PMCID: PMC4342090 DOI: 10.1186/s12936-015-0572-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum is the most pathogenic of the human malaria parasite species and a major cause of death in Africa. It's resistance to most of the current drugs accentuates the pressing need for new chemotherapies. Polyamine metabolism of the parasite is distinct from the human pathway making it an attractive target for chemotherapeutic development. Plasmodium falciparum spermidine synthase (PfSpdS) catalyzes the synthesis of spermidine and spermine. It is a major polyamine flux-determining enzyme and spermidine is a prerequisite for the post-translational activation of P. falciparum eukaryotic translation initiation factor 5A (elF5A). The most potent inhibitors of eukaryotic SpdS's are not specific for PfSpdS. METHODS 'Dynamic' receptor-based pharmacophore models were generated from published crystal structures of SpdS with different ligands. This approach takes into account the inherent flexibility of the active site, which reduces the entropic penalties associated with ligand binding. Four dynamic pharmacophore models were developed and two inhibitors, (1R,4R)-(N1-(3-aminopropyl)-trans-cyclohexane-1,4-diamine (compound 8) and an analogue, N-(3-aminopropyl)-cyclohexylamine (compound 9), were identified. RESULTS A crystal structure containing compound 8 was solved and confirmed the in silico prediction that its aminopropyl chain traverses the catalytic centre in the presence of the byproduct of catalysis, 5'-methylthioadenosine. The IC50 value of compound 9 is in the same range as that of the most potent inhibitors of PfSpdS, S-adenosyl-1,8-diamino-3-thio-octane (AdoDATO) and 4MCHA and 100-fold lower than that of compound 8. Compound 9 was originally identified as a mammalian spermine synthase inhibitor and does not inhibit mammalian SpdS. This implied that these two compounds bind in an orientation where their aminopropyl chains face the putrescine binding site in the presence of the substrate, decarboxylated S-adenosylmethionine. The higher binding affinity and lower receptor strain energy of compound 9 compared to compound 8 in the reversed orientation explained their different IC50 values. CONCLUSION The specific inhibition of PfSpdS by compound 9 is enabled by its binding in the additional cavity normally occupied by spermidine when spermine is synthesized. This is the first time that a spermine synthase inhibitor is shown to inhibit PfSpdS, which provides new avenues to explore for the development of novel inhibitors of PfSpdS.
Collapse
|
18
|
Genetic validation of Trypanosoma brucei glutathione synthetase as an essential enzyme. EUKARYOTIC CELL 2014; 13:614-24. [PMID: 24610661 DOI: 10.1128/ec.00015-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human African trypanosomiasis (HAT) is a debilitating and fatal vector-borne disease. Polyamine biosynthesis is the target of one of the key drugs (eflornithine) used for the treatment of late-stage disease, suggesting that the pathway might be exploited for the identification of additional drug targets. The polyamine spermidine is required in trypanosomatid parasites for formation of a unique redox cofactor termed trypanothione, which is formed from the conjugation of glutathione to spermidine. Here we characterize recombinant Trypanosoma brucei glutathione synthetase (TbGS) and show that depletion of TbGS in blood-form parasites using a regulated knockout strategy leads to loss of trypanothione and to cell death as quantified by fluorescence-activated cell sorter (FACS) analysis. These data suggest that >97% depletion of TbGS is required before trypanothione is depleted and cell growth arrest is observed. Exogenous glutathione was able to partially compensate for the loss of TbGS, suggesting that parasites are able to transport intact glutathione. Finally, reduced expression of TbGS leads to increased levels of upstream glutathione biosynthetic enzymes and decreased expression of polyamine biosynthetic enzymes, providing evidence that the cells cross regulate the two branches of the trypanothione biosynthetic pathway to maintain spermidine and trypanothione homeostasis.
Collapse
|
19
|
Khomutov MA, Weisell J, Hyvönen M, Keinänen TA, Vepsäläinen J, Alhonen L, Khomutov AR, Kochetkov SN. Hydroxylamine derivatives for regulation of spermine and spermidine metabolism. BIOCHEMISTRY. BIOKHIMIIA 2013; 78:1431-46. [PMID: 24490733 DOI: 10.1134/s0006297913130051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biogenic polyamines spermine, spermidine, and their precursor putrescine are present in micro-to-millimolar concentrations in all cell types and are vitally important for their normal growth. High intracellular content of spermine and spermidine determines the multiplicity of the cellular functions of the polyamines. Many of these functions are not well characterized at the molecular level, ensuring the ongoing development of this field of biochemistry. Tumor cells have elevated polyamine level if compared with normal cells, and this greatly stimulates the search for new opportunities to deplete the intracellular pool of spermine and spermidine resulting in decrease in cell growth and even cell death. O-Substituted hydroxylamines occupy their own place among chemical regulators of the activity of the enzymes of polyamine metabolism. Varying the structure of the alkyl substituent made it possible to obtain within one class of chemical compounds highly effective inhibitors and regulators of the activity of all the enzymes of putrescine, spermine and spermidine metabolism (with the exception of FAD-dependent spermine oxidase and acetylpolyamine oxidase), effectors of the polyamine transport system, and even actively transported in cells "proinhibitor" of ornithine decarboxylase. Some principles for the design of specific inhibitors of these enzymes as well as the peculiarities of cellular effects of corresponding O-substituted hydroxylamines are discussed.
Collapse
Affiliation(s)
- M A Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Single Tryptophan of Disordered Loop from Plasmodium falciparum Purine Nucleoside Phosphorylase: Involvement in Catalysis and Microenvironment. Appl Biochem Biotechnol 2013; 170:868-79. [DOI: 10.1007/s12010-013-0228-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 04/07/2013] [Indexed: 11/30/2022]
|
21
|
Lee MJ, Yang YT, Lin V, Huang H. Site-directed mutations of the gatekeeping loop region affect the activity of Escherichia coli spermidine synthase. Mol Biotechnol 2012; 54:572-80. [PMID: 23001854 DOI: 10.1007/s12033-012-9599-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Spermidine synthase catalyzes the production of spermidine from putrescine and decarboxylated S-adenosylmethionine (dcSAM), and plays a crucial role in cell proliferation and differentiation. The gatekeeping loop identified in the structure of spermidine synthase was predicted to contain residues important for substrate binding, but its correlation with enzyme catalysis has not been fully understood. In this study, recombinant Escherichia coli spermidine synthase (EcSPDS) was produced and its enzyme kinetics was characterized. Site-directed mutants of EcSPDS were obtained to demonstrate the importance of the amino acid residues in the gatekeeping loop. Substitution of Asp158 and Asp161 with alanine completely abolished EcSPDS activity, suggesting that these residues are absolutely required for substrate interaction. Reduction in enzyme activity was observed in the C159A, T160A, and P165Q variants, indicating that hydrophobic interactions contributed by Cys159, Thr160, and Pro165 are important for enzyme catalysis as well. On the other hand, replacement of Pro162 and Ile163 had no influence on EcSDPS activity. These results indicate that residues in the gatekeeping loop of spermidine synthase are indispensable for the catalytic reaction of EcSPDS. To the best of our knowledge, this is the first functional study on the gatekeeping loop of EcSPDS by site-directed mutagenesis.
Collapse
Affiliation(s)
- Mon-Juan Lee
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan
| | | | | | | |
Collapse
|
22
|
Niemand J, Louw AI, Birkholtz L, Kirk K. Polyamine uptake by the intraerythrocytic malaria parasite, Plasmodium falciparum. Int J Parasitol 2012; 42:921-9. [PMID: 22878129 DOI: 10.1016/j.ijpara.2012.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/21/2012] [Accepted: 07/23/2012] [Indexed: 11/26/2022]
Abstract
Polyamines and the enzymes involved in their biosynthesis are present at high levels in rapidly proliferating cells, including cancer cells and protozoan parasites. Inhibition of polyamine biosynthesis in asexual blood-stage malaria parasites causes cytostatic arrest of parasite development under in vitro conditions, but does not cure infections in vivo. This may be due to replenishment of the parasite's intracellular polyamine pool via salvage of exogenous polyamines from the host. However, the mechanism(s) of polyamine uptake by the intraerythrocytic parasite are not well understood. In this study, the uptake of the polyamines, putrescine and spermidine, into Plasmodium falciparum parasites functionally isolated from their host erythrocyte was investigated using radioisotope flux techniques. Both putrescine and spermidine were taken up into isolated parasites via a temperature-dependent process that showed cross-competition between different polyamines. There was also some inhibition of polyamine uptake by basic amino acids. Inhibition of polyamine biosynthesis led to an increase in the total amount of putrescine and spermidine taken up from the extracellular medium. The uptake of putrescine and spermidine by isolated parasites was independent of extracellular Na(+) but increased with increasing external pH. Uptake also showed a marked dependence on the parasite's membrane potential, decreasing with membrane depolarization and increasing with membrane hyperpolarization. The data are consistent with polyamines being taken up into the parasite via an electrogenic uptake process, energised by the parasite's inwardly negative membrane potential.
Collapse
Affiliation(s)
- J Niemand
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield 0028, South Africa
| | | | | | | |
Collapse
|
23
|
Cassera MB, Hazleton KZ, Merino EF, Obaldia N, Ho MC, Murkin AS, DePinto R, Gutierrez JA, Almo SC, Evans GB, Babu YS, Schramm VL. Plasmodium falciparum parasites are killed by a transition state analogue of purine nucleoside phosphorylase in a primate animal model. PLoS One 2011; 6:e26916. [PMID: 22096507 PMCID: PMC3214022 DOI: 10.1371/journal.pone.0026916] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/05/2011] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum causes most of the one million annual deaths from malaria. Drug resistance is widespread and novel agents against new targets are needed to support combination-therapy approaches promoted by the World Health Organization. Plasmodium species are purine auxotrophs. Blocking purine nucleoside phosphorylase (PNP) kills cultured parasites by purine starvation. DADMe-Immucillin-G (BCX4945) is a transition state analogue of human and Plasmodium PNPs, binding with picomolar affinity. Here, we test BCX4945 in Aotus primates, an animal model for Plasmodium falciparum infections. Oral administration of BCX4945 for seven days results in parasite clearance and recrudescence in otherwise lethal infections of P. falciparum in Aotus monkeys. The molecular action of BCX4945 is demonstrated in crystal structures of human and P. falciparum PNPs. Metabolite analysis demonstrates that PNP blockade inhibits purine salvage and polyamine synthesis in the parasites. The efficacy, oral availability, chemical stability, unique mechanism of action and low toxicity of BCX4945 demonstrate potential for combination therapies with this novel antimalarial agent.
Collapse
Affiliation(s)
- María B. Cassera
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, United State of America
| | - Keith Z. Hazleton
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, United State of America
| | - Emilio F. Merino
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, United State of America
| | - Nicanor Obaldia
- Tropical Medicine Research, Malaria Drug and Vaccine Evaluation Center, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Meng-Chiao Ho
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, United State of America
| | - Andrew S. Murkin
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, United State of America
- Department of Chemistry, University at Buffalo, Buffalo, New York, United State of America
| | - Richard DePinto
- Waters Corporation, Parsippany, New Jersey, United State of America
| | - Jemy A. Gutierrez
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, United State of America
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, United State of America
| | - Gary B. Evans
- Carbohydrate Chemistry Group, Industrial Research Ltd., Lower Hutt, New Zealand
| | - Yarlagadda S. Babu
- Department of Biological Sciences, BioCryst Pharmaceuticals Inc., Birmingham, Alabama, United State of America
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, United State of America
- * E-mail:
| |
Collapse
|
24
|
Abstract
New drugs are urgently needed for the treatment of tropical and subtropical parasitic diseases, such as African sleeping sickness, Chagas' disease, leishmaniasis and malaria. Enzymes in polyamine biosynthesis and thiol metabolism, as well as polyamine transporters, are potential drug targets within these organisms. In the present review, the current knowledge of unique properties of polyamine metabolism in these parasites is outlined. These properties include prozyme regulation of AdoMetDC (S-adenosylmethionine decarboxylase) activity in trypanosomatids, co-expression of ODC (ornithine decarboxylase) and AdoMetDC activities in a single protein in plasmodia, and formation of trypanothione, a unique compound linking polyamine and thiol metabolism in trypanosomatids. Particularly interesting features within polyamine metabolism in these parasites are highlighted for their potential in selective therapeutic strategies.
Collapse
|
25
|
Plata G, Hsiao TL, Olszewski KL, Llinás M, Vitkup D. Reconstruction and flux-balance analysis of the Plasmodium falciparum metabolic network. Mol Syst Biol 2010; 6:408. [PMID: 20823846 PMCID: PMC2964117 DOI: 10.1038/msb.2010.60] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 07/09/2010] [Indexed: 12/18/2022] Open
Abstract
Genome-scale metabolic reconstructions can serve as important tools for hypothesis generation and high-throughput data integration. Here, we present a metabolic network reconstruction and flux-balance analysis (FBA) of Plasmodium falciparum, the primary agent of malaria. The compartmentalized metabolic network accounts for 1001 reactions and 616 metabolites. Enzyme-gene associations were established for 366 genes and 75% of all enzymatic reactions. Compared with other microbes, the P. falciparum metabolic network contains a relatively high number of essential genes, suggesting little redundancy of the parasite metabolism. The model was able to reproduce phenotypes of experimental gene knockout and drug inhibition assays with up to 90% accuracy. Moreover, using constraints based on gene-expression data, the model was able to predict the direction of concentration changes for external metabolites with 70% accuracy. Using FBA of the reconstructed network, we identified 40 enzymatic drug targets (i.e. in silico essential genes), with no or very low sequence identity to human proteins. To demonstrate that the model can be used to make clinically relevant predictions, we experimentally tested one of the identified drug targets, nicotinate mononucleotide adenylyltransferase, using a recently discovered small-molecule inhibitor.
Collapse
Affiliation(s)
- Germán Plata
- Center for Computational Biology and Bioinformatics, Columbia University, New York City, NY 10032, USA
| | | | | | | | | |
Collapse
|
26
|
Deeb F, van der Weele CM, Wolniak SM. Spermidine is a morphogenetic determinant for cell fate specification in the male gametophyte of the water fern Marsilea vestita. THE PLANT CELL 2010; 22:3678-91. [PMID: 21097708 PMCID: PMC3015118 DOI: 10.1105/tpc.109.073254] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 10/04/2010] [Accepted: 11/04/2010] [Indexed: 05/22/2023]
Abstract
Here, we show that the polyamine spermidine plays a key role as a morphogenetic determinant during spermatid development in the water fern Marsilea vestita. Spermidine levels rise first in sterile jacket cells and then increase dramatically in spermatogenous cells as the spermatids mature. RNA interference and drug treatments were employed to deplete spermidine in the gametophyte at different stages of gametogenesis. Development in spermidine-depleted gametophytes was arrested before the completion of the last round of cell divisions. In spermidine-depleted spermatogenous cells, chromatin failed to condense properly, basal body positioning was altered, and the microtubule ribbon was in disarray. When cyclohexylamine, a spermidine synthase (SPDS) inhibitor, was added at the start of spermatid differentiation, the spermatid nuclei remained round, centrin failed to localize into basal bodies, thus blocking basal body formation, and the microtubule ribbon was completely abolished. In untreated gametophytes, spermidine made in the jacket cells moves into the spermatids, where it is involved in the unmasking of stored SPDS mRNAs, leading to substantial spermidine synthesis in the spermatids. We found that treating spores directly with spermidine or other polyamines was sufficient to unmask a variety of stored mRNAs in gametophytes and arrest development. Differences in patterns of transcript distribution after these treatments suggest that specific transcripts reside in different locations in the dry spore; these differences may be linked to the timing of unmasking and translation for that mRNA during development.
Collapse
|
27
|
Huthmacher C, Hoppe A, Bulik S, Holzhütter HG. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis. BMC SYSTEMS BIOLOGY 2010; 4:120. [PMID: 20807400 PMCID: PMC2941759 DOI: 10.1186/1752-0509-4-120] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 08/31/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed. RESULTS Here, we present a computational analysis of the metabolism of Plasmodium falciparum, the deadliest malaria pathogen. We assembled a compartmentalized metabolic model and predicted life cycle stage specific metabolism with the help of a flux balance approach that integrates gene expression data. Predicted metabolite exchanges between parasite and host were found to be in good accordance with experimental findings when the parasite's metabolic network was embedded into that of its host (erythrocyte). Knock-out simulations identified 307 indispensable metabolic reactions within the parasite. 35 out of 57 experimentally demonstrated essential enzymes were recovered and another 16 enzymes, if additionally the assumption was made that nutrient uptake from the host cell is limited and all reactions catalyzed by the inhibited enzyme are blocked. This predicted set of putative drug targets, shown to be enriched with true targets by a factor of at least 2.75, was further analyzed with respect to homology to human enzymes, functional similarity to therapeutic targets in other organisms and their predicted potency for prophylaxis and disease treatment. CONCLUSIONS The results suggest that the set of essential enzymes predicted by our flux balance approach represents a promising starting point for further drug development.
Collapse
Affiliation(s)
- Carola Huthmacher
- Institute of Biochemistry, Charité, Monbijoustraße 2, 10117 Berlin, Germany
| | - Andreas Hoppe
- Institute of Biochemistry, Charité, Monbijoustraße 2, 10117 Berlin, Germany
| | - Sascha Bulik
- Institute of Biochemistry, Charité, Monbijoustraße 2, 10117 Berlin, Germany
| | | |
Collapse
|
28
|
Oka T, Ohtani M, Suzuki JI. [Identification of novel molecules regulating differentiation and hormone secretion and clarification of their functional mechanisms in pancreatic endocrine cells]. YAKUGAKU ZASSHI 2010; 130:377-88. [PMID: 20190522 DOI: 10.1248/yakushi.130.377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to find novel bioactive molecules regulating differentiation and hormone secretion of pancreatic endocrine cells, the effects of various substances including purinergic receptor agonists and inhibitors of polyamine biosynthesis were examined in pancreatic islets and several pancreatic cell lines. The nicotinic alpha3beta4 receptor was found to be present and capable of increasing cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) and insulin secretion in mouse pancreatic Beta-TC6 cells. Activation of both nicotinic and muscarinic M(3)/M(4) receptors resulted in reduction of insulin release when compared with stimulation of muscarinic receptor alone in Beta-TC6 cells. In mouse islets, purinergic P2Y(1) and P2Y(6) receptors, which are coupled to Gq proteins, were expressed and appeared to regulate insulin secretion through Ca(2+) mobilization from intracellular stores. Similar results were observed in Beta-TC6 cells. Spermidine, one of polyamines, was found to modulate insulin synthesis and [Ca(2+)](i) in Beta-TC6 cells by use of a specific spermidine synthesis inhibitor, trans-4-methylcyclohexylamine (MCHA). Antizyme, which binds to ornithine decarboxylase (ODC) and thereby reduces the cellular polyamine level, was found to be necessary for conversion of ASPC-1 cells, a pancreatic ductal tumor cell line, into alpha-cells forming the islet-like structure and expressing glucagon gene. These findings help advance our understanding of the complex mechanisms involved in the regulation of pancreatic endocrine cell function and develop new therapeutic agents in diabetes mellitus.
Collapse
Affiliation(s)
- Takami Oka
- Research Institute of Pharmaceutical Sciences, Musashino University, Japan.
| | | | | |
Collapse
|
29
|
Becker JVW, Mtwisha L, Crampton BG, Stoychev S, van Brummelen AC, Reeksting S, Louw AI, Birkholtz LM, Mancama DT. Plasmodium falciparum spermidine synthase inhibition results in unique perturbation-specific effects observed on transcript, protein and metabolite levels. BMC Genomics 2010; 11:235. [PMID: 20385001 PMCID: PMC2867828 DOI: 10.1186/1471-2164-11-235] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 04/12/2010] [Indexed: 12/02/2022] Open
Abstract
Background Plasmodium falciparum, the causative agent of severe human malaria, has evolved to become resistant to previously successful antimalarial chemotherapies, most notably chloroquine and the antifolates. The prevalence of resistant strains has necessitated the discovery and development of new chemical entities with novel modes-of-action. Although much effort has been invested in the creation of analogues based on existing drugs and the screening of chemical and natural compound libraries, a crucial shortcoming in current Plasmodial drug discovery efforts remains the lack of an extensive set of novel, validated drug targets. A requirement of these targets (or the pathways in which they function) is that they prove essential for parasite survival. The polyamine biosynthetic pathway, responsible for the metabolism of highly abundant amines crucial for parasite growth, proliferation and differentiation, is currently under investigation as an antimalarial target. Chemotherapeutic strategies targeting this pathway have been successfully utilized for the treatment of Trypanosomes causing West African sleeping sickness. In order to further evaluate polyamine depletion as possible antimalarial intervention, the consequences of inhibiting P. falciparum spermidine synthase (PfSpdSyn) were examined on a morphological, transcriptomic, proteomic and metabolic level. Results Morphological analysis of P. falciparum 3D7 following application of the PfSpdSyn inhibitor cyclohexylamine confirmed that parasite development was completely arrested at the early trophozoite stage. This is in contrast to untreated parasites which progressed to late trophozoites at comparable time points. Global gene expression analyses confirmed a transcriptional arrest in the parasite. Several of the differentially expressed genes mapped to the polyamine biosynthetic and associated metabolic pathways. Differential expression of corresponding parasite proteins involved in polyamine biosynthesis was also observed. Most notably, uridine phosphorylase, adenosine deaminase, lysine decarboxylase (LDC) and S-adenosylmethionine synthetase were differentially expressed at the transcript and/or protein level. Several genes in associated metabolic pathways (purine metabolism and various methyltransferases) were also affected. The specific nature of the perturbation was additionally reflected by changes in polyamine metabolite levels. Conclusions This study details the malaria parasite's response to PfSpdSyn inhibition on the transcriptomic, proteomic and metabolic levels. The results corroborate and significantly expand previous functional genomics studies relating to polyamine depletion in this parasite. Moreover, they confirm the role of transcriptional regulation in P. falciparum, particularly in this pathway. The findings promote this essential pathway as a target for antimalarial chemotherapeutic intervention strategies.
Collapse
|
30
|
Blavid R, Kusch P, Hauber J, Eschweiler U, Sarite SR, Specht S, Deininger S, Hoerauf A, Kaiser A. Down-regulation of hypusine biosynthesis in Plasmodium by inhibition of S-adenosyl-methionine-decarboxylase. Amino Acids 2010; 38:461-9. [PMID: 19949824 DOI: 10.1007/s00726-009-0405-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 09/10/2009] [Indexed: 11/26/2022]
Abstract
An important issue facing global health today is the need for new, effective and affordable drugs against malaria, particularly in resource-poor countries. Moreover, the currently available antimalarials are limited by factors ranging from parasite resistance to safety, compliance, cost and the current lack of innovations in medicinal chemistry. Depletion of polyamines in the intraerythrocytic phase of P. falciparum is a promising strategy for the development of new antimalarials since intracellular levels of putrescine, spermidine and spermine are increased during cell proliferation. S-adenosyl-methionine-decarboxylase (AdoMETDC) is a key enzyme in the biosynthesis of spermidine. The AdoMETDC inhibitor CGP 48664A, known as SAM486A, inhibited the separately expressed plasmodial AdoMETDC domain with a Km( i ) of 3 microM resulting in depletion of spermidine. Spermidine is an important precursor in the biosynthesis of hypusine. This prompted us to investigate a downstream effect on hypusine biosynthesis after inhibition of AdoMETDC. Extracts from P. falciparum in vitro cultures that were treated with 10 microM SAM 486A showed suppression of eukaryotic initiation factor 5A (eIF-5A) in comparison to the untreated control in two-dimensional gel electrophoresis. Depletion of eIF-5A was also observed in Western blot analysis with crude protein extracts from the parasite after treatment with 10 microM SAM486A. A determination of the intracellular polyamine levels revealed an approximately 27% reduction of spemidine and a 75% decrease of spermine while putrescine levels increased to 36%. These data suggest that inhibition of AdoMetDc provides a novel strategy for eIF-5A suppression and the design of new antimalarials.
Collapse
Affiliation(s)
- Robert Blavid
- Hochschule Bonn-Rhein-Sieg, Von Liebig Strasse 20, 53359, Rheinbach, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
O'Hagan D, Schmidberger JW. Enzymes that catalyse SN2 reaction mechanisms. Nat Prod Rep 2010; 27:900-18. [DOI: 10.1039/b919371p] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Functional consequences of perturbing polyamine metabolism in the malaria parasite, Plasmodium falciparum. Amino Acids 2009; 38:633-44. [DOI: 10.1007/s00726-009-0424-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 09/21/2009] [Indexed: 12/24/2022]
|
33
|
Biastoff S, Brandt W, Dräger B. Putrescine N-methyltransferase--the start for alkaloids. PHYTOCHEMISTRY 2009; 70:1708-18. [PMID: 19651420 DOI: 10.1016/j.phytochem.2009.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 06/08/2009] [Accepted: 06/12/2009] [Indexed: 05/08/2023]
Abstract
Putrescine N-methyltransferase (PMT) catalyses S-adenosylmethionine (SAM) dependent methylation of the diamine putrescine. The product N-methylputrescine is the first specific metabolite on the route to nicotine, tropane, and nortropane alkaloids. PMT cDNA sequences were cloned from tobacco species and other Solanaceae, also from nortropane-forming Convolvulaceae and enzyme proteins were synthesised in Escherichia coli. PMT activity was measured by HPLC separation of polyamine derivatives and by an enzyme-coupled colorimetric assay using S-adenosylhomocysteine. PMT cDNA sequences resemble those of plant spermidine synthases (putrescine aminopropyltransferases) and display little similarity to other plant methyltransferases. PMT is likely to have evolved from the ubiquitous enzyme spermidine synthase. PMT and spermidine synthase proteins share the same overall protein structure; they bind the same substrate putrescine and similar co-substrates, SAM and decarboxylated S-adenosylmethionine. The active sites of both proteins, however, were shaped differentially in the course of evolution. Phylogenetic analysis of both enzyme groups from plants revealed a deep bifurcation and confirmed an early descent of PMT from spermidine synthase in the course of angiosperm development.
Collapse
Affiliation(s)
- Stefan Biastoff
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | | | | |
Collapse
|
34
|
Wells GA, Müller IB, Wrenger C, Louw AI. The activity of Plasmodium falciparum arginase is mediated by a novel inter-monomer salt-bridge between Glu295-Arg404. FEBS J 2009; 276:3517-30. [PMID: 19456858 DOI: 10.1111/j.1742-4658.2009.07073.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A recent study implicated a role for Plasmodium falciparum arginase in the systemic depletion of arginine levels, which in turn has been associated with human cerebral malaria pathogenesis. Arginase (EC 3.5.3.1) is a multimeric metallo-protein that catalyses the hydrolysis of arginine to ornithine and urea by means of a binuclear spin-coupled Mn(2+) cluster in the active site. A previous report indicated that P. falciparum arginase has a strong dependency between trimer formation, enzyme activity and metal co-ordination. Mutations that abolished Mn(2+) binding also caused dissociation of the trimer; conversely, mutations that abolished trimer formation resulted in inactive monomers. By contrast, the monomers of mammalian (and therefore host) arginase are also active. P. falciparum arginase thus appears to be an obligate trimer and interfering with trimer formation may therefore serve as an alternative route to enzyme inhibition. In the present study, the mechanism of the metal dependency was explored by means of homology modelling and molecular dynamics. When the active site metals are removed, loss of structural integrity is observed. This is reflected by a larger equilibration rmsd for the protein when the active site metal is removed and some loss of secondary structure. Furthermore, modelling revealed the existence of a novel inter-monomer salt-bridge between Glu295 and Arg404, which was shown to be associated with the metal dependency. Mutational studies not only confirmed the importance of this salt-bridge in trimer formation, but also provided evidence for the independence of P. falciparum arginase activity on trimer formation.
Collapse
Affiliation(s)
- Gordon A Wells
- Department of Biochemistry, University of Pretoria, South Africa
| | | | | | | |
Collapse
|
35
|
Ohtani M, Mizuno I, Kojima Y, Ishikawa Y, Sodeno M, Asakura Y, Samejima K, Oka T. Spermidine Regulates Insulin Synthesis and Cytoplasmic Ca2+ in Mouse Beta-TC6 Insulinoma Cells. Cell Struct Funct 2009; 34:105-13. [DOI: 10.1247/csf.09008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Masahiro Ohtani
- Research Institute of Pharmaceutical Sciences, Musashino University
| | - Ikuko Mizuno
- Research Institute of Pharmaceutical Sciences, Musashino University
| | - Yumiko Kojima
- Research Institute of Pharmaceutical Sciences, Musashino University
| | - Yuichi Ishikawa
- Research Institute of Pharmaceutical Sciences, Musashino University
| | - Midori Sodeno
- Research Institute of Pharmaceutical Sciences, Musashino University
| | - Yuka Asakura
- Research Institute of Pharmaceutical Sciences, Musashino University
| | - Keijiro Samejima
- Research Institute of Pharmaceutical Sciences, Musashino University
| | - Takami Oka
- Research Institute of Pharmaceutical Sciences, Musashino University
| |
Collapse
|
36
|
van Brummelen AC, Olszewski KL, Wilinski D, Llinás M, Louw AI, Birkholtz LM. Co-inhibition of Plasmodium falciparum S-adenosylmethionine decarboxylase/ornithine decarboxylase reveals perturbation-specific compensatory mechanisms by transcriptome, proteome, and metabolome analyses. J Biol Chem 2008; 284:4635-46. [PMID: 19073607 DOI: 10.1074/jbc.m807085200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polyamines are ubiquitous components of all living cells, and their depletion usually causes cytostasis, a strategy employed for treatment of West African trypanosomiasis. To evaluate polyamine depletion as an anti-malarial strategy, cytostasis caused by the co-inhibition of S-adenosylmethionine decarboxylase/ornithine decarboxylase in Plasmodium falciparum was studied with a comprehensive transcriptome, proteome, and metabolome investigation. Highly synchronized cultures were sampled just before and during cytostasis, and a novel zero time point definition was used to enable interpretation of results in lieu of the developmentally regulated control of gene expression in P. falciparum. Transcriptome analysis revealed the occurrence of a generalized transcriptional arrest just prior to the growth arrest due to polyamine depletion. However, the abundance of 538 transcripts was differentially affected and included three perturbation-specific compensatory transcriptional responses as follows: the increased abundance of the transcripts for lysine decarboxylase and ornithine aminotransferase and the decreased abundance of that for S-adenosylmethionine synthetase. Moreover, the latter two compensatory mechanisms were confirmed on both protein and metabolite levels confirming their biological relevance. In contrast with previous reports, the results provide evidence that P. falciparum responds to alleviate the detrimental effects of polyamine depletion via regulation of its transcriptome and subsequently the proteome and metabolome.
Collapse
Affiliation(s)
- Anna C van Brummelen
- Department of Biochemistry, University of Pretoria, Pretoria, Gauteng 0002, South Africa
| | | | | | | | | | | |
Collapse
|
37
|
Lamarque M, Tastet C, Poncet J, Demettre E, Jouin P, Vial H, Dubremetz JF. Food vacuole proteome of the malarial parasite Plasmodium falciparum. Proteomics Clin Appl 2008; 2:1361-74. [PMID: 21136929 DOI: 10.1002/prca.200700112] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Indexed: 11/08/2022]
Abstract
The Plasmodium falciparum food vacuole (FV) is a lysosome-like organelle where erythrocyte hemoglobin digestion occurs. It is a favorite target in the development of antimalarials. We have used a tandem mass spectrometry approach to investigate the proteome of an FV-enriched fraction and identified 116 proteins. The electron microscopy analysis and the Western blot data showed that the major component of the fraction was the FV and, as expected, the majority of previously known FV markers were recovered. Of particular interest, several proteins involved in vesicle-mediated trafficking were identified, which are likely to play a key role in FV biogenesis and/or FV protein trafficking. Recovery of parasite surface proteins lends support to the cytostomal pathway of hemoglobin ingestion as a FV trafficking route. We have identified 32 proteins described as hypothetical in the databases. This insight into FV protein content provides new clues towards understanding the biological function of this organelle in P. falciparum.
Collapse
Affiliation(s)
- Mauld Lamarque
- Dynamique Moléculaire des Interactions Membranaires CNRS UMR 5235, Université Montpellier II, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Müller IB, Das Gupta R, Lüersen K, Wrenger C, Walter RD. Assessing the polyamine metabolism of Plasmodium falciparum as chemotherapeutic target. Mol Biochem Parasitol 2008; 160:1-7. [DOI: 10.1016/j.molbiopara.2008.03.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/17/2008] [Accepted: 03/19/2008] [Indexed: 11/17/2022]
|
39
|
Jacobsson M, Gäredal M, Schultz J, Karlén A. Identification of Plasmodium falciparum Spermidine Synthase Active Site Binders through Structure-Based Virtual Screening. J Med Chem 2008; 51:2777-86. [DOI: 10.1021/jm7016144] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Micael Jacobsson
- iNovacia AB, Lindhagensgatan 133, SE-112 51 Stockholm, Sweden, Department of Medicinal Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Magnus Gäredal
- iNovacia AB, Lindhagensgatan 133, SE-112 51 Stockholm, Sweden, Department of Medicinal Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Johan Schultz
- iNovacia AB, Lindhagensgatan 133, SE-112 51 Stockholm, Sweden, Department of Medicinal Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Anders Karlén
- iNovacia AB, Lindhagensgatan 133, SE-112 51 Stockholm, Sweden, Department of Medicinal Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
40
|
Wong S, Jacobson MP. Conformational selection in silico: loop latching motions and ligand binding in enzymes. Proteins 2008; 71:153-64. [PMID: 17932934 DOI: 10.1002/prot.21666] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ligand binding frequently induces significant conformational changes in a protein receptor. Understanding and predicting such conformational changes represent an important challenge for computational biology, including applications to structure-based drug design. We describe an approach to this problem based on the assumption that the holo state is at least transiently populated in the absence of a ligand; this hypothesis has been referred to as "conformational selection." Here, we apply a method that tests this hypothesis on a challenging class of ligand-induced conformational changes, which we refer to as loop latching: the closing of a loop around an active site that sequesters the ligand from solvent. The method uses a combination of replica exchange molecular dynamics and a loop prediction algorithm to generate low-energy loop structures, and docking to select the conformation appropriate for binding a particular ligand. On a test set of six proteins, it yields loop structures including hololike conformations, generally below 2 A RMSD from the liganded structure, for loops that span up to 15 residues. Docking serves as a stringent test of the predictions. In five of the six cases, the predicted loop conformations improve the ranks of cognate ligands relative to using the apo structure, although the results remain, in most cases, significantly worse than using a holo structure. The poses of the cognate ligands are correct in four of the six test cases, while they are correct for five of the six using a holo structure.
Collapse
Affiliation(s)
- Sergio Wong
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158-2517, USA
| | | |
Collapse
|
41
|
Sahu NK, Sahu S, Kohli DV. Novel Molecular Targets for Antimalarial Drug Development. Chem Biol Drug Des 2008; 71:287-97. [DOI: 10.1111/j.1747-0285.2008.00640.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Specht S, Sarite SR, Hauber I, Hauber J, Görbig UF, Meier C, Bevec D, Hoerauf A, Kaiser A. The guanylhydrazone CNI-1493: an inhibitor with dual activity against malaria-inhibition of host cell pro-inflammatory cytokine release and parasitic deoxyhypusine synthase. Parasitol Res 2008; 102:1177-84. [PMID: 18256853 DOI: 10.1007/s00436-008-0891-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
Abstract
Malaria is still a major cause of death in the tropics. There is an urgent need for new anti-malarial drugs because drug-resistant plasmodia frequently occur. Over recent years, we elucidated the biosynthesis of hypusine, a novel amino acid contained in eukaryotic initiation factor 5A (eIF-5A) in Plasmodium. Hypusine biosynthesis involves catalysis of deoxyhypusine synthase (DHS) in the first step of post-translational modification. In a screen for new inhibitors of purified plasmodium DHS, CNI-1493, a novel selective pro-inflammatory cytokine inhibitor used in clinical phase II for the treatment of Crohn's disease, inhibited the enzyme of the parasite 3-fold at a concentration of 2 microM. In vitro experiments with 200 microM CNI-1493 in Plasmodium-infected erythrocytes, which lack nuclei and DHS protein, showed a parasite clearance within 2 days. This can presumably be attributed to an anti-proliferating effect because of the inhibition of DHS by the parasite. The determined IC50 of CNI-1493 was 135.79 microM after 72 h. In vivo application of this substance in Plasmodium berghei ANKA-infected C57BL/6 mice significantly reduced parasitemia after dosage of 1 mg/kg or 4 mg/kg/body weight and prevented death of mice with cerebral malaria. This effect was paralleled by a decrease in serum TNF levels of the mice. We suggest that the new mechanism of CNI-1493 is caused by a decrease in modified eIF-5A biosynthesis with a downstream effect on the TNF synthesis of the host. From the current data, we consider CNI-1493 to be a promising drug for anti-malarial therapy because of its combined action, i.e., the decrease in eIF-5A biosynthesis of the parasite and host cell TNF biosynthesis.
Collapse
Affiliation(s)
- Sabine Specht
- Institute for Medical Microbiolgy, Immunology and Parasitology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fatumo S, Plaimas K, Mallm JP, Schramm G, Adebiyi E, Oswald M, Eils R, König R. Estimating novel potential drug targets of Plasmodium falciparum by analysing the metabolic network of knock-out strains in silico. INFECTION GENETICS AND EVOLUTION 2008; 9:351-8. [PMID: 18313365 DOI: 10.1016/j.meegid.2008.01.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 12/21/2007] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
Abstract
Malaria is one of the world's most common and serious diseases causing death of about 3 million people each year. Its most severe occurrence is caused by the protozoan Plasmodium falciparum. Biomedical research could enable treating the disease by effectively and specifically targeting essential enzymes of this parasite. However, the parasite has developed resistance to existing drugs making it indispensable to discover new drugs. We have established a simple computational tool which analyses the topology of the metabolic network of P. falciparum to identify essential enzymes as possible drug targets. We investigated the essentiality of a reaction in the metabolic network by deleting (knocking-out) such a reaction in silico. The algorithm selected neighbouring compounds of the investigated reaction that had to be produced by alternative biochemical pathways. Using breadth first searches, we tested qualitatively if these products could be generated by reactions that serve as potential deviations of the metabolic flux. With this we identified 70 essential reactions. Our results were compared with a comprehensive list of 38 targets of approved malaria drugs. When combining our approach with an in silico analysis performed recently [Yeh, I., Hanekamp, T., Tsoka, S., Karp, P.D., Altman, R.B., 2004. Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res. 14, 917-924] we could improve the precision of the prediction results. Finally we present a refined list of 22 new potential candidate targets for P. falciparum, half of which have reasonable evidence to be valid targets against micro-organisms and cancer.
Collapse
Affiliation(s)
- Segun Fatumo
- Computer and Information Sciences Department, Covenant University, Ota, Nigeria
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Sherman IW. References. ADVANCES IN PARASITOLOGY 2008. [DOI: 10.1016/s0065-308x(08)00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Goebel T, Ulmer D, Projahn H, Kloeckner J, Heller E, Glaser M, Ponte-Sucre A, Specht S, Sarite SR, Hoerauf A, Kaiser A, Hauber I, Hauber J, Holzgrabe U. In Search of Novel Agents for Therapy of Tropical Diseases and Human Immunodeficiency Virus. J Med Chem 2007; 51:238-50. [DOI: 10.1021/jm070763y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tim Goebel
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany, Laboratory of Molecular Physiology, Universidad Central de Venezuela, Caracas, Venezuela, Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 29, 53105 Bonn, Germany, FH-Bonn-Rhein-Sieg, Von-Liebig-Strasse 20, 53359 Rheinbach, Germany, and Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Daniela Ulmer
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany, Laboratory of Molecular Physiology, Universidad Central de Venezuela, Caracas, Venezuela, Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 29, 53105 Bonn, Germany, FH-Bonn-Rhein-Sieg, Von-Liebig-Strasse 20, 53359 Rheinbach, Germany, and Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Holger Projahn
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany, Laboratory of Molecular Physiology, Universidad Central de Venezuela, Caracas, Venezuela, Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 29, 53105 Bonn, Germany, FH-Bonn-Rhein-Sieg, Von-Liebig-Strasse 20, 53359 Rheinbach, Germany, and Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Jessica Kloeckner
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany, Laboratory of Molecular Physiology, Universidad Central de Venezuela, Caracas, Venezuela, Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 29, 53105 Bonn, Germany, FH-Bonn-Rhein-Sieg, Von-Liebig-Strasse 20, 53359 Rheinbach, Germany, and Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Eberhard Heller
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany, Laboratory of Molecular Physiology, Universidad Central de Venezuela, Caracas, Venezuela, Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 29, 53105 Bonn, Germany, FH-Bonn-Rhein-Sieg, Von-Liebig-Strasse 20, 53359 Rheinbach, Germany, and Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Melanie Glaser
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany, Laboratory of Molecular Physiology, Universidad Central de Venezuela, Caracas, Venezuela, Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 29, 53105 Bonn, Germany, FH-Bonn-Rhein-Sieg, Von-Liebig-Strasse 20, 53359 Rheinbach, Germany, and Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Alicia Ponte-Sucre
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany, Laboratory of Molecular Physiology, Universidad Central de Venezuela, Caracas, Venezuela, Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 29, 53105 Bonn, Germany, FH-Bonn-Rhein-Sieg, Von-Liebig-Strasse 20, 53359 Rheinbach, Germany, and Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Sabine Specht
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany, Laboratory of Molecular Physiology, Universidad Central de Venezuela, Caracas, Venezuela, Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 29, 53105 Bonn, Germany, FH-Bonn-Rhein-Sieg, Von-Liebig-Strasse 20, 53359 Rheinbach, Germany, and Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Salem Ramadan Sarite
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany, Laboratory of Molecular Physiology, Universidad Central de Venezuela, Caracas, Venezuela, Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 29, 53105 Bonn, Germany, FH-Bonn-Rhein-Sieg, Von-Liebig-Strasse 20, 53359 Rheinbach, Germany, and Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Achim Hoerauf
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany, Laboratory of Molecular Physiology, Universidad Central de Venezuela, Caracas, Venezuela, Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 29, 53105 Bonn, Germany, FH-Bonn-Rhein-Sieg, Von-Liebig-Strasse 20, 53359 Rheinbach, Germany, and Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Annette Kaiser
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany, Laboratory of Molecular Physiology, Universidad Central de Venezuela, Caracas, Venezuela, Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 29, 53105 Bonn, Germany, FH-Bonn-Rhein-Sieg, Von-Liebig-Strasse 20, 53359 Rheinbach, Germany, and Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Ilona Hauber
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany, Laboratory of Molecular Physiology, Universidad Central de Venezuela, Caracas, Venezuela, Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 29, 53105 Bonn, Germany, FH-Bonn-Rhein-Sieg, Von-Liebig-Strasse 20, 53359 Rheinbach, Germany, and Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Joachim Hauber
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany, Laboratory of Molecular Physiology, Universidad Central de Venezuela, Caracas, Venezuela, Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 29, 53105 Bonn, Germany, FH-Bonn-Rhein-Sieg, Von-Liebig-Strasse 20, 53359 Rheinbach, Germany, and Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany, Laboratory of Molecular Physiology, Universidad Central de Venezuela, Caracas, Venezuela, Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 29, 53105 Bonn, Germany, FH-Bonn-Rhein-Sieg, Von-Liebig-Strasse 20, 53359 Rheinbach, Germany, and Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany
| |
Collapse
|
46
|
Gayathri P, Balaram H, Murthy MRN. Structural biology of plasmodial proteins. Curr Opin Struct Biol 2007; 17:744-54. [PMID: 17875391 DOI: 10.1016/j.sbi.2007.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 11/29/2022]
Abstract
Malaria is a global disease infecting several million individuals annually. Malarial infection is particularly severe in the poorest parts of the world and is a major drain on their limited resources. Development of drug resistance and absence of a preventive vaccine have led to an immediate necessity for identifying new drug targets to combat malaria. Understanding the intricacies of parasite biology is essential to design novel intervention strategies that can prevent the growth of the parasite. The structural biology approach towards this goal involves the identification of key differences in the structures of the human and parasite enzymes and the determination of unique protein structures essential for parasite survival. This review covers the work on structural biology of plasmodial proteins carried out during the period of January 2006 to June 2007.
Collapse
Affiliation(s)
- P Gayathri
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
47
|
Kaiser A, Hammels I, Gottwald A, Nassar M, Zaghloul MS, Motaal BA, Hauber J, Hoerauf A. Modification of eukaryotic initiation factor 5A from Plasmodium vivax by a truncated deoxyhypusine synthase from Plasmodium falciparum: An enzyme with dual enzymatic properties. Bioorg Med Chem 2007; 15:6200-7. [PMID: 17591443 DOI: 10.1016/j.bmc.2007.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 05/23/2007] [Accepted: 06/12/2007] [Indexed: 11/24/2022]
Abstract
The increasing resistance of the malaria parasites enforces alternative directions in finding new drug targets. Present findings from the malaria parasite Plasmodium vivax, causing tertiary malaria, suggest eukaryotic initiation factor 5A (eIF-5A) to be a promising target for the treatment of malaria. Previously we presented the 162 amino acid sequence of eukaryotic initiation factor 5A (eIF-5A) from Plasmodium vivax. In the present study, we have expressed and purified the 20kDa protein performed by one-step Nickel chelate chromatography. In Western blot experiments eIF-5A from P. vivax crossreacts with a polyclonal anti-eIF-5A antiserum from the plant Nicotiana plumbaginifolia (Solanaceae). Transcription of eIF-5A can be observed in both different developmental stages of the parasite being prominent in trophozoites. We recently published the nucleic acid sequence from a genomic clone of P. falciparum strain NF54 encoding a putative deoxyhypusine synthase (DHS), an enzyme that catalyzes the post-translational modification of eIF-5A. After removal of 22 amino acids DHS was expressed as a Histidin fusion protein and purified by Nickel affinity chromatography. Truncated DHS from P. falciparum modifies eIF-5A from P. vivax. DHS from P. falciparum NF54 is a bi-functional protein with dual enzymatic specificities, that is, DHS activity and homospermidine synthase activity (HSS) (0.047 pkatal/mg protein) like in other eukaryotes. Inhibition of DHS from P. falciparum resulted in a K(i) of 0.1 microM for the inhibitor GC7 being 2000-fold less than the nonguanylated derivative 1,7-diaminoheptane. Dhs transcription occurs in both develomental stages suggesting its necessity in cell proliferation.
Collapse
Affiliation(s)
- Annette Kaiser
- Institute for Medical Parasitology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Dufe VT, Qiu W, Müller IB, Hui R, Walter RD, Al-Karadaghi S. Crystal structure of Plasmodium falciparum spermidine synthase in complex with the substrate decarboxylated S-adenosylmethionine and the potent inhibitors 4MCHA and AdoDATO. J Mol Biol 2007; 373:167-77. [PMID: 17822713 DOI: 10.1016/j.jmb.2007.07.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/11/2007] [Accepted: 07/21/2007] [Indexed: 10/23/2022]
Abstract
Plasmodium falciparum is the causative agent of the most severe type of malaria, a life-threatening disease affecting the lives of over three billion people. Factors like widespread resistance against available drugs and absence of an effective vaccine are seriously compounding control of the malaria parasite. Thus, there is an urgent need for the identification and validation of new drug targets. The enzymes of the polyamine biosynthesis pathway have been suggested as possible targets for the treatment of malaria. One of these enzymes is spermidine synthase (SPDS, putrescine aminopropyltransferase), which catalyzes the transfer of an aminopropyl moiety from decarboxylated S-adenosylmethionine (dcAdoMet) to putrescine, leading to the formation of spermidine and 5'-methylthioadenosine. Here we present the three-dimensional structure of P. falciparum spermidine synthase (pfSPDS) in apo form, in complex with dcAdoMet and two inhibitors, S-adenosyl-1,8-diamino-3-thio-octane (AdoDATO) and trans-4-methylcyclohexylamine (4MCHA). The results show that binding of dcAdoMet to pfSPDS stabilizes the conformation of the flexible gatekeeper loop of the enzyme and affects the conformation of the active-site amino acid residues, preparing the protein for binding of the second substrate. The complexes of AdoDATO and 4MCHA with pfSPDS reveal the mode of interactions of these compounds with the enzyme. While AdoDATO essentially fills the entire active-site pocket, 4MCHA only occupies part of it, which suggests that simple modifications of this compound may yield more potent inhibitors of pfSPDS.
Collapse
Affiliation(s)
- Veronica Tamu Dufe
- Department of Molecular Biophysics, Center for Molecular Protein Science, Lund University, S-221 00 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
49
|
Cacciapuoti G, Porcelli M, Moretti MA, Sorrentino F, Concilio L, Zappia V, Liu ZJ, Tempel W, Schubot F, Rose JP, Wang BC, Brereton PS, Jenney FE, Adams MWW. The first agmatine/cadaverine aminopropyl transferase: biochemical and structural characterization of an enzyme involved in polyamine biosynthesis in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 2007; 189:6057-67. [PMID: 17545282 PMCID: PMC1952034 DOI: 10.1128/jb.00151-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 05/22/2007] [Indexed: 11/20/2022] Open
Abstract
We report here the characterization of the first agmatine/cadaverine aminopropyl transferase (ACAPT), the enzyme responsible for polyamine biosynthesis from an archaeon. The gene PF0127 encoding ACAPT in the hyperthermophile Pyrococcus furiosus was cloned and expressed in Escherichia coli, and the recombinant protein was purified to homogeneity. P. furiosus ACAPT is a homodimer of 65 kDa. The broad substrate specificity of the enzyme toward the amine acceptors is unique, as agmatine, 1,3-diaminopropane, putrescine, cadaverine, and sym-nor-spermidine all serve as substrates. While maximal catalytic activity was observed with cadaverine, agmatine was the preferred substrate on the basis of the k(cat)/K(m) value. P. furiosus ACAPT is thermoactive and thermostable with an apparent melting temperature of 108 degrees C that increases to 112 degrees C in the presence of cadaverine. Limited proteolysis indicated that the only proteolytic cleavage site is localized in the C-terminal region and that the C-terminal peptide is not necessary for the integrity of the active site. The crystal structure of the enzyme determined to 1.8-A resolution confirmed its dimeric nature and provided insight into the proteolytic analyses as well as into mechanisms of thermal stability. Analysis of the polyamine content of P. furiosus showed that spermidine, cadaverine, and sym-nor-spermidine are the major components, with small amounts of sym-nor-spermine and N-(3-aminopropyl)cadaverine (APC). This is the first report in Archaea of an unusual polyamine APC that is proposed to play a role in stress adaptation.
Collapse
Affiliation(s)
- Giovanna Cacciapuoti
- Dipartimento di Biochimica e Biofisica, F. Cedrangolo, Seconda Università degli Studi di Napoli, Via Costantinopoli 16, 80138 Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cook T, Roos D, Morada M, Zhu G, Keithly JS, Feagin JE, Wu G, Yarlett N. Divergent polyamine metabolism in the Apicomplexa. MICROBIOLOGY (READING, ENGLAND) 2007; 153:1123-1130. [PMID: 17379721 DOI: 10.1099/mic.0.2006/001768-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The lead enzymes of polyamine biosynthesis, i.e. ornithine decarboxylase (ODC) and arginine decarboxylase (ADC), were not detected in Toxoplasma gondii [the limit of detection for ODC and ADC was 5 pmol min(-1) (mg protein)(-1)], indicating that T. gondii lacks a forward-directed polyamine biosynthetic pathway, and is therefore a polyamine auxotroph. The biochemical results were supported by results obtained from data-mining the T. gondii genome. However, it was possible to demonstrate the presence of a highly active backconversion pathway that formed spermidine from spermine, and putrescine from spermidine, via the combined action of spermidine/spermine N(1)-acetyltransferase (SSAT) or spermidine N(1)-acetyltransferase (SAT) and polyamine oxidase (PAO). With spermine as the substrate, T. gondii SSAT had a specific activity of 1.84 nmol min(-1) (mg protein)(-1), and an apparent K(m) for spermine of 180 mM; with spermidine as the substrate, the SAT had a specific activity of 3.95 nmol min(-1) (mg protein)(-1), and a K(m) for spermidine of 240 mM. T. gondii PAO had a specific activity of 10.6 nmol min(-1) (mg protein)(-1), and a K(m) for acetylspermine of 36 mM. Furthermore, the results demonstrated that T. gondii SSAT was 50 % inhibited by 30 mM di(ethyl)norspermine. The parasite actively transported arginine and ornithine, which were converted via the arginine dihydrolase pathway to citrulline and carbamoyl phosphate, resulting in the formation of ATP via carbamate kinase. The lack of polyamine biosynthesis by T. gondii is contrasted with polyamine metabolism by other apicomplexans.
Collapse
Affiliation(s)
- Tuesday Cook
- Haskins Laboratories, Pace University, New York, NY 10038, USA
| | - David Roos
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary Morada
- Haskins Laboratories, Pace University, New York, NY 10038, USA
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Janet S Keithly
- Division of Infectious Diseases, David Axelrod Institute, Wadsworth Center, NYS Department of Health, Albany, NY 1220, USA
| | - Jean E Feagin
- Seattle Biomedical Research Institute, 307 Westlake Ave N., Seattle, WA 9810, USA
| | - Gang Wu
- Haskins Laboratories, Pace University, New York, NY 10038, USA
| | - Nigel Yarlett
- Department of Chemistry and Physical Sciences, Pace University, New York, NY 10038, USA
- Haskins Laboratories, Pace University, New York, NY 10038, USA
| |
Collapse
|