1
|
Tan MH, Tiedje KE, Feng Q, Zhan Q, Pascual M, Shim H, Chan YB, Day KP. A paradoxical population structure of var DBLα types in Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.05.565723. [PMID: 37986738 PMCID: PMC10659346 DOI: 10.1101/2023.11.05.565723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The var multigene family encodes the P. falciparum erythrocyte membrane protein 1 (PfEMP1), which is important in host-parasite interaction as a virulence factor and major surface antigen of the blood stages of the parasite, responsible for maintaining chronic infection. Whilst important in the biology of P. falciparum, these genes (50 to 60 genes per parasite genome) are routinely excluded from whole genome analyses due to their hyper-diversity, achieved primarily through recombination. The PfEMP1 head structure almost always consists of a DBLα-CIDR tandem. Categorised into different groups (upsA, upsB, upsC), different head structures have been associated with different ligand-binding affinities and disease severities. We study how conserved individual DBLα types are at the country, regional, and local scales in Sub-Saharan Africa. Using publicly-available sequence datasets and a novel ups classification algorithm, cUps, we performed an in silico exploration of DBLα conservation through time and space in Africa. In all three ups groups, the population structure of DBLα types in Africa consists of variants occurring at rare, low, moderate, and high frequencies. Non-rare variants were found to be temporally stable in a local area in endemic Ghana. When inspected across different geographical scales, we report different levels of conservation; while some DBLα types were consistently found in high frequencies in multiple African countries, others were conserved only locally, signifying local preservation of specific types. Underlying this population pattern is the composition of DBLα types within each isolate DBLα repertoire, revealed to also consist of a mix of types found at rare, low, moderate, and high frequencies in the population. We further discuss the adaptive forces and balancing selection, including host genetic factors, potentially shaping the evolution and diversity of DBLα types in Africa.
Collapse
Affiliation(s)
- Mun Hua Tan
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, AU
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, AU
| | - Qian Feng
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Qi Zhan
- Department of Ecology and Evolution, University of Chicago; Chicago, Illinois, USA
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago; Chicago, Illinois, USA
| | - Heejung Shim
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Yao-Ban Chan
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Karen P Day
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, AU
| |
Collapse
|
2
|
Tan MH, Shim H, Chan YB, Day KP. Unravelling var complexity: Relationship between DBLα types and var genes in Plasmodium falciparum. FRONTIERS IN PARASITOLOGY 2023; 1. [PMID: 36998722 PMCID: PMC10060044 DOI: 10.3389/fpara.2022.1006341] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The enormous diversity and complexity of var genes that diversify rapidly by recombination has led to the exclusion of assembly of these genes from major genome initiatives (e.g., Pf6). A scalable solution in epidemiological surveillance of var genes is to use a small ‘tag’ region encoding the immunogenic DBLα domain as a marker to estimate var diversity. As var genes diversify by recombination, it is not clear the extent to which the same tag can appear in multiple var genes. This relationship between marker and gene has not been investigated in natural populations. Analyses of in vitro recombination within and between var genes have suggested that this relationship would not be exclusive. Using a dataset of publicly-available assembled var sequences, we test this hypothesis by studying DBLα-var relationships for four study sites in four countries: Pursat (Cambodia) and Mae Sot (Thailand), representing low malaria transmission, and Navrongo (Ghana) and Chikwawa (Malawi), representing high malaria transmission. In all study sites, DBLα-var relationships were shown to be predominantly 1-to-1, followed by a second largest proportion of 1-to-2 DBLα-var relationships. This finding indicates that DBLα tags can be used to estimate not just DBLα diversity but var gene diversity when applied in a local endemic area. Epidemiological applications of this result are discussed.
Collapse
Affiliation(s)
- Mun Hua Tan
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute, Melbourne, VIC, Australia
| | - Heejung Shim
- School of Mathematics and Statistics/Melbourne Integrative Genomics, The University of Melbourne, Melbourne, VIC, Australia
| | - Yao-ban Chan
- School of Mathematics and Statistics/Melbourne Integrative Genomics, The University of Melbourne, Melbourne, VIC, Australia
| | - Karen P. Day
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute, Melbourne, VIC, Australia
- CORRESPONDENCE Karen P. Day,
| |
Collapse
|
3
|
Kolangath SM, Upadhye SV, Dhoot VM, Pawshe MD, Shalini AS, Kolangath RM. Molecular investigation and clinical management of Hepatozoon Canis infection in an Indian jackal - a case report. BMC Vet Res 2022; 18:144. [PMID: 35443659 PMCID: PMC9020052 DOI: 10.1186/s12917-022-03213-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatozoonosis is a common tick-borne illness reported from all over the world. The infection has been well documented in dogs and cats, and has also been identified in wild canids and felids. India is home to many canid species; however, the incidence of Hepatozoonosis in wild canids is rarely reported. A wide variety of protocols have been discussed for the clinical management of the infection in companion animals; however, the suitability of treatment protocols in wild canids is understudied. The current case report highlights the clinical management of Hepatozoonosis in an Indian jackal and molecular investigation to provide vital insights into the epidemiology of the disease. CASE PRESENTATION A paraplegic Indian jackal was rescued from Melghat Tiger Reserve, Maharashtra, India. The animal had extensive decubital ulcers on the left pin bone and could not walk; however, the animal was active and dragged the hindlimb during locomotion. The vital parameters, blood and serum investigations were normal. Post physiotherapy, massage and infrared therapy, the animal could walk but started knuckling, resulting in injuries. Eight weeks into rehabilitation, the animal had a steep fall in haemoglobin concentration, platelet count, weight loss and was diagnosed with Hepatozoonosis. Considering the altered vital parameters, the jackal was rationally treated with Doxycyclin @ 20 mg/Kg O.D. (Once Daily) for 45 days along with supportive therapy. The jackal recovered after the treatment and led a normal life. CONCLUSION Mono-drug regime using Doxycycline was effective in the alleviation of H.canis infection in jackal. The drug was effective in alleviating the clinical presentation without alteration of vital parameters. The molecular investigation provided qualitative inputs in understanding the epidemiology of Hepatozoon in wild canids.
Collapse
Affiliation(s)
- S M Kolangath
- Wildlife Research & Training Centre, Gorewada, MAFSU, Nagpur Opp. Hindustan Lever Godown Square, Mahurzhari Road, Fetri, Nagpur, 441501, India.
| | - S V Upadhye
- Wildlife Research & Training Centre, Gorewada, MAFSU, Nagpur Opp. Hindustan Lever Godown Square, Mahurzhari Road, Fetri, Nagpur, 441501, India
| | - V M Dhoot
- Wildlife Research & Training Centre, Gorewada, MAFSU, Nagpur Opp. Hindustan Lever Godown Square, Mahurzhari Road, Fetri, Nagpur, 441501, India
| | - M D Pawshe
- Wildlife Research & Training Centre, Gorewada, MAFSU, Nagpur Opp. Hindustan Lever Godown Square, Mahurzhari Road, Fetri, Nagpur, 441501, India
| | - A S Shalini
- Wildlife Research & Training Centre, Gorewada, MAFSU, Nagpur Opp. Hindustan Lever Godown Square, Mahurzhari Road, Fetri, Nagpur, 441501, India
| | - R M Kolangath
- Department of Biotechnology & Biochemistry, Saint Francis DeSales College, Seminary Hills, Nagpur, 440006, India
| |
Collapse
|
4
|
Sol Sol de Medeiros D, Tasca Cargnin S, Azevedo Dos Santos AP, de Souza Rodrigues M, Berton Zanchi F, Soares de Maria de Medeiros P, de Almeida E Silva A, Bioni Garcia Teles C, Baggio Gnoatto SC. Ursolic and betulinic semisynthetic derivatives show activity against CQ-resistant Plasmodium falciparum isolated from Amazonia. Chem Biol Drug Des 2021; 97:1038-1047. [PMID: 33638888 DOI: 10.1111/cbdd.13835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/13/2021] [Accepted: 02/21/2021] [Indexed: 11/29/2022]
Abstract
ACT's low levels of Plasmodium parasitemia clearance are worrisome since it is the last treatment option against P. falciparum. This scenario has led to investigations of compounds with different mechanisms of action for malaria treatment. Natural compounds like ursolic acid (UA) and betulinic acid (BA), distinguished by their activity against numerous microorganisms, including P. falciparum, have become relevant. This study evaluated the antiplasmodial activity of imidazole derivatives of UA and BA against P. falciparum in vitro. Eight molecules were obtained by semisynthesis and tested against P. falciparum strains (NF54 and CQ-resistant 106/cand isolated in Porto Velho, Brazil); 2a and 2b showed activity against NF54 and 106/cand strains with IC50 < 10 µM. They presented high selectivity indexes (SI > 25) and showed synergism when combined with artemisinin. 2b inhibited the parasite's ring and schizont forms regardless of when the treatment began. In silico analysis presented a tight bind of 2b in the topoisomerase II-DNA complex. This study demonstrates the importance of natural derivate compounds as new candidates for malarial treatment with new mechanisms of action. Semisynthesis led to new triterpenes that are active against P. falciparum and may represent new alternatives for malaria drug development.
Collapse
Affiliation(s)
- Daniel Sol Sol de Medeiros
- Programa de Pós-Graduação em Biologia Experimental, Porto Velho, Brasil
- Plataforma de Bioensaios em Malária e Leishmaniose - Fundação Oswaldo Cruz, Porto Velho, Brasil
- Instituto Nacional de Epidemiologia na Amazônia Ocidental, Porto Velho, Brasil
| | - Simone Tasca Cargnin
- Laboratório de Fitoquímica e Síntese Orgânica - Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Ana Paula Azevedo Dos Santos
- Programa de Pós-Graduação em Biologia Experimental, Porto Velho, Brasil
- Plataforma de Bioensaios em Malária e Leishmaniose - Fundação Oswaldo Cruz, Porto Velho, Brasil
- Instituto Nacional de Epidemiologia na Amazônia Ocidental, Porto Velho, Brasil
| | | | - Fernando Berton Zanchi
- Programa de Pós-Graduação em Biologia Experimental, Porto Velho, Brasil
- Instituto Nacional de Epidemiologia na Amazônia Ocidental, Porto Velho, Brasil
- Laboratório de Bioinformática e Química Medicinal - Fundação Oswaldo Cruz, Porto Velho, Brasil
| | | | | | - Carolina Bioni Garcia Teles
- Programa de Pós-Graduação em Biologia Experimental, Porto Velho, Brasil
- Plataforma de Bioensaios em Malária e Leishmaniose - Fundação Oswaldo Cruz, Porto Velho, Brasil
- Instituto Nacional de Epidemiologia na Amazônia Ocidental, Porto Velho, Brasil
| | - Simone Cristina Baggio Gnoatto
- Laboratório de Fitoquímica e Síntese Orgânica - Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| |
Collapse
|
5
|
Schappo AP, Bittencourt NC, Bertolla LP, Forcellini S, da Silva ABIE, dos Santos HG, Gervásio JH, Lacerda MVG, Lopes SCP, Costa FTM, Albrecht L. Antigenicity and adhesiveness of a Plasmodium vivax VIR-E protein from Brazilian isolates. Mem Inst Oswaldo Cruz 2021; 116:e210227. [PMID: 35137905 PMCID: PMC8824159 DOI: 10.1590/0074-02760210227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/05/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Plasmodium vivax, the major cause of malaria in Latin America, has a large subtelomeric multigene family called vir. In the P. vivax genome, about 20% of its sequences are vir genes. Vir antigens are grouped in subfamilies according to their sequence similarities and have been shown to have distinct roles and subcellular locations. However, little is known about vir subfamilies, especially when comes to their functions. OBJECTIVE To evaluate the diversity, antigenicity, and adhesiveness of Plasmodium vivax VIR-E. METHODS Vir-E genes were amplified from six P. vivax isolates from Manaus, North of Brazil. The presence of naturally acquired antibodies to recombinant PvBrVIR-E and PvAMA-1 was evaluated by ELISA. Binding capacity of recombinant PvBrVIR-E was assessed by adhesion assay to CHO-ICAM1 cells. FINDINGS Despite vir-E sequence diversity, among those identified sequences, a representative one was chosen to be expressed as recombinant protein. The presence of IgM or IgG antibodies to PvBrVIR-E was detected in 23.75% of the study population while the presence of IgG antibodies to PvAMA-1 antigen was 66.25% in the same population. PvBrVIR-E was adhesive to CHO-ICAM1. MAIN CONCLUSIONS PvBrVIR-E was antigenic and adhesive to CHO-ICAM1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marcus VG Lacerda
- Fundação Oswaldo Cruz-Fiocruz, Brazil; Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Brazil
| | | | | | - Letusa Albrecht
- Fundação Oswaldo Cruz-Fiocruz, Brazil; Universidade Estadual de Campinas, Brazil
| |
Collapse
|
6
|
Rougeron V, Tiedje KE, Chen DS, Rask TS, Gamboa D, Maestre A, Musset L, Legrand E, Noya O, Yalcindag E, Renaud F, Prugnolle F, Day KP. Evolutionary structure of Plasmodium falciparum major variant surface antigen genes in South America: Implications for epidemic transmission and surveillance. Ecol Evol 2017; 7:9376-9390. [PMID: 29187975 PMCID: PMC5696401 DOI: 10.1002/ece3.3425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 07/07/2017] [Accepted: 08/19/2017] [Indexed: 11/11/2022] Open
Abstract
Strong founder effects resulting from human migration out of Africa have led to geographic variation in single nucleotide polymorphisms (SNPs) and microsatellites (MS) of the malaria parasite, Plasmodium falciparum. This is particularly striking in South America where two major founder populations of P. falciparum have been identified that are presumed to have arisen from the transatlantic slave trade. Given the importance of the major variant surface antigen of the blood stages of P. falciparum as both a virulence factor and target of immunity, we decided to investigate the population genetics of the genes encoding “Plasmodium falciparum Erythrocyte Membrane Protein 1” (PfEMP1) among several countries in South America, in order to evaluate the transmission patterns of malaria in this continent. Deep sequencing of the DBLα domain of var genes from 128 P. falciparum isolates from five locations in South America was completed using a 454 high throughput sequencing protocol. Striking geographic variation in var DBLα sequences, similar to that seen for SNPs and MS markers, was observed. Colombia and French Guiana had distinct var DBLα sequences, whereas Peru and Venezuela showed an admixture. The importance of such geographic variation to herd immunity and malaria vaccination is discussed.
Collapse
Affiliation(s)
- Virginie Rougeron
- Department of Microbiology Division of Parasitology New York University School of Medicine New York NY USA.,MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290/IRD 224 Université Montpellier 1 Université Montpellier 2 Montpellier France
| | - Kathryn E Tiedje
- Department of Microbiology Division of Parasitology New York University School of Medicine New York NY USA.,School of BioSciences Bio21 Institute/University of Melbourne Parkville Vic. Australia
| | - Donald S Chen
- Department of Microbiology Division of Parasitology New York University School of Medicine New York NY USA
| | - Thomas S Rask
- Department of Microbiology Division of Parasitology New York University School of Medicine New York NY USA.,School of BioSciences Bio21 Institute/University of Melbourne Parkville Vic. Australia
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander Von Humboldt and Departamento de Ciencias Celulares y Moleculares Facultad de Ciencias y Filosofia Universidad Peruana Cayetano Heredia Lima Peru
| | - Amanda Maestre
- Grupo Salud y Comunidad Facultad de Medicina Universidad de Antioquía Medellín Colombia
| | - Lise Musset
- Parasitology UnitInstitut Pasteur de Guyane Cayenne Cedex French Guiana
| | - Eric Legrand
- Parasitology UnitInstitut Pasteur de Guyane Cayenne Cedex French Guiana.,Unit of Genetics and Genomics on Insect Vectors Institut Pasteur Paris France
| | - Oscar Noya
- Centro para Estudios Sobre Malaria Instituto de Altos Estudios en Salud "Dr. Arnoldo Gabaldón" Ministerio del Poder Popular para la Salud and Instituto de Medicina Tropical Universidad Central de Venezuela Caracas Venezuela
| | - Erhan Yalcindag
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290/IRD 224 Université Montpellier 1 Université Montpellier 2 Montpellier France
| | - François Renaud
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290/IRD 224 Université Montpellier 1 Université Montpellier 2 Montpellier France
| | - Franck Prugnolle
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290/IRD 224 Université Montpellier 1 Université Montpellier 2 Montpellier France
| | - Karen P Day
- Department of Microbiology Division of Parasitology New York University School of Medicine New York NY USA.,School of BioSciences Bio21 Institute/University of Melbourne Parkville Vic. Australia
| |
Collapse
|
7
|
Carlos BC, Fotoran WL, Menezes MJ, Cabral FJ, Bastos MF, Costa FT, Sousa-Neto JA, Ribolla PE, Wunderlich G, Ferreira MU. Expressed var gene repertoire and variant surface antigen diversity in a shrinking Plasmodium falciparum population. Exp Parasitol 2016; 170:90-99. [DOI: 10.1016/j.exppara.2016.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/01/2016] [Accepted: 09/20/2016] [Indexed: 10/21/2022]
|
8
|
Fratus ASB, Cabral FJ, Fotoran WL, Medeiros MM, Carlos BC, Martha RD, da Silva LHP, Lopes SCP, Costa FTM, Wunderlich G. Antibody recognition of Plasmodium falciparum infected red blood cells by symptomatic and asymptomatic individuals in the Brazilian Amazon. Mem Inst Oswaldo Cruz 2014; 109:598-601. [PMID: 25099336 PMCID: PMC4156453 DOI: 10.1590/0074-0276140027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/12/2014] [Indexed: 12/31/2022] Open
Abstract
In the Amazon Region, there is a virtual absence of severe malaria and few fatal cases of naturally occurring Plasmodium falciparum infections; this presents an intriguing and underexplored area of research. In addition to the rapid access of infected persons to effective treatment, one cause of this phenomenon might be the recognition of cytoadherent variant proteins on the infected red blood cell (IRBC) surface, including the var gene encoded P. falciparum erythrocyte membrane protein 1. In order to establish a link between cytoadherence, IRBC surface antibody recognition and the presence or absence of malaria symptoms, we phenotype-selected four Amazonian P. falciparum isolates and the laboratory strain 3D7 for their cytoadherence to CD36 and ICAM1 expressed on CHO cells. We then mapped the dominantly expressed var transcripts and tested whether antibodies from symptomatic or asymptomatic infections showed a differential recognition of the IRBC surface. As controls, the 3D7 lineages expressing severe disease-associated phenotypes were used. We showed that there was no profound difference between the frequency and intensity of antibody recognition of the IRBC-exposed P. falciparum proteins in symptomatic vs. asymptomatic infections. The 3D7 lineages, which expressed severe malaria-associated phenotypes, were strongly recognised by most, but not all plasmas, meaning that the recognition of these phenotypes is frequent in asymptomatic carriers, but is not necessarily a prerequisite to staying free of symptoms.
Collapse
Affiliation(s)
| | - Fernanda Janku Cabral
- Departamento de Parasitologia, Instituto de Ciências Biomédicas,
Universidade de São Paulo, São Paulo, SP, Brasil
| | - Wesley Luzetti Fotoran
- Departamento de Parasitologia, Instituto de Ciências Biomédicas,
Universidade de São Paulo, São Paulo, SP, Brasil
| | - Márcia Melo Medeiros
- Departamento de Parasitologia, Instituto de Ciências Biomédicas,
Universidade de São Paulo, São Paulo, SP, Brasil
| | - Bianca Cechetto Carlos
- Departamento de Parasitologia, Instituto de Ciências Biomédicas,
Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | | - Stefanie Costa Pinto Lopes
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia,
Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Fabio Trindade Maranhão Costa
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia,
Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Gerhard Wunderlich
- Departamento de Parasitologia, Instituto de Ciências Biomédicas,
Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
9
|
Sulistyaningsih E, Fitri LE, Löscher T, Berens-Riha N. Diversity of the var gene family of Indonesian Plasmodium falciparum isolates. Malar J 2013; 12:80. [PMID: 23446319 PMCID: PMC3614516 DOI: 10.1186/1475-2875-12-80] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 02/19/2013] [Indexed: 11/30/2022] Open
Abstract
Background The large polymorphic protein PfEMP1 is encoded by the var gene family. PfEMP1 has been shown to play an important role as cytoadherence ligand on the surface of infected erythrocytes and thereby contributes to the distinct pathogenesis of malaria. The study explored the diversity of the DBL1α and DBL2β-C2 domains of the protein from Indonesian Plasmodium falciparum field isolates. Methods Samples of patients with severe and uncomplicated malaria from two different malaria-endemic areas in Indonesia were collected and DNA directly extracted. Dried blood on filter paper was prepared for RNA extraction. PCR amplicons were either cloned and subsequently sequenced or directly sequenced for analysis on nucleotide and amino acid level. Recently published as well as self-designed primers were used for amplification. Results Blood from eight patients was finally used for analysis. Seventy-one different sequences out of over 500 DBL1α sequenced clones were observed, resulting in an average of 8.9 different DBL1α sequences per isolate. The average DBL1α sequence similarity within isolates was similar to between isolates. Phylogenetic analysis demonstrated no clustering of sequences regarding strain or geographical origin. The DBL1α sequences were analysed by distribution of semi-conserved features (cysteine/PoLV1-4 grouping) and classified into six sequence groups. The DBL1α cys2 type was observed in all expressed sequences in vivo. Expression of certain DBL sequences implied potential involvement in the pathogenesis. As expected, the DBL2β-C2 domains showed high to moderate homology among each other. Conclusion The DBL1α domains of PfEMP1 from clinical Indonesian isolates showed high divergence among same isolates and some similarities with other Asia-Pacific strains. Further investigations of important var gene domains with a larger sample size are required to confirm with statistical significance observed associations with severe malaria in Indonesian samples.
Collapse
Affiliation(s)
- Erma Sulistyaningsih
- Department of Tropical Medicine and Infectious Diseases, University of Munich, Munich 80802, Germany.
| | | | | | | |
Collapse
|
10
|
Jiang N, Meng L, Lu HJ, Kang W, Peng S, Pan WQ, Yin JG, Chen QJ. Analysis of var genes cloned from a Plasmodium falciparum isolate in China. ASIAN PAC J TROP MED 2012; 5:85-90. [PMID: 22221747 DOI: 10.1016/s1995-7645(12)60001-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/15/2011] [Accepted: 01/15/2012] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To analyse the var gene repertoire and characterise the chondroitin sulphate A (CSA)-binding activity of the Duffy-binding like (DBL) domains encoded by the var2csa gene of a Plasmodium falciparum (P. falciparum) isolate in Hainan Province, China. METHODS The sequences of var DBL1 regions were PCR-amplified, sequenced and the sequence characteristics was bioinformatically analysed. Recombinant proteins encoded by the var2csa genes were expressed and purified. The binding activities of the recombinant proteins to CSA receptor was detected by ELISA assays. RESULTS Fifty six unique DBL α sequences were obtained, and the sequences represented similar diversity to the var genes of the genome parasite 3D7. There are two var2csa genes in the P. falciparum isolated from Hainan Province. Unlike in other falciparum parasites such as HB3, the two var2csa genes are more diverged. The receptor-binding capacity of DBL-5ε and DBL-6ε domains of HN var2CSA was studied. CONCLUSIONS This work represented the diversity of var genes of a P. falciparum isolate in China.
Collapse
Affiliation(s)
- Ning Jiang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ferreri LM, Brayton KA, Sondgeroth KS, Lau AO, Suarez CE, McElwain TF. Expression and strain variation of the novel "small open reading frame" (smorf) multigene family in Babesia bovis. Int J Parasitol 2011; 42:131-8. [PMID: 22138017 PMCID: PMC3459096 DOI: 10.1016/j.ijpara.2011.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/11/2011] [Accepted: 10/05/2011] [Indexed: 11/19/2022]
Abstract
Small open reading frame (smorf) genes comprise the second largest Babesia bovis multigene family. All known 44 variant smorf genes are located in close chromosomal proximity to ves1 genes, which encode proteins that mediate cytoadhesion and contribute to immune evasion. In this study, we characterised the general topology of smorf genes and investigated the gene repertoire, transcriptional profile and SMORF expression in two distinct strains, T2Bo and Mo7. Sequence analysis using degenerate primers identified additional smorf genes in each strain and demonstrated that the smorf gene repertoire varies between strains, with conserved and unique genes in both. Smorf genes have multiple semi-conserved and variable blocks, and a large hypervariable insertion in 20 of the 44 genes defines two major branches of the family, termed smorf A and smorf B. A total of 32 smorf genes are simultaneously transcribed in T2Bo strain B. bovis merozoites obtained from deep brain tissue of an acutely infected animal. SMORF peptide-specific antiserum bound in immunoblots to multiple proteins with a range of sizes predicted by smorf genes, confirming translation of smorf gene products from these transcripts. These results indicate that the smorf multigene family is larger than previously described and demonstrate that smorf genes are expressed and are undergoing variation, both within strains and in a lineage-specific pattern independent of strain specificity. The function of these novel proteins is unknown.
Collapse
Affiliation(s)
- Lucas M. Ferreri
- Department of Veterinary Microbiology and Pathology and School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6040, USA
| | - Kelly A. Brayton
- Department of Veterinary Microbiology and Pathology and School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6040, USA
| | - Kerry S. Sondgeroth
- Department of Veterinary Microbiology and Pathology and School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6040, USA
| | - Audrey O.T. Lau
- Department of Veterinary Microbiology and Pathology and School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6040, USA
| | - Carlos E. Suarez
- Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, WA 99164, USA
| | - Terry F. McElwain
- Department of Veterinary Microbiology and Pathology and School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6040, USA
- Corresponding author. Tel.: +1 509 335 6342; fax: +1 509 335 7424.
| |
Collapse
|
12
|
Barry AE, Trieu A, Fowkes FJI, Pablo J, Kalantari-Dehaghi M, Jasinskas A, Tan X, Kayala MA, Tavul L, Siba PM, Day KP, Baldi P, Felgner PL, Doolan DL. The stability and complexity of antibody responses to the major surface antigen of Plasmodium falciparum are associated with age in a malaria endemic area. Mol Cell Proteomics 2011; 10:M111.008326. [PMID: 21825279 PMCID: PMC3226400 DOI: 10.1074/mcp.m111.008326] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Individuals that are exposed to malaria eventually develop immunity to the disease with one possible mechanism being the gradual acquisition of antibodies to the range of parasite variant surface antigens in their local area. Major antibody targets include the large and highly polymorphic Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family of proteins. Here, we use a protein microarray containing 123 recombinant PfEMP1-DBLα domains (VAR) from Papua New Guinea to seroprofile 38 nonimmune children (<4 years) and 29 hyperimmune adults (≥15 years) from the same local area. The overall magnitude, prevalence and breadth of antibody response to VAR was limited at <2 years and 2–2.9 years, peaked at 3–4 years and decreased for adults compared with the oldest children. An increasing proportion of individuals recognized large numbers of VAR proteins (>20) with age, consistent with the breadth of response stabilizing with age. In addition, the antibody response was limited in uninfected children compared with infected children but was similar in adults irrespective of infection status. Analysis of the variant-specific response confirmed that the antibody signature expands with age and infection. This also revealed that the antibody signatures of the youngest children overlapped substantially, suggesting that they are exposed to the same subset of PfEMP1 variants. VAR proteins were either seroprevalent from early in life, (<3 years), from later in childhood (≥3 years) or rarely recognized. Group 2 VAR proteins (Cys2/MFK-REY+) were serodominant in infants (<1-year-old) and all other sequence subgroups became more seroprevalent with age. The results confirm that the anti-PfEMP1-DBLα antibody responses increase in magnitude and prevalence with age and further demonstrate that they increase in stability and complexity. The protein microarray approach provides a unique platform to rapidly profile variant-specific antibodies to malaria and suggests novel insights into the acquisition of immunity to malaria.
Collapse
Affiliation(s)
- Alyssa E Barry
- Centre for Population Health, Burnet Institute, Melbourne, Victoria 3004, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Claessens A, Ghumra A, Gupta AP, Mok S, Bozdech Z, Rowe JA. Design of a variant surface antigen-supplemented microarray chip for whole transcriptome analysis of multiple Plasmodium falciparum cytoadherent strains, and identification of strain-transcendent rif and stevor genes. Malar J 2011; 10:180. [PMID: 21718533 PMCID: PMC3155837 DOI: 10.1186/1475-2875-10-180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/30/2011] [Indexed: 12/02/2022] Open
Abstract
Background The cytoadherence of Plasmodium falciparum is thought to be mediated by variant surface antigens (VSA), encoded by var, rif, stevor and pfmc-2tm genes. The last three families have rarely been studied in the context of cytoadherence. As most VSA genes are unique, the variability among sequences has impeded the functional study of VSA across different P. falciparum strains. However, many P. falciparum genomes have recently been sequenced, allowing the development of specific microarray probes for each VSA gene. Methods All VSA sequences from the HB3, Dd2 and IT/FCR3 genomes were extracted using HMMer software. Oligonucleotide probes were designed with OligoRankPick and added to the 3D7-based microarray chip. As a proof of concept, IT/R29 parasites were selected for and against rosette formation and the transcriptomes of isogenic rosetting and non-rosetting parasites were compared by microarray. Results From each parasite strain 50-56 var genes, 125-132 rif genes, 26-33 stevor genes and 3-8 pfmc-2tm genes were identified. Bioinformatic analysis of the new VSA sequences showed that 13 rif genes and five stevor genes were well-conserved across at least three strains (83-100% amino acid identity). The ability of the VSA-supplemented microarray chip to detect cytoadherence-related genes was assessed using P. falciparum clone IT/R29, in which rosetting is known to be mediated by PfEMP1 encoded by ITvar9. Whole transcriptome analysis showed that the most highly up-regulated gene in rosetting parasites was ITvar9 (19 to 429-fold up-regulated over six time points). Only one rif gene (IT4rifA_042) was up-regulated by more than four fold (five fold at 12 hours post-invasion), and no stevor or pfmc-2tm genes were up-regulated by more than two fold. 377 non-VSA genes were differentially expressed by three fold or more in rosetting parasites, although none was as markedly or consistently up-regulated as ITvar9. Conclusions Probes for the VSA of newly sequenced P. falciparum strains can be added to the 3D7-based microarray chip, allowing the analysis of the entire transcriptome of multiple strains. For the rosetting clone IT/R29, the striking transcriptional upregulation of ITvar9 was confirmed, and the data did not support the involvement of other VSA families in rosette formation.
Collapse
Affiliation(s)
- Antoine Claessens
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, West Mains Rd, Edinburgh, EH9 3JT, UK
| | | | | | | | | | | |
Collapse
|
14
|
Joannin N, Kallberg Y, Wahlgren M, Persson B. RSpred, a set of Hidden Markov Models to detect and classify the RIFIN and STEVOR proteins of Plasmodium falciparum. BMC Genomics 2011; 12:119. [PMID: 21332983 PMCID: PMC3050820 DOI: 10.1186/1471-2164-12-119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 02/18/2011] [Indexed: 01/30/2023] Open
Abstract
Background Many parasites use multicopy protein families to avoid their host's immune system through a strategy called antigenic variation. RIFIN and STEVOR proteins are variable surface antigens uniquely found in the malaria parasites Plasmodium falciparum and P. reichenowi. Although these two protein families are different, they have more similarity to each other than to any other proteins described to date. As a result, they have been grouped together in one Pfam domain. However, a recent study has described the sub-division of the RIFIN protein family into several functionally distinct groups. These sub-groups require phylogenetic analysis to sort out, which is not practical for large-scale projects, such as the sequencing of patient isolates and meta-genomic analysis. Results We have manually curated the rif and stevor gene repertoires of two Plasmodium falciparum genomes, isolates DD2 and HB3. We have identified 25% of mis-annotated and ~30 missing rif and stevor genes. Using these data sets, as well as sequences from the well curated reference genome (isolate 3D7) and field isolate data from Uniprot, we have developed a tool named RSpred. The tool, based on a set of hidden Markov models and an evaluation program, automatically identifies STEVOR and RIFIN sequences as well as the sub-groups: A-RIFIN, B-RIFIN, B1-RIFIN and B2-RIFIN. In addition to these groups, we distinguish a small subset of STEVOR proteins that we named STEVOR-like, as they either differ remarkably from typical STEVOR proteins or are too fragmented to reach a high enough score. When compared to Pfam and TIGRFAMs, RSpred proves to be a more robust and more sensitive method. We have applied RSpred to the proteomes of several P. falciparum strains, P. reichenowi, P. vivax, P. knowlesi and the rodent malaria species. All groups were found in the P. falciparum strains, and also in the P. reichenowi parasite, whereas none were predicted in the other species. Conclusions We have generated a tool for the sorting of RIFIN and STEVOR proteins, large antigenic variant protein groups, into homogeneous sub-families. Assigning functions to such protein families requires their subdivision into meaningful groups such as we have shown for the RIFIN protein family. RSpred removes the need for complicated and time consuming phylogenetic analysis methods. It will benefit both research groups sequencing whole genomes as well as others working with field isolates. RSpred is freely accessible via http://www.ifm.liu.se/bioinfo/.
Collapse
Affiliation(s)
- Nicolas Joannin
- Department of Microbiology, Cell and Tumor biology (MTC), Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | | | | | | |
Collapse
|
15
|
Chen DS, Barry AE, Leliwa-Sytek A, Smith TA, Peterson I, Brown SM, Migot-Nabias F, Deloron P, Kortok MM, Marsh K, Daily JP, Ndiaye D, Sarr O, Mboup S, Day KP. A molecular epidemiological study of var gene diversity to characterize the reservoir of Plasmodium falciparum in humans in Africa. PLoS One 2011; 6:e16629. [PMID: 21347415 PMCID: PMC3036650 DOI: 10.1371/journal.pone.0016629] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 01/06/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The reservoir of Plasmodium infection in humans has traditionally been defined by blood slide positivity. This study was designed to characterize the local reservoir of infection in relation to the diverse var genes that encode the major surface antigen of Plasmodium falciparum blood stages and underlie the parasite's ability to establish chronic infection and transmit from human to mosquito. METHODOLOGY/PRINCIPAL FINDINGS We investigated the molecular epidemiology of the var multigene family at local sites in Gabon, Senegal and Kenya which differ in parasite prevalence and transmission intensity. 1839 distinct var gene types were defined by sequencing DBLα domains in the three sites. Only 76 (4.1%) var types were found in more than one population indicating spatial heterogeneity in var types across the African continent. The majority of var types appeared only once in the population sample. Non-parametric statistical estimators predict in each population at minimum five to seven thousand distinct var types. Similar diversity of var types was seen in sites with different parasite prevalences. CONCLUSIONS/SIGNIFICANCE Var population genomics provides new insights into the epidemiology of P. falciparum in Africa where malaria has never been conquered. In particular, we have described the extensive reservoir of infection in local African sites and discovered a unique var population structure that can facilitate superinfection through minimal overlap in var repertoires among parasite genomes. Our findings show that var typing as a molecular surveillance system defines the extent of genetic complexity in the reservoir of infection to complement measures of malaria prevalence. The observed small scale spatial diversity of var genes suggests that var genetics could greatly inform current malaria mapping approaches and predict complex malaria population dynamics due to the import of var types to areas where no widespread pre-existing immunity in the population exists.
Collapse
Affiliation(s)
- Donald S. Chen
- Department of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Alyssa E. Barry
- Department of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
- Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, Oxford, United Kingdom
- Centre for Population Health, Burnet Institute, Melbourne, Australia
- Department of Medicine, Central and Eastern Clinical School, Monash University, Victoria, Australia
| | - Aleksandra Leliwa-Sytek
- Department of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Terry-Ann Smith
- Department of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Ingrid Peterson
- Department of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Stuart M. Brown
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, New York, United States of America
| | - Florence Migot-Nabias
- Institut de Recherche pour le Développement, Faculté de Pharmacie, Université Paris 5, Paris, France
| | - Philippe Deloron
- Institut de Recherche pour le Développement, Faculté de Pharmacie, Université Paris 5, Paris, France
| | - Moses M. Kortok
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Kevin Marsh
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Johanna P. Daily
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Daouda Ndiaye
- Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | - Ousmane Sarr
- Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | - Souleymane Mboup
- Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | - Karen P. Day
- Department of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
- Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Tembo D, Montgomery J. Var gene expression and human Plasmodium pathogenesis. Future Microbiol 2010; 5:801-15. [PMID: 20441551 DOI: 10.2217/fmb.10.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Plasmodium falciparum is responsible for most of the morbidity and mortality associated with malaria and is unique in its ability to sequester in organ postcapillary venules. Specific host-parasite interactions mediate this phenomenon and the P. falciparum erythrocyte membrane protein 1 is the predominant ligand responsible for adhering to host endothelial receptors. This review focuses on the current knowledge regarding this protein family, evidence for its role in various pathogenic mechanisms and on insights that have been gained in this area from field studies.
Collapse
Affiliation(s)
- Dumizulu Tembo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, PO Box 30096, Blantyre 3, Malawi
| | | |
Collapse
|
17
|
Albrecht L, Castiñeiras C, Carvalho BO, Ladeia-Andrade S, Santos da Silva N, Hoffmann EHE, dalla Martha RC, Costa FTM, Wunderlich G. The South American Plasmodium falciparum var gene repertoire is limited, highly shared and possibly lacks several antigenic types. Gene 2010; 453:37-44. [PMID: 20079817 DOI: 10.1016/j.gene.2010.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 11/16/2022]
Abstract
The Plasmodium falciparum var gene family encodes large variant antigens, which are important virulence factors, and also targets of the humoral host response. The frequently observed mild outcomes of falciparum malaria in many places of the Amazon area prompted us to ask whether a globally restricted variant (var) gene repertoire is present in currently circulating and older isolates of this area. By exhaustive analysis of var gene tags from 89 isolates and clones taken during many years from all over the Brazilian Amazon, we estimate that there are probably no more than 350-430 distinct sequence types, less than for any similar sized area studied so far. Detailed analysis of the var tags from genetically distinct clones obtained from single isolates revealed restricted and redundant repertoires suggesting either a low incidence of infective bites or restricted variant gene diversity in inoculated parasites. Additionally, we found a structuring of var gene repertoires observed as a higher pairwise typing sharing in isolates from the same microregion compared to isolates from different regions. Fine analysis of translated var tags revealed that certain Distinct Sequence Identifiers (DSIDs) were differently represented in Brazilian/South American isolates when compared to datasets from other continents. By global alignment of worldwide var DBLalpha sequences and sorting in groups with more than 76% identity, 125 clusters were formed and more than half of all genes were found in nine clusters with 50 or more sequences. While Brazilian/South American sequences were represented only in 64 groups, African sequences were found in the majority of clusters. DSID type 1 related sequences accumulated almost completely in one single cluster, indicating that limited recombination occurs in these specific var gene types. These data demonstrate the so far highest pairwise type sharing values for the var gene family in isolates from all over an entire subcontinent. The apparent lack of specific sequences types suggests that the P. falciparum transmission dynamics in the whole Amazon are probably different from any other endemic region studied and possibly interfere with the parasite's ability to efficiently diversify its variant gene repertoires.
Collapse
Affiliation(s)
- Letusa Albrecht
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Blomqvist K, Normark J, Nilsson D, Ribacke U, Orikiriza J, Trillkott P, Byarugaba J, Egwang TG, Kironde F, Andersson B, Wahlgren M. var gene transcription dynamics in Plasmodium falciparum patient isolates. Mol Biochem Parasitol 2009; 170:74-83. [PMID: 20006652 DOI: 10.1016/j.molbiopara.2009.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 12/01/2009] [Accepted: 12/05/2009] [Indexed: 10/20/2022]
Abstract
A major feature of Plasmodium falciparum parasitized red blood cells (pRBC) is their capacity to sequester in the microcirculation. The binding is mediated by PfEMP1 (P. falciparum erythrocyte membrane protein 1), a variable protein encoded by the var gene family. P. falciparum avoids the host antibody response generated against previously used variants by switching the expression of PfEMP1, which may affect the disease outcome. We have here studied var gene transcription over time within the life cycle of the parasite by semi-quantitative PCR and sequencing by employing three sets of degenerate primers to the 5-prime end of the var genes (corresponding to the DBL1alpha-domain). To accurately determine transcript levels, subsequent in-depth analysis was made by amplifying the 10 most frequently expressed var sequences identified in each developmental stage by quantitative PCR (Q-PCR). The maximum peak in var gene transcription seems to vary in time among parasites. In five out of seven parasites, var gene transcription was found to be higher or equal at 22-26h post-invasion compared to 4-10h post-invasion. Our data indicate that the intra-isolate var gene transcription dominance order may change between different developmental stages. The transcription of var genes in field isolates is more complex than in laboratory strains and often changes after in vitro adaption of the parasite. By using semi-quantitative PCR employing degenerate primers combined with quantitative-PCR using specific primers it is possible to monitor var gene transcription in detail during the life cycle of the parasite. The work presented here suggests that trophozoite pRBC is likely to be the optimal source of RNA for predicting the translated var gene species.
Collapse
Affiliation(s)
- Karin Blomqvist
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Blythe JE, Niang M, Marsh K, Holder AA, Langhorne J, Preiser PR. Characterization of the repertoire diversity of the Plasmodium falciparum stevor multigene family in laboratory and field isolates. Malar J 2009; 8:140. [PMID: 19558642 PMCID: PMC2706845 DOI: 10.1186/1475-2875-8-140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 06/26/2009] [Indexed: 11/10/2022] Open
Abstract
Background The evasion of host immune response by the human malaria parasite Plasmodium falciparum has been linked to expression of a range of variable antigens on the infected erythrocyte surface. Several genes are potentially involved in this process with the var, rif and stevor multigene families being the most likely candidates and coding for rapidly evolving proteins. The high sequence diversity of proteins encoded by these gene families may have evolved as an immune evasion strategy that enables the parasite to establish long lasting chronic infections. Previous findings have shown that the hypervariable region (HVR) of STEVOR has significant sequence diversity both within as well as across different P. falciparum lines. However, these studies did not address whether or not there are ancestral stevor that can be found in different parasites. Methods DNA and RNA sequences analysis as well as phylogenetic approaches were used to analyse the stevor sequence repertoire and diversity in laboratory lines and Kilifi (Kenya) fresh isolates. Results Conserved stevor genes were identified in different P. falciparum isolates from different global locations. Consistent with previous studies, the HVR of the stevor gene family was found to be highly divergent both within and between isolates. Importantly phylogenetic analysis shows some clustering of stevor sequences both within a single parasite clone as well as across different parasite isolates. Conclusion This indicates that the ancestral P. falciparum parasite genome already contained multiple stevor genes that have subsequently diversified further within the different P. falciparum populations. It also confirms that STEVOR is under strong selection pressure.
Collapse
Affiliation(s)
- Jane E Blythe
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore.
| | | | | | | | | | | |
Collapse
|
20
|
Templeton TJ. The varieties of gene amplification, diversification and hypervariability in the human malaria parasite, Plasmodium falciparum. Mol Biochem Parasitol 2009; 166:109-16. [PMID: 19375460 DOI: 10.1016/j.molbiopara.2009.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/05/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022]
Abstract
The human malaria parasite, Plasmodium falciparum, is able to evade host cell-mediated and humoral immunity to maintain both persistent and repeated infections. Immune evasion is in part due to a robust repertoire of proteins which participate in host-parasite interactions but also exhibit profound antigenic diversity, and in some instances switches in gene expression. The antigenic diversity occurs both at the parasite level within families of amplified proteins, and within populations of parasites in which mechanisms of recombination and gene conversion conspire to create a broad plasticity in the antigenic exposure to the host. This review will introduce the spectrum of amplified protein families in P. falciparum and focus on three sub-telomeric encoded families, RIFIN, STEVOR and Pfmc-2TM which exhibit hypervariability with respect to their antigenic diversity.
Collapse
Affiliation(s)
- Thomas J Templeton
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
21
|
Ozarkar A, Prakash D, Deobagkar D, Deobagkar D. Analysis of PfEMP1—var Gene Sequences in Different Plasmodium falciparum Malarial Parasites. ACTA ACUST UNITED AC 2009. [DOI: 10.3814/2009/824949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Abstract
The persistence of the human malaria parasite Plasmodium falciparum during blood stage proliferation in its host depends on the successive expression of variant molecules at the surface of infected erythrocytes. This variation is mediated by the differential control of a family of surface molecules termed PfEMP1 encoded by approximately 60 var genes. Each individual parasite expresses a single var gene at a time, maintaining all other members of the family in a transcriptionally silent state. PfEMP1/var enables parasitized erythrocytes to adhere within the microvasculature, resulting in severe disease. This review highlights key regulatory mechanisms thought to be critical for monoallelic expression of var genes. Antigenic variation is orchestrated by epigenetic factors including monoallelic var transcription at separate spatial domains at the nuclear periphery, differential histone marks on otherwise identical var genes, and var silencing mediated by telomeric heterochromatin. In addition, controversies surrounding var genetic elements in antigenic variation are discussed.
Collapse
Affiliation(s)
- Artur Scherf
- Biology of Host-Parasite Interactions Unit, CNRS URA2581, Institut Pasteur 75724 Paris, France.
| | | | | |
Collapse
|
23
|
Bull PC, Buckee CO, Kyes S, Kortok MM, Thathy V, Guyah B, Stoute JA, Newbold CI, Marsh K. Plasmodium falciparum antigenic variation. Mapping mosaic var gene sequences onto a network of shared, highly polymorphic sequence blocks. Mol Microbiol 2008; 68:1519-34. [PMID: 18433451 PMCID: PMC2440560 DOI: 10.1111/j.1365-2958.2008.06248.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a potentially important family of immune targets, encoded by an extremely diverse gene family called var. Understanding of the genetic organization of var genes is hampered by sequence mosaicism that results from a long history of non-homologous recombination. Here we have used software designed to analyse social networks to visualize the relationships between large collections of short var sequences tags sampled from clinical parasite isolates. In this approach, two sequences are connected if they share one or more highly polymorphic sequence blocks. The results show that the majority of analysed sequences including several var-like sequences from the chimpanzee parasite Plasmodium reichenowi can be either directly or indirectly linked together in a single unbroken network. However, the network is highly structured and contains putative subgroups of recombining sequences. The major subgroup contains the previously described group A var genes, previously proposed to be genetically distinct. Another subgroup contains sequences found to be associated with rosetting, a parasite virulence phenotype. The mosaic structure of the sequences and their division into subgroups may reflect the conflicting problems of maximizing antigenic diversity and minimizing epitope sharing between variants while maintaining their host cell binding functions.
Collapse
Affiliation(s)
- Peter C Bull
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Coast, Kilifi, Kenya.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ekala MT, Khim N, Legrand E, Randrianarivelojosia M, Jambou R, Fandeur T, Menard D, Assi SB, Henry MC, Rogier C, Bouchier C, Mercereau-Puijalon O. Sequence analysis of Plasmodium falciparum cytochrome b in multiple geographic sites. Malar J 2007; 6:164. [PMID: 18086297 PMCID: PMC2228307 DOI: 10.1186/1475-2875-6-164] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 12/17/2007] [Indexed: 11/29/2022] Open
Abstract
Background The antimalarial drug atovaquone specifically targets Plasmodium falciparum cytochrome b (Pfcytb), a mitochondrial gene with uniparental inheritance. Cases of resistance to atovaquone associated with mutant Pfcytb have been reported, justifying efforts to better document the natural polymorphism of this gene. To this end, a large molecular survey was conducted in several malaria endemic areas where atovaquone was not yet in regular use. Methods The polymorphism of the Pfcytb was analysed by direct sequencing of PCR products corresponding to the full length coding region. Sequence was generated for 671 isolates originating from three continents: Africa (Senegal, Ivory Coast, Central African Republic and Madagascar), Asia (Cambodia) and South America (French Guiana). Results Overall, 11 polymorphic sites were observed, of which eight were novel mutations. There was a large disparity in the geographic distribution of the mutants. All isolates from Senegal, Central African Republic and Madagascar displayed a Camp/3D7 wild type Pfcytb sequence, as did most samples originating from Cambodia and Ivory Coast. One synonymous (t759a at codon V253V) and two non-synonymous (t553g and a581g at codons F185V and H194R, respectively) singletons were detected in Ivory Coast. Likewise, two synonymous (a126t and c793t at codons -T42T and L265L, respectively) singletons were observed in Cambodia. In contrast, seven mutated sites, affecting seven codons and defining four mutant haplotypes were observed in French Guiana. The wild type allele was observed in only 14% of the French Guiana isolates. The synonymous c688t mutation at position L230L was highly prevalent; the most frequent allele was the c688t single mutant, observed in 84% of the isolates. The other alleles were singletons (a126t/a165c, a4g/a20t/a1024c and a20t/t341c/c688t corresponding to T42T/S55S, N2D/N71I/I342L, N71I/L114S/L230L, respectively" please replace with ' corresponding to T42T/S55S, N2D/N71I/I342L and N71I/L114S/L230L, respectively). The codon 268 polymorphisms associated with atovaquone resistance were not observed in the panel the isolates studied. Overall, the wild type PfCYTb protein isoform was highly predominant in all study areas, including French Guiana, suggesting stringent functional constraints. Conclusion These data along with previously identified Pfcytb field polymorphisms indicate a clustering of molecular signatures, suggesting different ancestral types in South America and other continents. The absence of mutations associated with most atovaquone-proguanil clinical failures indicates that the atovaquone-proguanil association is an interesting treatment option in the study areas.
Collapse
Affiliation(s)
- Marie-Thérèse Ekala
- Immunologie Moléculaire des Parasites, CNRS URA 2581, Institut Pasteur, 25 rue du Dr ROUX, 75724 Paris Cedex 15, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chookajorn T, Costanzo MS, Hartl DL, Deitsch KW. Malaria: a peek at the var variorum. Trends Parasitol 2007; 23:563-5. [DOI: 10.1016/j.pt.2007.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 08/21/2007] [Accepted: 08/21/2007] [Indexed: 11/25/2022]
|
26
|
dalla Martha RC, Tada MS, Ferreira RGDM, da Silva LHP, Wunderlich G. Microsatellite characterization of Plasmodium falciparum from symptomatic and non-symptomatic infections from the Western Amazon reveals the existence of non-symptomatic infection-associated genotypes. Mem Inst Oswaldo Cruz 2007; 102:293-8. [PMID: 17568933 DOI: 10.1590/s0074-02762007005000044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 04/18/2007] [Indexed: 01/19/2023] Open
Abstract
In Western Amazon areas with perennial malaria transmission, long term residents frequently develop partial immunity to malarial infection caused either by Plasmodium falciparum or P. vivax, resulting in a considerable number of non-symptomatically infected individuals. For yet unknown reasons, these individuals sporadically develop symptomatic malaria. In order to identify if determined parasite genotypes, defined by a combination of eleven microsatellite markers, were associated to different outcomes--symptomatic or asymptomatic malaria--we analyzed infecting P. falciparum parasites in a suburban riverine population. Despite of detecting a high degree of diversity in the analyzed samples, several microsatellite marker alleles appeared accumulated in parasites from non-symptomatic infections. This result may be interpreted that a number of microsatellites, which are not directly related to antigenic features, could be associated to the outcome of malarial infection. The result may also point to a low frequency of recombinatorial events which otherwise would dissociate genes under strong immune pressure from the relatively neutral microsatellite loci.
Collapse
|
27
|
Petter M, Haeggström M, Khattab A, Fernandez V, Klinkert MQ, Wahlgren M. Variant proteins of the Plasmodium falciparum RIFIN family show distinct subcellular localization and developmental expression patterns. Mol Biochem Parasitol 2007; 156:51-61. [PMID: 17719658 DOI: 10.1016/j.molbiopara.2007.07.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/13/2007] [Accepted: 07/17/2007] [Indexed: 11/16/2022]
Abstract
In order to avoid immune recognition in favor of a chronic infection, the malaria parasite Plasmodium falciparum has developed means to express clonally variant antigens at the surface of the infected erythrocyte (IE). Proteins of the var and rif multicopy gene families, encoding PfEMP1 and RIFINs, respectively, have been implicated in these processes. Here, we studied members of the latter family and present data revealing different subcellular localization patterns for RIFIN variants belonging to two distinct subgroups, which have been designated A- and B-type RIFINs. While A-type RIFINs were found to be associated with the parasite and transported to the surface of infected erythrocytes via Maurer's clefts, B-type RIFINs appeared to be mostly retained inside the parasite. However, expression of both subtypes does not seem to be mutually exclusive. Moreover, both A- and B-type variants were also expressed in the merozoite, present either in the apical region (A-type) or in the cytosol (B-type). The presence of RIFINs in merozoites suggests that antigenic variation in P. falciparum is not only restricted to parasite-derived proteins at the IE surface, but the phenomenon also prevails in other life cycle stages. Interestingly, some RIFIN variants were detected only in intracellular stages and not in merozoites, pointing to differential developmental expression patterns for distinct members of this large protein family.
Collapse
Affiliation(s)
- Michaela Petter
- Bernhard-Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Montgomery J, Mphande FA, Berriman M, Pain A, Rogerson SJ, Taylor TE, Molyneux ME, Craig A. Differential var gene expression in the organs of patients dying of falciparum malaria. Mol Microbiol 2007; 65:959-67. [PMID: 17617167 PMCID: PMC2170262 DOI: 10.1111/j.1365-2958.2007.05837.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sequestration of parasitized erythrocytes in the microcirculation of tissues is thought to be important in the pathogenesis of severe falciparum malaria. A major variant surface antigen, var/Plasmodium falciparum erythrocyte membrane protein 1, expressed on the surface of the infected erythrocyte, mediates cytoadherence to vascular endothelium. To address the question of tissue-specific accumulation of variant types, we used the unique resource generated by the clinicopathological study of fatal paediatric malaria in Blantyre, Malawi, to analyse var gene transcription in patients dying with falciparum malaria. Despite up to 102 different var genes being expressed by P. falciparum populations in a single host, only one to two of these genes were expressed at high levels in the brains and hearts of these patients. These major var types differed between organs. However, identical var types were expressed in the brains of multiple patients from a single malaria season. These results provide the first evidence of organ-specific accumulation of P. falciparum variant types and suggest that parasitized erythrocytes can exhibit preferential binding in the body, supporting the hypothesis of cytoadherence-linked pathogenesis.
Collapse
Affiliation(s)
- Jacqui Montgomery
- Malawi-Liverpool-Wellcome Programme of Clinical Tropical Research, College of Medicine, Blantyre, Malawi.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bull PC, Kyes S, Buckee CO, Montgomery J, Kortok MM, Newbold CI, Marsh K. An approach to classifying sequence tags sampled from Plasmodium falciparum var genes. Mol Biochem Parasitol 2007; 154:98-102. [PMID: 17467073 PMCID: PMC1906845 DOI: 10.1016/j.molbiopara.2007.03.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/16/2007] [Accepted: 03/16/2007] [Indexed: 11/25/2022]
Affiliation(s)
- Peter C Bull
- Kenya Medical Research Institute Centre for Geographic Medicine Research, Coast, Kilifi, Kenya.
| | | | | | | | | | | | | |
Collapse
|