1
|
Platzl C, Kaser-Eichberger A, Trost A, Strohmaier C, Stone R, Nickla D, Schroedl F. Melanopsin in the human and chicken choroid. Exp Eye Res 2024; 247:110053. [PMID: 39151779 PMCID: PMC11542372 DOI: 10.1016/j.exer.2024.110053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The choroid embedded in between retina and sclera is essential for retinal photoreceptor nourishment, but is also a source of growth factors in the process of emmetropization that converts retinal visual signals into scleral growth signals. Still, the exact control mechanisms behind those functions are enigmatic while circadian rhythms are involved. These rhythms are attributed to daylight influences that are melanopsin (OPN4) driven. Recently, OPN4-mRNA has been detected in the choroid, and while its origin is unknown we here seek to identify the underlying structures using morphological methods. Human and chicken choroids were prepared for single- and double-immunohistochemistry of OPN4, vasoactive intestinal peptide (VIP), substance P (SP), CD68, and α-smooth muscle actin (ASMA). For documentation, light-, fluorescence-, and confocal laser scanning microscopy was applied. Retinal controls proved the reliability of the OPN4 antibody in both species. In humans, OPN4 immunoreactivity (OPN4-IR) was detected in nerve fibers of the choroid and adjacent ciliary nerve fibers. OPN4+ choroidal nerve fibers lacked VIP, but were co-localized with SP. OPN4-immunoreactivity was further detected in VIP+/SP + intrinsic choroidal neurons, in a hitherto unclassified CD68-negative choroidal cell population thus not representing macrophages, as well as in a subset of choroidal melanocytes. In chicken, choroidal nerve fibers were OPN4+, and further OPN4-IR was detected in clustered suprachoroidal structures that were not co-localized with ASMA and therefore do not represent non-vascular smooth-muscle cells. In the choroidal stroma, numerous cells displayed OPN4-IR, the majority of which was VIP-, while a few of those co-localized with VIP and were therefore classified as avian intrinsic choroidal neurons. OPN4-immunoreactivity was absent in choroidal blood vessels of both species. In summary, OPN4-IR was detected in both species in nerve fibers and cells, some of which could be identified (ICN, melanocytes in human), while others could not be classified yet. Nevertheless, the OPN4+ structures described here might be involved in developmental, light-, thermally-driven or nociceptive mechanisms, as known from other systems, but with respect to choroidal control this needs to be proven in upcoming studies.
Collapse
Affiliation(s)
- Christian Platzl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Andrea Trost
- Dept. of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria
| | - Clemens Strohmaier
- Department of Ophthalmology and Optometry, Johannes Kepler University, Linz, Austria
| | - Richard Stone
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Debora Nickla
- Dept. of Biomedical Sciences and Disease, The New England College of Optometry, Boston, USA
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
2
|
Farag HI, Murphy BA, Templeman JR, Hanlon C, Joshua J, Koch TG, Niel L, Shoveller AK, Bedecarrats GY, Ellison A, Wilcockson D, Martino TA. One Health: Circadian Medicine Benefits Both Non-human Animals and Humans Alike. J Biol Rhythms 2024; 39:237-269. [PMID: 38379166 PMCID: PMC11141112 DOI: 10.1177/07487304241228021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Circadian biology's impact on human physical health and its role in disease development and progression is widely recognized. The forefront of circadian rhythm research now focuses on translational applications to clinical medicine, aiming to enhance disease diagnosis, prognosis, and treatment responses. However, the field of circadian medicine has predominantly concentrated on human healthcare, neglecting its potential for transformative applications in veterinary medicine, thereby overlooking opportunities to improve non-human animal health and welfare. This review consists of three main sections. The first section focuses on the translational potential of circadian medicine into current industry practices of agricultural animals, with a particular emphasis on horses, broiler chickens, and laying hens. The second section delves into the potential applications of circadian medicine in small animal veterinary care, primarily focusing on our companion animals, namely dogs and cats. The final section explores emerging frontiers in circadian medicine, encompassing aquaculture, veterinary hospital care, and non-human animal welfare and concludes with the integration of One Health principles. In summary, circadian medicine represents a highly promising field of medicine that holds the potential to significantly enhance the clinical care and overall health of all animals, extending its impact beyond human healthcare.
Collapse
Affiliation(s)
- Hesham I. Farag
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| | - Barbara A. Murphy
- School of Agriculture and Food Science, University College, Dublin, Ireland
| | - James R. Templeman
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Jessica Joshua
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Thomas G. Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Lee Niel
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Amy Ellison
- School of Natural Sciences, Bangor University, Bangor, UK
| | - David Wilcockson
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Tami A. Martino
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
3
|
Pan D, Wang Z, Chen Y, Cao J. Melanopsin-mediated optical entrainment regulates circadian rhythms in vertebrates. Commun Biol 2023; 6:1054. [PMID: 37853054 PMCID: PMC10584931 DOI: 10.1038/s42003-023-05432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Melanopsin (OPN4) is a light-sensitive protein that plays a vital role in the regulation of circadian rhythms and other nonvisual functions. Current research on OPN4 has focused on mammals; more evidence is needed from non-mammalian vertebrates to fully assess the significance of the non-visual photosensitization of OPN4 for circadian rhythm regulation. There are species differences in the regulatory mechanisms of OPN4 for vertebrate circadian rhythms, which may be due to the differences in the cutting variants, tissue localization, and photosensitive activation pathway of OPN4. We here summarize the distribution of OPN4 in mammals, birds, and teleost fish, and the classical excitation mode for the non-visual photosensitive function of OPN4 in mammals is discussed. In addition, the role of OPN4-expressing cells in regulating circadian rhythm in different vertebrates is highlighted, and the potential rhythmic regulatory effects of various neuropeptides or neurotransmitters expressed in mammalian OPN4-expressing ganglion cells are summarized among them.
Collapse
Affiliation(s)
- Deng Pan
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China.
| |
Collapse
|
4
|
Bhoi JD, Goel M, Ribelayga CP, Mangel SC. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function. Prog Retin Eye Res 2023; 94:101119. [PMID: 36503722 PMCID: PMC10164718 DOI: 10.1016/j.preteyeres.2022.101119] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Circadian (24-h) clocks are cell-autonomous biological oscillators that orchestrate many aspects of our physiology on a daily basis. Numerous circadian rhythms in mammalian and non-mammalian retinas have been observed and the presence of an endogenous circadian clock has been demonstrated. However, how the clock and associated rhythms assemble into pathways that support and control retina function remains largely unknown. Our goal here is to review the current status of our knowledge and evaluate recent advances. We describe many previously-observed retinal rhythms, including circadian rhythms of morphology, biochemistry, physiology, and gene expression. We evaluate evidence concerning the location and molecular machinery of the retinal circadian clock, as well as consider findings that suggest the presence of multiple clocks. Our primary focus though is to describe in depth circadian rhythms in the light responses of retinal neurons with an emphasis on clock control of rod and cone pathways. We examine evidence that specific biochemical mechanisms produce these daily light response changes. We also discuss evidence for the presence of multiple circadian retinal pathways involving rhythms in neurotransmitter activity, transmitter receptors, metabolism, and pH. We focus on distinct actions of two dopamine receptor systems in the outer retina, a dopamine D4 receptor system that mediates circadian control of rod/cone gap junction coupling and a dopamine D1 receptor system that mediates non-circadian, light/dark adaptive regulation of gap junction coupling between horizontal cells. Finally, we evaluate the role of circadian rhythmicity in retinal degeneration and suggest future directions for the field of retinal circadian biology.
Collapse
Affiliation(s)
- Jacob D Bhoi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA
| | - Manvi Goel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA.
| | - Stuart C Mangel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Karthikeyan R, Davies WI, Gunhaga L. Non-image-forming functional roles of OPN3, OPN4 and OPN5 photopigments. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
|
6
|
Vilani NMJ, Monteiro DALV, Einat H, Jerome B, Fix VD, de Lauro CAM, Oliveira BDM. Melanopsin expression in the retinas of owls with different daily activity patterns. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Dekens MPS, Fontinha BM, Gallach M, Pflügler S, Tessmar‐Raible K. Melanopsin elevates locomotor activity during the wake state of the diurnal zebrafish. EMBO Rep 2022; 23:e51528. [PMID: 35233929 PMCID: PMC9066073 DOI: 10.15252/embr.202051528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Mammalian and fish pineals play a key role in adapting behaviour to the ambient light conditions through the release of melatonin. In mice, light inhibits nocturnal locomotor activity via the non‐visual photoreceptor Melanopsin. In contrast to the extensively studied function of Melanopsin in the indirect regulation of the rodent pineal, its role in the intrinsically photosensitive zebrafish pineal has not been elucidated. Therefore, it is not evident if the light signalling mechanism is conserved between distant vertebrates, and how Melanopsin could affect diurnal behaviour. A double knockout of melanopsins (opn4.1‐opn4xb) was generated in the diurnal zebrafish, which manifests attenuated locomotor activity during the wake state. Transcriptome sequencing gave insight into pathways downstream of Melanopsin, implying that sustained repression of the melatonin pathway is required to elevate locomotor activity during the diurnal wake state. Moreover, we show that light induces locomotor activity during the diurnal wake state in an intensity‐dependent manner. These observations suggest a common Melanopsin‐driven mechanism between zebrafish and mammals, while the diurnal and nocturnal chronotypes are inversely regulated downstream of melatonin.
Collapse
Affiliation(s)
- Marcus P S Dekens
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Bruno M Fontinha
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Miguel Gallach
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Max Perutz Laboratory Centre for Integrative Bioinformatics University of Vienna and Medical University of Vienna Vienna Austria
| | - Sandra Pflügler
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Kristin Tessmar‐Raible
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Research Platform “Marine Rhythms of Life” University of Vienna Vienna Austria
| |
Collapse
|
8
|
Wei Y, Zheng W, Tong Q, Li Z, Li B, Shi H, Wang Y. Effects of blue-green LED lights with two perceived illuminance (human and poultry) on immune performance and skeletal development of layer chickens. Poult Sci 2022; 101:101855. [PMID: 35550997 PMCID: PMC9108713 DOI: 10.1016/j.psj.2022.101855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Light is one of the essential environmental factors in the production process of laying hens, which can directly affect their behavior, growth and development, and production performance. The spectral sensitivity of humans is different from that of poultry, and the perceived illuminance units of human and poultry are lux and clux, respectively. If the light management of laying hen production is carried out according to human perceived illuminance, the growth and development of laying hens during pullet rearing may be adversely affected due to the discomfort of the perceived illuminance. Preliminary research has found that blue-green LED light can improve the immune function of laying hens during the brooding and rearing periods. However, the differences of the effects caused by blue-green light on the immune performance and bone development of laying hens during pullet rearing are still unclear for the 2 spectral sensitivities. A total of 120 Jinghong layer chickens were raised from 1 d to 13 wk of age in one of three groups with a white LED light (light intensity unit lux, WL) group, a blue-green LED light (light intensity unit lux, HBGL) group, and blue-green LED light (light intensity unit clux, PBGL) group, and unlimited feed and water were provided during the whole experiment. At 7 and 13 wk of age, the immune performance, bone parameters, and related gene expression were investigated. The results showed that compared with the WL groups, HBGL and PBGL increased the immunoglobulin A (IgA) content at 13 wk of age and the IgM content at 7 wk of age (P < 0.05). The bone mineral density (BMD) at 7 and 13 wk of age and tibial strength (TS) at 13 wk of age of the pullets in the WL group were significantly higher than those in the HBGL and PBGL group (P < 0.05). Osteoclastogenesis inhibitory factor gene (OPG mRNA) expression was increased in the layer chickens at the age of 7 and 13 wk for the WL group (P < 0.05). Compared with the WL group and PBGL group, the melanopsin gene (OPN4 mRNA) transcription level of hypothalamus and pineal gland of the chickens under HBGL significantly increased at 7 and 13 wk of age (P < 0.05). In conclusion, blue-green LED light with two perceived illuminance (human and poultry) can increase the Ig content and the immune performance of layer chickens, and blue-green LED light (light intensity unit lux) can promote the expression of OPN4 gene in the hypothalamus and pineal gland. In addition, white LED light can enhance bone quality by increasing tibia OPG gene expression.
Collapse
|
9
|
Contreras E, Nobleman AP, Robinson PR, Schmidt TM. Melanopsin phototransduction: beyond canonical cascades. J Exp Biol 2021; 224:273562. [PMID: 34842918 PMCID: PMC8714064 DOI: 10.1242/jeb.226522] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Melanopsin is a visual pigment that is expressed in a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs). It is involved in regulating non-image forming visual behaviors, such as circadian photoentrainment and the pupillary light reflex, while also playing a role in many aspects of image-forming vision, such as contrast sensitivity. Melanopsin was initially discovered in the melanophores of the skin of the frog Xenopus, and subsequently found in a subset of ganglion cells in rat, mouse and primate retinas. ipRGCs were initially thought to be a single retinal ganglion cell population, and melanopsin was thought to activate a single, invertebrate-like Gq/transient receptor potential canonical (TRPC)-based phototransduction cascade within these cells. However, in the 20 years since the discovery of melanopsin, our knowledge of this visual pigment and ipRGCs has expanded dramatically. Six ipRGC subtypes have now been identified in the mouse, each with unique morphological, physiological and functional properties. Multiple subtypes have also been identified in other species, suggesting that this cell type diversity is a general feature of the ipRGC system. This diversity has led to a renewed interest in melanopsin phototransduction that may not follow the canonical Gq/TRPC cascade in the mouse or in the plethora of other organisms that express the melanopsin photopigment. In this Review, we discuss recent findings and discoveries that have challenged the prevailing view of melanopsin phototransduction as a single pathway that influences solely non-image forming functions.
Collapse
Affiliation(s)
- Ely Contreras
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Alexis P. Nobleman
- University of Maryland Baltimore County, Department of Biological Sciences, Baltimore, MD 21250, USA,Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Phyllis R. Robinson
- University of Maryland Baltimore County, Department of Biological Sciences, Baltimore, MD 21250, USA,Authors for correspondence (; )
| | - Tiffany M. Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA,Department of Ophthalmology, Feinberg School of Medicine, Chicago, IL 60611, USA,Authors for correspondence (; )
| |
Collapse
|
10
|
Geng AL, Zhang J, Zhang Y, Wang HH, Chu Q, Yan ZX, Liu HG. Effects of lighting regimes on performance, pineal melanopsin expression and melatonin content in native laying hens aged from 19 to 34 weeks. Poult Sci 2021; 101:101567. [PMID: 34823188 PMCID: PMC8626689 DOI: 10.1016/j.psj.2021.101567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/09/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022] Open
Abstract
Melanopsin, a key light sensitive pigment, plays an important role in the regulation of bio-rhythm and photo-adaptation in poultry. This study aimed to investigate the effects of different lighting regimes on performance, pineal melanopsin expression and melatonin content in a native chicken, Beijing You Chicken (BYC) aged from 19 to 34 wk. A total of 900 nineteen-wk-old BYC female chicken having no significant body weight differences were randomly allocated to 3 groups with 3 replicates each, 100 birds each replicate, reared in individually lit floor pens with separate outdoor areas. Three different lighting regimes were used, including continuous 16 h (16L:8D, 6:00–22:00) for group 1, intermittent 16 h (12L:2D:4L:6D, 6:00–18:00, 20:00–24:00) for group 2, and continuous 12 h (12L:12D, 6:00–18:00) for group 3, respectively. The performance was measured for 19 to 34 wk. Serum melatonin (Mel), prolactin (Prl), luteinizing hormone (LH), and 17-beta estradiol (E2) contents were measured at 24 wk, 29 wk, and 34 wk of age, the relative expression of pineal melanopsin gene (Opn4 mRNA) was measured on 1 d at 9:00, 13:00, 17:00, 21:00, 1:00, and 5:00 at 29 wk of age, and at the end of 29 wk and 34 wk. The results showed that the egg mass, egg-laying rate, and feed egg ratio of BYC were not affected by lighting regimes for 19 to 34 wk (P > 0.05), except for the average feed intake (AFI) (P < 0.05). The AFI in the 12L:12D group was significantly higher than that in the 16L:8D group (P < 0.05), but had no difference with that in the 12L:2D:4L:6D group. The pineal Opn4 mRNA level was significantly upregulated in the 12L:2D:4L:6D group and downregulated in the 12L:12D group when compared with 16L:8D group at 29 and 34 wks of age (P < 0.05). The Mel content in the 16L:8D group was lower than that in the other 2 groups at 29 wk of age (P < 0.05), there was no difference in Mel content between 16L:8D group and 12L:2D:4L:6D group at 34 wk of age (P > 0.05). The present study suggested that the pineal melanopsin expression of the birds in the intermittent 16 h lighting group was higher than in the continuous 16 h and 12 h lighting group, and a significant negative correlation was found between melanopsin expression and Mel content at 34 wk of age, which may interact to promote the photo-adaptation of the native chicken and affect the future laying performance.
Collapse
Affiliation(s)
- A L Geng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China.
| | - J Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| | - Y Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| | - H H Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| | - Q Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| | - Z X Yan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| | - H G Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| |
Collapse
|
11
|
Kang SW. Central Nervous System Associated With Light Perception and Physiological Responses of Birds. Front Physiol 2021; 12:723454. [PMID: 34744764 PMCID: PMC8566752 DOI: 10.3389/fphys.2021.723454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Environmental light that animal receives (i.e., photoperiod and light intensity) has recently been shown that it affects avian central nervous system for the physiological responses to the environment by up or downregulation of dopamine and serotonin activities, and this, in turn, affects the reproductive function and stress-related behavior of birds. In this study, the author speculated on the intriguing possibility that one of the proposed avian deep-brain photoreceptors (DBPs), i.e., melanopsin (Opn4), may play roles in the dual sensory-neurosecretory cells in the hypothalamus, midbrain, and brain stem for the behavior and physiological responses of birds by light. Specifically, the author has shown that the direct light perception of premammillary nucleus dopamine-melatonin (PMM DA-Mel) neurons is associated with the reproductive activation in birds. Although further research is required to establish the functional role of Opn4 in the ventral tegmental area (VTA), dorsal raphe nucleus, and caudal raphe nucleus in the light perception and physiological responses of birds, it is an exciting prospect because the previous results in birds support this hypothesis that Opn4 in the midbrain DA and serotonin neurons may play significant roles on the light-induced welfare of birds.
Collapse
Affiliation(s)
- Seong W. Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
12
|
Chen X, Shafer D, Sifri M, Lilburn M, Karcher D, Cherry P, Wakenell P, Fraley S, Turk M, Fraley GS. Centennial Review: History and husbandry recommendations for raising Pekin ducks in research or commercial production. Poult Sci 2021; 100:101241. [PMID: 34229220 PMCID: PMC8261006 DOI: 10.1016/j.psj.2021.101241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/26/2022] Open
Abstract
By some accounts, ducks were domesticated between 400 and 10,000 yr ago and have been a growing portion of the poultry industry for decades. Ducks specifically, and waterfowl in general, have unique health, housing, nutrition and welfare concerns compared to their galliform counterparts. Although there have been many research publications in regards to health, nutrition, behavior, and welfare of ducks there have been very few reviews to provide an overview of these numerous studies, and only one text has attempted to review all aspects of the duck industry, from breeders to meat ducks. This review covers incubation, hatching, housing, welfare, nutrition, and euthanasia and highlights the needs for additional research at all levels of duck production. The purpose of this review is to provide guidelines to raise and house ducks for research as specifically related to industry practices.
Collapse
Affiliation(s)
- X Chen
- Maple Leaf Farms, Inc., Leesburg, IN, USA
| | - D Shafer
- Maple Leaf Farms, Inc., Leesburg, IN, USA
| | - M Sifri
- Sifri Solutions, LLC, Quincy, IL, USA
| | - M Lilburn
- Ohio State University, Wooster, OH, USA
| | - D Karcher
- Purdue University, West Lafeyette, IN, USA
| | - P Cherry
- Consultant, Lincoln, LN2 2NH United Kingdom
| | - P Wakenell
- Purdue University, West Lafeyette, IN, USA
| | - S Fraley
- Purdue University, West Lafeyette, IN, USA
| | - M Turk
- Dux Consulting, LLC, Milford, IN, USA
| | - G S Fraley
- Purdue University, West Lafeyette, IN, USA.
| |
Collapse
|
13
|
Non-visual Opsins and Novel Photo-Detectors in the Vertebrate Inner Retina Mediate Light Responses Within the Blue Spectrum Region. Cell Mol Neurobiol 2020; 42:59-83. [PMID: 33231827 DOI: 10.1007/s10571-020-00997-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
In recent decades, a number of novel non-visual opsin photopigments belonging to the family of G protein- coupled receptors, likely involved in a number of non-image-forming processes, have been identified and characterized in cells of the inner retina of vertebrates. It is now known that the vertebrate retina is composed of visual photoreceptor cones and rods responsible for diurnal/color and nocturnal/black and white vision, and cells like the intrinsically photosensitive retinal ganglion cells (ipRGCs) and photosensitive horizontal cells in the inner retina, both detecting blue light and expressing the photopigment melanopsin (Opn4). Remarkably, these non-visual photopigments can continue to operate even in the absence of vision under retinal degeneration. Moreover, inner retinal neurons and Müller glial cells have been shown to express other photopigments such as the photoisomerase retinal G protein-coupled receptor (RGR), encephalopsin (Opn3), and neuropsin (Opn5), all able to detect blue/violet light and implicated in chromophore recycling, retinal clock synchronization, neuron-to-glia communication, and other activities. The discovery of these new photopigments in the inner retina of vertebrates is strong evidence of novel light-regulated activities. This review focuses on the features, localization, photocascade, and putative functions of these novel non-visual opsins in an attempt to shed light on their role in the inner retina of vertebrates and in the physiology of the whole organism.
Collapse
|
14
|
Hanlon C, Ramachandran R, Zuidhof MJ, Bédécarrats GY. Should I Lay or Should I Grow: Photoperiodic Versus Metabolic Cues in Chickens. Front Physiol 2020; 11:707. [PMID: 32670092 PMCID: PMC7332832 DOI: 10.3389/fphys.2020.00707] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
While photoperiod has been generally accepted as the primary if not the exclusive cue to stimulate reproduction in photoperiodic breeders such as the laying hen, current knowledge suggests that metabolism, and/or body composition can also play an influential role to control the hypothalamic-pituitary gonadal (HPG)-axis. This review thus intends to first describe how photoperiodic and metabolic cues can impact the HPG axis, then explore and propose potential common pathways and mechanisms through which both cues could be integrated. Photostimulation refers to a perceived increase in day-length resulting in the stimulation of the HPG. While photoreceptors are present in the retina of the eye and the pineal gland, it is the deep brain photoreceptors (DBPs) located in the hypothalamus that have been identified as the potential mediators of photostimulation, including melanopsin (OPN4), neuropsin (OPN5), and vertebrate-ancient opsin (VA-Opsin). Here, we present the current state of knowledge surrounding these DBPs, along with their individual and relative importance and, their possible downstream mechanisms of action to initiate the activation of the HPG axis. On the metabolic side, specific attention is placed on the hypothalamic integration of appetite control with the stimulatory (Gonadotropin Releasing Hormone; GnRH) and inhibitory (Gonadotropin Inhibitory Hormone; GnIH) neuropeptides involved in the control of the HPG axis. Specifically, the impact of orexigenic peptides agouti-related peptide (AgRP), and neuropeptide Y (NPY), as well as the anorexigenic peptides pro-opiomelanocortin (POMC), and cocaine-and amphetamine regulated transcript (CART) is reviewed. Furthermore, beyond hypothalamic control, several metabolic factors involved in the control of body weight and composition are also presented as possible modulators of reproduction at all three levels of the HPG axis. These include peroxisome proliferator-activated receptor gamma (PPAR-γ) for its impact in liver metabolism during the switch from growth to reproduction, adiponectin as a potential modulator of ovarian development and follicular maturation, as well as growth hormone (GH), and leptin (LEP).
Collapse
Affiliation(s)
- Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Ramesh Ramachandran
- Center for Reproductive Biology and Health, Department of Animal Science, Pennsylvania State University, University Park, PA, United States
| | - Martin J. Zuidhof
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
15
|
Stone RA, Wei W, Sarfare S, McGeehan B, Engelhart KC, Khurana TS, Maguire MG, Iuvone PM, Nickla DL. Visual Image Quality Impacts Circadian Rhythm-Related Gene Expression in Retina and in Choroid: A Potential Mechanism for Ametropias. Invest Ophthalmol Vis Sci 2020; 61:13. [PMID: 32396635 PMCID: PMC7405616 DOI: 10.1167/iovs.61.5.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Stimulated by evidence implicating diurnal/circadian rhythms and light in refractive development, we studied the expression over 24 hours of selected clock and circadian rhythm-related genes in retina/retinal pigment epithelium (RPE) and choroid of experimental ametropias in chicks. Methods Newly hatched chicks, entrained to a 12-hour light/dark cycle for 12 to 14 days, either experienced nonrestricted vision OU (i.e., in both eyes) or received an image-blurring diffuser or a minus 10-diopter (D) or a plus 10-D defocusing lens over one eye. Starting 1 day later and at 4-hour intervals for 24 hours, the retina/RPE and choroid were separately dissected. Without pooling, total RNA was extracted, converted to cDNA, and assayed by quantitative PCR for the expression of the following genes: Opn4m, Clock, Npas2, Per3, Cry1, Arntl, and Mtnr1a. Results The expression of each gene in retina/RPE and in choroid of eyes with nonrestricted vision OU varied over 24 hours, with equal levels OU for most genes and times. Altered visual input influenced gene expression in complex patterns that varied by gene, visual input, time, and eye, affecting experimental eyes with altered vision and also contralateral eyes with nonrestricted vision. Discussion Altering visual input in ways known to induce ametropias alters the retinal/RPE and choroidal expression of circadian rhythm-related genes, further linking circadian biology with eye growth regulation. While further investigations are needed, studying circadian processes may help understand refractive mechanisms and the increasing myopia prevalence in contemporary societies where lighting patterns can desynchronize endogenous rhythms from the natural environmental light/dark cycle.
Collapse
Affiliation(s)
- Richard A. Stone
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Wenjie Wei
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Shanta Sarfare
- Department of Bioscience, New England College of Optometry, Boston, Massachusetts, United States
| | - Brendan McGeehan
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - K. Cameron Engelhart
- Department of Bioscience, New England College of Optometry, Boston, Massachusetts, United States
| | - Tejvir S. Khurana
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Maureen G. Maguire
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - P. Michael Iuvone
- Departments of Ophthalmology and Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Debora L. Nickla
- Department of Bioscience, New England College of Optometry, Boston, Massachusetts, United States
| |
Collapse
|
16
|
Do MTH. Melanopsin and the Intrinsically Photosensitive Retinal Ganglion Cells: Biophysics to Behavior. Neuron 2019; 104:205-226. [PMID: 31647894 PMCID: PMC6944442 DOI: 10.1016/j.neuron.2019.07.016] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/19/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022]
Abstract
The mammalian visual system encodes information over a remarkable breadth of spatiotemporal scales and light intensities. This performance originates with its complement of photoreceptors: the classic rods and cones, as well as the intrinsically photosensitive retinal ganglion cells (ipRGCs). IpRGCs capture light with a G-protein-coupled receptor called melanopsin, depolarize like photoreceptors of invertebrates such as Drosophila, discharge electrical spikes, and innervate dozens of brain areas to influence physiology, behavior, perception, and mood. Several visual responses rely on melanopsin to be sustained and maximal. Some require ipRGCs to occur at all. IpRGCs fulfill their roles using mechanisms that include an unusual conformation of the melanopsin protein, an extraordinarily slow phototransduction cascade, divisions of labor even among cells of a morphological type, and unorthodox configurations of circuitry. The study of ipRGCs has yielded insight into general topics that include photoreceptor evolution, cellular diversity, and the steps from biophysical mechanisms to behavior.
Collapse
Affiliation(s)
- Michael Tri H Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Nakane Y, Shinomiya A, Ota W, Ikegami K, Shimmura T, Higashi SI, Kamei Y, Yoshimura T. Action spectrum for photoperiodic control of thyroid-stimulating hormone in Japanese quail (Coturnix japonica). PLoS One 2019; 14:e0222106. [PMID: 31509560 PMCID: PMC6738599 DOI: 10.1371/journal.pone.0222106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/21/2019] [Indexed: 11/18/2022] Open
Abstract
At higher latitudes, vertebrates exhibit a seasonal cycle of reproduction in response to changes in day-length, referred to as photoperiodism. Extended day-length induces thyroid-stimulating hormone in the pars tuberalis of the pituitary gland. This hormone triggers the local activation of thyroid hormone in the mediobasal hypothalamus and eventually induces gonadal development. In avian species, light information associated with day-length is detected through photoreceptors located in deep-brain regions. Within these regions, the expressions of multiple photoreceptive molecules, opsins, have been observed. However, even though the Japanese quail is an excellent model for photoperiodism because of its robust and significant seasonal responses in reproduction, a comprehensive understanding of photoreceptors in the quail brain remains undeveloped. In this study, we initially analyzed an action spectrum using photoperiodically induced expression of the beta subunit genes of thyroid-stimulating hormone in quail. Among seven wavelengths examined, we detected maximum sensitivity of the action spectrum at 500 nm. The low value for goodness of fit in the alignment with a template of retinal1-based photopigment, assuming a spectrum associated with a single opsin, proposed the possible involvement of multiple opsins rather than a single opsin. Analysis of gene expression in the septal region and hypothalamus, regions hypothesized to be photosensitive in quail, revealed mRNA expression of a mammal-like melanopsin in the infundibular nucleus within the mediobasal hypothalamus. However, no significant diurnal changes were observed for genes in the infundibular nucleus. Xenopus-like melanopsin, a further isoform of melanopsin in birds, was detected in neither the septal region nor the infundibular nucleus. These results suggest that the mammal-like melanopsin expressed in the infundibular nucleus within the mediobasal hypothalamus could be candidate deep-brain photoreceptive molecule in Japanese quail. Investigation of the functional involvement of mammal-like melanopsin-expressing cells in photoperiodism will be required for further conclusions.
Collapse
Affiliation(s)
- Yusuke Nakane
- Institute of Transformative Bio-molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- * E-mail: , (YN); , (TY)
| | - Ai Shinomiya
- Division of Seasonal Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Wataru Ota
- Institute of Transformative Bio-molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Keisuke Ikegami
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan
| | - Tsuyoshi Shimmura
- Division of Seasonal Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Agriculture, Tokyo University of Agriculture and Technology, Fuchu Japan
| | - Sho-Ichi Higashi
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Division of Seasonal Biology, National Institute for Basic Biology, Okazaki, Japan
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- * E-mail: , (YN); , (TY)
| |
Collapse
|
18
|
Hauzman E, Kalava V, Bonci DMO, Ventura DF. Characterization of the melanopsin gene (Opn4x) of diurnal and nocturnal snakes. BMC Evol Biol 2019; 19:174. [PMID: 31462236 PMCID: PMC6714106 DOI: 10.1186/s12862-019-1500-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A number of non-visual responses to light in vertebrates, such as circadian rhythm control and pupillary light reflex, are mediated by melanopsins, G-protein coupled membrane receptors, conjugated to a retinal chromophore. In non-mammalian vertebrates, melanopsin expression is variable within the retina and extra-ocular tissues. Two paralog melanopsin genes were classified in vertebrates, Opn4x and Opn4m. Snakes are highly diversified vertebrates with a wide range of daily activity patterns, which raises questions about differences in structure, function and expression pattern of their melanopsin genes. In this study, we analyzed the melanopsin genes expressed in the retinas of 18 snake species from three families (Viperidae, Elapidae, and Colubridae), and also investigated extra-retinal tissue expression. RESULTS Phylogenetic analysis revealed that the amplified gene belongs to the Opn4x group, and no expression of the Opn4m was found. The same paralog is expressed in the iris, but no extra-ocular expression was detected. Molecular evolutionary analysis indicated that melanopsins are evolving primarily under strong purifying selection, although lower evolutionary constraint was detected in snake lineages (ω = 0.2), compared to non-snake Opn4x and Opn4m (ω = 0.1). Statistical analysis of selective constraint suggests that snake phylogenetic relationships have driven stronger effects on melanopsin evolution, than the species activity pattern. In situ hybridization revealed the presence of melanopsin within cells in the outer and inner nuclear layers, in the ganglion cell layer, and intense labeling in the optic nerve. CONCLUSIONS The loss of the Opn4m gene and extra-ocular photosensitive tissues in snakes may be associated with a prolonged nocturnal/mesopic bottleneck in the early history of snake evolution. The presence of melanopsin-containing cells in all retinal nuclear layers indicates a globally photosensitive retina, and the expression in classic photoreceptor cells suggest a regionalized co-expression of melanopsin and visual opsins.
Collapse
Affiliation(s)
- Einat Hauzman
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - Sala D9. Butantã, São Paulo, SP, 05508-030, Brazil. .,Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil.
| | | | - Daniela Maria Oliveira Bonci
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - Sala D9. Butantã, São Paulo, SP, 05508-030, Brazil.,Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil
| | - Dora Fix Ventura
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - Sala D9. Butantã, São Paulo, SP, 05508-030, Brazil.,Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil
| |
Collapse
|
19
|
Abstract
Organisms use changes in photoperiod for seasonal reproduction to maximize the survival of their offspring. Birds have sophisticated seasonal mechanisms and are therefore excellent models for studying these phenomena. Birds perceive light via deep-brain photoreceptors and long day–induced thyroid-stimulating hormone (TSH, thyrotropin) in the pars tuberalis of the pituitary gland (PT), which cause local thyroid hormone activation within the mediobasal hypothalamus. The local bioactive thyroid hormone controls seasonal gonadotropin-releasing hormone secretion and subsequent gonadotropin secretion. In mammals, the eyes are believed to be the only photoreceptor organ, and nocturnal melatonin secretion triggers an endocrine signal that communicates information about the photoperiod to the PT to regulate TSH. In contrast, in Salmonidae fish the input pathway to the neuroendocrine output pathway appears to be localized in the saccus vasculosus. Thus, comparative analysis is an effective way to uncover the universality and diversity of fundamental traits in various organisms.
Collapse
Affiliation(s)
- Yusuke Nakane
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Division of Seasonal Biology, National Institute for Basic Biology, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
20
|
Wienbar S, Schwartz GW. The dynamic receptive fields of retinal ganglion cells. Prog Retin Eye Res 2018; 67:102-117. [PMID: 29944919 PMCID: PMC6235744 DOI: 10.1016/j.preteyeres.2018.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 11/30/2022]
Abstract
Retinal ganglion cells (RGCs) were one of the first classes of sensory neurons to be described in terms of a receptive field (RF). Over the last six decades, our understanding of the diversity of RGC types and the nuances of their response properties has grown exponentially. We will review the current understanding of RGC RFs mostly from studies in mammals, but including work from other vertebrates as well. We will argue for a new paradigm that embraces the fluidity of RGC RFs with an eye toward the neuroethology of vision. Specifically, we will focus on (1) different methods for measuring RGC RFs, (2) RF models, (3) feature selectivity and the distinction between fluid and stable RF properties, and (4) ideas about the future of understanding RGC RFs.
Collapse
Affiliation(s)
- Sophia Wienbar
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, United States.
| | - Gregory W Schwartz
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, United States.
| |
Collapse
|
21
|
Haas R, Alenciks E, Meddle S, Fraley GS. Expression of deep brain photoreceptors in the Pekin drake: a possible role in the maintenance of testicular function. Poult Sci 2018; 96:2908-2919. [PMID: 28339754 PMCID: PMC5850723 DOI: 10.3382/ps/pex037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/04/2017] [Indexed: 01/04/2023] Open
Abstract
Several putative deep brain photoreceptors (DBPs) have been identified, such as melanopsin, opsin 5, and vertebrate ancient opsin. The aim of this study was to elucidate the role of DBPs in gonadal regulation in the Pekin drake. As previously reported, we observed opsin-like immunoreactivity (-ir) in the lateral septum (LS), melanopsin-ir in the premammillary nucleus (PMM), and opsin 5-ir in the periventricular organ. To determine the sensitivity of the DBPs to specific wavelengths of light, drakes were given an acute exposure to red, blue, or white light. Blue light stimulated an increase (P < 0.01) in the immediate early gene fra-2-ir co-expression in melanopsin-ir neurons in the PMM, and red light increased (P < 0.05) fra-2-ir co-expression in opsin-ir neurons, suggesting these neurons are blue- and red-receptive, respectively. To further investigate this photoperiodic response, we exposed drakes to chronic red, long-day white, short-day white, or blue light. Blue light elicited gonadal regression, as testes weight (P < 0.001) and plasma luteinizing hormone (LH) levels (P < 0.001) were lower compared to drakes housed under long-day white light. Photo-regressed drakes experienced complete gonadal recrudescence when housed under long-day red and blue light. qRT-PCR analyses showed that gonadally regressed drakes showed reduced levels (P < 0.01) of gonadotropin releasing hormone (GnRH) mRNA but not photoreceptor or GnIH mRNAs compared to gonadally functional drakes. Our data suggest DBP in the LS may be rhodosin and multiple DBPs are required to fully maintain gonadal function in Pekin drakes.
Collapse
Affiliation(s)
- R Haas
- Biology Department, Hope College, Holland, MI
| | - E Alenciks
- Biology Department, Hope College, Holland, MI
| | - S Meddle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The Roslin Institute Building, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, Scotland. UK
| | - G S Fraley
- Biology Department, Hope College, Holland, MI
| |
Collapse
|
22
|
Zhao H, Jiang J, Wang G, Le C, Wingfield JC. Daily, circadian and seasonal changes of rhodopsin-like encephalic photoreceptor and its involvement in mediating photoperiodic responses of Gambel's white-crowned Sparrow, Zonotrichia leucophrys gambelii. Brain Res 2018; 1687:104-116. [PMID: 29510141 DOI: 10.1016/j.brainres.2018.02.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
Abstract
Extra-retinal, non-pineal, encephalic photoreceptors (EP) play important roles in mediating development of the reproductive system by the annual change in day length (photoperiodic gonadal response - PGR) in birds. However, the distribution of rhodopsin-like EPs and their functional daily, circadian and seasonal changes are still unclear in the avian brain. This study identifies two novel groups of rhodopsin-immunoreactive cells in the nucleus paraventricularis magnocellularis (PVN) of the hypothalamus and in the medial basal hypothalamus (MBH) in a seasonally breeding species, Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii). In the PVN, rhodopsin-ir cell number showed both daily and circadian changes with more labeled cells apparent in the night phase in photosensitive birds, while only circadian changes were observed involving fewer labeled cells in the night phase in photorefractory birds. Single long day photo-stimulation significantly decreased the rhodopsin-ir cell number only in photosensitive birds, coincident with a rise in plasma levels of luteinizing hormone (LH). In the MBH, rhodopsin-ir cell number did not show daily, circadian or single long day induced changes in either photoperiodic states. But, overall these rhodopsin expressing neurons significantly increased from photosensitive to photorefractory states. In the median eminence (ME), more intense rhodopsin-ir was detected in photorefractory birds compared to photosensitive birds. For expression of GnRH and vasoactive intestinal polypeptide (VIP), seasonal differences were found with opposite relationships, consistent with previous studies. Our results suggest different roles of the two groups of rhodopsin-like EPs in the regulation of PGR in white-crowned sparrows.
Collapse
Affiliation(s)
- Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Junxia Jiang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Gang Wang
- Department of Biology, University of Washington, Seattle, WA 98195, USA; Shaanxi Institute of Zoology, Xi'an 710032, Shaanxi, China
| | - Chong Le
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - John C Wingfield
- Department of Biology, University of Washington, Seattle, WA 98195, USA; Section of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA
| |
Collapse
|
23
|
Dexamethasone Modulates Nonvisual Opsins, Glucocorticoid Receptor, and Clock Genes in Danio rerio ZEM-2S Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8459385. [PMID: 28589149 PMCID: PMC5446867 DOI: 10.1155/2017/8459385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/19/2017] [Accepted: 03/22/2017] [Indexed: 12/31/2022]
Abstract
Here we report, for the first time, the differential cellular distribution of two melanopsins (Opn4m1 and Opn4m2) and the effects of GR agonist, dexamethasone, on the expression of these opsins and clock genes, in the photosensitive D. rerio ZEM-2S embryonic cells. Immunopositive labeling for Opn4m1 was detected in the cell membrane whereas Opn4m2 labeling shows nuclear localization, which did not change in response to light. opn4m1, opn4m2, gr, per1b, and cry1b presented an oscillatory profile of expression in LD condition. In both DD and LD condition, dexamethasone (DEX) treatment shifted the peak expression of per1b and cry1b transcripts to ZT16, which corresponds to the highest opn4m1 expression. Interestingly, DEX promoted an increase of per1b expression when applied in LD condition but a decrease when the cells were kept under DD condition. Although DEX effects are divergent with different light conditions, the response resulted in clock synchronization in all cases. Taken together, these data demonstrate that D. rerio ZEM-2S cells possess a photosensitive system due to melanopsin expression which results in an oscillatory profile of clock genes in response to LD cycle. Moreover, we provide evidence that glucocorticoid acts as a circadian regulator of D. rerio peripheral clocks.
Collapse
|
24
|
Tamai TK, Yoshimura T. Molecular and Neuroendocrine Mechanisms of Avian Seasonal Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1001:125-136. [PMID: 28980233 DOI: 10.1007/978-981-10-3975-1_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Animals living outside tropical zones experience seasonal changes in the environment and accordingly, adapt their physiology and behavior in reproduction, molting, and migration. Subtropical birds are excellent models for the study of seasonal reproduction because of their rapid and dramatic response to changes in photoperiod. For example, testicular weight typically changes by more than a 100-fold. In birds, the eyes are not necessary for seasonal reproduction, and light is instead perceived by deep brain photoreceptors. Functional genomic analysis has revealed that long day (LD)-induced thyrotropin from the pars tuberalis of the pituitary gland causes local thyroid hormone (TH) activation within the mediobasal hypothalamus. This local bioactive TH, triiodothyronine (T3), appears to regulate seasonal gonadotropin-releasing hormone (GnRH) secretion through morphological changes in neuro-glial interactions. GnRH, in turn, stimulates gonadotropin secretion and hence, gonadal development under LD conditions. In marked contrast, low temperatures accelerate short day (SD)-induced testicular regression in winter. Interestingly, low temperatures increase circulating levels of T3 to support adaptive thermogenesis, but this induction of T3 also triggers the apoptosis of germ cells by activating genes involved in metamorphosis. This apparent contradiction in the role of TH has recently been clarified. Central activation of TH during spring results in testicular growth, while peripheral activation of TH during winter regulates adaptive thermogenesis and testicular regression.
Collapse
Affiliation(s)
- T Katherine Tamai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan.
| |
Collapse
|
25
|
Kato M, Sugiyama T, Sakai K, Yamashita T, Fujita H, Sato K, Tomonari S, Shichida Y, Ohuchi H. Two Opsin 3-Related Proteins in the Chicken Retina and Brain: A TMT-Type Opsin 3 Is a Blue-Light Sensor in Retinal Horizontal Cells, Hypothalamus, and Cerebellum. PLoS One 2016; 11:e0163925. [PMID: 27861495 PMCID: PMC5115664 DOI: 10.1371/journal.pone.0163925] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/17/2016] [Indexed: 01/15/2023] Open
Abstract
Opsin family genes encode G protein-coupled seven-transmembrane proteins that bind a retinaldehyde chromophore in photoreception. Here, we sought potential as yet undescribed avian retinal photoreceptors, focusing on Opsin 3 homologs in the chicken. We found two Opsin 3-related genes in the chicken genome: one corresponding to encephalopsin/panopsin (Opn3) in mammals, and the other belonging to the teleost multiple tissue opsin (TMT) 2 group. Bioluminescence imaging and G protein activation assays demonstrated that the chicken TMT opsin (cTMT) functions as a blue light sensor when forced-expressed in mammalian cultured cells. We did not detect evidence of light sensitivity for the chicken Opn3 (cOpn3). In situ hybridization demonstrated expression of cTMT in subsets of differentiating cells in the inner retina and, as development progressed, predominant localization to retinal horizontal cells (HCs). Immunohistochemistry (IHC) revealed cTMT in HCs as well as in small numbers of cells in the ganglion and inner nuclear layers of the post-hatch chicken retina. In contrast, cOpn3-IR cells were found in distinct subsets of cells in the inner nuclear layer. cTMT-IR cells were also found in subsets of cells in the hypothalamus. Finally, we found differential distribution of cOpn3 and cTMT proteins in specific cells of the cerebellum. The present results suggest that a novel TMT-type opsin 3 may function as a photoreceptor in the chicken retina and brain.
Collapse
Affiliation(s)
- Mutsuko Kato
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Kazumi Sakai
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hirofumi Fujita
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keita Sato
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sayuri Tomonari
- Department of Life Systems, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| |
Collapse
|
26
|
Horizontal cells expressing melanopsin x are novel photoreceptors in the avian inner retina. Proc Natl Acad Sci U S A 2016; 113:13215-13220. [PMID: 27789727 DOI: 10.1073/pnas.1608901113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the vertebrate retina, three types of photoreceptors-visual photoreceptor cones and rods and the intrinsically photosensitive retinal ganglion cells (ipRGCs)-converged through evolution to detect light and regulate image- and nonimage-forming activities such as photic entrainment of circadian rhythms, pupillary light reflexes, etc. ipRGCs express the nonvisual photopigment melanopsin (OPN4), encoded by two genes: the Xenopus (Opn4x) and mammalian (Opn4m) orthologs. In the chicken retina, both OPN4 proteins are found in ipRGCs, and Opn4x is also present in retinal horizontal cells (HCs), which connect with visual photoreceptors. Here we investigate the intrinsic photosensitivity and functioning of HCs from primary cultures of embryonic retinas at day 15 by using calcium fluorescent fluo4 imaging, pharmacological inhibitory treatments, and Opn4x knockdown. Results show that HCs are avian photoreceptors with a retinal-based OPN4X photopigment conferring intrinsic photosensitivity. Light responses in HCs appear to be driven through an ancient type of phototransduction cascade similar to that in rhabdomeric photoreceptors involving a G-protein q, the activation of phospholipase C, calcium mobilization, and the release of the inhibitory neurotransmitter GABA. Based on their intrinsic photosensitivity, HCs may have a key dual function in the retina of vertebrates, potentially regulating nonvisual tasks together with their sister cells, ipRGCs, and with visual photoreceptors, modulating lateral interactions and retinal processing.
Collapse
|
27
|
Shirzad-Wasei N, DeGrip WJ. Heterologous expression of melanopsin: Present, problems and prospects. Prog Retin Eye Res 2016; 52:1-21. [DOI: 10.1016/j.preteyeres.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/25/2016] [Accepted: 02/01/2016] [Indexed: 12/12/2022]
|
28
|
Díaz NM, Morera LP, Guido ME. Melanopsin and the Non-visual Photochemistry in the Inner Retina of Vertebrates. Photochem Photobiol 2015; 92:29-44. [DOI: 10.1111/php.12545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/09/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Nicolás M. Díaz
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| | - Luis P. Morera
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| | - Mario E. Guido
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| |
Collapse
|
29
|
Li Y, Cassone VM. Clock-Controlled Regulation of the Acute Effects of Norepinephrine on Chick Pineal Melatonin Rhythms. J Biol Rhythms 2015; 30:519-32. [PMID: 26446873 DOI: 10.1177/0748730415607060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The chicken pineal gland synthesizes and releases melatonin rhythmically in light/dark (LD) cycles, with high melatonin levels during the dark phase, and in constant darkness (DD) for several cycles before it gradually damps to arrhythmicity in DD. Daily administration of norepinephrine (NE) in vivo and in vitro prevents the damping and restores the melatonin rhythm. To investigate the role of the circadian clock on melatonin rhythm damping and of its restoration by NE, the effects of NE administration at different phases of the melatonin cycle revealed a robust rhythm in NE sensitivity in which NE efficacy in increasing melatonin amplitude peaked in late subjective night and early subjective day, suggesting a clock underlying NE sensitivity. However, NE itself had no effect on circadian phase or period of the melatonin rhythms. Transcriptional analyses indicated that even though the rhythm of melatonin output damped to arrhythmicity, messenger RNA (mRNA) encoding clock genes gper2, gper3, gBmal1, gclock, gcry1, and gcry2; enzymes associated with melatonin biosynthesis; and enzymes involved in cyclic nucleotide signaling remained robustly rhythmic. Of these, only gADCY1 (adenylate cyclase 1) and gPDE4D (cAMP-specific 3',5'-cyclic phosphodiesterase 4D) were affected by NE administration at the mRNA levels, and only ADCY1 was affected at the protein level. The data strongly suggest that damping of the melatonin rhythm in the chick pineal gland occurs at the posttranscriptional level and that a major role of the clock is to regulate pinealocytes' sensitivity to neuronal input from the brain.
Collapse
Affiliation(s)
- Ye Li
- Department of Biology, University of Kentucky, Lexington, Kentucky
| | | |
Collapse
|
30
|
Kumar V. Avian photoreceptors and their role in the regulation of daily and seasonal physiology. Gen Comp Endocrinol 2015; 220:13-22. [PMID: 24929229 DOI: 10.1016/j.ygcen.2014.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/30/2014] [Accepted: 06/01/2014] [Indexed: 10/25/2022]
Abstract
Birds time their activities in synchronization with daily and seasonal periodicities in the environment, which is mainly provided by changes in day length (=photoperiod). Photoperiod appears to act at different levels than simply entraining the hypothalamic clock via eyes in birds. Photoreceptor cells that transmit light information to an avian brain are localized in three independent structures, the retina of eyes, pineal gland and hypothalamus, particularly in the paraventricular organ and lateral septal area. These hypothalamic photoreceptors are commonly referred to as encephalic or deep brain photoreceptors, DBPs. Eyes and pineal are known to contribute to the circadian regulation of behavior and physiology via rhythmic melatonin secretion in several birds. DBPs have been implicated in the regulation of seasonal physiology, particularly in photoperiod induced gonadal growth and development. Here, we briefly review limited evidence that is available on the roles of these photoreceptors in the regulation of circadian and seasonal physiology, with particular emphasis placed on the DBPs.
Collapse
Affiliation(s)
- Vinod Kumar
- DST-IRHPA Center for Excellence in Biological Rhythms Research and Indo US Center for Biological Timing, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
31
|
Campbell C, Colton S, Haas R, Rice M, Porter A, Schenk A, Meelker A, Fraley S, Fraley G. Effects of different wavelengths of light on the biology, behavior, and production of grow-out Pekin ducks. Poult Sci 2015; 94:1751-7. [DOI: 10.3382/ps/pev166] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2015] [Indexed: 11/20/2022] Open
|
32
|
Lazăr R, Solcan C, Creţu C, Lazăr M, Muntean C, Boişteanu P. Characterization of the relations between morphology and physiological status of the pineal gland in connection with the somatic development level in turkeys reared in Romania. ARQ BRAS MED VET ZOO 2015. [DOI: 10.1590/1678-4162-7111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This research started from the premises of the existence of some possible relationships between indole and pineal peptide hormones and the somatic development, with participation of hypothalamic-pituitary complex. Experimental factors, which were the subject of the present paper, influenced the dynamics of corporal mass and fodder consumption, leading to the occurrence of some important structural modifications at the level of pineal gland. The exposure of the individuals to continuous light (photic pinealectomy) produces increases in corporal mass, showing the involvement of the pineal gland in neuro-endocrine-metabolic reactions, which contributes to the maintenance of homeostatic balance, including somatic ones. Biological material was represented by a number of 50 individuals belonging to B.U.T. Big 6 hybrid, reared on soil, on a permanent litter, which could assure the expanding of knowledge area regarding the relation between rearing technology, modulation of some microclimate parameters and growing performances. Were also realised cytometric and hystometric muscular determinations.
Collapse
|
33
|
Isayama T, Chen Y, Kono M, Fabre E, Slavsky M, DeGrip WJ, Ma JX, Crouch RK, Makino CL. Coexpression of three opsins in cone photoreceptors of the salamander Ambystoma tigrinum. J Comp Neurol 2014; 522:2249-65. [PMID: 24374736 DOI: 10.1002/cne.23531] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/24/2013] [Accepted: 12/20/2013] [Indexed: 12/12/2022]
Abstract
Although more than one type of visual opsin is present in the retina of most vertebrates, it was thought that each type of photoreceptor expresses only one opsin. However, evidence has accumulated that some photoreceptors contain more than one opsin, in many cases as a result of a developmental transition from the expression of one opsin to another. The salamander UV-sensitive (UV) cone is particularly notable because it contains three opsins (Makino and Dodd [1996] J Gen Physiol 108:27-34). Two opsin types are expressed at levels more than 100 times lower than the level of the primary opsin. Here, immunohistochemical experiments identified the primary component as a UV cone opsin and the two minor components as the short wavelength-sensitive (S) and long wavelength-sensitive (L) cone opsins. Based on single-cell recordings of 156 photoreceptors, the presence of three components in UV cones of hatchlings and terrestrial adults ruled out a developmental transition. There was no evidence for multiple opsin types within rods or S cones, but immunohistochemistry and partial bleaching in conjunction with single-cell recording revealed that both single and double L cones contained low levels of short wavelength-sensitive pigments in addition to the main L visual pigment. These results raise the possibility that coexpression of multiple opsins in other vertebrates was overlooked because a minor component absorbing at short wavelengths was masked by the main visual pigment or because the expression level of a component absorbing at long wavelengths was exceedingly low.
Collapse
Affiliation(s)
- Tomoki Isayama
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, Massachusetts, 02114
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ramos BCR, Moraes MNCM, Poletini MO, Lima LHRG, Castrucci AML. From blue light to clock genes in zebrafish ZEM-2S cells. PLoS One 2014; 9:e106252. [PMID: 25184495 PMCID: PMC4153568 DOI: 10.1371/journal.pone.0106252] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/29/2014] [Indexed: 01/22/2023] Open
Abstract
Melanopsin has been implicated in the mammalian photoentrainment by blue light. This photopigment, which maximally absorbs light at wavelengths between 470 and 480 nm depending on the species, is found in the retina of all classes of vertebrates so far studied. In mammals, melanopsin activation triggers a signaling pathway which resets the circadian clock in the suprachiasmatic nucleus (SCN). Unlike mammals, Drosophila melanogaster and Danio rerio do not rely only on their eyes to perceive light, in fact their whole body may be capable of detecting light and entraining their circadian clock. Melanopsin, teleost multiple tissue (tmt) opsin and others such as neuropsin and va-opsin, are found in the peripheral tissues of Danio rerio, however, there are limited data concerning the photopigment/s or the signaling pathway/s directly involved in light detection. Here, we demonstrate that melanopsin is a strong candidate to mediate synchronization of zebrafish cells. The deduced amino acid sequence of melanopsin, although being a vertebrate opsin, is more similar to invertebrate than vertebrate photopigments, and melanopsin photostimulation triggers the phosphoinositide pathway through activation of a G(q/11)-type G protein. We stimulated cultured ZEM-2S cells with blue light at wavelengths consistent with melanopsin maximal absorption, and evaluated the time course expression of per1b, cry1b, per2 and cry1a. Using quantitative PCR, we showed that blue light is capable of slightly modulating per1b and cry1b genes, and drastically increasing per2 and cry1a expression. Pharmacological assays indicated that per2 and cry1a responses to blue light are evoked through the activation of the phosphoinositide pathway, which crosstalks with nitric oxide (NO) and mitogen activated protein MAP kinase (MAPK) to activate the clock genes. Our results suggest that melanopsin may be important in mediating the photoresponse in Danio rerio ZEM-2S cells, and provide new insights about the modulation of clock genes in peripheral clocks.
Collapse
Affiliation(s)
- Bruno C. R. Ramos
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Maristela O. Poletini
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Department of Physiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo H. R. G. Lima
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria L. Castrucci
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
35
|
Early appearance of nonvisual and circadian markers in the developing inner retinal cells of chicken. BIOMED RESEARCH INTERNATIONAL 2014; 2014:646847. [PMID: 24977155 PMCID: PMC4055225 DOI: 10.1155/2014/646847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/07/2014] [Accepted: 04/23/2014] [Indexed: 02/05/2023]
Abstract
The retina is a key component of the vertebrate circadian system; it is responsible for detecting and transmitting the environmental illumination conditions (day/night cycles) to the brain that synchronize the circadian clock located in the suprachiasmatic nucleus (SCN). For this, retinal ganglion cells (RGCs) project to the SCN and other nonvisual areas. In the chicken, intrinsically photosensitive RGCs (ipRGCs) expressing the photopigment melanopsin (Opn4) transmit photic information and regulate diverse nonvisual tasks. In nonmammalian vertebrates, two genes encode Opn4: the Xenopus (Opn4x) and the mammalian (Opn4m) orthologs. RGCs express both Opn4 genes but are not the only inner retinal cells expressing Opn4x: horizontal cells (HCs) also do so. Here, we further characterize primary cultures of both populations of inner retinal cells (RGCs and HCs) expressing Opn4x. The expression of this nonvisual photopigment, as well as that for different circadian markers such as the clock genes Bmal1, Clock, Per2, and Cry1, and the key melatonin synthesizing enzyme, arylalkylamine N-acetyltransferase (AA-NAT), appears very early in development in both cell populations. The results clearly suggest that nonvisual Opn4 photoreceptors and endogenous clocks converge all together in these inner retinal cells at early developmental stages.
Collapse
|
36
|
Shinomiya A, Shimmura T, Nishiwaki-Ohkawa T, Yoshimura T. Regulation of seasonal reproduction by hypothalamic activation of thyroid hormone. Front Endocrinol (Lausanne) 2014; 5:12. [PMID: 24600435 PMCID: PMC3930870 DOI: 10.3389/fendo.2014.00012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 01/31/2014] [Indexed: 12/15/2022] Open
Abstract
Organisms living outside the tropics measure the changes in the length of the day to adapt to seasonal changes in the environment. Animals that breed during spring and summer are called long-day breeders, while those that breed during fall are called short-day breeders. Although the influence of thyroid hormone in the regulation of seasonal reproduction has been known for several decades, its precise mechanism remained unknown. Recent studies revealed that the activation of thyroid hormone within the mediobasal hypothalamus plays a key role in this phenomenon. This localized activation of the thyroid hormone is controlled by thyrotropin (thyroid-stimulating hormone) secreted from the pars tuberalis of the pituitary gland. Although seasonal reproduction is a rate-limiting factor in animal production, genes involved in photoperiodic signal transduction pathway could emerge as potential targets to facilitate domestication.
Collapse
Affiliation(s)
- Ai Shinomiya
- Division of Seasonal Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Tsuyoshi Shimmura
- Division of Seasonal Biology, National Institute for Basic Biology, Okazaki, Japan
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Taeko Nishiwaki-Ohkawa
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takashi Yoshimura
- Division of Seasonal Biology, National Institute for Basic Biology, Okazaki, Japan
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
37
|
Cassone VM. Avian circadian organization: a chorus of clocks. Front Neuroendocrinol 2014; 35:76-88. [PMID: 24157655 PMCID: PMC3946898 DOI: 10.1016/j.yfrne.2013.10.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/18/2013] [Accepted: 10/09/2013] [Indexed: 12/24/2022]
Abstract
In birds, biological clock function pervades all aspects of biology, controlling daily changes in sleep: wake, visual function, song, migratory patterns and orientation, as well as seasonal patterns of reproduction, song and migration. The molecular bases for circadian clocks are highly conserved, and it is likely the avian molecular mechanisms are similar to those expressed in mammals, including humans. The central pacemakers in the avian pineal gland, retinae and SCN dynamically interact to maintain stable phase relationships and then influence downstream rhythms through entrainment of peripheral oscillators in the brain controlling behavior and peripheral tissues. Birds represent an excellent model for the role played by biological clocks in human neurobiology; unlike most rodent models, they are diurnal, they exhibit cognitively complex social interactions, and their circadian clocks are more sensitive to the hormone melatonin than are those of nocturnal rodents.
Collapse
Affiliation(s)
- Vincent M Cassone
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States.
| |
Collapse
|
38
|
Yoshimura T. Thyroid hormone and seasonal regulation of reproduction. Front Neuroendocrinol 2013; 34:157-66. [PMID: 23660390 DOI: 10.1016/j.yfrne.2013.04.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/21/2013] [Accepted: 04/23/2013] [Indexed: 12/15/2022]
Abstract
Organisms living outside the tropics use changes in photoperiod to adapt to seasonal changes in the environment. Several models have contributed to an understanding of this mechanism at the molecular and endocrine levels. Subtropical birds are excellent models for the study of these mechanisms because of their rapid and dramatic response to changes in photoperiod. Studies of birds have demonstrated that light is perceived by a deep brain photoreceptor and long day-induced thyrotropin (TSH) from the pars tuberalis (PT) of the pituitary gland causes local thyroid hormone activation within the mediobasal hypothalamus (MBH). The locally generated bioactive thyroid hormone, T₃, regulates seasonal gonadotropin-releasing hormone (GnRH) secretion, and hence gonadotropin secretion. In mammals, the eyes are the only photoreceptor involved in photoperiodic time perception and nocturnal melatonin secretion provides an endocrine signal of photoperiod to the PT to regulate TSH. Here, I review the current understanding of the hypothalamic mechanisms controlling seasonal reproduction in mammals and birds.
Collapse
Affiliation(s)
- Takashi Yoshimura
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
39
|
|
40
|
Davies WIL, Tay BH, Zheng L, Danks JA, Brenner S, Foster RG, Collin SP, Hankins MW, Venkatesh B, Hunt DM. Evolution and functional characterisation of melanopsins in a deep-sea chimaera (elephant shark, Callorhinchus milii). PLoS One 2012; 7:e51276. [PMID: 23251480 PMCID: PMC3522658 DOI: 10.1371/journal.pone.0051276] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/31/2012] [Indexed: 01/29/2023] Open
Abstract
Non-visual photoreception in mammals is primarily mediated by two splice variants that derive from a single melanopsin (OPN4M) gene, whose expression is restricted to a subset of retinal ganglion cells. Physiologically, this sensory system regulates the photoentrainment of many biological rhythms, such as sleep via the melatonin endocrine system and pupil constriction. By contrast, melanopsin exists as two distinct lineages in non-mammals, opn4m and opn4x, and is broadly expressed in a wide range of tissue types, including the eye, brain, pineal gland and skin. Despite these findings, the evolution and function of melanopsin in early vertebrates are largely unknown. We, therefore, investigated the complement of opn4 classes present in the genome of a model deep-sea cartilaginous species, the elephant shark (Callorhinchus milii), as a representative vertebrate that resides at the base of the gnathostome (jawed vertebrate) lineage. We reveal that three melanopsin genes, opn4m1, opn4m2 and opn4x, are expressed in multiple tissues of the elephant shark. The two opn4m genes are likely to have arisen as a result of a lineage-specific duplication, whereas “long” and “short” splice variants are generated from a single opn4x gene. By using a heterologous expression system, we suggest that these genes encode functional photopigments that exhibit both “invertebrate-like” bistable and classical “vertebrate-like” monostable biochemical characteristics. We discuss the evolution and function of these melanopsin pigments within the context of the diverse photic and ecological environments inhabited by this chimaerid holocephalan, as well as the origin of non-visual sensory systems in early vertebrates.
Collapse
Affiliation(s)
- Wayne I. L. Davies
- School of Animal Biology, University of Western Australia Oceans Institute and Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Boon-Hui Tay
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Biopolis, Singapore
| | - Lei Zheng
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Janine A. Danks
- Comparative Endocrinology and Biochemistry Laboratory, School of Medical Sciences, Health Innovations Research Institute, Royal Melbourne Institute of Technology University, Victoria, Australia
| | - Sydney Brenner
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Biopolis, Singapore
| | - Russell G. Foster
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Shaun P. Collin
- School of Animal Biology, University of Western Australia Oceans Institute and Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Mark W. Hankins
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- * E-mail: (DH); (BV); (MWH)
| | - Byrappa Venkatesh
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Biopolis, Singapore
- * E-mail: (DH); (BV); (MWH)
| | - David M. Hunt
- School of Animal Biology, University of Western Australia Oceans Institute and Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
- * E-mail: (DH); (BV); (MWH)
| |
Collapse
|
41
|
Davies WIL, Zheng L, Hughes S, Tamai TK, Turton M, Halford S, Foster RG, Whitmore D, Hankins MW. Functional diversity of melanopsins and their global expression in the teleost retina. Cell Mol Life Sci 2011; 68:4115-32. [PMID: 21833582 PMCID: PMC11114754 DOI: 10.1007/s00018-011-0785-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 06/29/2011] [Accepted: 07/19/2011] [Indexed: 12/19/2022]
Abstract
Melanopsin (OPN4) is an opsin photopigment that, in mammals, confers photosensitivity to retinal ganglion cells and regulates circadian entrainment and pupil constriction. In non-mammalian species, two forms of opn4 exist, and are classified into mammalian-like (m) and non-mammalian-like (x) clades. However, far less is understood of the function of this photopigment family. Here we identify in zebrafish five melanopsins (opn4m-1, opn4m-2, opn4m-3, opn4x-1 and opn4x-2), each encoding a full-length opsin G protein. All five genes are expressed in the adult retina in a largely non-overlapping pattern, as revealed by RNA in situ hybridisation and immunocytochemistry, with at least one melanopsin form present in all neuronal cell types, including cone photoreceptors. This raises the possibility that the teleost retina is globally light sensitive. Electrophysiological and spectrophotometric studies demonstrate that all five zebrafish melanopsins encode a functional photopigment with peak spectral sensitivities that range from 470 to 484 nm, with opn4m-1 and opn4m-3 displaying invertebrate-like bistability, where the retinal chromophore interchanges between cis- and trans-isomers in a light-dependent manner and remains within the opsin binding pocket. In contrast, opn4m-2, opn4x-1 and opn4x-2 are monostable and function more like classical vertebrate-like photopigments, where the chromophore is converted from 11-cis to all-trans retinal upon absorption of a photon, hydrolysed and exits from the binding pocket of the opsin. It is thought that all melanopsins exhibit an invertebrate-like bistability biochemistry. Our novel findings, however, reveal the presence of both invertebrate-like and vertebrate-like forms of melanopsin in the teleost retina, and indicate that photopigment bistability is not a universal property of the melanopsin family. The functional diversity of these teleost melanopsins, together with their widespread expression pattern within the retina, suggests that melanopsins confer global photosensitivity to the teleost retina and might allow for direct "fine-tuning" of retinal circuitry and physiology in the dynamic light environments found in aquatic habitats.
Collapse
Affiliation(s)
- Wayne I. L. Davies
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Levels 5-6 West Wing, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, OX3 9DU UK
| | - Lei Zheng
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Levels 5-6 West Wing, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, OX3 9DU UK
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Levels 5-6 West Wing, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, OX3 9DU UK
| | - T. Katherine Tamai
- Department of Cell and Developmental Biology, Centre for Cell and Molecular Dynamics, University College London, 21 University Street, London, WC1E 6DE UK
| | - Michael Turton
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Levels 5-6 West Wing, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, OX3 9DU UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Levels 5-6 West Wing, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, OX3 9DU UK
| | - Russell G. Foster
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Levels 5-6 West Wing, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, OX3 9DU UK
| | - David Whitmore
- Department of Cell and Developmental Biology, Centre for Cell and Molecular Dynamics, University College London, 21 University Street, London, WC1E 6DE UK
| | - Mark W. Hankins
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Levels 5-6 West Wing, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, OX3 9DU UK
| |
Collapse
|
42
|
de Melo J, Peng GH, Chen S, Blackshaw S. The Spalt family transcription factor Sall3 regulates the development of cone photoreceptors and retinal horizontal interneurons. Development 2011; 138:2325-36. [PMID: 21558380 PMCID: PMC3091496 DOI: 10.1242/dev.061846] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mammalian retina is a tractable model system for analyzing transcriptional networks that guide neural development. Spalt family zinc-finger transcription factors play a crucial role in photoreceptor specification in Drosophila, but their role in mammalian retinal development has not been investigated. In this study, we show that that the spalt homolog Sall3 is prominently expressed in developing cone photoreceptors and horizontal interneurons of the mouse retina and in a subset of cone bipolar cells. We find that Sall3 is both necessary and sufficient to activate the expression of multiple cone-specific genes, and that Sall3 protein is selectively bound to the promoter regions of these genes. Notably, Sall3 shows more prominent expression in short wavelength-sensitive cones than in medium wavelength-sensitive cones, and that Sall3 selectively activates expression of the short but not the medium wavelength-sensitive cone opsin gene. We further observe that Sall3 regulates the differentiation of horizontal interneurons, which form direct synaptic contacts with cone photoreceptors. Loss of function of Sall3 eliminates expression of the horizontal cell-specific transcription factor Lhx1, resulting in a radial displacement of horizontal cells that partially phenocopies the loss of function of Lhx1. These findings not only demonstrate that Spalt family transcription factors play a conserved role in regulating photoreceptor development in insects and mammals, but also identify Sall3 as a factor that regulates terminal differentiation of both cone photoreceptors and their postsynaptic partners.
Collapse
Affiliation(s)
- Jimmy de Melo
- Department of Neuroscience, Johns Hopkins University School of Medicine, 733 N. Broadway Avenue, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
43
|
Wang G, Wingfield JC. Immunocytochemical study of rhodopsin-containing putative encephalic photoreceptors in house sparrow, Passer domesticus. Gen Comp Endocrinol 2011; 170:589-96. [PMID: 21118688 DOI: 10.1016/j.ygcen.2010.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 10/03/2010] [Accepted: 11/18/2010] [Indexed: 11/19/2022]
Abstract
In seasonally breeding birds, encephalic photoreceptors (EPs) play an important role in regulating photoperiodic gonadal responses. Multiple photopigments have been suggested as the putative EPs, including rhodopsin, melanopsin, VA opsin and the cryptochromes. As for rhodopsin, two potential brain sites, the lateral septum (SL) and the infundibulum (INF) have been reported to co-express rhodopsin immunoreactivity (rhodopsin-ir) with vasoactive intestinal polypeptide immunoreactivity (VIP-ir) in groups of cerebrospinal fluid-contacting (CSF) cells, hypothesized to be the EPs for gonadal responses. In order to confirm the presence of rhodopsin in seasonally breeding birds and examine whether these EPs show daily change as do the photopigments in the retina and pineal gland, the present study immunocytochemically investigated: (1) the presence of rhodopsin expression in the deep brain of the house sparrow, Passer domesticus maintained in short days, and (2) rhythmic expression of rhodopsin and VIP in both SL and INF at Zeitgeber time (ZT) 1 and ZT 17 in house sparrows. Rhodopsin-ir and VIP-ir were observed in both areas of sparrow brains as previously described in other avian species but with a novel rod-like rhodopsin-ir cell type in the INF and novel expression of rhodopsin-ir fiber close to the preoptic area. Daily changes of rhodopsin-ir and VIP-ir cell number were revealed in the INF, but not in the SL. More rhodopsin-ir and fewer VIP-ir cells were found at ZT 17 than at ZT 1. In the median eminence, rhodopsin-ir fibers were only observed at ZT 1, and the relative optic density (ROD) of VIP-ir fibers was higher at ZT 1 than ZT 17. The results indicate daily changes of EPs in the IN and ME, suggesting a role of EPs in the orchestration of photoperiodic gonadal recrudesence.
Collapse
Affiliation(s)
- Gang Wang
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
44
|
de Lima LHRG, dos Santos KP, de Lauro Castrucci AM. Clock Genes, Melanopsins, Melatonin, and Dopamine Key Enzymes and Their Modulation by Light and Glutamate in Chicken Embryonic Retinal Cells. Chronobiol Int 2011; 28:89-100. [DOI: 10.3109/07420528.2010.540685] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Abstract
Life on earth is subject to alternating cycles of day and night imposed by the rotation of the earth. Consequently, living things have evolved photodetective systems to synchronize their physiology and behavior with the external light-dark cycle. This form of photodetection is unlike the familiar "image vision," in that the basic information is light or darkness over time, independent of spatial patterns. "Nonimage" vision is probably far more ancient than image vision and is widespread in living species. For mammals, it has long been assumed that the photoreceptors for nonimage vision are also the textbook rods and cones. However, recent years have witnessed the discovery of a small population of retinal ganglion cells in the mammalian eye that express a unique visual pigment called melanopsin. These ganglion cells are intrinsically photosensitive and drive a variety of nonimage visual functions. In addition to being photoreceptors themselves, they also constitute the major conduit for rod and cone signals to the brain for nonimage visual functions such as circadian photoentrainment and the pupillary light reflex. Here we review what is known about these novel mammalian photoreceptors.
Collapse
Affiliation(s)
- Michael Tri Hoang Do
- Solomon H. Snyder Department of Neuroscience and Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
46
|
Katti C, Kempler K, Porter ML, Legg A, Gonzalez R, Garcia-Rivera E, Dugger D, Battelle BA. Opsin co-expression in Limulus photoreceptors: differential regulation by light and a circadian clock. ACTA ACUST UNITED AC 2010; 213:2589-601. [PMID: 20639420 DOI: 10.1242/jeb.043869] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A long-standing concept in vision science has held that a single photoreceptor expresses a single type of opsin, the protein component of visual pigment. However, the number of examples in the literature of photoreceptors from vertebrates and invertebrates that break this rule is increasing. Here, we describe a newly discovered Limulus opsin, Limulus opsin5, which is significantly different from previously characterized Limulus opsins, opsins1 and 2. We show that opsin5 is co-expressed with opsins1 and 2 in Limulus lateral and ventral eye photoreceptors and provide the first evidence that the expression of co-expressed opsins can be differentially regulated. We show that the relative levels of opsin5 and opsin1 and 2 in the rhabdom change with a diurnal rhythm and that their relative levels are also influenced by the animal's central circadian clock. An analysis of the sequence of opsin5 suggests it is sensitive to visible light (400-700 nm) but that its spectral properties may be different from that of opsins1 and 2. Changes in the relative levels of these opsins may underlie some of the dramatic day-night changes in Limulus photoreceptor function and may produce a diurnal change in their spectral sensitivity.
Collapse
Affiliation(s)
- C Katti
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kang SW, Leclerc B, Kosonsiriluk S, Mauro LJ, Iwasawa A, El Halawani ME. Melanopsin expression in dopamine-melatonin neurons of the premammillary nucleus of the hypothalamus and seasonal reproduction in birds. Neuroscience 2010; 170:200-13. [PMID: 20620198 DOI: 10.1016/j.neuroscience.2010.06.082] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/27/2010] [Accepted: 06/30/2010] [Indexed: 11/16/2022]
Abstract
Melanopsin (OPN4) is a photoreceptive molecule regulating circadian systems in mammals. Previous studies from our laboratory have shown that co-localized dopamine-melatonin (DA-MEL) neurons in the hypothalamic premammillary nucleus (PMM) are putatively photosensitive and exhibit circadian rhythms in DAergic and MELergic activities. This study investigates turkey OPN4x (tOPN4x) mRNA distribution in the hypothalamus and brainstem, and characterizes its expression in PMM DA-MEL neurons, using in situ hybridization (ISH), immunocytochemistry (ICC), double-label ISH/ICC, and real time-PCR. The mRNA encoding tOPN4x was found in anatomically discrete areas in or near the hypothalamus and the brainstem, including nucleus preopticus medialis (POM), nucleus septalis lateralis (SL), PMM and the pineal gland. Double ICC, using tyrosine hydroxylase (TH, the rate limiting enzyme in DA synthesis)-and OPN4x antibodies, confirmed the existence of OPN4x protein in DA-MEL neurons. Also, tOPN4x mRNA expression was verified with double ISH/ICC using tOPN4x mRNA and TH immunoreactivity. PMM and pineal gland tOPN4x mRNA expression levels were diurnally high during the night and low during the day. A light pulse provided to short day photosensitive hens during the photosensitive phase at night significantly down-regulated tOPN4x expression. The expression level of tOPN4x mRNA in PMM DA-MEL neurons of photorefractory hens was significantly lower as compared with that of short or long day photosensitive hens. The results implicate tOPN4x in hypothalamic PMM DA-MEL neurons as an important component of the photoreceptive system regulating reproductive activity in temperate zone birds.
Collapse
Affiliation(s)
- S W Kang
- Department of Animal Science, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
48
|
Cassone VM, Paulose JK, Whitfield-Rucker MG, Peters JL. Time's arrow flies like a bird: two paradoxes for avian circadian biology. Gen Comp Endocrinol 2009; 163:109-16. [PMID: 19523398 PMCID: PMC2710421 DOI: 10.1016/j.ygcen.2009.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/29/2008] [Accepted: 01/13/2009] [Indexed: 01/29/2023]
Abstract
Biological timekeeping in birds is a fundamental feature of avian physiology, behavior and ecology. The physiological basis for avian circadian rhythmicity has pointed to a multi-oscillator system of mutually coupled pacemakers in the pineal gland, eyes and hypothalamic suprachiasmatic nuclei (SCN). In passerines, the role of the pineal gland and its hormone melatonin is particularly important. More recent molecular biological studies have pointed to a highly conserved mechanism involving rhythmic transcription and translation of "clock genes". However, studies attempting to reconcile the physiological role of pineal melatonin with molecular studies have largely failed. Recent work in our laboratory has suggested that melatonin-sensitive physiological processes are only loosely coupled to transcriptional oscillations. Similarly, although the pineal gland has been shown to be critical for overt circadian behaviors, its role in annual cycles of reproductive function appears to be minimal. Recent work on the seasonal control of birdsong, however, suggests that, although the pineal gland does not directly affect gonadal cycles, it is important for seasonal changes in song. Experimental analyses that address these paradoxes will shed light on the roles the biological clock play in birds and in vertebrates in general.
Collapse
Affiliation(s)
- Vincent M Cassone
- Department of Biology, Thomas Hunt Morgan Building, University of Kentucky, 675 Rose Street, Lexington, KY 40506, USA.
| | | | | | | |
Collapse
|
49
|
Pierce LX, Noche RR, Ponomareva O, Chang C, Liang JO. Novel functions for Period 3 and Exo-rhodopsin in rhythmic transcription and melatonin biosynthesis within the zebrafish pineal organ. Brain Res 2008; 1223:11-24. [PMID: 18597743 DOI: 10.1016/j.brainres.2008.05.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 04/25/2008] [Accepted: 05/01/2008] [Indexed: 11/29/2022]
Abstract
Entrainment of circadian clocks to environmental cues such as photoperiod ensures that daily biological rhythms stay in synchronization with the Earth's rotation. The vertebrate pineal organ has a conserved role in circadian regulation as the primary source of the nocturnal hormone melatonin. In lower vertebrates, the pineal has an endogenous circadian clock as well as photoreceptive cells that regulate this clock. The zebrafish opsin protein Exo-rhodopsin (Exorh) is expressed in pineal photoreceptors and is a candidate to mediate the effects of environmental light on pineal rhythms and melatonin synthesis. We demonstrate that Exorh has an important role in regulating gene transcription within the pineal. In developing embryos that lack Exorh, expression of the exorh gene itself and of the melatonin synthesis gene serotonin N-acetyl transferase 2 (aanat2) are significantly reduced. This suggests that the Exorh protein at the cell membrane is part of a signaling pathway that positively regulates transcription of these genes, and ultimately melatonin production, in the pineal. Like many other opsin genes, exorh is expressed with a daily rhythm: mRNA levels are higher at night than during the day. We found that the transcription factor Orthodenticle homeobox 5 (Otx5) activates exorh transcription, while the putative circadian clock component Period 3 (Per3) represses expression during the day, thereby contributing to the rhythm of transcription. This work identifies novel roles for Exorh and Per3, and gives insight into potential interactions between the sensory and circadian systems within the pineal.
Collapse
Affiliation(s)
- Lain X Pierce
- Department of Genetics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
50
|
Neumann T, Ziegler C, Blau A. Multielectrode array recordings reveal physiological diversity of intrinsically photosensitive retinal ganglion cells in the chick embryo. Brain Res 2008; 1207:120-7. [DOI: 10.1016/j.brainres.2008.02.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/05/2008] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
|