1
|
Andrys R, Monnier C, Antonijević Miljaković E, Mickova V, Musilek K, Zemanova L. Towards cost-effective drug discovery: Reusable immobilized enzymes for neurological disease research. Talanta 2024; 276:126263. [PMID: 38788378 DOI: 10.1016/j.talanta.2024.126263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Enzyme handling and utilization bears many challenges such as their limited stability, intolerance of organic solvents, high cost, or inability to reuse. Most of these limitations can be overcome by enzyme immobilization on the surface of solid support. In this work, the recombinant form of human cholinesterases and monoamine oxidases as important drug targets for neurological diseases were immobilized on the surface of magnetic non-porous microparticles by a non-covalent bond utilizing the interaction between a His-tag terminus on the recombinant enzymes and cobalt (Co2+) ions immobilized on the magnetic microparticles. This type of binding led to targeted enzyme orientation, which completely preserved the catalytic activity and allowed high reproducibility of immobilization. In comparison with free enzymes, the immobilized enzymes showed exceptional stability in time and the possibility of repeated use. Relevant Km, Vmax, and IC50 values using known inhibitors were obtained using particular immobilized enzymes. Such immobilized enzymes on magnetic particles could serve as an excellent tool for a sustainable approach in the early stage of drug discovery.
Collapse
Affiliation(s)
- Rudolf Andrys
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic.
| | - Charline Monnier
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic.
| | - Evica Antonijević Miljaković
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic; Department of Toxicology "Akademik Danilo Soldatovic", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11 000, Belgrade, Serbia.
| | - Veronika Mickova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic.
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic.
| | - Lucie Zemanova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic.
| |
Collapse
|
2
|
Elhussieny NI, El-Refai HA, Mohamed SS, Shetaia YM, Amin HA, Klöck G. Rhizopus stolonifer biomass catalytic transesterification capability: optimization of cultivation conditions. Microb Cell Fact 2023; 22:154. [PMID: 37580714 PMCID: PMC10424374 DOI: 10.1186/s12934-023-02141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/01/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Using fungal biomass for biocatalysis is a potential solution for the expensive cost of the use o enzymes. Production of fungal biomass with effective activity requires optimizing the cultivation conditions. RESULTS Rhizopus stolonifer biomass was optimized for transesterification and hydrolysis of waste frying oil (WFO). Growth and biomass lipolytic activities of R. stolonifer improved under shaking conditions compared to static conditions, and 200 rpm was optimum. As biomass lipase and transesterification activities inducer, olive oil was superior to soybean, rapeseed, and waste frying oils. Biomass produced in culture media containing fishmeal as an N-source feedstock had higher lipolytic capabilities than corn-steep liquor and urea. Plackett Burman screening of 9 factors showed that pH (5-9), fishmeal (0.25-1.7%, w/v), and KH2PO4 (0.1-0.9%, w/v) were significant factors with the highest main effect estimates 11.46, 10.42, 14.90, respectively. These factors were selected for response surface methodology (RSM) optimization using central composite design (CCD). CCD models for growth, biomass lipase activity, and transesterification capability were significant. The optimum conditions for growth and lipid modification catalytic activities were pH 7.4, fishmeal (2.62%, w/v), and KH2PO4 (2.99%, w/v). CONCLUSION Optimized culture conditions improved the whole cell transesterification capability of Rhizopus stolonifer biomass in terms of fatty acid methyl ester (FAME) concentration by 67.65% to a final FAME concentration of 85.5%, w/w.
Collapse
Affiliation(s)
- Nadeem I Elhussieny
- Department of Life Science and Chemistry, Constructor University, Campus Ring 1, 28759, Bremen, Germany.
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Cairo, 12622, Egypt.
- Institute of Environmental Biology and Biotechnology, University of Applied Sciences, 28199, Bremen, Germany.
| | - Heba A El-Refai
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Cairo, 12622, Egypt
| | - Sayeda S Mohamed
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Cairo, 12622, Egypt
| | - Yousseria M Shetaia
- Department of Microbiology, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Hala A Amin
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Cairo, 12622, Egypt
| | - Gerd Klöck
- Institute of Environmental Biology and Biotechnology, University of Applied Sciences, 28199, Bremen, Germany
| |
Collapse
|
3
|
Thermostable lipases and their dynamics of improved enzymatic properties. Appl Microbiol Biotechnol 2021; 105:7069-7094. [PMID: 34487207 DOI: 10.1007/s00253-021-11520-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Thermal stability is one of the most desirable characteristics in the search for novel lipases. The search for thermophilic microorganisms for synthesising functional enzyme biocatalysts with the ability to withstand high temperature, and capacity to maintain their native state in extreme conditions opens up new opportunities for their biotechnological applications. Thermophilic organisms are one of the most favoured organisms, whose distinctive characteristics are extremely related to their cellular constituent particularly biologically active proteins. Modifications on the enzyme structure are critical in optimizing the stability of enzyme to thermophilic conditions. Thermostable lipases are one of the most favourable enzymes used in food industries, pharmaceutical field, and actively been studied as potential biocatalyst in biodiesel production and other biotechnology application. Particularly, there is a trade-off between the use of enzymes in high concentration of organic solvents and product generation. Enhancement of the enzyme stability needs to be achieved for them to maintain their enzymatic activity regardless the environment. Various approaches on protein modification applied since decades ago conveyed a better understanding on how to improve the enzymatic properties in thermophilic bacteria. In fact, preliminary approach using advanced computational analysis is practically conducted before any modification is being performed experimentally. Apart from that, isolation of novel extremozymes from various microorganisms are offering great frontier in explaining the crucial native interaction within the molecules which could help in protein engineering. In this review, the thermostability prospect of lipases and the utility of protein engineering insights into achieving functional industrial usefulness at their high temperature habitat are highlighted. Similarly, the underlying thermodynamic and structural basis that defines the forces that stabilize these thermostable lipase is discussed. KEY POINTS: • The dynamics of lipases contributes to their non-covalent interactions and structural stability. • Thermostability can be enhanced by well-established genetic tools for improved kinetic efficiency. • Molecular dynamics greatly provides structure-function insights on thermodynamics of lipase.
Collapse
|
4
|
Aeration and Stirring in Yarrowia lipolytica Lipase Biosynthesis during Batch Cultures with Waste Fish Oil as a Carbon Source. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Yarrowia lipolytica is one of the most studied non-conventional forms of yeast, exhibiting a high secretory capacity and producing many industrially important and valuable metabolites. The yeast conceals a great biotechnological potential to synthesize organic acids, sweeteners, microbial oil, or fragrances. The vast majority of bioprocesses are carried out in bioreactors, where suitable culture conditions are provided. In the current study, the effect of agitation speed (200–600 rpm) and air flow rate (0.0375–2.0 dm3/(dm3 × min)) on the biomass yield and lipase activity of Y. lipolytica KKP 379 is analyzed in a growth medium containing waste fish oil. The increase of aeration intensity limited the period of oxygen deficit in the medium. Simultaneously, an increase in lipolytic activity was observed from 2.09 U/cm3 to 14.21 U/cm3; however, an excessive agitation speed likely caused oxidative or shear stresses, and a reduction in lipolytic activity was observed. Moreover, it is confirmed that the synthesis of lipases is related to oxygen consumption, pH, and the yeast growth phase, and appropriate process selection may provide two advantages, namely, the maximum use of the waste carbon source and the production of lipolytic enzymes that are valuable in many industries.
Collapse
|
5
|
Design of a New Gemini Lipoaminoacid with Immobilized Lipases Based on an Eco-Friendly Biosynthetic Process. Catalysts 2021. [DOI: 10.3390/catal11020164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lipoaminoacids (LAA) are an important group of biosurfactants, formed by a polar hydrophilic part (amino acid) and a hydrophobic tail (lipid). The gemini LAA structures allow the formation of a supramolecular complex with bioactive molecules, like DNA, which provides them with good transfection efficiency. Since lipases are naturally involved in lipid and protein metabolism, they are an alternative to the chemical production of LAA, offering an eco-friendly biosynthetic process option. This work aimed to design the production of novel cystine derived gemini through a bioconversion system using immobilized lipases. Three lipases were used: porcine pancreatic lipase (PPL); lipase from Thermomyces lanuginosus (TLL); and lipase from Rizhomucor miehei (RML). PPL was immobilized in sol-gel lenses. L-cystine dihydrochloride and dodecylamine were used as substrates for the bioreaction. The production of LAA was evaluated by thin layer chromatography (TLC), and colorimetric reaction with eosin. The identification and quantification was carried out by High Performance Liquid Chromatographer-Mass Spectrometry (HPLC-MS/MS). The optimization of media design included co-solvent (methanol, dimethylsulfoxide), biphasic (n-hexane and 2-propanol) or solvent-free media, in order to improve the biocatalytic reaction rates and yields. Moreover, a new medium was tested where dodecylamine was melted and added to the cystine and to the biocatalyst, building a system of mainly undissolved substrates, leading to 5 mg/mL of LAA. Most of the volume turned into foam, which indicated the production of the biosurfactant. For the first time, the gemini derived cystine lipoaminoacid was produced, identified, and quantified in both co-solvent and solvent-free media, with the lipases PPL, RML, and TLL.
Collapse
|
6
|
Hesari NG, Esmaeili D, Mohammadian T, Shahhosseini MH, Ferdosi A. Cloning and expression of lipase-subtilisin protein fusion. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Verma S, Kumar R, Kumar P, Sharma D, Gahlot H, Sharma PK, Meghwanshi GK. Cloning, Characterization, and Structural Modeling of an Extremophilic Bacterial Lipase Isolated from Saline Habitats of the Thar Desert. Appl Biochem Biotechnol 2020; 192:557-572. [DOI: 10.1007/s12010-020-03329-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
|
8
|
Mohammadi A, Rahmandoust M, Mirzajani F, Azadkhah Shalmani A, Raoufi M. Optimization of the interaction of graphene quantum dots with lipase for biological applications. J Biomed Mater Res B Appl Biomater 2020; 108:2471-2483. [PMID: 32083405 DOI: 10.1002/jbm.b.34579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 11/06/2022]
Abstract
Graphene quantum dots (GQDs) are known as emerging sub-10 nm nanoparticles (NPs), which are in fact few-layered pieces of graphene, capable of emitting blue fluorescence, when exposed to 360 nm UV light. Understanding the details of the interaction between GQDs and lipase can serve as a critical step for improving the biological outcome of GQD-derived drug-delivery and diagnosis systems. The interaction occurs in the form of surface adsorption, which can subsequently influence the physicochemical properties of both the NP and the protein. Hence, a systematic approach was taken here to optimize the GQDs' synthesis conditions in order to achieve the highest possible quantum yield (QY). Furthermore, to understands the influence of the interaction of GQDs and lipase, on both the activity of lipase and the emission intensity of GQDs, various incubation conditions were tested to achieve optimized conditions over central composite design algorithm by Design-Expert®, using response surface methodology. The results show that the GQDs fabricated by thermal decomposition of citric acid at 160°C, with a heating duration of 55 min, obtain almost three times higher QY than the highest values reported previously. The best enzymatic activity after the formation of the hard corona, as well as the highest fluorescent emission, were achieved at GQD-to-enzyme ratios within the rage of 23-25%, at temperatures between 41 and 42°C, for 6-8 min. In the aforementioned condition, the enzyme retains 91-95% of its activity and the NP preserves about 80-82% of its fluorescence intensity after incubation.
Collapse
Affiliation(s)
- Asra Mohammadi
- Protein Research Center, Shahid Beheshti University G.C, Tehran, Iran
| | | | - Fateme Mirzajani
- Protein Research Center, Shahid Beheshti University G.C, Tehran, Iran
| | | | - Mohammad Raoufi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Physical Chemistry I and Research Center of Micro- and Nanochemistry and Engineering (Cμ), University of Siegen, Siegen, Germany
| |
Collapse
|
9
|
Abstract
Biosurfactant compounds have been studied in many applications, including biomedical, food, cosmetic, agriculture, and bioremediation areas, mainly due to their low toxicity, high biodegradability, and multifunctionality. Among biosurfactants, the lipoplexes of lipoaminoacids play a key role in medical and pharmaceutical fields. Lipoaminoacids (LAAs) are amino acid-based surfactants that are obtained from the condensation reaction of natural origin amino acids with fatty acids or fatty acid derivatives. LAA can be produced by biocatalysis as an alternative to chemical synthesis and thus become very attractive from both the biomedical and the environmental perspectives. Gemini LAAs, which are made of two hydrophobic chains and two amino acid head groups per molecule and linked by a spacer at the level of the amino acid residues, are promising candidates as both drug and gene delivery and protein disassembly agents. Gemini LAA usually show lower critical micelle concentration, interact more efficiently with proteins, and are better solubilising agents for hydrophobic drugs when compared to their monomeric counterparts due to their dimeric structure. A clinically relevant human gene therapy vector must overcome or avoid detect and silence foreign or misplaced DNA whilst delivering sustained levels of therapeutic gene product. Many non-viral DNA vectors trigger these defence mechanisms, being subsequently destroyed or rendered silent. The development of safe and persistently expressing DNA vectors is a crucial prerequisite for a successful clinical application, and it one of the main strategic tasks of non-viral gene therapy research.
Collapse
|
10
|
Wang J, Liu Y, Guo X, Dong B, Cao Y. High-level expression of lipase from Galactomyces geotrichum mafic-0601 by codon optimization in Pichia pastoris and its application in hydrolysis of various oils. 3 Biotech 2019; 9:354. [PMID: 31501755 DOI: 10.1007/s13205-019-1891-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022] Open
Abstract
A Galactomyces geotrichum strain with lipolytic activity was isolated and identified by the analysis of internal transcribed spacer (ITS) sequence of 18 s rDNA. Full-length lipase gene of this stain is composed of 1692 base pairs (bp) without intron, which encodes a 563-amino-acid protein. A catalytic triad (Ser217-Glu354-His463) was found by constructing the three-dimensional structure of the lipase. In shake flasks, the lipase (LIP) catalytic activity in the supernatant of the recombinant Pichia pastoris increased 48.7% by codon optimization. LIP purified by anion exchange column showed a single protein band on 12% SDS-PAGE. The molecular weight (MW) of LIP was approximately 62 kDa. The specific activity of purified LIP reached 1257.9 U/mg. The optimum temperature and pH of LIP catalysis were 45 °C and pH 8.2, respectively. LIP was stable over the pH range of 4.2-11.2. LIP maintained its activity constantly at 40 °C and 50 °C for 120 min. Zn2+ inhibited LIP activity; Ba2+, Mn2+, Ca2+ and EDTA increased the enzyme activity. Referring the amount of hydrolyzed olive oil by LIP as 100%, various oils including lard, peanut oil, rapeseed oil, sunflower oil, soybean oil and linseed oil were efficiently hydrolyzed by 17.24 ± 1.34%, 40.34 ± 2.56%, 105.86 ± 2.78%, 115.51 ± 2.32%, 116.21 ± 2.15%, 120.69 ± 1.98%, respectively. The characteristics allow LIP as a potential biocatalyst in various fields of industry.
Collapse
|
11
|
Identification of new members of alkaliphilic lipases in archaea and metagenome database using reconstruction of ancestral sequences. 3 Biotech 2019; 9:165. [PMID: 30997302 DOI: 10.1007/s13205-019-1693-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/27/2019] [Indexed: 10/27/2022] Open
Abstract
The application of bioinformatics in lipase research has the potential to discover robust members from different genomic/metagenomic databses. In this study, we explored the diversity and distribution of alkaliphilic lipases in archaea domain and metagenome data sets through phylogenetic survey. Reconstructed ancestral sequence of alkaphilic lipase was used to search the homologous alkaliphilic lipases among the archaea and metagenome public databases. Our investigation revealed a total 21 unique sequences of new alkaliphilic lipases in the archaeal and environmental metagenomic protein databases that shared significant sequence similarity to the bacterial alkaliphilic lipases. Most of the identified new members of alkaliphilic lipases belong to class Haloarchaea. The searched list of homologs also comprised of one characterized lipase from alkalohyperthermophilic Archaeoglobus fulgidus. All the newly identified alkaliphilic lipase members showed conserved pentapeptide [X-His-Ser-X-Gly] motif, a key feature of lipase family. Furthermore, detailed analysis of all these new sequences showed homology either with thermostable or alkalophilic lipases. The reconstructed ancestral sequence-based searches increased the sensitivity and efficacies to detect remotely homologous sequences. We hypothesize that this study can enrich our current knowledge on lipases in designing more potential thermo-alkaliphilic lipases for industrial applications.
Collapse
|
12
|
Chiplunkar PP, Zhao X, Tomke PD, Noro J, Xu B, Wang Q, Silva C, Pratap AP, Cavaco-Paulo A. Ultrasound-assisted lipase catalyzed hydrolysis of aspirin methyl ester. ULTRASONICS SONOCHEMISTRY 2018; 40:587-593. [PMID: 28946463 DOI: 10.1016/j.ultsonch.2017.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/02/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
The ultrasound-assisted hydrolysis of aspirin methyl ester (AME) was investigated using immobilized Candida antarctica lipase B (CALB) (1%) in the presence of solvents like triolein, chloroform (CHCl3) and dichloromethane (DCM). The effect of ultrasound and the role of water on the conversion rates have also been investigated. Proton nuclear magnetic resonance spectroscopic (1H NMR) was chosen to calculate hydrolysis convertion rates. We observed that lipase-ultrasound assisted hydrolysis of AME in the presence of triolein and water showed the highest hydrolysis conversion rate (65.3%). Herein low water amount played an important role as a nucleophile being crucial for the hydrolysis yields obtained. Lipase activity was affected by the conjugated action of ultrasound and solvents (35.75% of decrease), however not disturbing its hydrolytic efficiency. It was demonstrated that lipase is able to hydrolyse AME to methyl 2-hydroxy benzoate (methyl salicylate), which applications include fragrance agents in food, beverages and cosmetics, or analgesic agent in liniments.
Collapse
Affiliation(s)
- Pranali P Chiplunkar
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, Wuxi 214122, China; Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India
| | - Xiaoman Zhao
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Technology Research Center for Functional Textiles, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India; Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Prerana D Tomke
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, Wuxi 214122, China; Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India
| | - Jennifer Noro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Bo Xu
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, Wuxi 214122, China
| | - Qiang Wang
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, Wuxi 214122, China
| | - Carla Silva
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Amit P Pratap
- Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India
| | - Artur Cavaco-Paulo
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, Wuxi 214122, China; Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
13
|
Liu W, Li M, Yan Y. Heterologous expression and characterization of a new lipase from Pseudomonas fluorescens Pf0-1 and used for biodiesel production. Sci Rep 2017; 7:15711. [PMID: 29146968 PMCID: PMC5691200 DOI: 10.1038/s41598-017-16036-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/06/2017] [Indexed: 11/08/2022] Open
Abstract
As a kind of important biocatalysts, Pseudomonas lipases are commonly applied in various industrial fields. Pflip1, a new extracellular lipase gene from Pseudomonas. fluorescens Pf0-1, was first cloned and respectively expressed in Escherichia coli BL21(DE3) and Pichia pastoris KM71, the recombinant proteins Pflip1a and Pflip1b were later purified separately. Then Pflip1a was further characterized. The optimum pH of Pflip1a was 8.0 and its optimal temperature was 70 °C. After incubation at 70 °C for 12 h, Pflip1a could retain over 95% of its original activity. It showed the highest activity towards p-nitrophenyl caprylate. Moreover, its activity was profoundly affected by metal ion, ionic surfactants and organic solvents. Furthermore, the two obtained recombinant lipases were immobilized on the magnetic nanoparticles for biodiesel preparation. The GC analysis showed that for the immobilized lipases Pflip1b and Pflip1a, the biodiesel yield within 24 h respectively attained 68.5% and 80.5% at 70 °C. The activities of the two immobilized lipases still remained 70% and 82% after 10 cycles of operations in non-solvent system. These characteristics and transesterification capacity of the recombinant protein indicated its great potential for organic synthesis, especially for biodiesel production.
Collapse
Affiliation(s)
- Wu Liu
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Menggang Li
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
14
|
Production enhancement of the extracellular lipase LipA in Bacillus subtilis: Effects of expression system and Sec pathway components. Protein Expr Purif 2017; 142:81-87. [PMID: 28963005 DOI: 10.1016/j.pep.2017.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/16/2017] [Accepted: 09/25/2017] [Indexed: 11/20/2022]
Abstract
Lipases are among the most versatile biocatalysts, and are used in a range of industrially relevant bioconversion reactions. However, the production of LipA in recombinant Bacillus subtilis is still limited, due to unresolved issues surrounding the regulation of the expression and secretion systems. In this study, the gene encoding LipA from B. subtilis 168 was expressed in BNA under the control of the P43 and the PAE promoter. The extracellular lipase activity of the resulting strains BNACL and BNAAL was 7.8 U ml-1 and 12.6 U ml-1, respectively. To further enhance the expression of LipA, pHP13L was constructed by inserting the PAE-lip into the shuttle vector pHP13, which produced an extracellular lipase activity of 180.5 U ml-1 of BNA/pHP13L. The strain BNAY8 described in Supplement data which lacks eight extracellular proteins was constructed and the deletion a few of the much weaker secreting proteins had no significant effect on the secretion of LipA. Moreover, the four Sec pathway components, secA-prfB, secDF, secYEG, prsA, were individually overexpressed in BNA. The overexpression of secDF and prsA enhanced the production of LipA by 28% and 49%, respectively. Furthermore, the co-overexpression of secDF with prsA improved the extracellular amount of LipA by 59% over that of BNA/pHP13L, reaching 287.8 U ml-1. It can therefore be said that both regulatory elements and secretion pathway had an impact on the production of secreted LipA. Their optimization and modification is a useful strategy to improve the homologous overproduction of other extracellular proteins in B. subtilis.
Collapse
|
15
|
García-Silvera EE, Martínez-Morales F, Bertrand B, Morales-Guzmán D, Rosas-Galván NS, León-Rodríguez R, Trejo-Hernández MR. Production and application of a thermostable lipase from Serratia marcescens
in detergent formulation and biodiesel production. Biotechnol Appl Biochem 2017; 65:156-172. [DOI: 10.1002/bab.1565] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/13/2017] [Indexed: 11/06/2022]
Affiliation(s)
| | - Fernando Martínez-Morales
- Centro de Investigación en Biotecnología; Universidad Autónoma del Estado de Morelos; Morelos México
| | - Brandt Bertrand
- Centro de Investigación en Biotecnología; Universidad Autónoma del Estado de Morelos; Morelos México
| | - Daniel Morales-Guzmán
- Centro de Investigación en Biotecnología; Universidad Autónoma del Estado de Morelos; Morelos México
| | | | - Renato León-Rodríguez
- Instituto de Investigaciones Biomédicas UNAM, Tercer circuito exterior; s/n, Cd. Universitaria Coyoacán México
| | - María R. Trejo-Hernández
- Centro de Investigación en Biotecnología; Universidad Autónoma del Estado de Morelos; Morelos México
| |
Collapse
|
16
|
Cao H, Wang M, Nie K, Zhang X, Lei M, Deng L, Wang F, Tan T. β-cyclodextrin as an additive to improve the thermostability of Yarrowia lipolytica Lipase 2: Experimental and simulation insights. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.10.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Khan M, Kumar A. Computational modelling and protein-ligand interaction studies of SMlipA lipase cloned from forest metagenome. J Mol Graph Model 2016; 70:212-225. [DOI: 10.1016/j.jmgm.2016.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/06/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
|
18
|
Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis. Enzyme Microb Technol 2016; 93-94:18-28. [DOI: 10.1016/j.enzmictec.2016.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/20/2016] [Accepted: 07/15/2016] [Indexed: 11/19/2022]
|
19
|
Chauhan M, Yennamalli RM, Garlapati VK. Biochemical characterization and molecular modeling of a unique lipase from Staphylococcus arlettaeJPBW-1. Eng Life Sci 2016. [DOI: 10.1002/elsc.201600074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Mamta Chauhan
- Department of Biotechnology and Bioinformatics; Jaypee University of Information Technology; Waknaghat Himachal Pradesh India
| | - Ragothaman M. Yennamalli
- Department of Biotechnology and Bioinformatics; Jaypee University of Information Technology; Waknaghat Himachal Pradesh India
| | - Vijay Kumar Garlapati
- Department of Biotechnology and Bioinformatics; Jaypee University of Information Technology; Waknaghat Himachal Pradesh India
| |
Collapse
|
20
|
Improved 1, 2, 4-butanetriol production from an engineered Escherichia coli by co-expression of different chaperone proteins. World J Microbiol Biotechnol 2016; 32:149. [PMID: 27430516 DOI: 10.1007/s11274-016-2085-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
1, 2, 4-Butanetriol (BT) is a high-value non-natural chemical and has important applications in polymers, medical production and military industry. In the constructed BT biosynthesis pathway from xylose in Escherichia coli, the xylose dehydrogenase (Xdh) and the benzoylformate decarboxylase (MdlC) are heterologous enzymes and the activity of MdlC is the key limiting factor for BT production. In this study, six chaperone protein systems were introduced into the engineered E. coli harboring the recombinant BT pathway. The chaperone GroES-GroEL was beneficial to Xdh activity but had a negative effect on MdlC activity and BT titer. The plasmid pTf16 containing the tig gene (trigger factor) was beneficial to Xdh and MdlC activities and improved the BT titer from 0.42 to 0.56 g/l from 20 g/l xylose. However, co-expression of trigger factor and GroES-GroEL simultaneously reduced the activity of MdlC and had no effect on the BT production. The plasmid pKJE7 harboring dnaK-dnaJ-grpE showed significant negative effects on these enzyme activities and cell growth, leading to completely restrained the BT production. Similarly, co-expression of DnaKJ-GrpPE and GroES-GroEL simultaneously reduced Xdh and MdlC activities and decreased the BT titer by 45.2 %. The BT production of the engineered E. coli harboring pTf16 was further improved to the highest level at 1.01 g/l under pH control (pH 7). This work showed the potential application of chaperone proteins in microorganism engineering to get high production of target compounds as an effective and valuable tool.
Collapse
|
21
|
Khaleghinejad SH, Motalleb G, Karkhane AA, Aminzadeh S, Yakhchali B. Study the effect of F17S mutation on the chimeric Bacillus thermocatenulatus lipase. J Genet Eng Biotechnol 2016; 14:83-89. [PMID: 30647601 PMCID: PMC6299889 DOI: 10.1016/j.jgeb.2016.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/14/2016] [Indexed: 11/17/2022]
Abstract
Lipases (triacylglycerol acylhydrolase, EC 3.1.1.3) are one of the highest value commercial enzymes as they have potential applications in biotechnology for detergents, food, pharmaceuticals, leather, textiles, cosmetics, and paper industries; and are currently receiving considerable attention because of their potential applications in biotechnology. Bacillus thermocatenulatus Lipase 2 (BTL2) is one of the most important research targets, because of its potential industrial applications. In this study, the effect of substitution Phe17 with Ser in mutated BTL2 lipase, which conserved pentapeptide (112Ala-His-Ser-Gln-Gly116) was replaced with similar sequences (207Gly-Glu-Ser-Ala-Gly211) of Candida rugosa lipase (CLR) at the nucleophilic elbow region. Docking results confirmed the mutated lipase to be better than the chimeric lipase. So, cloning was conducted, and the mutated and chimeric btl2 genes were expressed in Escherichia coli, and then the enzymes were purified by anion exchange chromatography. The mutation increased lipase lipolytic activity against most of the applied substrates, with the exception of tributyrin when compared with chimeric lipase. Further, the mutated lipase exhibited higher activity than the chimeric lipase at all temperatures. Optimum pH of the mutated lipase was obtained at pH 9.5, which was more than the chimeric one. Enzyme activity of the mutated lipase in the presence of organic solvents, detergents, and metal ions was also improved than the chimeric lipase.
Collapse
Affiliation(s)
| | - Gholamreza Motalleb
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Ali Asghar Karkhane
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Bagher Yakhchali
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
22
|
Yang X, Jiang L, Jia Y, Hu Y, Xu Q, Xu X, Huang H. Counteraction of Trehalose on N, N-Dimethylformamide-Induced Candida rugosa Lipase Denaturation: Spectroscopic Insight and Molecular Dynamic Simulation. PLoS One 2016; 11:e0152275. [PMID: 27031946 PMCID: PMC4816565 DOI: 10.1371/journal.pone.0152275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/12/2016] [Indexed: 11/18/2022] Open
Abstract
Candida rugosa lipase (CRL) has been widely used as a biocatalyst for non-aqueous synthesis in biotechnological applications, which, however, often suffers significant loss of activity in organic solvent. Experimental results show that trehalose could actively counteract the organic-solvent-induced protein denaturation, while the molecular mechanisms still don’t unclear. Herein, CRL was used as a model enzyme to explore the effects of trehalose on the retention of enzymatic activity upon incubation in N,N-dimethylformamide (DMF). Results showed that both catalytic activity and conformation changes of CRL influenced by DMF solvent were inhibited by trehalose in a dose-dependent fashion. The simulations further indicated that the CRL protein unfolded in binary DMF solution, but retained the native state in the ternary DMF/trehalose system. Trehalose as the second osmolyte added into binary DMF solution decreased DMF-CRL hydrogen bonds efficiently, whereas increased the intermolecular hydrogen bondings between DMF and trehalose. Thus, the origin of its denaturing effects of DMF on protein is thought to be due to the preferential exclusion of trehalose as well as the intermolecular hydrogen bondings between trehalose and DMF. These findings suggest that trehalose protect the CRL protein from DMF-induced unfolding via both indirect and direct interactions.
Collapse
Affiliation(s)
- Xin Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, PR China
- * E-mail: (LJ); (HH)
| | - Yigang Jia
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, PR China
| | - Yi Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Qing Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Xian Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - He Huang
- College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China
- * E-mail: (LJ); (HH)
| |
Collapse
|
23
|
Neta NS, Teixeira JA, Rodrigues LR. Sugar ester surfactants: enzymatic synthesis and applications in food industry. Crit Rev Food Sci Nutr 2016; 55:595-610. [PMID: 24915370 DOI: 10.1080/10408398.2012.667461] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sugar esters are non-ionic surfactants that can be synthesized in a single enzymatic reaction step using lipases. The stability and efficiency of lipases under unusual conditions and using non-conventional media can be significantly improved through immobilization and protein engineering. Also, the development of de novo enzymes has seen a significant increase lately under the scope of the new field of synthetic biology. Depending on the esterification degree and the nature of fatty acid and/or sugar, a range of sugar esters can be synthesized. Due to their surface activity and emulsifying capacity, sugar esters are promising for applications in food industry.
Collapse
Affiliation(s)
- Nair S Neta
- a Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering , University of Minho , Campus de Gualtar, 4710-057 Braga , Portugal
| | | | | |
Collapse
|
24
|
Bhosale H, Uzma S, Bismile P. Optimization of Lipase Production by Thermo-Alkalophilic Bacillus sp. 8C. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/jm.2015.523.532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Li W, Shen H, Ma M, Liu L, Cui C, Chen B, Fan D, Tan T. Synthesis of ethyl oleate by esterification in a solvent-free system using lipase immobilized on PDMS-modified nonwoven viscose fabrics. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Lipase-catalyzed Knoevenagel condensation in water–ethanol solvent system. Does the enzyme possess the substrate promiscuity? Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 2015; 13:1925-65. [PMID: 25854643 PMCID: PMC4413194 DOI: 10.3390/md13041925] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 12/26/2022] Open
Abstract
The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications.
Collapse
|
28
|
Zoglowek M, Lübeck PS, Ahring BK, Lübeck M. Heterologous expression of cellobiohydrolases in filamentous fungi – An update on the current challenges, achievements and perspectives. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Esterification for butyl butyrate formation using Candida cylindracea lipase produced from palm oil mill effluent supplemented medium. ARAB J CHEM 2014. [DOI: 10.1016/j.arabjc.2013.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
30
|
Saravanan P, Dubey VK, Patra S. Emulating structural stability of Pseudomonas mendocina lipase: in silico mutagenesis and molecular dynamics studies. J Mol Model 2014; 20:2501. [DOI: 10.1007/s00894-014-2501-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/13/2014] [Indexed: 11/24/2022]
|
31
|
|
32
|
Godoy CA, de las Rivas B, Guisán JM. Site-directing an intense multipoint covalent attachment (MCA) of mutants of the Geobacillus thermocatenulatus lipase 2 (BTL2): Genetic and chemical amination plus immobilization on a tailor-made support. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Lerin LA, Loss RA, Remonatto D, Zenevicz MC, Balen M, Netto VO, Ninow JL, Trentin CM, Oliveira JV, de Oliveira D. A review on lipase-catalyzed reactions in ultrasound-assisted systems. Bioprocess Biosyst Eng 2014; 37:2381-94. [PMID: 24906428 DOI: 10.1007/s00449-014-1222-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/13/2014] [Indexed: 11/24/2022]
Abstract
The named "green chemistry" has been receiving increasing prominence due to its environmentally friendly characteristics. The use of enzymes as catalysts in processes of synthesis to replace the traditional use of chemical catalysts present as main advantage the fact of following the principles of the green chemistry. However, processes of enzymatic nature generally provide lower yields when compared to the conventional chemical processes. Therefore, in the last years, the ultrasound has been extensively used in enzymatic processes, such as the production of esters with desirable characteristics for the pharmaceutical, cosmetics, and food industry, for the hydrolysis and glycerolysis of vegetable oils, production of biodiesel, etc. Several works found in the open literature suggest that the energy released by the ultrasound during the cavitation phenomena can be used to enhance mass transfer (substrate/enzyme), hence increasing the rate of products formation, and also contributing to enhance the enzyme catalytic activity. Furthermore, the ultrasound is considered a "green" technology due to its high efficiency, low instrumental requirement and significant reduction of the processing time in comparison to other techniques. The main goal of this review was to summarize studies available to date regarding the application of ultrasound in enzyme-catalyzed esterification, hydrolysis, glycerolysis and transesterification reactions.
Collapse
Affiliation(s)
- Lindomar A Lerin
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, UFSC, Campus Universitário, Bairro Trindade, Caixa Postal 476, Florianópolis, Santa Catarina, 88040-900, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Brígida AI, Amaral PF, Coelho MA, Gonçalves LR. Lipase from Yarrowia lipolytica: Production, characterization and application as an industrial biocatalyst. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.11.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Kranen E, Detzel C, Weber T, Jose J. Autodisplay for the co-expression of lipase and foldase on the surface of E. coli: washing with designer bugs. Microb Cell Fact 2014; 13:19. [PMID: 24476025 PMCID: PMC3910678 DOI: 10.1186/1475-2859-13-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/16/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipases including the lipase from Burkholderia cepacia are in a main focus in biotechnology research since many years because of their manifold possibilities for application in industrial processes. The application of Burkholderia cepacia lipase for these processes appears complicated because of the need for support by a chaperone, the lipase specific foldase. Purification and reconstitution protocols therefore interfere with an economic implementation of such enzymes in industry. Autodisplay is a convenient method to express a variety of passenger proteins on the surface of E. coli. This method makes subsequent purification steps to obtain the protein of interest unnecessary. If enzymes are used as passengers, the corresponding cells can simply be applied as whole cell biocatalysts. Furthermore, enzymes surface displayed in this manner often acquire stabilization by anchoring within the outer membrane of E. coli. RESULTS The lipase and its chaperone foldase from B. cepacia were co-expressed on the surface of E. coli via autodisplay. The whole cell biocatalyst obtained thereby exhibited an enzymatic activity of 2.73 mU mL⁻¹ towards the substrate p-nitrophenyl palmitate when applied in an OD₅₇₈ =1. Outer membrane fractions prepared from the same culture volume showed a lipase activity of 4.01 mU mL⁻¹. The lipase-whole cell biocatalyst as well as outer membrane preparations thereof were used in a standardized laundry test, usually adopted to determine the power of washing agents. In this test, the lipase whole cell biocatalyst and the membrane preparation derived thereof exhibited the same lipolytic activity as the purified lipase from B. cepacia and a lipase preparation which is already applied in commercial washing agents. CONCLUSIONS Co-expression of both the lipase and its chaperone foldase on the surface of E. coli yields a lipid degrading whole cell biocatalyst. Therefore the chaperone supported folding process, absolutely required for the lipolytic activity appears not to be hindered by surface display. Furthermore, the cells and the membrane preparations appeared to be stable enough to endure a European standard laundry test and show efficient fat removal properties herein.
Collapse
Affiliation(s)
| | | | | | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westfalian Wilhelms-University Münster, Corrensstr, 48, 48149 Münster, Germany.
| |
Collapse
|
36
|
Towards the development of systems for high-yield production of microbial lipases. Biotechnol Lett 2013; 35:1551-60. [PMID: 23743957 DOI: 10.1007/s10529-013-1256-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
Abstract
Microbial lipases are a versatile and attractive class of biocatalysts for a wide variety of applications. Lipases can be produced by bacteria, yeasts or filamentous fungi. Nevertheless, they are often not optimal for direct use in industrial conditions due to low yields, low specific activities and a limited spectrum of activities. Improvements in the productivity of lipases have been made by genetic manipulation of the cell factory production hosts and by optimizing production media and conditions. Advances in protein engineering technology, ranging from directed evolution to rational design, have also been able to tailor lipases to particular applications. This review describes various approaches used to improve lipase production and applications.
Collapse
|
37
|
High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer. Bioprocess Biosyst Eng 2013; 36:1527-43. [DOI: 10.1007/s00449-013-0943-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/14/2013] [Indexed: 11/26/2022]
|
38
|
Marini A, Imelio N, Marini S, Romanini D, Farruggia B. Extraction of lipase from Aspergillus niger by insoluble complex formation with anionic and cationic polyelectrolytes. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Biver S, Vandenbol M. Characterization of three new carboxylic ester hydrolases isolated by functional screening of a forest soil metagenomic library. J Ind Microbiol Biotechnol 2012; 40:191-200. [PMID: 23160923 DOI: 10.1007/s10295-012-1217-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/04/2012] [Indexed: 11/25/2022]
Abstract
Three new lipolytic genes were isolated from a forest soil metagenomic library by functional screening on tributyrin agar plates. The genes SBLip1, SBLip2 and SBLip5.1 respectively encode polypeptides of 445, 346 and 316 amino acids. Phylogenetic analyses revealed that SBLip2 and SBLip5.1 belong to bacterial esterase/lipase family IV, whereas SBLip1 shows similarity to class C β-lactamases and is thus related to esterase family VIII. The corresponding genes were overexpressed and their products purified by affinity chromatography for characterization. Analyses of substrate specificity with different p-nitrophenyl esters showed that all three enzymes have a preference for short-acyl-chain p-nitrophenyl esters, a feature of carboxylesterases as opposed to lipases. The β-lactamase activity of SBLip1, measured with the chromogenic substrate nitrocefin, was very low. The three esterases have the same optimal pH (pH 10) and remain active across a relatively broad pH range, displaying more than 60 % activity between pH 6 and 10. The temperature optima determined were 35 °C for SBLip1, 45 °C for SBLip2 and 50 °C for SBLip5.1. The three esterases displayed different levels of tolerance to salts, solvents and detergents, SBLip2 being overall more tolerant to high concentrations of solvent and SBLip5.1 less affected by detergents.
Collapse
Affiliation(s)
- Sophie Biver
- Unité de Microbiologie et Génomique, Gembloux Agro-Bio Tech, Université de Liège, Avenue Maréchal Juin 6, 5030 Gembloux, Belgium.
| | | |
Collapse
|
40
|
Kumar A, Singh S. Directed evolution: tailoring biocatalysts for industrial applications. Crit Rev Biotechnol 2012; 33:365-78. [DOI: 10.3109/07388551.2012.716810] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
41
|
Liu ZQ, Zheng XB, Zhang SP, Zheng YG. Cloning, expression and characterization of a lipase gene from the Candida antarctica ZJB09193 and its application in biosynthesis of vitamin A esters. Microbiol Res 2012; 167:452-60. [PMID: 22281522 DOI: 10.1016/j.micres.2011.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 12/17/2011] [Accepted: 12/30/2011] [Indexed: 10/14/2022]
Abstract
Lipase is one of the most important industrial enzymes, which has been widely used in the preparation of food additives, cosmetics and pharmaceuticals industries. In order to obtain a large amount of lipase, the lipase gene from Candida antarctica ZJB09193 was cloned, and expressed in Pichia pastoris with the vector pPICZαA. Under the optimal conditions, the yield of recombinant lipase in the culture broth reached 3.0 g/L. After purification, the properties of recombinant lipase were studied: the optimum pH and temperature were pH 8.0 and 52°C, Ca(2+) activated the activity of lipase, and the apparent K(m) and V(max) values for p-nitrophenyl acetate were 0.34 mM and 7.36 μmol min(-1) mg(-1), respectively. Furthermore, the recombinant lipase was immobilized on pretreated textile for biosynthesis of vitamin A esters. In a system of n-hexane, 0.3 g immobilized recombinant lipase was used in the presence of 0.06 g vitamin A acetate and 0.55 mmol fatty acid (nine different fatty acids were tested). The yield of all vitamin A esters exceeded 78% in 7h at 30°C except using lactic acid and hexanoic acid as substrates. After optimization, the yield of vitamin A palmitate reached 87%. This study has the potential to be developed into industrial application.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | | | | | | |
Collapse
|
42
|
Wang X, Sun Y, Ke F, Zhao H, Liu T, Xu L, Liu Y, Yan Y. Constitutive Expression of Yarrowia lipolytica Lipase LIP2 in Pichia pastoris Using GAP as Promoter. Appl Biochem Biotechnol 2012; 166:1355-67. [DOI: 10.1007/s12010-011-9524-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 12/26/2011] [Indexed: 12/01/2022]
|
43
|
Abstract
The production of heterologous lipases is one of the most promising strategies to increase the productivity of the bioprocesses and to reduce costs, with the final objective that more industrial lipase applications could be implemented. In this chapter, an overview of the most common microbial expression systems for the overproduction of microbial lipases is presented. Prokaryotic system as Escherichia coli and eukaryotic systems as Saccharomyces cerevisiae and Pichia pastoris are analyzed and compared in terms of productivity, operational, and downstream processing facilities. Finally, an overview of heterologous Candida rugosa and Rhizopus oryzae lipases, two of the most common lipases used in biocatalysis, is presented. In both cases, P. pastoris has been shown as the most promising host system.
Collapse
Affiliation(s)
- Francisco Valero
- Departament d'Enginyeria Química, EE. Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
44
|
|
45
|
Fan X, Liu X, Wang K, Wang S, Huang R, Liu Y. Highly soluble expression and molecular characterization of an organic solvent-stable and thermotolerant lipase originating from the metagenome. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Wang X, Sun Y, Shen X, Ke F, Zhao H, Liu Y, Xu L, Yan Y. Intracellular expression of Vitreoscilla hemoglobin improves production of Yarrowia lipolytica lipase LIP2 in a recombinant Pichia pastoris. Enzyme Microb Technol 2011; 50:22-8. [PMID: 22133436 DOI: 10.1016/j.enzmictec.2011.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
The Yarrowia lipolytica lipase LIP2 (YlLIP2) gene lip2 and Vitreoscilla hemoglobin gene vgb were co-expressed in Pichia pastoris, both under the control of AOX1 promoter, in order to alleviate respiration limitation under conditions of high cell-density fermentation and enhance YlLIP2 production. The results showed that recombinant P. pastoris strains harboring the lip2 and vgb genes (VHb(+)) displayed higher biomass and YlLIP2 activity than control strains (VHb(-)). Compared with VHb(-) cells, the expression levels of YlLIP2 in VHb-expressing cells when oxygen was not a limiting factor were improved 31.5% in shake-flask culture and 22% in a 10-L fermentor. Under non-limiting dissolved oxygen (DO) conditions, the maximum YlLIP2 activity of VHb(+) in a 10-L fermentor reached 33,000 U/mL. Oxygen limitation had a more negative effect on YlLIP2 productivity in VHb(-) cells than in VHb(+) cells. The highest YlLIP2 activity of VHb(+) cells was approximately 1.84-fold higher than that of VHb(-) cells at lower DO levels. Moreover, the recombinant strain VHb(+) exhibited a higher specific oxygen uptake rate and achieved higher cell viability under oxygen limiting and non-limiting conditions compared with VHb(-) cells. Therefore, the above results suggest that intracellular expression of VHb in recombinant P. pastoris has the potential to improve cell growth and industrial enzyme production.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Glogauer A, Martini VP, Faoro H, Couto GH, Müller-Santos M, Monteiro RA, Mitchell DA, de Souza EM, Pedrosa FO, Krieger N. Identification and characterization of a new true lipase isolated through metagenomic approach. Microb Cell Fact 2011; 10:54. [PMID: 21762508 PMCID: PMC3161859 DOI: 10.1186/1475-2859-10-54] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/15/2011] [Indexed: 11/10/2022] Open
Abstract
Background Metagenomics, the application of molecular genomics to consortia of non-cultivated microbes, has the potential to have a substantial impact on the search for novel industrial enzymes such as esterases (carboxyl ester hydrolases, EC 3.1.1.1) and lipases (triacylglycerol lipases, EC 3.1.1.3). In the current work, a novel lipase gene was identified from a fosmid metagenomic library constructed with the "prokaryotic-enriched" DNA from a fat-contaminated soil collected from a wastewater treatment plant. Results In preliminary screening on agar containing 1% tributyrin, 2661 of the approximately 500,000 clones in the metagenomic library showed activity. Of these, 127 showed activity on agar containing 1% tricaprylin, while 32 were shown to be true lipase producers through screening on agar containing 1% triolein. The clone with the largest halo was further characterized. Its lipase gene showed 72% identity to a putative lipase of Yersinia enterocolitica subsp. palearctica Y11. The lipase, named LipC12, belongs to family I.1 of bacterial lipases, has a chaperone-independent folding, does not possess disulfide bridges and is calcium ion dependent. It is stable from pH 6 to 11 and has activity from pH 4.5 to 10, with higher activities at alkaline pH values. LipC12 is stable up to 3.7 M NaCl and from 20 to 50°C, with maximum activity at 30°C over a 1 h incubation. The pure enzyme has specific activities of 1722 U/mg and 1767 U/mg against olive oil and pig fat, respectively. Moreover, it is highly stable in organic solvents at 15% and 30% (v/v). Conclusions The combination of the use of a fat-contaminated soil, enrichment of prokaryotic DNA and a three-step screening strategy led to a high number of lipase-producing clones in the metagenomic library. The most notable properties of the new lipase that was isolated and characterized were a high specific activity against long chain triacylglycerols, activity and stability over a wide range of pH values, good thermal stability and stability in water-miscible organic solvents and at high salt concentrations. These characteristics suggest that this lipase has potential to perform well in biocatalytic processes, such as for hydrolysis and synthesis reactions involving long-chain triacylglycerols and fatty acid esters.
Collapse
Affiliation(s)
- Arnaldo Glogauer
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba/PR, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb Technol 2011; 49:326-46. [PMID: 22112558 DOI: 10.1016/j.enzmictec.2011.06.023] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 12/20/2022]
Abstract
The immobilization of proteins (mostly typically enzymes) onto solid supports is mature technology and has been used successfully to enhance biocatalytic processes in a wide range of industrial applications. However, continued developments in immobilization technology have led to more sophisticated and specialized applications of the process. A combination of targeted chemistries, for both the support and the protein, sometimes in combination with additional chemical and/or genetic engineering, has led to the development of methods for the modification of protein functional properties, for enhancing protein stability and for the recovery of specific proteins from complex mixtures. In particular, the development of effective methods for immobilizing large multi-subunit proteins with multiple covalent linkages (multi-point immobilization) has been effective in stabilizing proteins where subunit dissociation is the initial step in enzyme inactivation. In some instances, multiple benefits are achievable in a single process. Here we comprehensively review the literature pertaining to immobilization and chemical modification of different enzyme classes from thermophiles, with emphasis on the chemistries involved and their implications for modification of the enzyme functional properties. We also highlight the potential for synergies in the combined use of immobilization and other chemical modifications.
Collapse
|
49
|
A novel cold active esterase derived from Colombian high Andean forest soil metagenome. World J Microbiol Biotechnol 2011; 28:361-70. [PMID: 22806812 DOI: 10.1007/s11274-011-0828-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
Abstract
In order to search new lipolytic enzymes and conduct bioprospecting of microbial communities from high Andean forest soil, a metagenomic library of approximately 20,000 clones was constructed in Escherichia coli using plasmid p-Bluescript II SK+. The library covered 80 Mb of the metagenomic DNA mainly from Proteobacteria, Actinobacteria and Acidobacteria. Two clones with lipolytic activity in tributyrin as a substrate were recovered. Clone BAA3G2 (pSK-estGX1) was selected and the entire 4.6 Kb insert sequence was determined. The sequence had a GC content of 70.6% and could be derived from an undescribed Actinobacteria genome. One open reading frame encoded a polypeptide of 210 amino acids (gene estGX1) with a molecular mass of 22.4 kDa that contained the pentapeptide G-P-S-G-G near the N-terminus essential for lipase activity and the putative catalytic triad was identified, also a putative ribosomal binding site located 18 bp upstream the estGX1 ATG start codon was identified. The phylogenetic analysis suggested that the protein belonged to a new lipase family. The secreted enzyme showed a preference for short length fatty acids, with specific activity against p-nitrophenyl-butyrate (0.142 U/mg of total protein), it was cold active with relative activity of 30% at 10°C and moderately thermo active with relative activity of 80% at 50°C and had a pH optimum of 8.0 at 40°C.
Collapse
|
50
|
Isolation of a Aspergillus niger lipase from a solid culture medium with aqueous two-phase systems. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2135-41. [DOI: 10.1016/j.jchromb.2011.05.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/27/2011] [Accepted: 05/27/2011] [Indexed: 11/22/2022]
|